

Research Bank Journal article

Impact of energy availability, health, and sex on hemoglobinmass responses following live-high-train-high altitude training in elite female and male distance athletes Heikura, Ida A., Burke, Louise M., Bergland, Dan, Tuulia Uusitalo, Arja L. T., Mero, Antti A. and Stellingwerff, Trent

Accepted author manuscript version reprinted, by permission, from International *Journal* of Sports Physiology and Performance, 2018, 13 (8): 1090-1096, <u>https://doi.org/10.1123/ijspp.2017-0547.</u> © 2018 Human Kinetics, Inc.

1 Title:

- 2 Impact of energy availability, health and sex on hemoglobin mass responses
- following live high train high altitude training in elite female and male distance
 athletes
- 4 aun
- 5
- 6 Submission type: Original investigation
- 7

8 Authors:

- 9 Ida A. Heikura^{1,2}, Louise M. Burke^{1,2}, Dan Bergland³, Arja L. T. Uusitalo^{4,5}, Antti A. Mero⁶, and
- 10 Trent Stellingwerff⁷
- 11

12 Institutions:

- 13 ¹ Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne,
- 14 Australia 3000
- 15 ² Sports Nutrition, Australian Institute of Sport, Canberra, Australia 2616
- ³ Hypo2 High Performance Sport Center, Flagstaff (AZ), USA
- ⁴ Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center,
- 18 Helsinki
- ⁵ University of Central Hospital and University of Helsinki, Finland
- 20 ⁶ Biology of Physical Activity, University of Jyvaskyla, Finland
- 21⁷ Canadian Sport Institute Pacific, Victoria, Canada
- 22

23 Address for correspondence:

- 24 Ida Heikura, M.Sc.
- 25 Address: Level 5, 215 Spring Street, Melbourne, VIC 3000, Australia
- 26 Telephone: +61 422 863 010
- 27 E-mail: <u>ida.heikura@myacu.edu.au</u>
- 28
- 29 **Running head:** Health status influences Hbmass response
- 30
- 31 Word count: 4171 words
- 32 Abstract count: 231 words
- 33 Number of references: 40
- 34 **Number of figures and tables:** 1 table and 3 figures
- 35
- 36

ABSTRACT

38 **Background:** We investigated the effects of sex, energy availability (EA), and health status on 39 the change in hemoglobin mass (Δ Hbmass) in elite endurance athletes over ~3 to 4 weeks of Live-High/Train-High altitude training (Flagstaff, AZ, 2135m; n=27 females; n=21 males; 27% 40 41 2016 Olympians). Methods: Pre- and post-camp Hbmass (optimized CO re-breathing method) 42 and iron status were measured, EA was estimated via food and training logs and Low Energy 43 Availability in Females Questionnaire (LEAF-Q) and a general injury/illness questionnaire was 44 completed. Hypoxic exposure (hours) was calculated with low (<500h), moderate (500-600h) 45 and high (>600h) groupings. **Results:** Absolute and relative percentage Δ Hbmass (% Δ Hbmass) was significantly greater in females (6.2±4.0%, p<0.001) than in males (3.2±3.3%, p=0.008). 46 47 (% Δ Hbmass) showed a dose-response with hypoxic exposure (3.1 \pm 3.8 vs 4.9 \pm 3.8 vs 6.8 \pm 3.7%; 48 p=0.013). Hbmass_{pre} was significantly higher in eumenorrheic vs amenorrheic females (12.2±1.0) 49 vs 11.3 \pm 0.5 g/kg; p=0.004). Although statistically under-powered, % Δ Hbmass was significantly 50 less in sick (n=4, -0.5 \pm 0.4%) versus healthy (n=44 athletes; 5.4 \pm 3.8%; p<0.001). There were no 51 significant correlations between self-reported iron intake, sex hormones or EA on Hbmass 52 outcomes. However, there was a trend for a negative correlation between LEAF-Q score and 53 % Δ Hbmass (r=-.353, p=0.07). Conclusion: Our findings confirm the importance of baseline 54 Hbmass and exposure to hypoxia on increases in Hbmass during altitude training, while 55 emphasizing the importance of athlete health and indices of EA on an optimal baseline Hbmass 56 and hematological response to hypoxia.

57 Key words: word-class athletes, athlete health, adaptations to altitude, altitude training,
58 hemoglobin mass

59

INTRODUCTION

60 Many high performance endurance athletes undertake specialized forms of altitude training. 61 The lack of agreement regarding the effects of altitude training on hematology and performance is partially explained by various differences in the methodology of altitude training studies¹. For 62 63 example, there are different modalities of altitude exposure, with several common options being 64 Live High-Train High (LHTH) or Live High-Train Low (LHTL) with hypobaric or normobaric hypoxia, or intermittent hypoxic exposure at rest (IHE) or during training (IHT)². Nevertheless, 65 66 irrespective of changes in performance, a change in hemoglobin mass (Hbmass) is considered an 67 objective and relatively easily measured outcome of altitude exposure within a standardized 68 altitude training protocol, with typical increase of 2–5% following a block of altitude training being reported ³⁻⁷. However, the mechanisms associated with optimizing Hbmass increases are 69 70 multifactorial and include the type of altitude modality, the duration and level of exposure (also 71 termed hypoxic dose⁸) and possibly the initial Hbmass level⁹. Indeed, there is consistent evidence of a progressive increase in Hbmass with three weeks of altitude training^{3,7,10}, with 72 73 supportive factors including the adequacy of baseline ferritin concentrations and doses of iron supplementation^{11,12}. Meanwhile, only two studies have reported that injury and/or illness tends 74 to negatively affect Hbmass changes^{6,13}. One aspect of athlete health is optimal energy 75 76 availability (EA), which is defined as the dietary energy available to support body function once the energy cost of exercise has been deducted from daily energy intake¹⁴. Low EA has 77 78 detrimental effects on many areas of health and training adaptation, including impairment of menstrual status, protein synthesis and iron status and an increased risk of illness and injury¹⁵. 79 80 However, to our knowledge no study has investigated the effects of symptoms of low EA on 81 altitude-induced hematological adaptations.

82 There are conflicting findings in the literature regarding factors which alter the Hbmass response to altitude. For example, Wachsmuth et al.⁶ found no sex based differences in 45 elite 83 84 swimmers in the relative Hbmass response with 3-4 weeks of LHTH over multiple camps; 85 however the absolute change was higher in males, which they hypothesized to be due to higher 86 baseline values. Conversely, in a meta-analysis Rasmussen et al. calculated lower Hbmass 87 changes in athletes with high baseline values following various altitude training protocols⁹. In contrast. Heinicke et al.¹⁶ investigated the effects of 3-weeks of LHTH altitude training at 2050m 88 89 on Hbmass in 6 male and 4 female word class biathletes and reported that Hbmass improved by 90 \sim 9% in both males and females despite differences in baseline levels and very low subject 91 numbers. Athlete calibre is another factor that may affect the hematological adaptations to altitude. Indeed, while some studies have shown increased Hbmass in elite athletes^{6,17}, others^{18,19} 92 93 have failed to do so, leading some experts to question the usefulness of altitude training in athletes with already high Hbmass levels²⁰. Obviously, the impact of baseline Hbmass values, 94 95 which are greater in males than females and in elite versus non-elite, and the subsequent hypoxic 96 induced changes in Hbmass, is far from being completely understood. Finally, the beneficial 97 effects of altitude training on other body systems such as angiogenesis and increased buffering capacity²¹ are often forgotten. Indeed, even if no hematological improvements are seen after 98 99 altitude training, an athlete may have benefited from the camp via improvements in nonhematological outcomes. 100 101 Due to lack of studies on the effects of EA and hormonal health (i.e. reproductive, metabolic

and anabolic hormones) on the Hbmass response at altitude, and due to contrasting results
regarding other factors that may influence this response in males vs. females and elite athletes,
our aim was to investigate the changes in Hbmass following LHTH altitude training in one of the

largest to date single cohort of elite female and male endurance athletes (27% Olympians) over a single training camp. Specifically, we aimed to confirm previous findings on the effects of length of exposure to hypoxia on change in Hbmass. However, we also wanted to investigate whether additional factors including sex, pre-camp Hbmass, health status (illness/injuries), EA sex hormone concentrations and bone health would affect Hbmass changes. Our hypothesis was that the magnitude of increase in Hbmass would depend primarily on hypoxic exposure, and possibly also on pre-camp Hbmass levels and health status.

112 **METHODS**

113 **Participants**

114 World-class middle- and long-distance runners and racewalkers (females, n=27; males, 115 n=21) were recruited. The inclusion criteria was 18–40 years of age and having an IAAF score (International Association of Athletics Federations Scoring Tables 2011²²) of at least 1050 116 117 points (corresponds to 13:45.20min and 16:00.04min in the 5000m in males and females, 118 respectively) scored within the preceding two years prior to study (baseline IAAF score). The 119 study protocol was approved by the Ethics Committee of University of Jyväskylä and conducted 120 according to the Declaration of Helsinki. All participants were enrolled in, and regularly 121 screened by, anti-doping monitoring programs. No participants have ever served any anti-doping 122 rule violation, and thus, to the best of our knowledge, were not involved with the use of any 123 prohibited substances.

124 Study design

In a non-blinded longitudinal study design, we investigated pre- (Hbmass_{pre}) and postaltitude (Hbmass_{post}) Hbmass, iron and health status (sex hormones, bone mineral density

127 (BMD), injury/illness frequency) during a pre-competition LHTH altitude training camp in

128 Flagstaff, AZ (2135m altitude; spring 2016). The measurements included baseline fasted blood

129 samples, body composition and BMD measurements via Dual-energy X-ray Absorptiometry

130 (DXA), followed by 7-day food and training logs on the second week of the camp. Female

131 athletes filled out a validated Low Energy Availability in Females Questionnaire (LEAF-Q²³).

132 Hemoglobin mass

133 Total Hbmass was measured with the adapted two-minute carbon monoxide (CO) rebreathing protocol²⁴. In brief, subjects rebreathed a dose of CO based on body mass (BM) 134 135 (1.25 ml/kg BM for males and 1.00 ml/kg BM for females) and ~4 L pure oxygen for 2 minutes 136 via closed circuit spirometer. A nose clip was worn and a portable CO meter (FLUKE CO-220, 137 Everett, Washington) was used to detect possible CO leakage via the nose, mouthpiece and 138 spirometer throughout the 2 minutes of CO rebreathing. Determination of %HbCO was 139 measured for baseline and 6 and 8 minutes after rebreathing from capillary fingertip blood 140 samples tested with OSM3 hemoximeter (Radiometer, Copenhagen, Denmark). Hbmass was 141 calculated from the mean change in %HbCO before and after CO rebreathing. Measurements 142 were conducted pre- (within ~48-72h of arrival) and post-camp (within ~48-72h from departure) 143 by the same technician at Hypo2 High Performance Sport Center in Flagstaff, AZ. The typical 144 error reported for the measurement done at Hypo2 is 1.9%. Throughout this manuscript, Hbmass 145 values are reported as absolute (absolute total Hbmass), relative (Hbmass relative to BM) and 146 percentage (percentage change in Hbmass, $\%\Delta$ Hbmass).

147 Hematology and anthropometry

148 Resting overnight fasted venous blood samples were collected at the beginning and at the

149 end of the camp. Venous blood was collected into 8.5 mL SST gel tubes (BD Vacutainer,

150 Franklin Lakes, NJ, USA) and centrifuged at 3400rpm for 10min using a Mini E Horizon

151 centrifuge (Drucker Company, Philipsburg, PA, USA). The fasted samples were analyzed for

152 serum iron, ferritin, testosterone and estradiol and measured via electrochemiluminescence

153 immunoassay (ECLIA) method. Body composition and BMD was measured in a fasted state by a

154 trained technician with DXA (GE Lunar DPX-IQ).

155 Dietary intakes and training characteristics

156 To avoid the possible effects of the initial altitude acclimatization on training and eating 157 habits the athletes were asked to keep food and training logs concurrently on the second week of 158 the altitude training camp. The principal investigator met each athlete to provide detailed 159 instructions on how to record all food and fluid intake accurately. The participants were asked to 160 record the time of all meals and training sessions, the type of food (brand names, flavors, etc.) 161 and amounts. Participants were provided with kitchen scales and measurement cups to facilitate 162 the recording process. If the participants ate out, they were asked to provide photos of meals with 163 verbal description to facilitate cross-checking. Athletes were free to supplement with iron 164 according to self-chosen protocols (e.g. brand and dosage) during the camp, however details of 165 this were recorded.

166 The participants were asked to record training for seven days including total distance, time 167 and session rating of perceived exertion (sRPE²⁵). The use of sRPE is validated to reflect training 168 load, and sRPE values of <4 (zone 1), 4–7 (zone 2) and >7 (zone 3) have been shown to 169 correspond well to the heart rate and blood lactate values²⁶.

170

Analysis of nutrient intake, energy expenditure and energy availability

The principal investigator analyzed all dietary records with ESHA Food Processor (Oregon, US, 2016). EA was estimated from food and training diaries as energy intake minus EEE and expressed in kcal·kg⁻¹ FFM·day⁻¹¹⁴. Detailed information on methodology used and outcomes of these analyses is reported elsewhere²⁷.

175 Statistical analysis

176 Statistical analyses were conducted using SPSS Statistics 22 (INM, Armonk, New York, 177 USA) with data normality assessed via Shapiro-Wilk. Data were analysed for all athletes pooled, 178 and with comparisons for sex and for female menstrual status (eumenorrheic vs. amenorrheic, defined as the absence of \geq three consecutive menses). Hypoxic dose⁸ at 2135m was stratified 179 180 into low (LOW: <1200 km.h; <23 days; n=27), moderate (MOD: 1200–1400 km.h; 23–27 days; 181 n=13) and high (HIGH: >1400 km.h; >27 days; n=8) groups. For further comparison, athletes were also categorized based on hours of exposure³ as follows: low (<500 hours; n=18), moderate 182 183 (500-600 hours; n=14) and high (>600 hours; n=16). Analysis of Covariance (ANCOVA) was 184 used to test the differences in the change in Hbmass with different hypoxic doses when 185 controlling for Hbmass_{pre}. Athletes were divided into healthy and sick (with an illness being 186 defined as anything that caused overall decrease in training/alteration to an athletes' training 187 program, but excluded minor routine injuries where training could be modified or training load 188 was not reduced due to cross-training) groups for further analysis. Baseline IAAF scores were 189 compared to the best race performance (IAAF score) within three weeks of descent from altitude 190 (Post IAAF score).

191 Differences in pre-camp body composition, Hbmass, iron status, EA, sex hormones and 192 BMD between sexes, amenorrheic vs eumenorrheic females, and healthy vs sick athletes were 193 analyzed with Student's t-test (parametric data) or Mann-Whitney U-test (nonparametric data). 194 Changes in pre- to post-iron status, Hbmass and IAAF score were analyzed with Student's paired 195 t-test (parametric data) or Wilcoxon signed rank test (nonparametric). Correlations were 196 analyzed using Pearson's correlation coefficient (parametric) or Spearman's test 197 (nonparametric). Data are presented as means±standard deviations (SD). Statistical significance 198 was set at $p \le 0.05$.

199 **RESULTS**

200 Table 1 summarizes athlete characteristics, dietary and training data, iron status parameters and 201 raw Hbmass changes during the altitude camp. Pre- and post-camp Hbmass were higher in 202 males than in females. % \Delta Hbmass (g/kg) was 4.9 \pm 4.0% (p<0.001) in all athletes pooled, with 203 significantly higher percentage (p=0.008) and absolute (p=0.033) increases in relative Hbmass 204 values in females vs males. Relative Hbmass_{pre} was significantly higher in eumenorrheic (n=20) 205 vs amenorrheic (n=7) females (12.2±1.0 vs 11.3±0.5 g/kg; p=0.004). LOW hypoxic dose 206 (+3.7±3.9%; 1013±137km.h) increased relative Hbmass significantly less than MOD 207 (+7.3±3.4%; 1320±70km.h; p=0.018) and, although not statistically significant, less than HIGH 208 $(4.8\pm3.6\%; 1563\pm95$ km.h) groups. In contrast, when hypoxic dose was characterized as hours of 209 exposure, there was a trend for higher response with increasing hours of exposure, and a 210 significant difference between low and high in all athletes pooled (F(2,48)=8.192, p=0.017). 211 However, when females and males were analysed separately, only males showed a difference in 212 the % Δ Hbmass response based on hours of exposure (F(2,20)=10.21, p=0.001; Figure 2). Also, 213 ANCOVA showed that there was a significant difference in the relative Hbmass response

between hours of exposure groups when controlling for Hbmass_{pre} (F(2, 44)=4.413, p=0.018,

215 partial eta squared=0.167). In addition, there was a strong relationship between HBmass_{pre} and

216 Hbmass_{post} (partial eta squared=0.928)

217 The relative Hbmass_{pre} negatively and significantly correlated with the Δ Hbmass (females 218 r=-.406, p=0.035; males r=-.470, p=0.032; Figure 1). In addition, hypoxic dose as km.h (r=.333, 219 p=0.021) and as hours of exposure (r=.374, p=0.009) positively correlated with % Δ Hbmass. 220 Relative Hbmass increased significantly more in healthy athletes (n=44, 26 females and 18 221 males) compared to those who suffered from illness (n=4, 1 females and 3 males) during the 222 camp (Figure 3; p<0.001). Two females (% \Delta Hbmass +7.1 and +14.6%) suffered mild injuries 223 but continued cross-training to maintain training load during the camp and thus, were not 224 considered as having an illness. When these athletes were included in the analysis as 225 "sick/injured", the difference in the Δ Hbmass between sick and healthy athletes became non-226 significant (3.3 ± 6.3 vs $5.1\pm3.6\%$, respectively; p=0.11). No correlations were found between 227 baseline IAAF score, change in IAAF from baseline to post-camp or EA and %AHbmass. In 228 females, LEAF-Q score showed a strong trend for a negative correlation with Δ Hbmass (g/kg; 229 r=-.353, p=0.07). There were no correlations or effect of self-reported iron supplementation 230 protocols, baseline ferritin levels, sex hormones (data in our companion $paper^{27}$), body composition parameters or BMD (data in our companion paper²⁷) on Hbmass outcomes. 231

232 **DISCUSSION**

This is one of the largest studies to date to investigate the contribution of hours of exposure to hypoxia, Hbmass_{pre} and aspects of health status (e.g. outcomes of EA and illness incidence at altitude) to the Hbmass response to altitude training in a single camp and single cohort of male 236 and female world-class endurance athletes (27% Olympians). Furthermore, our large subject 237 pool allowed for sufficient statistical power to allow a comparison of sex-based differences in 238 responses. Our main findings were that Hbmass increased significantly in both female and males, 239 with significantly greater relative and percentage increases in females. In addition, Hbmass_{pre} 240 was higher in eumenorrheic compared to amenorrheic females, and the increase in Hbmass was 241 more prominent in athletes who remained healthy throughout. Finally, in line with previous 242 studies, we found superior increases in Hbmass with greater hypoxic exposures and in those with 243 lower initial Hbmasspre values.

244 Our investigation further expands the current literature on altitude training in elite athletes in 245 which studies are commonly characterised by the collection of data over multiple time periods⁶, with varying altitude exposures²⁸ and/or use of simulated hypoxia¹¹, or in the absence of 246 measures of changes in Hbmass²⁹⁻³³. Unlike a few previous studies (^{18,19}) that have failed to find 247 248 an increase in Hbmass in elite athletes, and contrary to speculations on whether elite athletes with already high Hbmass benefit from altitude training²⁰, we found significant Hbmass 249 250 increases in our group of world-class distance athletes. This is in line with a recent study by Hauser et al.³⁴, who showed increases in Hbmass after 200-230 hours of exposure to a LHTL 251 252 protocol in male endurance and team sport athletes. Indeed, despite a moderate inverse 253 relationship between baseline Hbmass and change in Hbmass, even athletes with high initial 254 Hbmass levels (13.1g/kg in endurance athletes) showed ~4% increases following exposure to 255 hypoxia³⁴. Interestingly, despite similarities in the calibre of our female and male athletes, as 256 shown by their identical baseline IAAF scores, females were more successful in improving their 257 Hbmass over the camp (6.2 vs 3.2%; Table 1). While previous studies have failed to find a 258 difference in Hbmass response to altitude between sexes^{6,16}, these have generally involved

smaller numbers of female-to-male comparisons^{5,13,16,35,36} or have investigated only females^{4,10} or males^{18,19,34,37,38}. The findings of the current study could be explained by the fact that males had significantly higher relative Hbmass_{pre} levels (14.4 vs 12.0 g/kg; Table 1), although this is just speculation. Nevertheless, we found a negative relationship between Hbmass_{pre} and change in Hbmass (Δ Hbmass; Figure 1); previous investigations have also suggested that initial Hbmass play a role in the magnitude of the hematological adaptations at altitude^{9,20,34}, although not all studies support this finding⁶.

266 The magnitude and length of exposure to hypoxia are crucial for altitude-induced hematological adaptations. Based on several studies, an increase of 1% per week¹⁰ or 1% per 100 267 268 hours of exposure³ can be expected, although an exponential model of hypoxic dose has also been proposed by Garvican-Lewis and colleagues⁸. Indeed, we found increases of 3.7, 7.3, and 269 270 4.8% at low (1013 km.h), moderate (1320 km.h) and high (1563 km.h) hypoxic doses, 271 respectively, which resulted in a significant positive correlation between hypoxic dose and 272 Δ Hbmass. Interestingly, comparison of changes in Hbmass with differing hours of exposure 273 showed greater increases in Hbmass with increasing hours of exposure (3.6 vs 4.0 vs 6.2% with 274 <500, 500-600, and >600 hours of exposure; Figure 2), which is in line with a meta-analysis 275 showing that even shorter exposures of LHTH or LHTL are able to increase Hbmass ~3% given 276 the athlete is free from injury/illness and has adequate iron supplementation³⁹. Considering the 277 same elevation for each athlete in the current study, perhaps the difference in findings between 278 hypoxic dose and hours of exposure comparisons can be explained with different cut-off points 279 that resulted in different categorization of athletes into low, moderate and high groups. 280 Alternatively, our analysis between hypoxic dose groups may have been under-powered (n=8 in 281 high hypoxic dose group). However, although exposure to hypoxia is important, our findings

suggest that initial Hbmass levels (Figure 1) appear to have an even greater effect on the
magnitude of hematological adaptations following altitude training.

284 There have been previous indications that athlete health is associated with changes in erythropoiesis in athletes. Gough et al.¹³ tracked changes in Hbmass in 15 athletes over lengthy 285 286 periods (162±198 days) of training interruptions due to illness and injury, showing that reduced 287 training and surgery (n=3) led to 2.3 and 2.7% decreases in Hbmass, respectively. Furthermore, Wachsmuth et al.⁶ showed a 7.2% increase in Hbmass following 3-4 weeks of LHTH training at 288 289 2320m in swimmers, while no increase was observed in ill/injured athletes (n=8). The results of 290 our study show several new insights into the importance of health status in optimizing the 291 response to altitude training. Principally, healthy athletes were able to increase Hbmass 292 significantly more than athletes who became sick during the training camp (+5.4 vs -0.5%; 293 Figure 3), which confirms the findings of previous research. While we acknowledge that our 294 sample size of injured athletes was small and thus may have reduced the statistical power, as 295 mentioned earlier, this finding is in line with previous studies showing an impaired response to 296 hypoxia in athletes who were not healthy^{6,13}. Interestingly, despite suffering minor injuries 297 during the camp, two females who managed to maintain their training loads via cross-training 298 did not show Hbmass erosion, with an average Hbmass increase of $\sim 10\%$. This novel finding 299 suggests that athletes suffering from minor injuries (where serious inflammation may not 300 present) may still be able to benefit from altitude training where training volume is not 301 compromised (via inclusion of cross-training) and where non-steroid anti-inflammatory drugs are 302 not used (may compromise response). This is aligned with Gough et al.¹³ who also showed 303 training reductions causing decreases in Hbmass. However, these findings should be interpreted

with caution as we only had a very small number of athletes who developed illnesses during thecamp.

306 We were also interested to look at the effect of low EA (based on food and training records as well as physiological outcomes²⁷) on adaptations to altitude training, since it has previously 307 been shown to impair health and performance¹⁵, including processes such as the protein synthetic 308 309 response to exercise⁴⁰ that are likely to be important in hemapoiesis. Our estimations from food 310 and training logs captured during the mid-period of the altitude training camp identified a range 311 of EA scores among both male and female cohorts spanning healthy (~45 kcal.kg BM⁻¹.d⁻¹) to low (<30 kcal.kg BM⁻¹.d⁻¹)¹⁴. However, we failed to identify a correlation between these 312 313 estimates and Hbmass changes. This is not entirely surprising since these EA calculations are 314 based on self-reports from a single time period of 1 week which are fraught with methodological 315 issues, as well as not necessarily representative of earlier behaviors which may have caused chronic metabolic and hormonal perturbations²⁷. Indeed, it is likely that athletes' eating and 316 317 exercise activities during the camp were different to their habitual practices due to deliberate 318 alterations in nutrition practices and training program to accommodate the special needs of 319 altitude training, as well as secondary changes due to a new food environment and daily routine. 320 These changes may have altered both the magnitude and direction of habitual EA compared to 321 the optimal levels. Surprisingly and contrary to our hypothesis, we failed to find correlations or 322 effects of sex hormones or BMD on Hbmass outcomes. Indeed, we assumed that low sex 323 hormone or BMD status would negatively affect Δ Hbmass, however this was not the case. 324 Nevertheless, other data collected in our study which identified a high risk of chronic low EA 325 was correlated with Hbmass responses to the altitude training. We found significantly lower Hbmass_{pre} in amenorrheic vs eumenorrheic females (amenorrhea signals of chronic low EA¹⁵) 326

and a trend for higher increases in Hbmass with lower LEAF-Q scores (LEAF-Q scores of >8 are
likely to be indicative of low EA in females²³), which indicates that menstrual dysfunction, an
indicator of long-term low EA, may influence these adaptations or their magnitude. However,
despite this trend, this association between LEAF-Q and Hbmass changes at altitude requires
further validation.

332 Strengths and limitations. The major strength of the current study is that it was conducted 333 during the preparation period for the 2016 Olympic Games and thus, unlike several other 334 previous studies, reflects the true training characteristics and altitude camp outcomes of elite 335 athlete in preparation for a major competition. The sample size for the current study is one of the 336 largest to date reported in the literature in an elite athlete population, with a single camp and a 337 single time period protocol allowing us to detect differences that might not otherwise be 338 detectable when using other forms of data collection. Furthermore, to our knowledge, we have 339 highest numbers of female-to-male comparisons within these conditions. Finally, our study adds 340 to the growing literature of the likely detrimental effects of low EA and/or menstrual dysfunction 341 on athlete health. However, there are several limitations. First, due to the involvement of truly 342 world-class athletes in preparation in the Olympic year, we were not able to standardise factors 343 such as duration of altitude exposure and use or dose of iron supplementation (although all were 344 recommended to take iron between 100 to 200mg/day). In addition, we were not able to include 345 performance tests to provide physiological characteristics of the athletes. Therefore, it is 346 impossible to estimate the effects of altitude exposure or changes in Hbmass on performance 347 outcomes in these athletes. In addition, the dietary and training information was collected from a 348 single week of the camp and may not represent habitual practices and/or the practices over the 349 entire camp. However, since the reliability and accuracy of food records decreases with

350 increasing recording periods, and since elite athletes tend to keep their dietary intakes relatively 351 stable over a microcycle (personal observations), we believe this time period was sufficient to 352 yield an idea of the dietary patterns of these athletes. Given the study design, and the fact that 353 altitude training tends to enhance performance, we were unable to add a sea-level control group. 354 Finally, we acknowledge that comparing the results of the current study to the findings of 355 previous altitude training literature, where a different study population (calibre and sport), 356 different altitude exposure (length and elevation) and different protocol (LHTH, LHTL, IHE, 357 IHT in normobaric or hypotaric hypoxia) make it challenging to make direct comparisons across 358 studies. Nonetheless, we believe that our study adds novel information to the existing literature 359 on altitude training.

360

361 Conclusions

362 These data represent one of the largest investigations to date of the effects of various factors 363 on the Hbmass response to LHTH altitude training in world-class endurance athletes, including a 364 robust comparison of responses in males versus females, during a pre-season preparation camp 365 before the 2016 Olympic Games. We showed that females have significantly lower Hbmass_{pre} 366 than males, with a negative correlation between Hbmass_{pre} and change in Hbmass over the camp. 367 However, we would like to highlight the fact that despite previous expert opinions on the lack of 368 effectiveness of altitude training in elite athletes, our cohort of world-class athletes were able to 369 benefit from the hematological effects of the altitude camp despite being elite and possessing 370 high initial Hbmass levels. Furthermore, our findings emphasize and confirm the previous 371 findings on the importance of athlete health in the optimal hematological response to altitude 372 exposure. Indeed, to our knowledge, we are the first to show that menstrual function is correlated

373 with baseline Hbmass levels and that a higher risk score for low EA in females shows a trend to 374 correlate with less favorable changes in Hbmass following altitude training. We also found a 375 significant difference in the Hbmass response to altitude, where healthy athletes were able to 376 increase Hbmass on average by 5.4% compared to an average decrease of -0.5% in those who 377 were sick during the camp, although it should be emphasized that out small sample size (n=4) of 378 sick athletes may have reduced the statistical power. Finally, we confirm previous findings of the 379 importance of sufficient exposure to hypoxia on hematological adaptations to altitude, where 380 increasing hours of exposure seem to provide increasing hematological benefits independent of 381 initial Hbmass levels.

- 382
- 383

ACKNOWLEDGEMENTS

384 The study was designed by IH, TS, AM, AU and LB; data were collected and analyzed by IH, 385 TS, DB and LB; data interpretation and manuscript preparation were undertaken by IH, TS, AM, 386 AU, DB and LB. All authors approved the final version of the paper. This study was financially 387 supported by grants from the Canadian Sport Institute, Australian Catholic University/Australian 388 Institute of Sport, Finnish Sport Institute Foundation, and Finnish Sport Research Foundation. 389 The authors wish to thank Hypo2 High Performance Sport Center and Northern Arizona 390 Orthopaedics and Prof. Jennifer Peat for technical analysis and statistical assistance. Finally, the 391 authors wish to thank all the participants for volunteering for the study.

392

CONFLICTS OF INTEREST

393 The authors and funding agents do not have any conflicts of interests.

396 REFERENCES 397 1. Lundby C, Robach P. Does 'altitude training' increase exercise performance in elite athletes? 398 *Exp Physiol.* 2016;101(7):783-788. 399 2. Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak 400 performance. Sports Med. 2010;40(1):1-25. 401 3. Garvican L, Martin D, Quod M, Stephens B, Sassi A, Gore C. Time course of the hemoglobin 402 mass response to natural altitude training in elite endurance cyclists. Scand J Med Sci Sports. 403 2012;22(1):95-103. 404 4. Pottgiesser T, Garvican LA, Martin DT, Featonby JM, Gore CJ, Schumacher YO. Short-term 405 hematological effects upon completion of a four-week simulated altitude camp. Int J Sports 406 Physiol Perform. 2012;7(1):79-83. 407 5. Wehrlin JP, Zuest P, Hallen J, Marti B. Live high-train low for 24 days increases hemoglobin 408 mass and red cell volume in elite endurance athletes. J Appl Physiol (1985). 2006;100(6):1938-409 1945. 410 6. Wachsmuth NB, Volzke C, Prommer N, et al. The effects of classic altitude training on 411 hemoglobin mass in swimmers. Eur J Appl Physiol. 2013;113(5):1199-1211. 412 7. Garvican-Lewis LA, Halliday I, Abbiss CR, Saunders PU, Gore CJ. Altitude exposure at 1800

413 m increases haemoglobin mass in distance runners. *J Sports Sci Med.* 2015;14(2):413-417.

414 8. Garvican-Lewis LA, Sharpe K, Gore CJ. Time for a new metric for hypoxic dose? *J Appl*

415 *Physiol* (1985). 2016;121(1):352-355.

416	9. Rasmussen P, Siebenmann C, Diaz V, Lundby C. Red cell volume expansion at altitude: A
417	meta-analysis and monte carlo simulation. Med Sci Sports Exerc. 2013;45(9):1767-1772.
418	10. Clark SA, Quod MJ, Clark MA, Martin DT, Saunders PU, Gore CJ. Time course of

419 haemoglobin mass during 21 days live high:Train low simulated altitude. *Eur J Appl Physiol*.

420 2009;106(3):399-406.

421 11. Govus AD, Garvican-Lewis LA, Abbiss CR, Peeling P, Gore CJ. Pre-altitude serum ferritin

422 levels and daily oral iron supplement dose mediate iron parameter and hemoglobin mass

423 responses to altitude exposure. *PLoS One*. 2015;10(8):e0135120.

424 12. Garvican-Lewis LA, Govus AD, Peeling P, Abbiss CR, Gore CJ. Iron supplementation and

425 altitude: Decision making using a regression tree. *J Sports Sci Med.* 2016;15(1):204-205.

- 426 13. Gough CE, Sharpe K, Garvican LA, Anson JM, Saunders PU, Gore CJ. The effects of injury
 427 and illness on haemoglobin mass. *Int J Sports Med.* 2013;34(9):763-769.
- 428 14. Loucks AB, Kiens B, Wright HH. Energy availability in athletes. *J Sports Sci.* 2011;29 Suppl
 429 1:S7-15.
- 430 15. Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: Beyond the
 431 female athlete Triad—Relative energy deficiency in sport (RED-S). *British Journal of Sports*432 *Medicine*. 2014;48(7):491-497.
- 433 16. Heinicke K, Heinicke I, Schmidt W, Wolfarth B. A three-week traditional altitude training
 434 increases hemoglobin mass and red cell volume in elite biathlon athletes. *Int J Sports Med.*435 2005;26(5):350-355.

- 436 17. Garvican LA, Pottgiesser T, Martin DT, Schumacher YO, Barras M, Gore CJ. The
- 437 contribution of haemoglobin mass to increases in cycling performance induced by simulated
- 438 LHTL. Eur J Appl Physiol. 2011;111(6):1089-1101.
- 439 18. Gore CJ, Hahn A, Rice A, et al. Altitude training at 2690m does not increase total
- 440 haemoglobin mass or sea level VO2max in world champion track cyclists. *J Sci Med Sport*.
- 441 1998;1(3):156-170.
- 442 19. Pottgiesser T, Ahlgrim C, Ruthardt S, Dickhuth HH, Schumacher YO. Hemoglobin mass
- 443 after 21 days of conventional altitude training at 1816 m. J Sci Med Sport. 2009;12(6):673-675.
- 444 20. Robach P, Lundby C. Is live high-train low altitude training relevant for elite athletes with
- 445 already high total hemoglobin mass? *Scand J Med Sci Sports*. 2012;22(3):303-305.
- 446 21. Gore CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level
- 447 performance after hypoxic exposure. *Med Sci Sports Exerc*. 2007;39(9):1600-1609.
- 448 22. IAAF Scoring Tables 2011. Accessed on 31 Jan 2016. Retrieved from
- 449 https://www.iaaf.org/about-iaaf/documents/technical
- 450 23. Melin A, Tornberg AB, Skouby S, et al. The LEAF questionnaire: A screening tool for the
- 451 identification of female athletes at risk for the female athlete triad. Br J Sports Med.
- 452 2014;48(7):540-545.
- 453 24. Schmidt W, Prommer N. The optimised CO-rebreathing method: A new tool to determine
 454 total haemoglobin mass routinely. *Eur J Appl Physiol*. 2005;95(5-6):486-495.

455 25. Foster C. Monitoring training in athletes with reference to overtraining syndrome. *Med Sci*456 *Sports Exerc.* 1998;30(7):1164-1168.

457 26. Seiler KS, Kjerland GO. Quantifying training intensity distribution in elite endurance

458 athletes: Is there evidence for an "optimal" distribution? Scand J Med Sci Sports. 2006;16(1):49-

459 56.

460 27. Heikura IA, Uusitalo ALT, Stellingwerff T, Bergland D, Mero AA, Burke LM. Low energy461 availability is difficult to assess but outcomes have large impact on bone injury rates in elite

462 distance athletes. Int J Sport Nutr Exerc Metab In press

28. Rodriguez FA, Iglesias X, Feriche B, et al. Altitude training in elite swimmers for sea level
performance (altitude project). *Med Sci Sports Exerc.* 2015;47(9):1965-1978.

465 29. Woods AL, Garvican-Lewis LA, Rice A, Thompson KG. 12 days of altitude exposure at
466 1800 M does not increase resting metabolic rate in elite rowers. *Appl Physiol Nutr Metab*.
467 2017;42(6):672-676.

30. Stray-Gundersen J, Chapman RF, Levine BD. "Living high-training low" altitude training
improves sea level performance in male and female elite runners. *J Appl Physiol (1985)*.
2001;91(3):1113-1120.

471 31. Chapman RF, Karlsen T, Resaland GK, et al. Defining the "dose" of altitude training: How

472 high to live for optimal sea level performance enhancement. J Appl Physiol (1985).

473 2014;116(6):595-603.

474	32. Sharma AP, Saunders PU, Garvican-Lewis LA, et al. The effect of training at 2100-m
475	altitude on running speed and session rating of perceived exertion at different intensities in elite
476	middle-distance runners. Int J Sports Physiol Perform. 2017;12(Suppl 2):S2147-S2152.
477	33. Sperlich B, Achtzehn S, de Marees M, von Papen H, Mester J. Load management in elite
478	german distance runners during 3-weeks of high-altitude training. Physiol Rep.

479 2016;4(12):10.14814/phy2.12845.

- 480 34. Hauser A, Troesch S, Steiner T, Brocherie F, Girard O, Saugy JJ, Schmitt GP, Wehrlin JJP.
- 481 Do male athletes with already high initial haemoglobin mass benefit from 'live high-train low'

482 altitude training? *Exp Physiol.* 2017;Oct11 doi: 10.1113/EP086590. [Epub ahead of print]

483 35. Woods AL, Sharma AP, Garvican-Lewis LA, Saunders PU, Rice AJ, Thompson KG. Four

484 weeks of classical altitude training increases resting metabolic rate in highly trained middle-

distance runners. *Int J Sport Nutr Exerc Metab.* 2017;27(1):83-90.

486 36. Gough CE, Saunders PU, Fowlie J, et al. Influence of altitude training modality on

487 performance and total haemoglobin mass in elite swimmers. *Eur J Appl Physiol*.

488 2012;112(9):3275-3285.

489 37. Garvican-Lewis LA, Schumacher YO, Clark SA, et al. Stage racing at altitude induces

490 hemodilution despite an increase in hemoglobin mass. *J Appl Physiol (1985)*. 2014;117(5):463-

491 472.

492	58. McLean BD, Butthant D, Gore CJ, white K, Kemp J. Year-to-year variability in
493	haemoglobin mass response to two altitude training camps. Br J Sports Med. 2013;47 Suppl
494	1:i51-8.

T T 7

• 1 • 1• . •

- 495 39. Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY,
- 496 Wachsmuth NB, Clark SA, McLean BD, Friedmann-Bette B, Neya M, Pottgiesser T,
- 497 Schumacher YO, Schmidt WF. Altitude training and haemoglobin mass from the optimised
- 498 carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med.
- 499 2013;47(S1):i31-39.
- 500 40. Areta JL, Burke LM, Camera DM, et al. Reduced resting skeletal muscle protein synthesis is
- 501 rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J
- 502 *Physiol Endocrinol Metab.* 2014;306(8):E989-97.

503

100

20 16 1

FIGURE LEGENDS

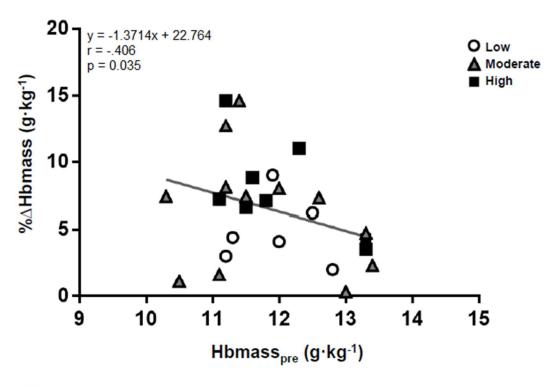
Figure 1. Correlation between pre-camp hemoglobin mass (Hbmass_{pre}) and the relative change in Hbmass (Δ Hbmass) in females (A) and males (B). *Open circles*, low hypoxic dose group (<1200km.h); *open triangles*, moderate hypoxic dose group (1200-1400 km.h); *open squares*, high hypoxic dose group (>1400 km.h).

Figure 2. Differences in the percentage hemoglobin mass response (% Δ Hbmass) to altitude in low (LOW: <500 hours of exposure, corresponds to <21 days at 2135 m), moderate (MOD: 500-600 hours of exposure, corresponds to 21-25 days at 2135 m) and high (HIGH: >600hours of exposure, corresponds to >25 days at 2135 m) hypoxic exposure groups in females and males. * p < 0.05, ** p < 0.01 significant difference between groups.

Figure 3. The magnitude of percentage change in hemoglobin mass (% Δ Hbmass) in athletes who were not sick or injured during the altitude camp (healthy athletes; *white bar*) and athletes who were sick or injured during the camp (*black bar*). *** p < 0.001 significant difference between groups

TABLES

Table 1. Athlete characteristics, dietary and training data, iron status parameters and Hbmass outcomes in elite female and male distance athletes. Values are means \pm SD.


	Females (n=23)		Males (n=15)			
Athlete characteristics						
Age (yr)	26.0	±	3.2	27.2	±	4.1
Height (m) ***	1.68	±	0.05	1.80	±	0.06
Weight pre (kg) ***	54.1	±	4.5	68.0	±	5.9
Weight post (kg) ***	53.7	±	4.5	68.2	±	5.8
Body fat (%) ***	11.7	±	2.7	6.7	±	1.2
Baseline IAAF score	1113	±	39	1109	±	45
Post IAAF score ^{# \$\$}	1090	±	39	1072	±	67
Altitude camp activities						
EA (kcal/kg FFM/day)	33	±	7	36	±	6
Iron supplement (mg elemental iron)	110	±	61	142	±	68
Dietary iron (mg.d ⁻¹) **	16.6	±	5.1	24.7	±	8.6
Running (km·wk ⁻¹) *	94	±	27	114	±	30
TRIMP (AU)	1998	±	601	2363	±	1424
Hypoxic dose (km.h ⁻¹) *	1180	±	193	1038	±	235
Iron status parameters						
Pre serum iron	121	±	42	112	±	31
Post serum iron	134	±	44	113	±	58
Pre serum ferritin	87	±	50	106	±	37
Post serum ferritin ###	83	±	45	82	±	24
Hbmass parameters						
Hbmass _{pre} (g) ***	646	±	57	979	±	103
Hbmass _{post} (g) *** ### \$\$\$	681	±	67	1013	±	109
Hbmass _{pre} (g/kg) ***	12.0	±	1.0	14.4	±	1.1
Hbmass _{post} (g/kg) *** ### \$\$\$	12.7	±	0.9	14.9	±	1.0
ΔHbmass (g)	36	±	25	34	±	28
Δ Hbmass (g/kg) *	0.7	±	0.5	0.4	±	0.4
%ΔHbmass (g) *	5.5	±	3.8	3.4	±	3.0
%ΔHbmass (g/kg) **	6.2	±	4.0	3.2	±	3.3

Baseline IAAF score, IAAF score (International Association of Athletics Federations scoring table 2011) prior to the camp; Post IAAF score, race IAAF score in the three-week post-camp period; EA, energy availability; TRIMP, training impulse; AU, arbitrary unit; Hbmass, hemoglobin mass; Δ Hbmass, absolute change in Hbmass; $\%\Delta$ Hbmass, relative change in Hbmass. * p<0.05, ** p<0.01, *** p<0.001 significant difference between females and males; ^{\$} p<0.05, ^{\$\$} p<0.01, ^{\$\$\$} p<0.001 significant difference from pre to post in females; [#] p<0.05, ^{##} p<0.001 significant difference from pre to post in males

FIGURES

Figure 1.

A)

B)

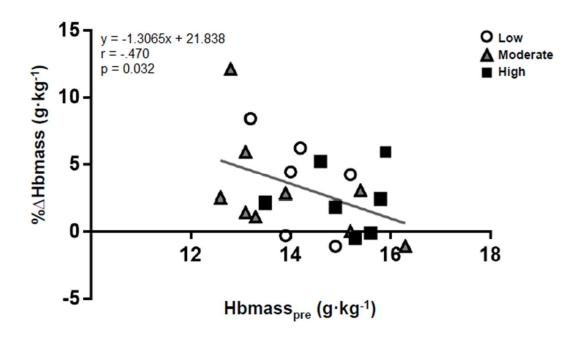
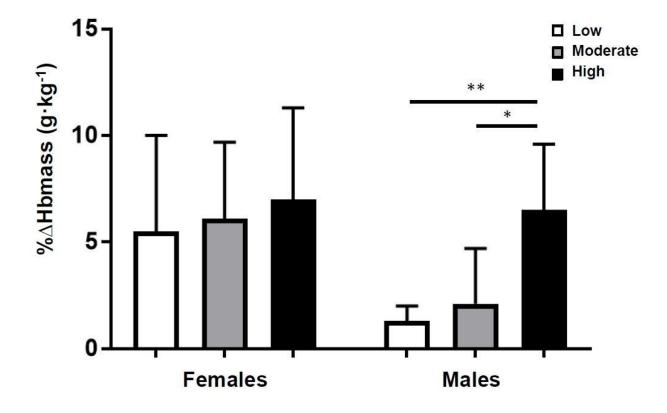



Figure 2.

