
R E V I EW

C om o r b i d i t i e s / I n t e r v e n t i o n

Nutritional strategies to attenuate postprandial glycemic
response

Kenneth Pasmans | Ruth C. R. Meex | Luc J. C. van Loon | Ellen E. Blaak

Department of Human Biology, School of

Nutrition and Translational Research in

Metabolism (NUTRIM), Maastricht University,

Maastricht, The Netherlands

Correspondence

Ellen E. Blaak, Department of Human Biology,

School of Nutrition and Translational Research

in Metabolism (NUTRIM), Maastricht

University, Universiteitssingel 50, 6229 ER

Maastricht, The Netherlands.

Email: e.blaak@maastrichtuniversity.nl

Summary

Maintaining good glycemic control to prevent complications is crucial in people with

type 2 diabetes and in people with prediabetes and in the general population. Differ-

ent strategies to improve glycemic control involve the prescription of blood glucose-

lowering drugs and the modulation of physical activity and diet. Interestingly, lifestyle

intervention may be more effective in lowering hyperglycemia than pharmaceutical

intervention. Regulation of postprandial glycemia is complex, but specific nutritional

strategies can be applied to attenuate postprandial hyperglycemia. These strategies

include reducing total carbohydrate intake, consuming carbohydrates with a lower

glycemic index, the addition of or substitution by sweeteners and fibers, using food

compounds which delay or inhibit gastric emptying or carbohydrate digestion, and

using food compounds which inhibit intestinal glucose absorption. Nevertheless, it

must be noted that every individual may respond differently to certain nutritional

interventions. Therefore, a personalized approach is of importance to choose the

optimal nutritional strategy to improve postprandial glycemia for each individual, but

this requires a better understanding of the mechanisms explaining the differential

responses between individuals.
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1 | INTRODUCTION

Glycemic variability is a predictor of premature mortality in the gen-

eral population, in people with prediabetes, and in people with type

2 diabetes (T2D).1,2 It is crucial to maintain good glycemic control in

order to prevent the development of cardiometabolic diseases.3 There

are different strategies that can be applied to improve glycemic

control. Besides dietary and lifestyle advices, the majority of patients

with T2D are treated with blood glucose-lowering drugs. This includes

drugs that improve insulin sensitivity in liver, adipose tissue, and skel-

etal muscle; drugs that increase insulin secretion of the pancreas;

drugs that extend the duration of activity of the so-called satiety hor-

mones gastric inhibitory polypeptide (GIP) and glucagon-like

peptide-1 (GLP-1); and drugs that inhibit glucose reabsorption from

the kidneys, thereby resulting in excretion of glucose via urine.

In the case of hyperglycemia in the absence of diabetes, lifestyle

intervention, focused on diet and physical activity to improve glyce-

mic control, was associated with a ±50% reduced risk of developing

Abbreviations: BMI, body mass index; CHO, carbohydrate; GI, glycemic index; GIP, gastric

inhibitory polypeptide; GL, glycemic load; GLP-1, glucagon-like peptide-1; GLUT2, glucose

transporter 2; HbA1C, glycated hemoglobin; HOMA-IR, homeostatic model assessment of

insulin resistance; SGLT1, sodium-glucose cotransporter 1; T2D, type 2 diabetes.
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diabetes.4,5 Indeed, modulation of diet and exercise may improve

whole-body insulin sensitivity, and some studies actually report that

lifestyle intervention can be more effective in lowering hyperglycemia

than the use of drugs.6,7 As dietary carbohydrate (CHO) is the main

dietary component affecting glycemia, many intervention studies that

are described involve the effects of CHOs, including concepts like gly-

cemic index (GI) and glycemic load (GL),3 as described more exten-

sively below. Nutritional strategies aimed at inhibiting CHO digestion

and glucose absorption in the small intestine have been developed.

Inhibition of CHO digestion and absorption leads to a delayed glucose

appearance in the circulation, thereby decreasing postprandial hyper-

glycemia. The aim of this review is to give an overview of the determi-

nants of postprandial glycemia related to diet composition, digestion,

and absorption. We will discuss nutritional strategies that can be

applied to inhibit the pace of digestion and absorption in order to

ameliorate the postprandial glycemic response.

2 | REGULATION OF POSTPRANDIAL
GLYCEMIA

The blood glucose concentration reflects the balance between glucose

appearance and glucose disposal. In the fasted condition, no exoge-

nous glucose enters the circulation and so glucose appearance is only

influenced by metabolic processes in the body. The pancreas secretes

glucagon and reduces insulin secretion when blood glucose concentra-

tions are low, which promotes gluconeogenesis and glycogenolysis in

the liver. In the postprandial state, glucose appearance is heavily

influenced by the amount and composition of the food consumed, in

particular dietary CHOs, and by the pace of food digestion and

absorption. Blood glucose disposal, on the other hand, is strongly

affected by whole-body insulin sensitivity and insulin secretion. Stimu-

lation of insulin secretion, for instance by protein or amino acid inges-

tion, can also be considered to improve glycemic control.8,9 However,

such strategies to increase glucose disposal fall outside the scope of

this review. Interestingly, stable isotope methodologies have made it

possible to calculate how much exogenous glucose appearance con-

tributes to postprandial glycemia in addition to endogenous glucose

production.10 These studies provide useful insight into the effects of

specific CHO-containing products on postprandial glucose metabo-

lism. For instance, the oral glucose tolerance test, which is used to

measure the state of glucose tolerance of individuals, can be enriched

with 13C-glucose or [6,6-2H2]-glucose tracers to obtain information on

postprandial glucose handling in different metabolic subgroups, such

as people with normal glucose tolerance, impaired glucose tolerance,

and impaired fasting glucose. Such a study revealed that the blood

glucose pool in people with normal glucose tolerance consists of 90%

exogenous glucose and 10% endogenous glucose 120 min after inges-

tion of the 75-g glucose load.11 Additionally, people with impaired

fasting glucose showed a similar postprandial glucose handling as

compared to people with normal glucose tolerance, whereas people

with impaired glucose tolerance showed substantially higher absolute

exogenous glucose concentrations.11 Similar tests may be performed

to measure the rate of exogenous glucose appearance, endogenous

glucose production, and glucose disposal rate after ingestion of

numerous other food and drink products, such as bread or a sucrose

drink, or mixed meals.12,13

2.1 | Glycemic index and glycemic load

The UK Scientific Advisory Committee on Nutrition recommends a

reference intake of 50 E% of CHOs for the population on average.14

This makes CHOs quantitatively the most important energy source

for the body. CHOs are composed of one or more saccharide mole-

cules, and depending on their structure, digestible CHOs can be

divided into four main categories, namely, monosaccharides, disaccha-

rides, oligosaccharides, and polysaccharides. Importantly, digestible

polysaccharides such as starches can influence postprandial glycemia

directly, whereas nondigestible polysaccharides such as dietary fibers

can influence postprandial glycemia more indirectly via interference

with macronutrient absorption or microbial composition.

The concept of GI has been introduced to obtain a better classifi-

cation of the health effects of CHOs beyond their chemical structure.

GI is a numerical index on a scale of 0 to 100 and is used to indicate

the potential of CHO-containing foods to increase blood glucose con-

centrations. For reference purposes, glucose is assigned the maximum

value of 100. High-GI foods, which have a GI ≥ 70, can raise blood

glucose concentrations more than low-GI foods, which have a GI ≤

55.15 Apart from GI, also GL is used to indicate the potential of food

to increase blood glucose concentrations. However, in contrast to GI,

GL also takes the total available CHO content of a certain amount of

food into account.15 It is therefore evident that the quantity of glyce-

mic CHOs consumed, together with the relative ease by which those

CHOs can be digested, both have a direct effect on postprandial gly-

cemia. An enormous amount of research has been performed on eluci-

dating the connection between CHO intake and numerous health

outcomes. A series of systematic reviews and meta-analyses of stud-

ies in the general population showed that low-GI diets were associ-

ated with a reduced stroke mortality compared with high-GI diets.16

In addition, it was found that low-GI diets effectively reduced gly-

cated hemoglobin (HbA1C), fasting glucose, body mass index (BMI),

total cholesterol, and low-density lipoprotein in people with type

1 diabetes, T2D, and impaired glucose tolerance.17 In line with this, a

recent meta-analysis which included prospective cohort studies with

up to 26 years of follow-up found there was strong evidence for a

causal effect of GI and GL on the risk of T2D.18 Furthermore, con-

sumption of low-GI foods and limiting the GL of meals improved gly-

cemic control in patients with T2D, and possibly people with a normal

glucose tolerance.19 However, there was no effect on fasting insulin,

homeostatic model assessment of insulin resistance (HOMA-IR), high-

density lipoprotein, triglycerides, and insulin requirements.17 Commu-

nicating available information on GI and GL to the general public for

health benefits has been stressed internationally,15 but there are some

limitations. Indeed, only a certain number of food items have officially

tested GI values, most of which are for American and Australian food

products. Furthermore, the number of participants used to test the GI

of specific food items is often limited, and epidemiological nutritional
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studies estimate long-term intakes for individual participants by using

dietary questionnaires which are not optimally designed and also not

validated for dietary GI and GL.20,21 In addition to this, it is also very

difficult to tease out the effects of postprandial glucose per se,

because it is accompanied by elevated fasting blood glucose concen-

trations, and postprandial hyperlipidemia and hyperinsulinemia.22

Especially the magnitude of the reduction in acute postprandial glu-

cose exposure needed to achieve long-term metabolic health effects

is currently unknown. A recent systematic review and meta-analysis

of dietary intervention studies in relation to postprandial hyperglyce-

mia showed that only a small heterogeneous set of dietary interven-

tion studies are available where postprandial glucose was measured,

and that more dietary intervention studies are needed.22 Additionally,

the authors of a recent systematic review and meta-analysis describ-

ing the effects of α-glucosidase-inhibiting drugs on acute postprandial

glucose and insulin responses, were able to quantify clinically relevant

estimates for a reduction in postprandial glucose per se, also for indi-

viduals without diabetes.5 This meta-analysis indicates that a relative

reduction of acute incremental postprandial glucose of ±45–50%

(0.5 mmol/L in people without diabetes and 1.5 mmol/L in people

with diabetes) can be seen as a clinically relevant reference point for

reducing postprandial glucose concentrations via pharmaceutical and

lifestyle interventions in the long term.5

2.2 | Strategies to reduce glycemic index and
glycemic load

There are several nutritional strategies that can be used to reduce the

GI and GL of the diet, thereby attenuating postprandial hyperglyce-

mia. It is possible to simply limit the amount of glycemic CHOs in the

diet or specific food products, but that comes at the expense of

sweetness. Sweeteners, on the other hand, work well as a replace-

ment for glucose or sucrose to lower postprandial glycemia, without

affecting the sweetness of the product. Fructose is considered to be a

naturally occurring caloric sweetener. A replacement of 67% sucrose

by fructose showed lower values for the incremental area under the

curve of glucose from 0 to 120 min compared with a 50% replace-

ment, a 33% replacement, or no replacement at all.23 This has

prompted the European Food Safety Authority and the European

Commission to approve the health claim that the replacement of

sucrose and/or glucose by fructose lowers postprandial glycemia.

Apart from fructose, there is also a wide variety of non-nutritive, low-

energy or otherwise alternative artificial and plant-derived sweeteners

available to reduce postprandial glycemia, such as stevia, aspartame,

trehalose, and isomaltulose. Studies in which several of these sweet-

eners have been investigated are reviewed elsewhere.24,25 Trehalose

is a less commonly occurring disaccharide consisting of two glucose

molecules linked together in a different way compared with the disac-

charide maltose. Trehalose and maltose both provide approximately

4 kcal/g consumed, but trehalose contains an α-1,1-glycosidic bond,

whereas maltose contains an α-1,4-glycosidic bond. Isomaltulose is a

less commonly occurring disaccharide consisting of one glucose

molecule plus one fructose molecule linked together in a different

way compared with the disaccharide sucrose. Isomaltulose and

sucrose also provide 4 kcal/g consumed, but isomaltulose contains an

α-1,6-glycosidic bond, whereas sucrose contains an α-1,2-glycosidic

bond. Both trehalose and isomaltulose were found to reduce glycemic

and insulinemic responses in individuals who were overweight and

had glucose intolerance, as well as in healthy individuals.26–30 Also

other studies found beneficial effects for isomaltulose when com-

pared with sucrose.31–33 These results clearly show the possibility to

reduce the dietary intake of glycemic CHOs by replacing them with

sweeteners or other structurally manipulated CHOs, at least in the

short term. Additionally, a meta-analysis of human intervention stud-

ies supports the use of low-energy sweeteners in weight manage-

ment, constrained primarily by the amount of added sugar that those

sweeteners can displace in the diet.34 Notably, for artificial sweet-

eners, adverse health effects on microbial composition and glycemic

control have also been reported, but data are not consistent,24,25,35

and could not be confirmed in a meta-analysis of human studies.36

More studies will be needed to investigate the possible impact of

sweeteners on certain determinants of metabolic health.25

2.3 | Health effects of dietary fibers

Dietary fibers are indigestible CHOs, containing a heterogeneous

group of compounds, which are an important component of a healthy

diet. Systematic reviews and meta-analyses have shown that total

fiber intake reduces T2D risk37 and incidence in a dose–response

dependent manner.16 Additionally, a systematic review and meta-

analyses to analyze the effects of total dietary fiber intake on glycemic

control and cardiometabolic risk factors in people with prediabetes,

type 1 diabetes, and T2D showed a dose–response relationship

between fiber intake and reduction in HbA1C, fasting plasma glucose,

insulin, and HOMA-IR.38 In line, a meta-analysis of randomized con-

trolled trials showed that microbiota-accessible CHOs improved gly-

cemic control, blood lipid, body weight, and inflammatory markers for

people with T2D.39 Due to their health effects, in many countries, it is

recommended to increase total fiber intake to 25–35 g per day for

adults. Current fiber intake is only ±20 g per day on average.39 Over-

all, it is recommended to consume more whole grains as a way to

increase fiber intake.16,38,40

Despite the above evidence, well-controlled long-term human

intervention studies are not always consistent with respect to

effects of specific fibers on T2D and cardiometabolic risk.41 This

emphasizes the heterogeneity of compounds which vastly differ in

water solubility, viscosity, binding and bulking ability, and

fermentability, and also vary in their effects on host metabolism and

cardiometabolic health.41,42 The properties of different fibers in rela-

tion to health effects are discussed extensively elsewhere.39,41–47

Below, the effects of prebiotic fibers (fermented by gut microbiota),

insoluble fibers, and viscous soluble fibers will be discussed; the lat-

ter in the context of nutritional strategies to reduce gastric

emptying.

PASMANS ET AL. 3 of 11
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2.3.1 | Health effects of prebiotic fibers

Prebiotic fibers exert their health effects because they are fermented

specifically by the gut microbiota, thereby allowing beneficial microor-

ganisms to increase in number. In people with T2D, dietary fiber con-

sumption in general has been shown to improve HbA1C and BMI by

modulating the gut microbiota composition.48,49 Inulin-type fructans

are nonviscous soluble fibers and have prebiotic properties, which are

beneficial for blood glucose regulation.50 A recent systematic review

and meta-analysis revealed that longer-term supplementation with

inulin-type fructans improves glycemic control in people with predia-

betes and T2D.51 Both inulin and oligofructose are examples of inulin-

type fructans. Longer-term supplementation with inulin may increase

the relative abundance of bifidobacteria, which is a possible underly-

ing mechanism of the beneficial metabolic effects seen in such stud-

ies.52 In addition to their prebiotic properties, the nonviscous soluble

fibers fructans have an intrinsic sweetness, which may also make

them suitable in an acute setting to partially replace glycemic CHOs in

food. It was found that 20% replacement of sucrose by oligofructose

in a yoghurt drink, as well as 30% replacement of sucrose by inulin in

a fruit jelly both resulted in reduced glycemic and insulinemic

responses in healthy adults compared with the full-sugar variants.53

2.3.2 | Health effects of insoluble fibers

Insoluble fibers, which include wheat bran and cellulose, do not dis-

solve in water, and mostly contribute to fecal bulking.41,43 Foods con-

taining whole grains are rich in insoluble fibers, and are associated

with a decreased risk of developing T2D, as indicated by several

meta-analyses.16,40 The underlying mechanisms may relate to interfer-

ence with nutrient absorption, alterations in gastrointestinal transit

time, and effects on the gut microbiota composition.41

2.4 | Nutritional strategies to reduce gastric
emptying

Gastric emptying has a major influence on glycemia by allowing fur-

ther digestion of disaccharides and polysaccharides, as well as the

absorption of glucose in the small intestine. Reducing the rate of gas-

tric emptying will lead to reduced postprandial glucose concentra-

tions, at least in the early postprandial phase for people without or

with T2D.54–56 In the early 1990s, it has been estimated that gastric

emptying after the ingestion of 75 g of glucose dissolved in water

accounts for approximately 34% of the variance in peak plasma glu-

cose concentration.57 The mechanisms that regulate gastric emptying

rate are highly complex,58 and involve control by multiple hormones,

including ghrelin, cholecystokinin, GLP-1, and peptide YY.59 Ghrelin

stimulates gastric emptying, whereas cholecystokinin, GLP-1, and

peptide YY inhibit gastric emptying. Furthermore, as a bidirectional

feedback response to prevent excessive blood glucose fluctuations,

gastric emptying is inhibited by hyperglycemia and stimulated by

hypoglycemia.60 In healthy participants, mean gastric emptying time

after a meal was found to be approximately 3.5 h,61 whereas in indi-

viduals with T2D, both a reduced gastric emptying rate and an

increased gastric emptying rate have been found.62,63 One of the

explanations for the variation in gastric emptying in diabetes may

relate to the fact that hyperglycemia and hypoglycemia are both com-

mon in individuals with T2D, thereby having opposite effects on gas-

tric emptying rate via hormonal feedback. Another aspect of interest

is that solid and liquid meals can also differentially affect gastric emp-

tying rate.64 It has been shown that consumption of CHOs as liquids

leads to substantially higher postprandial glycemic responses than

consumption of CHOs as solid food,65 although it is the digestibility

of CHOs that has the largest influence on postprandial glucose

concentrations.66

Nutritional strategies to slow down the rate of gastric emptying,

thereby attenuating the postprandial glycemic response, include co-

ingestion of glycemic CHOs with other macronutrients such as fat and

protein.67–69 In a randomized crossover study, men with T2D ingested

water before a mashed potato meal, oil before a mashed potato meal,

or water before a mashed potato meal that contained oil. From that

study, it was clear that fat—in this case the oil—slowed down gastric

emptying and reduced postprandial glycemic and insulinemic

responses compared with water.70 In another study involving people

with T2D, a whey protein preload slowed down gastric emptying and

reduced postprandial glycemic response after a potato meal compared

with the condition in which no whey protein was consumed with the

meal, as well as compared with the condition where whey protein was

ingested as part of the potato meal.71

In addition to fat and protein, consumption of (viscous) dietary

fiber can also slow down the rate of gastric emptying,72 Viscous solu-

ble fibers, which include β-glucan, psyllium, pectin, and raw guar gum,

have the characteristic that they can form gel-like structures, thereby

influencing gastric emptying and further digestion of nutrients.

Regarding acute effects on gastric emptying, one study measured the

impact of guar gum and chickpea flour, which has a high fiber content,

added to wheat-based flatbreads on postprandial glucose kinetics in

healthy males, and found that these reduced postprandial glucose and

insulin concentrations compared with the control flatbread.73 It was

also shown in men and women without diabetes that the ingestion of

a meal containing β-glucan resulted in reduced glycemic and

insulinemic responses as well as a delayed gastric-emptying half-time

compared with a β-glucan-free control meal, which had the same mac-

ronutrient and energy content.74 The conclusion of a recent system-

atic review and meta-analysis on oat β-glucan was that there is strong

evidence that the addition of oat β-glucan to CHO-containing meals

attenuates glycemic and insulinemic responses.75 Psyllium was also

shown to delay gastric emptying,76 and to attenuate the glycemic

response when added to a meal.77 Longer-term supplementation with

viscous soluble fiber psyllium has been shown to reduce fasting blood

glucose and HbA1C.
78 A systematic review and meta-analysis of vis-

cous soluble fiber supplementation in patients with T2D showed that

longer-term supplementation improves markers of glycemic control,

such as HbA1C, fasting glucose, and HOMA-IR.79 The mechanisms
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linking the effects on acute postprandial glycemic response to longer-

term improvements in glycemic control in people with T2D, are not

fully elucidated.

2.5 | Rate of carbohydrate digestion in the small
intestine

The rate of glucose appearance in plasma is directly dependent on the

small intestinal transit time, on the amount of glucose that is present

in the different segments of the small intestine at a given time, and on

the affinity of the intestinal glucose transporter.80 Several studies

have shown that small intestinal transit in healthy participants is com-

pleted within a few hours after consuming a meal,81 approximately

4.5 h in total on average.61 Nevertheless, there are major inter-

individual differences in whole-gut transit time, depending on sex,

age, and the country of residence.61 Increasing age was associated

with a shorter gastric emptying time, but a longer small bowel transit

time plus colonic transit time.61 The female sex was associated with a

longer gastric emptying time, and small bowel transit time plus colonic

transit time.61 In a recent study, researchers provided a labeled mixed

meal to lean participants and participants with morbid obesity, and

investigated the rate of gastric emptying and the small intestinal tran-

sit time. Whereas the gastric emptying and small intestinal transit

were slower, and postprandial glucose absorption was reduced in the

participants with obesity compared with the lean participants, overall

postprandial glucose was higher.82 These findings can be explained

due to increased fasting glucose concentrations and decreased insulin

sensitivity in the participants with obesity compared with the lean

participants.82

One widely used approach to reduce postprandial glucose con-

centrations is by inhibiting digestion of CHOs, thereby inhibiting

intestinal glucose uptake. CHO digestion is regulated by a number of

enzymes at several locations across the digestive tract. Disaccharides,

which are either ingested or produced during the digestion of polysac-

charides, are hydrolyzed to monosaccharides by different disacchari-

dases.83 These disaccharidases are brush-border enzymes located in

the intestinal epithelium. Pharmacological α-glucosidase inhibitors are

widely prescribed to patients with T2D to reduce postprandial hyper-

glycemia, either as a monotherapy or in combination with other anti-

diabetic drugs,84 and they are also used by people without diabetes in

order to prevent the development of diabetes, generally attenuating

an increase in acute postprandial glucose by ±45–50% in both

groups.5 The α-glucosidase inhibitor acarbose has been shown to be

effective in reducing postprandial hyperglycemia in patients with

T2D.85 However, gastrointestinal side effects such as flatulence, soft

stools, and abdominal discomfort have been reported,85,86 and there-

fore, the search for additional synthetic α-glucosidase inhibitors is

ongoing.87 Numerous alternative compounds with possibly superior

α-glucosidase inhibitory profiles isolated from plant sources have also

been reported, many of which belong to the class of phenolic com-

pounds, but these were mainly investigated in vitro.88,89 Phenolic

compounds are a class of organic molecules in which one or more

hydroxyl groups are directly linked to an aromatic ring. Polyphenols

are compounds which have multiple phenol units. Flavonoids form the

largest class of compounds within the family of polyphenols, which

also consists of the classes of phenolic acids and lignans. Anthocya-

nins are a well-known example within the class of flavonoids. Many

plants produce phenolic or polyphenolic compounds, prompting

numerous studies in which the effects of polyphenol-containing fruits

and berries on intestinal CHO digestion are investigated.

Blackcurrants, apples, red grapes, cinnamon, and blueberries are

examples of plant components found to contain anthocyanin and/or

procyanidin.90–92 When blackcurrant extract containing 600-mg

anthocyanins was consumed by men and postmenopausal women

immediately before a high-CHO meal, it resulted in lower glucose and

insulin concentrations in the early postprandial period up to 30 min

compared with the control without blackcurrant extract, and in lower

GLP-1 and GIP concentrations in the later postprandial period up to

90 or 120 min.92 This has been suggested to be caused, at least partly,

by the inhibitory effects of the anthocyanins and other polyphenols in

the drinks on pancreatic α-amylase and intestinal α-glucosidase activ-

ity. In a different study, apple, red grape, and cinnamon were found to

inhibit α-glucosidase, α-amylase, and lipase in an in vitro model resem-

bling the human gastrointestinal system.91 In yet another study, an

optimization process was investigated for the extraction of compo-

nents from grape seeds, which led to a higher inhibition of

α-glucosidase and α-amylase than acarbose in vitro.93 Finally, a study

in young adults showed a beneficial postprandial glycemic response

after ingestion of blueberry powder rich in anthocyanins compared

with a sugar-matched control without blueberry anthocyanins.90

Importantly, it must be noted in the case of polyphenols that the

mechanism of action in attenuating increases in postprandial glucose

can extend much further than α-glucosidase inhibitory activity alone.

Besides the phenolic compounds described above, there are other

compounds which can have similar inhibitory effects on CHO-

digesting enzymes, such as L-arabinose, D-sorbose, a milk protein

hydrolysate, and inulin-type fructans. L-arabinose is a low-calorie pen-

tose, and therefore a monosaccharide, with sweetener properties. It is

a substantial component of plant cell wall polysaccharides. In vitro

studies showed that L-arabinose acts as a specific α-glucosidase inhib-

itor to target the activity of sucrase in an uncompetitive manner, but

not the activity of other glycoside hydrolases.94 L-arabinose can

remain bound to the sucrase-sucrose complex for up to several

hours,95 preventing the hydrolysis of sucrose to glucose and fructose.

In healthy participants96,97 and people with T2D,97 it was found that

L-arabinose co-ingestion can limit sucrose beverage-induced increases

in blood glucose concentrations acutely. Importantly though, exces-

sive inhibition of sucrase can lead to an accumulation of undigested

sugars in the small intestine, resulting in major clinical consequences

such as diarrhea and abdominal pain.98 One study reported gastroin-

testinal symptoms after ingestion of 75 g sucrose combined with

either 1-, 2-, or 3-g L-arabinose,96 whereas this was not the case in

another study after ingestion of 50 g sucrose combined with 2-g L-

arabinose.97 A different compound, D-sorbose, an artificially created

isomer of the naturally occurring monosaccharide L-sorbose, was also
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found to inhibit disaccharidases in rats, thereby attenuating postpran-

dial increases in blood glucose and insulin concentrations.99 The same

authors also demonstrated that rat intestinal enzymes are a suitable

substitute for human enzymes when testing the inhibitory effects of

compounds on disaccharidases.100 Furthermore, a milk protein hydro-

lysate with an inhibitory effect on α-glucosidase activity showed

reduced postprandial glucose concentrations compared with placebo

in participants with prediabetes, and decreased HbA1C.
101 Finally, in a

mouse model, it has also been shown that inulin-type fructans from

chicory have a direct inhibitory effect on sucrase activity.102 Those

mice were fed a diet supplemented with an inulin extract for 3 weeks,

after which the jejunal mucosa was taken and tested in vitro. The

investigators observed that the ability to hydrolyze sucrose into glu-

cose was significantly reduced in the mice that received the diet sup-

plemented with inulin, compared with the group of mice fed a

standard diet.102 These studies show that reducing digestion of

sucrose is a suitable strategy to target hyperglycemia, although the

number of human studies is limited relative to the number of in vitro

and rodent studies.

2.6 | Carbohydrate uptake in the small intestine

Glucose uptake over the intestinal membrane is regulated by several

intestinal glucose transporters. At the apical membrane of the small

intestinal epithelial cells, the sodium-glucose cotransporter 1 (SGLT1)

uses the Na+ gradient across the membrane to actively transport glu-

cose and galactose into the epithelial cells, whereas fructose diffuses

passively into epithelial cells via GLUT5. At the basolateral membrane,

glucose, galactose, and fructose passively diffuse into the bloodstream

via glucose transporter 2 (GLUT2). Influencing these processes can

result in beneficial effects on postprandial glycemia. In lean partici-

pants, GLUT2 has not been found on the apical membrane.103 In par-

ticipants with morbid obesity and insulin resistance, however, GLUT2

has been shown to accumulate in the apical membrane of jejunal

enterocytes and this allowed glucose to passively diffuse into the

bloodstream.103 The inhibitory effects of polyphenols on SGLT1 and

GLUT2 have been investigated mainly in Caco-2 cells as an in vitro

model of human enterocytes.104 In vitro studies showed that

sappanin-type homoisoflavonoids and the flavonoids quercetin and

isoquercitrin noncompetitively inhibit GLUT2, thereby preventing the

uptake of glucose.105,106 In support of this, also an in vivo study in

healthy men and women demonstrated that the flavonoid hesperidin

decreased the postprandial glycemic response to orange juice via inhi-

bition of GLUT2.107 Apple and blackcurrant polyphenol-rich drinks

lowered postprandial glucose concentrations in healthy men and post-

menopausal women.108 Both apple and blackcurrant polyphenols

reduced total and GLUT-mediated glucose uptake in vitro in Caco-2

cells.108 For other polyphenols and phenolic acids extracted from

strawberries and apples, it was also found that they can inhibit SGLT1

and/or GLUT2 in vitro.109 Interestingly, berry flavonoids may not only

inhibit the glucose transporters, but they may also decrease the

expression of those transporters in Caco-2 cells.110 This additional

characteristic may make phenolic compounds exceptionally beneficial

for attenuating postprandial glycemic responses in humans. Available

information and controversies about inhibition of glucose transporters

by phenolic compounds have been reviewed elsewhere.111 Overall,

the beneficial effects of polyphenols on postprandial glycemic

response may be a combination of the α-glucosidase inhibitory quali-

ties described earlier, as well as the glucose transporter inhibitory

qualities.112 Interestingly, the effects of polyphenols are not limited to

the two mechanisms which we have described. Other mechanisms

may include effects on gut microbiota composition, mitochondrial

function, substrate utilization, and lipolysis.113,114

3 | INTERINDIVIDUAL DIFFERENCES IN
POSTPRANDIAL GLYCEMIC RESPONSE

It has become clear that there is a high interindividual variability in the

glycemic response to certain foods. To elucidate individual differences

in postprandial glycemic response, Zeevi et al. developed a model

which predicts the response to certain types of food with the use of a

machine-learning algorithm that integrates blood parameters, dietary

habits, anthropometrics, physical activity status, and gut microbiota

composition.115 The model was initially developed for a heteroge-

neous Israeli population consisting of both men and women with a

BMI ranging from normal to obese, and with a state of glucose toler-

ance ranging from normal to T2D.115 Later on, it was also found to be

applicable to a Midwestern American population without

diabetes,116,117 suggesting that the model might be valuable for other

populations as well. Large interindividual variability in glycemic

responses to standardized meals was also found by another study,

which allowed the authors to identify so-called “glucotypes”, which is

a form of classification that can place individuals into clinically rele-

vant subgroups based on absolute amount of glucose variability and

the fraction of time spent in low, moderate, or high variability.118 Yet

another study, the PREDICT 1 study, also showed a high inter-

individual variability in postprandial glycemic response to identical

meals, and this study is currently being followed-up in order to better

understand individual responses to food.119 Indeed, personalized

approaches require an understanding of the mechanisms explaining

differential responses in order to be reproducible and translated into

treatment strategies and guidelines.

4 | CONCLUSION AND FUTURE
DIRECTIONS

Good glycemic control is crucial to maintain health and to prevent dis-

ease.3 This is the case in people with T2D, but large fluctuations in gly-

cemia should also be avoided in healthy individuals and individuals

with prediabetes. There are different strategies that can be applied to

attenuate postprandial glycemia, including pharmacological and nutri-

tional strategies as well as exercise. This review discussed the main

determinants of postprandial glycemic response, and nutritional
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strategies to attenuate that response. Postprandial glycemic response

is the combined result of several key aspects and processes, namely

the total amount of ingested CHOs, the structural properties of the

ingested CHOs, the rate of gastric emptying, the rate of CHO diges-

tion, and the rate of glucose absorption in the small intestine. Nutri-

tional strategies to attenuate postprandial glycemic response include

reducing the amount of ingested CHOs, consuming CHOs with a lower

GI, the addition of or substitution by sweeteners and fibers, using food

compounds which delay or inhibit gastric emptying or CHO digestion,

and using food compounds which inhibit intestinal glucose absorption.

Apart from nutritional and physical determinants, there also seem

to be additional factors that influence glycemia. In general, the timing

of food intake and how that may affect glycemic and metabolic

responses has become a hot topic, with studies demonstrating that

both high-GI and low-GI meals increase postprandial glucose concen-

trations more at dinner than at breakfast.120,121 This points towards a

possible role for the circadian rhythm in the regulation of glycemia.

The complex process of regulation of glucose metabolism by the circa-

dian functions falls outside the scope of this review and has been

reviewed elsewhere.122

Overall, it can be concluded that there are several nutritional strate-

gies available to achieve an attenuation in postprandial glycemia.

Despite the availability of such strategies, it must be noted that there

are individual or subgroup-based responses to certain types of food, so

a personalized approach is of importance to choose the optimal nutri-

tional strategy to improve postprandial glycemia for every individual.
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