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Abstract

This study presented a method of quantifying the manoeuvrability of two field-based team

sport athletes and investigated its relationship with running velocity during competition.

Across a season, 10 Hz Global navigation satellite system (GNSS) devices were worn dur-

ing matches by 62 athletes (Australian Football League [AFL]; n = 36, 17 matches, National

Rugby League [NRL]; n = 26, 21 matches). To quantify manoeuvrability, tortuosity was cal-

culated from the X and Y coordinates from match GNSS files (converted from latitude and

longitude). Tortuosity was calculated as 100 x natural logarithm of the chord distance (dis-

tance travelled between X and Y coordinates), divided by the straight-line distance. The

maximal tortuosity was then quantified for each 0.5 m�s-1 speed increment, ranging from 0

to the highest value for each game file. A quadratic model was fitted for each match file, con-

trolling for the curvilinear relationship between tortuosity and velocity. A comparison of the

quadratic coefficients between sports, and within sport between positions was investigated

using linear mixed models. Resulting standard deviations (SDs) and mean differences were

then assessed to establish standardized effect sizes (ES) and 90% confidence intervals

(CI). A curvilinear relationship exists between maximal tortuosity and running speed, reflect-

ing that as speed increases, athletes’ ability to deviate from a linear path is compromised

(i.e., run in a more linear path). Compared to AFL, NRL had a greater negative quadratic

coefficient (a) (ES = 0.70; 0.47 to 0.93) for the 5 second analysis, meaning that as speed

increased, NRL athletes’ manoeuvrability reduced at a faster rate than when compared to

AFL. There were no positional differences within each sport. GNSS derived information can

be used to provide a measure of manoeuvrability tortuosity during NRL and AFL matches.

The curvilinear relationship between tortuosity and speed demonstrated that as speed

increased, manoeuvrability was compromised.

Introduction

The running demands of professional team sports are commonly quantified using variables

derived from electronic player tracking systems such as global navigation satellite systems

(GNSS). These devices include a GNSS chip that provides the position of the unit in space,
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permitting the calculation of many movement variables including distance, speed, acceleration

and metabolic power [1–3]. Additionally, some devices also include a tri-axial accelerometer,

magnetometer and a gyroscope, permitting measurement of alternative non-running related

variables such as PlayerLoad™, collisions and tackling [4,5], and more recently, change of direc-

tion angles [6]. Using GNSS devices, practitioners can quantify the external load of competi-

tion as it provides understanding of the required individual and positional demands of the

sport, thus being useful in the prescription of training volume and intensity. Despite the value

of this information, many GNSS systems only quantify running in one dimension (i.e., total

distance, speed, acceleration, high speed efforts), which has limitations. Presently, there is a

lack of information regarding how running in team sports is performed within two-dimen-

sional space, comprising a large proportion of movements in team sports.

Team sports such as Australian rules football and rugby league are typically intermittent in

nature, involving high intensity, high speed movements such as sprinting, rapid accelerations/

decelerations and changes of direction (COD) [7–10]. Anecdotally, these movements are used

to evade opponents in attempts to score, or alternatively capture opponents, both often occur-

ring at pivotal moments of the game. These actions are reactionary to the opposition’s move-

ments or position on the field, frequently occurring whilst running at a high velocity, or

alternatively rapidly accelerating or decelerating [11]. Similarly to prey avoiding predators in

the animal environment [12], these movements can require athletes to adopt a non-linear path

(two dimensional), whilst maintaining speed and without jeopardizing control, also known as

manoeuvrability [12]. Manoeuvrability has been extensively researched in other contexts

including animal behaviour [13], aerodynamics [14] and vehicle design [15], but its applicabil-

ity to sport is yet to be investigated.

Compared to straight-line running, changing direction whilst running at speed involves

high magnitudes of vertical, mediolateral, and anterior-posterior impulses [16,17], placing

higher mechanical load on lower limbs [18]. As highlighted in previous research [19], the abil-

ity to change velocity and/or direction in response to a stimulus is termed agility [20]. Since

the reactive component cannot be measured using GNSS devices [19], only the physical com-

ponent is applicable in this context. Therefore, a measure of manoeuvrability is differentiated

from agility both in its definition and practical utility, which will be explored. Despite their

large application in team sports for load monitoring and prescription, GNSS devices have not

been used to quantify these non-linear movements in research, despite their extensive poten-

tial to do so. Potentially, the ability to accurately quantify such movements may result in prac-

titioners implementing these into training programs more frequently and specific to the

demands of competition.

Recently, a novel method to accurately identify and measure predetermined COD angles

was established [6], using a multistage algorithm that incorporates triaxial inertial sensor

inputs. Inertial sensor inputs included roll (mediolateral), pitch (anterior-posterior) and yaw

(superior-inferior), providing information to detect precise COD movements for predeter-

mined movements [6]. This algorithm provides scope to quantify rapid COD movements,

however the signal processing methods required to utilise this approach would be difficult in

applied settings as accelerometer data is more complex than GNSS X and Y coordinates. Alter-

natively, the manoeuvrability or diversity of animal movements has been quantified via the cal-

culation of tortuosity [21]. In this context, manoeuvrability can be defined as a departure from

a straight path, thus a random path being more tortuous than a straight line [21]. Practically,

the same principles apply to team sports, where athletes manipulate their running depending

on spatial constraints (i.e., needing to evade opposition), adopting a more tortuous route

where necessary. Currently there is no research pertaining to the assessment of tortuosity in

team sport athletes. It could be proposed that an athletes’ ability to display tortuosity at higher
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speeds may be a measure of their manoeuvrability, which would on first observation appear a

highly advantageous physical capacity. Manoeuvrability can be considered an important physi-

cal capacity, as athletes frequently need to adopt a non-linear running path to evade or catch

their opposition without jeopardizing their running speed or control. Potentially if manoeuvr-

ability was appropriately targeted in training, it may be improvable and performance advan-

tages may result.

In professional soccer, using GNSS devices, the relationship between athletes’ maximum

velocity attained and heading change (the difference in horizontal heading angle between two

consecutive points in time) were measured, demonstrating trade-off between velocity and

heading angles [19]. This research provides preliminary evidence of the use of GNSS devices to

measure more complex movements athletes frequently undertake. However, investigating an

athletes’ manoeuvrability using tortuosity in a team sport environment may have important

applications for individual program design and potentially even in assessing performance.

Therefore, the purpose of this study was to propose a measure of manoeuvrability known as

tortuosity, and to investigate its relationship with running speed. A comparison between sports

is presented, as well as some practical examples of the applications of tortuosity within team

sports, such as demonstrating tortuosity between early and late-stage rehab compared to a

match. It was hypothesized, based on previous studies regarding animal behaviors [21], that

the tortuosity of team sport athletes would decrease as running speed increased.

Materials and methods

Design and subjects

Physical activity profiles were measured during the 2020 professional National Rugby League

(NRL) and the 2020 professional Australian Football League (AFL) seasons using GNSS

devices. Both the NRL and AFL seasons comprise of weekly games over a 24- to 26-week dura-

tion. From GNSS devices, raw 10 Hz data were exported using manufacturer provided soft-

ware (detailed below) and longitude and latitude were converted to X and Y coordinates.

Twenty-six male rugby league (age = 25.4 ± 4.1 years; stature = 187.4 ± 6.4 cm; body

mass = 100.4± 9.8 kg) and 36 male Australian football (age = 23.9± 3.7 years; stature = 187.2± 7.7

cm; body mass = 85.9 ± 7.7 kg) athletes took part in this study from two clubs playing in the

NRL and AFL competitions, respectively. For both teams, athletes from all positional groups

were included (despite no positional analyses conducted). The AFL squad included; midfielders

(n = 11), mobile backs (n = 4), mobile forwards (n = 9), ruck (n = 1), tall back (n = 4) and tall

forwards (n = 3). For NRL, the squad comprised of edge forwards (n = 4), fullback (n = 1),

halves and hookers (n = 6), middle forwards (n = 9) and outside backs (n = 6). Athletes were

included in the study if they played a game for their respective team, and completed the match

(i.e., were uninjured). Prior to and during the competitive season, athletes from both teams par-

ticipated in a full-time professional training program. This entailed up to four field-based train-

ing sessions per week, undergoing specific skill-based training, as well as speed and

conditioning training. Additionally, up to four resistance-based sessions were completed, with a

primary focus on strength and power development. All data were collected as part of the routine

monitoring processes of the club with athletes volunteering to provide their data for research

purposes and data were deidentified prior to analysis. Prior to commencement of the study, eth-

ical approval was sought by the Australian Catholic University Ethics Committee (2018-290E).

Global navigation satellite systems and data analysis

GNSS devices were used to measure the physical activity profiles of players during 21 NRL (12

losses, 9 wins) and 17 AFL matches (11 losses, 5 wins, 1 draw) across the 2020 season. For
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analysis, there were a total of 372 individual match files for AFL (2 were removed due to

injury) and 342 for NRL, corresponding to a total of 714 match files for the sports combined.

Matches were played weekly during the competition, with match recovery periods ranging

from 4 to 10 days in AFL and 5 to 9 days for NRL. For AFL, the mean number of match files

per player was 12 ± 6 (range; 1 to 17) and for NRL was 7 ± 6 (1 to 18). The same microtechnol-

ogy units were used for both sports (Vector, Catapult Sports, VIC, Australia) which comprise a

10 Hz GNSS chip. The same device was worn by each athlete for both sports across the season,

as to minimize interunit variability [22] and was fitted in a secure pouch sewn within the play-

ing jersey. For both sports, jerseys were tight fitting to minimize measurement noise but is also

common practice for devices to be worn in jerseys during matches rather than manufacturer

provided vests.

Devices were switched on prior to the warm-up (~20 minutes) allowing adequate time for

satellite lock to be achieved. If an athlete was unable to complete the match due to injury, their

respective match file was removed prior to analysis. Following the completion of matches,

devices were downloaded using proprietary software (Openfield, Catapult Sports, VIC, Austra-

lia) and individual player match file was exported in raw form (10 Hz) into a comma delimited

file (csv.). These files provide a range of information including speed, acceleration, latitude,

longitude, satellite count and data quality (horizontal dilution of position [HDOP]). For AFL

games, there was an average HDOP of 0.61 ± 0.05 and 13.12 ± 0.83 satellites. For NRL games,

there was an average HDOP of 0.78 ± 0.15 and 13.79 ± 1.64 satellites.

For each match file, latitude and longitude were converted to X and Y coordinates using the

geospatial package within the RStudio program (V 1.3.1056). The X and Y coordinates were fil-

tered using a 4th order, 1 Hz low pass Butterworth filter. A 1 Hz cut-off filter was employed fol-

lowing a visual inspection of the residual analysis of cut off frequencies between 0.1 to 10 Hz,

as previously described [23]. The “rolling” distance travelled by the athlete between X and Y

coordinates over a one, two, five and 10 second duration was established and was termed

‘chord distance’. The rolling method involves including the current X and Y coordinates, and

then rolls through the length of the file. To investigate the effect of duration on tortuosity val-

ues, a one, two, five, and 10 second period was adopted, as it was expected that these time

frames were long enough to allow players to reach a high speed but was also long enough to

negate the effect of any short, low speed movements. The mean running speed over the exam-

ined duration was also established. A rolling ‘straight distance’ was established by calculating

the straight line distance between the current X and Y coordinate and the X and Y coordinate

at the beginning of the assessment period. Tortuosity was then calculated as 100 x natural loga-

rithm of the chord distance divided by the straight line distance. A tortuosity value of 0 repre-

sents moving in a straight line (i.e., linear) while any value greater than 0 occurred when an

athlete deviates from a linear path, expressed as a percentage. The maximal tortuosity was then

quantified for each speed from 0 to the highest value for match file in 0.5 m�s-1 increments. Fig

1 is an example of an athletes’ tortuosity over a five second duration during a low speed (~2.5

m�s-1) run involving a change of direction. Fig 2 is an example of an individual athletes’ tortu-

osity values over the entire duration of a single game, with the maximal values at each 0.5 m�s-1

interval displayed.

Statistical analysis

Visual inspection of the natural logarithm of maximal tortuosity (i.e., log[100 x log(chord dis-

tance/linear distance)]) for each running speed revealed a quadratic relationship (curvelinear).

Subsequently, a quadratic model was fitted to the data points for each individual player for

each game, controlling for the curvilinear relationship between tortuosity and speed. The
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quadratic models included a fixed effect (the intercept; natural log of tortuosity), the predictor

(running speed) and the square of the predictor, which together estimate the mean quadratic

effect. The mean ± SD R2 value for the models was 0.96 ± 0.04. For each athletes’ individual

game file, the quadratic coefficient (a), linear coefficient (b), and intercept (c) were established.

Specifically, a represents the overall position of the curve up and down the y axis (i.e., wide or

narrow), b reflects the upward or downward linear trend in y values along the x axis, and c is a

constant (intercept), representing where the relationship sits on the y axis. To examine the

ability of the model to distinguish between sports, a linear mixed model using a random inter-

cept design were used. In this model, athlete identification was included as a random effect,

the fixed effect was the sport, and the predictor was either the quadratic coefficient (a), the

Fig 1. An example of the tortuosity of a 5 second movement (50 data points) for a single athlete, with the speed and acceleration of the movement also

shown. In this example, the athlete covered 9 metres in total, with 3 metres between the X and Y coordinate. This resulted in a tortuosity value of 111%.

https://doi.org/10.1371/journal.pone.0260363.g001
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linear coefficient (b), or the intercept (c) obtained from the quadratic model. The least squares

mean test was used to compare between sports and resulting SDs and mean differences were

then assessed to establish standardized effect sizes (ES) and 90% confidence intervals (CI).

Standardized effect sizes were described using the magnitudes; <0.20 trivial; 0.21–0.60 small;

0.61–1.20 moderate; 1.21–2.0 large and> 2.01 very large [24]. Effects were deemed to be real if

they were 75% greater than the moderate worthwhile difference (calculated as 0.6 x the

between-athlete SD) for reasons previously described [25,26]. All statistical analysis was per-

formed in R Studio software (version 1.3.1093, RStudio Inc.)

Fig 2. An example of the raw tortuosity (10 Hz) for a single athletes’ match file established over a 5 second duration. The blue dots represent the maximal

tortuosity value observed in each 0.5 m�s-1 interval, while the blue line represents the quadratic model fitted to the data.

https://doi.org/10.1371/journal.pone.0260363.g002
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Results

Table 1 depicts the quadratic model summary, providing the mean ± SD quadratic coefficient

(a), the linear coefficient (b) and the intercept (c) from the models for each duration. Between

sports, there was a substantial difference in the quadratic coefficient (a) (ES = 0.70; 0.47 to

0.93) for the 5 second duration analysis, with no other differences were evident. Fig 3 demon-

strates the curvilinear relationship between running speed and tortuosity by sport (AFL vs

NRL) as well as the duration of the analysis (a one, two, five, and 10 second periods).

Discussion

This study presented a novel method of measuring the manoeuvrability of two field-based

team sport athletes. Manoeuvrability can be considered an important physical capacity, as ath-

letes frequently need to adopt a non-linear running path to evade or catch their opposition

without jeopardizing their running speed or control. The primary finding of this study was

that the measurement of tortuosity presents as a practical method to assess the manoeuvrabil-

ity of athletes that can be calculated using commonly collected GNSS data. Our hypothesis was

partially supported whereby there was a decrease in tortuosity as running speed increased.

This finding has implications for training prescription and rehabilitation and although not

examined here, potentially performance evaluation in some sports. The relationship between

manoeuvrability and running speed was investigated across multiple durations. These dura-

tions included one, two, five and ten seconds, where a curvilinear relationship was identified

between the maximal tortuosity and increased increments in running speed. It was demon-

strated that NRL and AFL athletes typically complete non-linear movements peaking at a

speed of 2 m�s-1, decreasing thereafter to approximately 5 m�s-1 where tortuosity plateaus, and

a linear running path is adopted (Fig 3). An advantage of the methods proposed in this paper

are that tortuosity can be calculated simply using the X and Y coordinates derived from GNSS

data.

Although this is the first study to investigate tortuosity in team sports, this concept has been

investigated extensively in other fields, particularly regarding animal behaviours regarding

catching prey [21]. Whilst there are alternate ways to quantify tortuosity (i.e., fractal dimen-

sions, sinuosity index etc.) [27,28], the method presented in this study represents a analysis for

those with appropriate expertise that could be implemented using GNSS data. In the context

of AFL and NRL, tortuosity can be used to quantify a large range of movements, such as com-

plex accelerations, decelerations and rapid changes of direction. These movements require ath-

letes to deviate from running in a linear path (as shown in Fig 1). There is a known trade-off

Table 1. Depicts the quadratic model summary, providing the mean ± SD quadratic coefficient (a), the linear coefficient (b) and the intercept (c) from the models

for each duration.

Sport Duration (s) Quadratic coefficient (a) Linear coefficient (b) Intercept (c)
AFL (n = 124) 1 -0.09 ± 0.06 -0.17 ± 0.46 5.99 ± 0.53

2 -0.09 ± 0.05 -0.02 ± 0.35 6.04 ± 0.39

5 -0.14 ± 0.06 0.46 ± 0.38 5.75 ± 0.40

10 -0.17 ± 0.07 0.65 ± 0.38 5.66 ± 0.39

NRL (n = 171) 1 -0.11 ± 0.09 -0.25 ± 0.55 6.18 ± 0.58

2 -0.13 ± 0.08 -0.02 ± 0.47 6.15 ± 0.50

5 -0.20 ± 0.09� 0.59 ± 0.45 5.72 ± 0.45

10 -0.20 ± 0.12 0.67 ± 0.55 5.65 ± 0.47

�depicts a difference greater than 0.6 SD compared to AFL for the same duration.

https://doi.org/10.1371/journal.pone.0260363.t001

PLOS ONE Manoeuvrability in field-based team sports

PLOS ONE | https://doi.org/10.1371/journal.pone.0260363 November 19, 2021 7 / 14

https://doi.org/10.1371/journal.pone.0260363.t001
https://doi.org/10.1371/journal.pone.0260363


between tortuosity and speed in other animal species [27], a relationship that can be referred

to as manoeuvrability which is a favourable physical ability of athletes to possess. This novel

study investigated the relationship between manoeuvrability and running speed, where Fig 1

demonstrates that there is a large proportion of low manoeuvrability events within competi-

tion across the speed spectrum. As seen in Figs 2 to 4, there was a curvilinear relationship

between running speed and manoeuvrability for both AFL and NRL. This reflects that as run-

ning speed increases, manoeuvrability decreases, requiring athletes to adopt a more linear path

at higher running speeds. This is a comparable finding to other research within professional

soccer [19]. Achieving higher manoeuvrability at lower speeds is an expected finding, as within

both sports athletes often have two feet in contact with the ground and are in close proximity

Fig 3. A demonstration of the curvilinear relationship between running speed and tortuosity separated by sport and the duration of analysis. Data

represents the mean tortuosity.

https://doi.org/10.1371/journal.pone.0260363.g003
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to an opponent or are trying to evade opponents when the ball is in dispute. At lower speeds,

sharper COD movements (greater heading angle) are likely to occur, therefore a higher tortu-

osity will be evident.

Table 1 depicts the model coefficients for both AFL and NRL which together represent the

relationship between running speed and tortuosity. Specifically, the a (quadratic) coefficient

reflects the shape or position of the relationship. In this study NRL athletes demonstrated a

substantially greater negative a coefficient, representing that as speed increased, NRL athletes’

manoeuvrability reduced at a faster rate than when compared to AFL (also depicted in Fig 3).

This finding may simply reflect differences in the objectives each game, where in NRL higher

speeds are often associated with break in play (i.e., attackers breaking the defensive line). Once

this occurs, athletes are generally attempting to reach the try line as quickly as possible, which

where possible, a straight line run will be performed as defending players will be behind them

[29]. In contrast, AFL is played on a large oval field resulting in a more free-flowing game, gen-

erally with players dispersed across the entire ground as teams attempt to implement zone or

full-ground team defence [30]. Given this spread of athletes across the field, when athletes per-

form high velocity movements, anecdotally, there is a greater opportunity to run in curved

paths to evade the opposition. This allows time for other attacking players to move into free

space.

Despite the known differences in the purpose and aims of each sport, in the context of man-

oeuvrability, both sports demonstrated a sharp decline following the peak manoeuvrability at 2

m�s-1. This speed is where humans generally transition from walking to running [31]. As this

movement involves a flight time, this decreases the ability to change direction due to a period

involving no contact with the ground. This finding reflects that although there is an unavoid-

able trade-off between manoeuvrability and running speed, the upper bounds of this measure

were not examined here, and potentially if this physical attribute was appropriately trained,

this may be improvable. In Table 1, the b coefficient represents the position of the relationship

across the x axis, where the shorter duration analysis had a negative b coefficient and the

higher duration have a positive coefficient. As also depicted in Fig 3, this means that for shorter

durations (one and two sec), as speed increases, tortuosity decreases faster than that of the lon-

ger analyses (five and 10 sec). These findings are logical, as longer time frame allows a higher

speed to be ran, as well as an increased opportunity to deviate from a linear path, therefore

shifting the relationship further right on the x axis. To the authors best knowledge, no research

has provided data demonstrating the duration of individual high-speed running efforts in

either AFL or NRL. As such, this study selected these varied durations (one, two, five and ten

seconds) in an attempt to encompass true high speed efforts (longer durations) as well as

shorter efforts (shorter durations) reflecting rapid changes of direction.

As depicted in Fig 3, the tortuosity of the short duration efforts (one and two seconds) was

lower than that of the longer durations (five and ten seconds) decreasing in an almost linear

manner as speed increased. In Table 1, the c coefficient also represents this finding, as a higher

c shows that tortuosity is higher at a lower velocity, which was evident for the shorter duration

analyses, compared to the longer durations. As a longer duration is needed to accelerate to

attain a higher speed, this finding was expected. For the longer durations (five and ten sec-

onds), the relationship depicted a true curvilinear relationship, where tortuosity peaked at

around 2.5 m�s-1, decreasing thereafter. Similarly, within Fig 3 evident differences can be seen

between sports for the same duration. Notably, at shorter durations, the tortuosity within NRL

at lower speeds was higher, likely reflecting that shorter, rapid accelerations are undertaken

when compared to AFL. Conversely, within AFL at longer durations, tortuosity was higher

along the speed spectrum, which was an expected finding given that within AFL there is a

greater opportunity to run at higher speeds for longer given the free-flowing nature of the
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sport. For future analysis, it could be suggested that an adaptive duration is employed, whereby

tortuosity is quantified over short durations when acceleration is high, but over longer dura-

tions when speed is high. This method may account for the varying physical components of

team sports.

Rapid and frequent changes in speed (i.e., acceleration and deceleration) are common in

team sports [2], therefore, it is crucial athletes are appropriately prepared for this in terms of

physical capacity. This study presented a novel method to quantify changes in direction rela-

tive to running speed in two different professional team sport populations. It was identified

that quantifying deviations from linear running are important when quantifying the mechani-

cal loading on the body. This information can be utilized in the prescription of training, ensur-

ing that training adequately prepares athletes for competition, but is also important in the

return to play process. Anecdotally, athletes are exposed to a gradual increase in running

intensity during the return to play phase [32] where GNSS variables such as speed, acceleration

and PlayerLoad™ are commonly used. However, within the research there is typically an

emphasis placed on linear running metrics [33]. Conversely, quantifying the manoeuvrability

of players during this phase would assist in exposing them to the loadings that may be experi-

enced during competition. Subsequently, Fig 4 depicts the tortuosity at each speed using a five

second duration to compare an early and late stage NRL rehab run compared to a game. This

figure provides a clear example of the direct application of determining tortuosity particularly

in the context of returning to play. In the early stage rehab, tortuosity peaks at the lowest

speed, demonstrating that as speed increased, a straighter path is adopted. Conversely, the late

stage rehab run demonstrates that a higher tortuosity was attained at a faster speed. Although

the quantification of high speed running is important, stabilising forces enhance speed during

linear movement, but turning or changing direction requires destabilising forces [13]. From

an applied perspective, using the coefficients depicted in Table 1, practitioners can determine

the maximal tortuosity displayed in competition for a given running speed, calculated as:

Tortuosity ¼ ðax2 þ bxþ cÞe

This maximal tortuosity value could be used by practitioners as a return to play key perfor-

mance indicator, by returning to pre-injury manoeuvrability without compromising speed

(see Fig 4). From an injury prevention perspective, training for maximal manoeuvrability

could also be implemented into training programs, alike other physical capacities. Given that

high speed efforts that deviate away from a linear path result in greater joint loading [18], these

repeated high forces are likely to trigger mechanobiological tissue responses of the muscles,

tendons, ligaments, bones and cartilage [17]. As per other physiological responses to exercise,

athletes need to be prepared, perhaps so far as being exposed to a particular level of tortuosity

at a range of running speeds. It may be that by using specific training modalities (i.e., agility

training, small-sided games, etc) that higher manoeuvrability may be achieved for a given

speed in comparison to what was observed during competition. If athletes were to improve

this ability, then perhaps they could display this physical trait during competition. Given

GNSS is regularly used in training, a similar tortuosity versus speed analysis could be imple-

mented for each player for each individual drill. It may be suggested that incorporating subtle

changes of direction to increase tortuosity would then have direct application to the running

patterns that occur in a game.

While the validity of GNSS devices for quantifying the speed of team sport athletes has been

established [34], a known limitation of the present study is the limited information regarding

the validity of using X and Y positional data from GNSS devices. One study [35] identified that

there was a mean difference between GPS determined geodetic point of 1.08 ± 0.34m. The
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small standard deviation evident here demonstrated that there was a biased error, however it

was quite stable. This finding provides confidence in the methods used within the present

study, although more research could be conducted using more recent GNSS devices, which

record at higher frequencies compared to that used within other research [35].

In conclusion, the method presented in this study provides a novel assessment of the man-

oeuvrability of athletes from two team sports with data commonly collected from GNSS

devices. The use of GNSS devices is widespread within both professional and semi-professional

team sports, however, most variables provided by these devices are derived from speed-based

metrics (i.e., high speed running distance, acceleration counts, metabolic power). When quan-

tifying the demands of competition, assessing the training performed by athletes, or

Fig 4. A demonstration of the tortuosity at each speed using a five second duration to compare an early and late stage NRL rehab run compared to a

game.

https://doi.org/10.1371/journal.pone.0260363.g004
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monitoring the rehabilitation process; the evaluation of tortuosity may provide another aspect

regarding the training and assessment of the athletes.

Acknowledgments

The authors of this research wish to thank Professor Will Hopkins for his guidance in selecting

an appropriate statistical analysis and also Professor David Martin for his assistance in devel-

oping this concept.

Author Contributions

Conceptualization: Grant Malcolm Duthie, Sam Robertson, Heidi Rose Thornton.

Data curation: Grant Malcolm Duthie, Heidi Rose Thornton.

Formal analysis: Grant Malcolm Duthie, Heidi Rose Thornton.

Funding acquisition: Grant Malcolm Duthie.

Investigation: Grant Malcolm Duthie, Sam Robertson, Heidi Rose Thornton.

Methodology: Grant Malcolm Duthie, Sam Robertson, Heidi Rose Thornton.

Project administration: Grant Malcolm Duthie.

Resources: Grant Malcolm Duthie.

Software: Grant Malcolm Duthie, Heidi Rose Thornton.

Supervision: Grant Malcolm Duthie.

Validation: Grant Malcolm Duthie.

Visualization: Grant Malcolm Duthie, Heidi Rose Thornton.

Writing – original draft: Grant Malcolm Duthie, Heidi Rose Thornton.

Writing – review & editing: Grant Malcolm Duthie, Sam Robertson, Heidi Rose Thornton.

References
1. Cummins C, Orr R, O’Connor H, West C. Global positioning systems (GPS) and microtechnology sen-

sors in team sports: A systematic review. Sports Med. 2013; 43(10):1025–42. https://doi.org/10.1007/

s40279-013-0069-2 PMID: 23812857

2. Delaney J, Cummins C, Thornton H, Duthie G. Importance, reliability and usefulness of acceleration

measures in team sports. J Strength Cond Res. 2017; 32(12):3485–93.

3. Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in

elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010; 42(1):170–8. https://doi.org/

10.1249/MSS.0b013e3181ae5cfd PMID: 20010116

4. Hulin BT, Gabbett TJ, Johnston RD, Jenkins DG. Wearable microtechnology can accurately identify col-

lision events during professional rugby league match-play. J Sci Med Sport. 2017; 20(7):638–42.

https://doi.org/10.1016/j.jsams.2016.11.006 PMID: 28153609

5. Gastin PB, McLean O, Spittle M, Breed RV. Quantification of tackling demands in professional Austra-

lian football using integrated wearable athlete tracking technology. J Sci Med Sport. 2013; 16(6):589–

93. https://doi.org/10.1016/j.jsams.2013.01.007 PMID: 23433634

6. Balloch AS, Meghji M, Newton RU, Hart NH, Weber JA, Ahmad I, et al. Assessment of a novel algorithm

to determine change-of-direction angles while running using inertial sensors. J Strength Cond Res.

2020; 34(1):134–44. https://doi.org/10.1519/JSC.0000000000003064 PMID: 30707134

7. Delaney J, Thornton H, Burgess D, Dascombe B, Duthie G. Duration-specific running intensities of Aus-

tralian Football match-play. J Sci Med Sport. 2017; 20(7):689–94. https://doi.org/10.1016/j.jsams.2016.

11.009 PMID: 28131505

PLOS ONE Manoeuvrability in field-based team sports

PLOS ONE | https://doi.org/10.1371/journal.pone.0260363 November 19, 2021 12 / 14

https://doi.org/10.1007/s40279-013-0069-2
https://doi.org/10.1007/s40279-013-0069-2
http://www.ncbi.nlm.nih.gov/pubmed/23812857
https://doi.org/10.1249/MSS.0b013e3181ae5cfd
https://doi.org/10.1249/MSS.0b013e3181ae5cfd
http://www.ncbi.nlm.nih.gov/pubmed/20010116
https://doi.org/10.1016/j.jsams.2016.11.006
http://www.ncbi.nlm.nih.gov/pubmed/28153609
https://doi.org/10.1016/j.jsams.2013.01.007
http://www.ncbi.nlm.nih.gov/pubmed/23433634
https://doi.org/10.1519/JSC.0000000000003064
http://www.ncbi.nlm.nih.gov/pubmed/30707134
https://doi.org/10.1016/j.jsams.2016.11.009
https://doi.org/10.1016/j.jsams.2016.11.009
http://www.ncbi.nlm.nih.gov/pubmed/28131505
https://doi.org/10.1371/journal.pone.0260363


8. Whitehead S, Till K, Weaving D, Jones B. The use of microtechnology to quantify the peak match

demands of the football codes: A systematic review. Sports Med. 2018; 48(11):2549–75. https://doi.org/

10.1007/s40279-018-0965-6 PMID: 30088218

9. Johnston RD, Devlin P, Wade JA, Duthie GM. There Is little difference in the peak movement demands

of professional and semi-professional rugby league competition. Front Physiol. 2019; 10(1285). https://

doi.org/10.3389/fphys.2019.01285 PMID: 31681000

10. Delaney J, Thornton H, Pryor J, Stewart A, Dascombe B, Duthie G. Peak running intensity of interna-

tional rugby: Implications for training prescription. Int J Sports Physiol Perform. 2017; 12(8):1039–45.

https://doi.org/10.1123/ijspp.2016-0469 PMID: 27967337

11. Jeffreys I, Huggins S, Davies N. Delivering a gamespeed-focused speed and agility development pro-

gram in an English Premier League Soccer Academy. Strength Cond J. 2018; 40(3):23–32.

12. Howland HC. Optimal strategies for predator avoidance: the relative importance of speed and man-

oeuvrability. J Theor Biol. 1974; 47(2):333–50. https://doi.org/10.1016/0022-5193(74)90202-1 PMID:

4437191

13. Fish FE. Balancing requirements for stability and maneuverability in cetaceans. Integrative and Com-

parative Biology. 2002; 42(1):85–93. https://doi.org/10.1093/icb/42.1.85 PMID: 21708697
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