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Abstract

Many studies have considered temperature trends at the global scale, but the literature is

commonly associated with an overall increase in mean temperature in a defined past time

period and hence lacking in in-depth analysis of the latent trends. For example, in addition to

heterogeneity in mean and median values, daily temperature data often exhibit quasi-peri-

odic heterogeneity in variance, which has largely been overlooked in climate research. To

this end, we propose a joint model of quantile regression and variability. By accounting

appropriately for the heterogeneity in these types of data, our analysis using Australian data

reveals that daily maximum temperature is warming by*0.21˚C per decade and daily mini-

mum temperature by*0.13˚C per decade. More interestingly, our modeling also shows

nuanced patterns of change over space and time depending on location, season, and the

percentiles of the temperature series.

Introduction

The increase in the intensity and frequency of global extreme weather events, e.g., extreme

heat, extreme cold, drought, snow cover decline, is attributed to fundamental changes in the

underlying climate [1, 2]. There is also an overall warming trend occurring with the global

mean temperature estimated to have risen by 0.85˚C during 1880–2012 [3]. This increasing

trend is predicted to continue. These changes have already caused and will continue to induce

substantial societal and ecological impacts. Unchecked, climate change is hence a major threat

now faced by the entire world.

As the study [4] highlights, the global surface warming of recent decades has been realized

as a succession of periods of warming slowdowns, or hiatus, followed by warming surges.

While warming is the trend globally, at the regional and local scales, a wide variety of changes

in temperature is observable across the globe [5, 6]. Climate changes have been extensively

studied at the global scale, but there is also intense interest in understanding patterns of change

at a national level [7].
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Australia is the largest country in Oceania and one of the major producers of agricultural

products, so deep understanding of climate change in Australia is important. According to the

State of the Climate [8], Australia’s climate has warmed on average by 1.44 ± 0.24˚C since

1910, with most of the warming having occurred since 1950. This has been accompanied by

increased frequency of extreme heat events. As reported in more detail in the Climate State-

ment [9], the overall mean (average of daily maximum and minimum) temperature for the 10

year period from 2010 to 2019 was the highest on record, at 0.86˚C above the long term overall

average since 1910, and 0.31˚C warmer than the 10 years 2000–2009, which is the second

warmest 10-year period. The climate change within Australia is also spatially varied. For exam-

ple, for the wet tropical area in far North Queensland, the mean temperature increased by

1.1˚C between 1910 and 2013 using a linear trend, while in the east coast area in New South

Wales, the mean temperature increased by 0.8˚C in the same period. Moreover, for the Range-

lands area, the north part increased 1˚C and the south part increased 0.9˚C during the same

period [10].

The majority of statistical analyses undertaken in climate studies in Australia are based on

inference about the maximum, minimum or mean temperature. However, a focus on these

measure alone can fail to detect more nuanced patterns of change over space and time. In this

article we proposed an approach based on quantile regression estimates of the data with con-

sideration of spatial correlation. Quantile regression was originally proposed by Koenker and

Bassett (1978) as an alternative approach to mean regression that does not require the usual

strict assumption about normally distributed residuals in the regression models [11]. The idea

has been used to identify changes over time of any percentiles of climate variables; see [12–15]

for particular focus on the analysis of temperature series. The performance of quantile regres-

sion for trend detection analysis has been favorably compared with traditional approaches,

such as robust linear regression and the nonparametric M-K test [14]. The spatial and tempo-

ral variation can be modeled jointly as in Reich (2012), in a Bayesian manner [16].

One advantage of this approach is that quantile regression estimates are less influenced by

extreme outliers in the response measurements than standard linear regression estimates

based on the mean. Another substantial motivation for this approach is that the conditional

quantile functions provide a variety of measures of central tendency and statistical dispersion

that allow us to describe the relationship at different points in the conditional distribution of

the outcome. In this way we obtain a more comprehensive picture of the relationship between

the variables. When using quantile regression, we have increased freedom in our modelling in

that we are not restricted by the assumption that variable relationships are the same at the

median and tails of the distribution as they are at the mean. Such models could provide a more

in-depth understanding of the historic change in Australian temperature, which can poten-

tially improve anticipation and management of climate risk and associated negative impacts.

We highlight however, that in analysis of daily Australia temperature data, complicated het-

erogeneity in variance arises and this must be addressed if results are to be reliable. In this arti-

cle we address that by proposing a joint model including variance as a covariate in our spatio-

temporal regression.

Data and methods

Data collection and selection

The geographical boundary of Australia is between 9˚ − 44˚S latitude and 112˚−154˚E longi-

tude (apart from Macquarie Island), with total area of 7, 692, 024 km2. The massive size of the

country gives it a wide variety of landscapes, with tropical rainforests in the north-east, moun-

tain ranges in the south-east, south-west and east, and desert and semi-arid land in the center,
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resulting in a variety of climates across the country. The northern part of the country has a

tropical climate, with predominantly summer rainfall. As for the southern part, the south-west

corner of the country has a Mediterranean climate, while the south-east ranges from oceanic

(Tasmania and coastal Victoria) to humid subtropical (from the upper half of New South

Wales), with highlands featuring alpine and subpolar oceanic climates. The interior desert has

stable arid and semi-arid climates. More details about the Australian climate can be found on

the website of Bureau of Meteorology (BoM), Australia [17].

The daily maximum (Dmx) and minimum (Dmn) temperature series were obtained from

1,745 weather stations operated by the BoM Australia. These datasets can be accessed through

the R package bomrang [18]. The length of these time series varies among different stations

from less than 10 years to more than 100 years of observations. The latitude, longitude and ele-

vations of each station are also obtained from the BoM website.

We restricted the study period from Jan 1, 1960 to Dec 31, 2019, so that most warming peri-

ods can be covered and more operating stations could be included [19]. As the years of 2000

and 2010 are the starting years of the top two warmest 10-year periods in Australia on record,

we considered data from stations not covering these periods to be less meaningful in terms of

studying the warming trend in Australia. Therefore, we excluded stations that were not operat-

ing during these periods. Furthermore, we excluded the stations with over 20% missing obser-

vations or with 5 years continuous missing observations. As a result, data from 72 stations

were included in our analysis and missing observations of these stations were interpolated

using ordinary kriging [20]. These stations are geographically distributed as shown in Fig 1.

Specifically, there are 22 stations in Queensland (QLD), 18 in Western Australia (WA), 11 in

New south Wales (NSW), 9 in Victoria (VIC), 7 South Australia (SA), 4 in Tasmania (TAS)

and 2 in the Northern Territory (NT). The ID number of each station is also included for the

sake of description of results.

Fig 1. The distribution of selected stations with qualifying data. Blue dots are for (near) coastal stations and yellow

dots are for inland stations.

https://doi.org/10.1371/journal.pone.0271457.g001
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Exploratory analysis

The daily temperature time series are affected by seasonality, with quasi-periodic variations in

both sample mean and variance; see [21–24]. An example is shown in the bottom panels in Fig

2, where the sample mean and variance of a particular station are calculated over 60 years of

observations. Other stations had different patterns, depending on the respective ecosystem,

but they similarly exhibited this phenomenon.

Such mean periodicity in the series can be handled with parametric harmonic functions (or

truncated Fourier series). Ignoring the seasonality or heterogeneity in variance for the time

being, the observed daily temperature time series can be modelled as follows.

ytðsÞ ¼ mtðsÞ þ sðsÞ�tðsÞ; �tðsÞ�iidNð0; 1Þ; ð1Þ

where t is t-th day from January 1, 1960 to December 31, 2019, s is a particular station, and

expected value μt(s) is given by

mtðsÞ ¼ b0ðsÞ þ b1ðsÞt þ b2ðsÞxtðsÞ þ FSkðt; aðsÞ; bðsÞÞ þ
Xp

i¼1

riðsÞet� iðsÞ: ð2Þ

Note that �t(s) is assumed to be white noise and small-scaled relative to the scale of μt(s)

and σ2(s) is constant in location s. Here FSk(t, a(s), b(s)) is the k-th order truncated Fourier

series, and
Pp

i¼1
riðsÞet� iðsÞ is an AR(p) process.The term β2(s)xt(s) is the term for other covar-

iates, and in the following we consider the inclusion of the Southern Oscillation Index (SOI)

values. For simplicity of notation, we denote the kth order truncated Fourier series as follows

FSkðt; aðsÞ; bðsÞÞ ¼
Xk

j¼1

ajðsÞsin
2pjt
Dt

� �

þ bjðsÞcos
2pjt
Dt

� �� �

;

Fig 2. Exploratory analysis for a single station. Top left: fitting parametric mean model for Dmx. Top right: residuals

of fit against predicted Dmx for the parametric mean model. Middle left: Auto-Correlation Function (ACF) plot for

residuals for lag up to 800 days. Middle right: ACF plot for squared residuals for lag up to 800 days. Bottom left: sample

mean over 60 years. Bottom right: sample variance over 60 years.

https://doi.org/10.1371/journal.pone.0271457.g002
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where a(s) = (a1(s), . . ., ak(s)) and b(s) = (b1(s), . . ., bk(s)) are the coefficients of harmonic

terms for station s, and Dt denotes the number of days in the respective year.

The red curve in the top left panel of Fig 2 shows the fitted values of μt(s) for one station for

illustration; these are obtained from the model in Eq (1). The top right panel shows the residu-

als against fitted values which clearly indicate the heterogeneity issue in the variance. This

leads to the failure of the equal variance assumption in Eq (1). Tests of temporal auto-correla-

tion are shown in the middle panels: for this station, no substantial auto-correlation is found

for the residuals, while significant and quasi-periodic auto-correlation is found in the squared

residuals.

Although the heterogeneity issue is not emphasized and indeed often ignored in many cli-

mate themed articles, some models have been proposed to address it. For instance, in the

model of the daily average temperature of four US cites, heterogeneity of variance is accounted

for via a GARCH process [21]. In some studies, for example, ARCH models were employed

[22, 23, 25], while Sirangelo (2017) models the inter-annual sample variance ŝ2
dðsÞ as simple

periodic functions [24].

In this study, we model the variance of daily temperature with the inter-annual sample vari-

ance. Let yi,d(s) be the maximum (or minimum) daily temperature on the d-th day of year i
recorded at station s. Note that we assume there are 365 days for each year and February the

29th was omitted in the analysis.

For each particular day, d, for station s, we compute the inter-annual sample mean and var-

iance, denoted as m̂dðsÞ and ŝ2
dðsÞ respectively:

m̂dðsÞ ¼
1

T

XT

i¼1

yi;dðsÞ; ŝ2

dðsÞ ¼
PT

i¼1
ðyi;dðsÞ � m̂dðsÞÞ

2

T � 1
; ð3Þ

where T is number of years that are included in the analysis.

The inter-annual mean is modeled as follows

mdðsÞ ¼ m̂dðsÞ þ �dðsÞ; ð4Þ

where 2dðsÞ ¼ ŝdðsÞddðsÞ and δd(s)*iid N(0, 1). We include the inter-annual mean and

squared mean as a covariate of the variance function at the end of the equation below. The

model selection results can be found in the S1 Supplementary Document Section in S1 File.

logðs2
dðsÞÞ ¼ b0ðsÞ þ b1ðsÞmdðsÞ þ b2ðsÞm2

dðsÞ þ FSkðd; aðsÞ; bðsÞÞ þ r1ðsÞðŝ2
d� 1
ðsÞ � s2

d� 1
ðsÞÞ: ð5Þ

We have tested and compared a number of variance models to account for the inter-annual

heterogeneity that varies from site to site. Different orders of Fourier series have been tested

and selected as k = 4. Quantile regression requires the heterogeneity function at each quantile

level (except τ = 0.50), so we need to jointly estimate the regression parameters and variance

parameters.

Joint models for quantile regression and variability

Quantile regression permits simultaneous analysis of several features of the response distribu-

tion. To jointly model all quantiles simultaneously and spatially, while accounting for hetero-

geneity, we propose here an improved version of the spatio-temporal quantile regression

approach proposed by Reich (2012) and apply it to the Australian daily temperature data [16].

Considering heterogeneity in variance, the model in Eq (1) can be modified as follows:

ytðsÞ ¼ mtðsÞ þ stðsÞ�tðsÞ; �tðsÞ�iidf ðsÞ; ð6Þ
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where f(s) is the PDF of �t(s); we denote F(s) 2 [0, 1] to be the corresponding CDF at location

s.

The quantile function q(τ|s, t) is the function that satisfies PfytðsÞ < qðtjs; tÞg ¼ t 2 ½0; 1�.
Inserting Eq (6) into this expression we have PfmtðsÞ þ stðsÞ2tðsÞ < qðtjs; tÞg ¼ t and the

quantile function q(τ|s, t) can be expressed as follows:

qðtjs; tÞ ¼ mtðsÞ þ stðsÞF� 1ðtÞ; ð7Þ

where F−1(τ) is the inverse CDF. If the error term �t(s) is assumed normally distributed, then

F−1(τ) = F−1(τ). In this study, we are interested in testing the changes in the quantile function

q(τ|s, t) over time t for each τ. Therefore, in Eq (7), the term σt(s) needs to account for the time

variable t. For example, for the case of a Gaussian distributed response with linear trend over

time in Chandler (2005), the mean is modeled as μt(s) = β0(s) + β1(s)t, and the standard deriva-

tion σt(s) = θ0(s) + θ1(s)t, with F−1(τ) =F−1(τ) [26]. Here, the standard derivation changes line-

arly with time t. The Gaussian assumption is generalized by Reich (2012), by incorporating a

piece-wise Gaussian basis function to describe the linearly changing heterogeneity more flexi-

bly for a non-Gaussian distributed response [16]. Furthermore, this model is able to character-

ize the entire quantile process with accommodation of non-Gaussian features, such as

asymmetry and heavy or light tails. However, the model of Reich (2012) was proposed for a set

of annual monthly temperature data without consideration of seasonality in mean and vari-

ance. Therefore, it is not applicable to daily temperature data.

Next, we will describe our generalized model which is suitable for daily temperature data.

Note that the model is specifically tailored for trend detection so that the time period t is con-

fined within [0, 1] to satisfy the constraints of a quantile function q(τ|s, t) increasing in τ as

suggested in Reich (2012). A model that is directly derived from Reich (2012) is as follows in

Eq (8).

Let 0 = κ1 < . . .< κL+1 = 1 be a grid of equally spaced knots covering [0, 1]. Then, for l with

κl< 0.5,

BlðtÞ ¼

F� 1ðklÞ � F
� 1ðklþ1Þ if t < kl

F� 1ðtÞ � F� 1ðklþ1Þ if kl � t < klþ1

0 if klþ1 � t

8
>>><

>>>:

and, for l such that κl� 0.5,

BlðtÞ ¼

0 if t < kl

F� 1ðtÞ � F� 1ðklþ1Þ if kl � t < klþ1

F� 1ðklþ1Þ � F
� 1ðklÞ if klþ1 � t

:

8
>>><

>>>:

Each quantile is assumed to be a function of time t for each station as follows:

qðtjs; tÞ ¼ g0ðtjsÞ þ g1ðtjsÞt þ g2ðtjsÞxsoi þ FSkðt; gsðtjsÞ; gcðtjsÞÞ; ð8Þ

where gs(τ|s) = (g3(τ|s), . . ., gk+2(τ|s)), gc(τ|s) = (gk+3(τ|s), . . ., g2k+2(τ|s)), and for each k, gk(τ|s)

is taken to be linear combinations of L basis functions,

gkðtjsÞ ¼ bkðsÞ þ
XL

l¼1

BlðtÞyk;lðsÞ: ð9Þ
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The trend function g1(τ|s) is of particular interest for trend detection in this study. Note

that when gk(τ|s) = 0 for all k> 1, the model in Eq (8) degenerates to a linear model that is

exactly the same as that used in [16]. If further, we let L = 1 and B1(s) = F−1(τ), we obtain the

special Gaussian case that corresponds to the model in [26].

Eq (8) can be further written as,

qðtjs; tÞ ¼ b0ðsÞ þ b1ðsÞt þ b2ðsÞxsoi þ FSkðt; βsðsÞ;βcðsÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mtðsÞ

þ
XL

l¼1

BlðtÞ½y0;lðsÞ þ y1;lðsÞt þ y2;lðsÞxsoi þ FSkðt; θs;lðsÞ; θc;lðsÞÞ�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

slðs;tÞ

;

ð10Þ

where βs(s) = (βi(s), . . ., βk+2(s)), βc(s) = (βk+3(s), . . ., β2k+2(s)), θs,l(s) = (θ3,l, . . ., θk + 2, l), and

θc,l(s) = (θk + 3, l, . . ., θ2k + 2, l). In Eq (10), βk(s), the center of the quantile function at location s,

and θk,l(s) are unknown coefficients that determine the shape of the quantile function. Here,

βs(s) is the same parameter vector with the mean regression model, e.g., β0(s) is the intercept

and β1(s) is the trend coefficient.

Here, adding FSk(t, θs,l(s), θc,l(s)) terms in Eq (10) enables the model to account for seasonal

heterogeneity in the variance. However, auto-correlations in both mean and variance are not

considered. Moreover, the variance function also depends on the mean values according to

exploratory analysis. To account for all information, we further improve the model by replac-

ing the θ0,l(s)+ FSk(t, θs,l(s), θc,l(s)) with θ2k+ 3, l(s)σd(t)(s) in σl(s, t), where d(t) is the d(t)-th day

of a year for the t-th time point and σd(t)(s) is modeled in Eq (5). The new model is given as fol-

lows

qðtjs; tÞ ¼ b0ðsÞ þ b1ðsÞt þ b2ðsÞxsoi þ FSkðt; βsðsÞ; βcðsÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mtðsÞ

þ
XL

l¼1

BlðtÞ½y1;lðsÞt þ y2;lðsÞxsoi þ y2kþ3;lðsÞsdðtÞðsÞ�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

slðs;tÞ

:

ð11Þ

Note that the model in Eq (11) is equivalent to adding a new term g2k+3l(τ|s)σd(t) to Eq (10)

and replacing the unknown parameters (β2k + 3, l(s), θ0,l(s), θs,l(s), θc,l(s)) by zeros. Compared

with the model in Eq (10), the model in Eq (11) has far fewer unknown parameters to estimate.

In both spatio-temporal quantile models Eqs (10) and (11), the quantile function can vary spa-

tially by allowing both the βk(s) and θk,l(s) to be Gaussian spatial processes with exponential

covariance. The βk are independent Gaussian processes with mean �bk and covariance

COVðbkðsÞ;bkðs0ÞÞ ¼ c
2

bk
expð� jjs � s0jj=rbkÞ. The θk,l are modeled similarly with mean �yk;l

and covariance COVðyk;lðsÞ; yk;lðs0ÞÞ ¼ c
2

yk
expð� jjs � s0jj=rykÞ, but they must satisfy σl(s, t)>

0 for all l and t.
The density function of yt(s) can be expressed in a closed form. Firstly, the quantile function

can be written as

qðtjs; tÞ ¼
XL

l¼1

½alðs; tÞ þ slðs; tÞF
� 1ðtÞ�Ifkl�t<klþ1g

; ð12Þ

where σl(s, t) is the coefficient of Bl(τ) and al(s, t) = q(κl+ 1|s, t)−σl(s, t)F−1(κl+ 1) if κl< 0.5

and al(s, t) = q(κl|s, t)−σl(s, t)F−1(κl) if κl� 0.5. Then the density function of yt(s) is given
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as follows

f ðytðsÞÞ ¼
XL

l¼1

Ifqðkl js;tÞ<ytðsÞ�qðklþ1 js;tÞg
NðytðsÞjalðs; tÞ; slðs; tÞ

2
Þ; ð13Þ

where σl(s, t)>0 for all l and t at each location s.

Additional residual correlation is assumed to be an AR(1) process and handled with a cop-

ula approach using a latent residual process that is implemented in [16]. Let vt(s) be a latent

Gaussian process modeled as follows,

v1ðsÞ ¼ w1ðsÞ

vtðsÞ ¼ rvvt� 1ðsÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � r2

vÞ
p

wtðsÞ; for t > 1;
ð14Þ

where |ρv|<1 and wt(s) are independent spatial process with mean 0 and covariance COV
(wt(s), wt(s0)) = exp(−||s−s0||/ψw). Here, vt(s)*N(0, 1) for each s and t, and let ut(s) = F(vt(s))

* U(0, 1). Moreover, let τ = ut(s) in Eq (12). Then we have

ytðsÞ ¼ qðutðsÞjs; tÞ ¼
XL

l¼1

½alðs; tÞ þ slðs; tÞutðsÞ�Ifkl�utðsÞ<klþ1g
; ð15Þ

and

f ðytðsÞÞ ¼
XL

l¼1

Ifkl�utðsÞ<klþ1g
NðytðsÞjalðs; tÞ; slðs; tÞ

2
Þ: ð16Þ

For model inference, parameters are estimated in a Bayesian manner via the Markov

chain Monte Carlo method that was implemented in Reich (2012) [16]. Note that βk(s) and

θk,l(s) are model parameters and randomly sampled from their prior distributions (which

are Gaussian spatial process) using a Gibbs sampling approach. Here random samples of θk,

l(s) must satisfy the condition
dqðtjs;tÞ

dt > 0. Hyper-parameters �bkðsÞ and �yk;lðsÞ are used to

characterize the mean of prior distributions of βk(s) and θk,l(s), and cbk
, rbk , cyk

and ryk are

used to characterize the respective variance. Uninformative priors for the hyper-parameters

are used, where �bk and �yk;l have N(0, 102) priors, and cbk
, rbk , cyk

and ryk have InvGamma
(0.1, 0.1) priors. In the residual correlation modeling, the auto-correlation ρv has a U(−1, 1)

prior and ψw also has an InvGamma(0.1, 0.1) prior. Gibbs sampling is used for �bkðsÞ, �yk;lðsÞ
and ρv, while other spatial range hyper-parameters are updated by using Metropolis sam-

pling with a Gaussian candidate distribution (tuned to give roughly 40% acceptance rate).

Note that the estimation of �bkðsÞ and �yk;lðsÞ of station s is also affected by the data from

nearby stations, so that the heterogeneity in measurement procedure of a single station is

less important. The reliability of the model is validated with a simulation study, which shows

that resulting estimates of trend coefficient are very closed to the true values. A detailed

description of the simulation study can be found in the S1 Supplementary Document Sec-

tion in S1 File.

Results

In this study we analyze the spatio-temporal pattern of warming in Australia based on the

trends of averages and quantiles of daily maximum and minimum temperatures using recent

observed data.

PLOS ONE Spatio-temporal quantile regression analysis revealing more nuanced patterns of climate change

PLOS ONE | https://doi.org/10.1371/journal.pone.0271457 August 24, 2022 8 / 16

https://doi.org/10.1371/journal.pone.0271457


Trend analysis based on quantiles

Fig 3 shows the values of the trend functions for quantiles 0.1, 0.5 and 0.9 for each of the

included stations, respectively, while Fig 4 show the change in trend function with quantile lev-

els for stations with any trend function >0.3˚C. Note that the value represents the total

increases in degrees Celsius per decade during the study period of 60 years. For daily maxi-

mum temperature, the average warming trend of all 72 stations is 0.22, 0.22 and 0.20˚C per

decade for quantile levels 0.1, 0.5 and 0.9, respectively, while these values become 0.14, 0.13,

0.14˚C for daily minimum temperature.

For all three quantile levels, the daily maximum tempertures are increasing in all stations

except for one in north Queensland (station 31 in Fig 1 located in Cardwell Marine Pde QLD),

and the values of the trend function per decade mostly lie in the range (0.1, 0.3) indicating a

warming trend of 0.6˚C to 1.8˚C in total during the last 60 years. For quantile 0.1, representing

cold daily maximum temperture, there are five stations in NSW that increase by more than

0.3˚C per decade during the study period. Three of these (stations 50, 59 60) are within the

range (0.3, 0.4) and decrease slightly to (0.2, 0.3) for larger quantiles, and another two (station

52, 53) exceed 0.4 and also decrease for higher quantiles but remain >0.2 (Fig 4). Moreover,

other stations (station 38 and 48 in QLD, 8 in WA, 26 in SA, 72 in TAS) have been warming

�0.3˚C for all three quantile levels per decade, especially for station 8 in TAS around 0.4˚C.

Station 61 in VIC has been warming >0.3˚C for the 0.1 quantile, but this decreases to<0.3˚C

for higher quantiles. For quantile 0.5, representing median daily maximum temperture, there

are eight stations with>0.3˚C increase per decade. Of these, stations 20 in NT and 35 in QLD

have smaller increases in the 0.1 quantile <0.3˚C (Fig 4), and three have >0.4˚C increase with

two in NSW (station 52 and 53) and one (station 72) in TAS. In terms of quantile 0.9, for hot

Fig 3. Quantile trend of τ = 0.1, 0.5 and 0.9 for all 72 stations during the study period. The color of point is the total degrees

Celsius that increased/decreased per decade from 1960 to 2019. The top panels are for the Dmx series and the bottom panels are for

the Dmn series.

https://doi.org/10.1371/journal.pone.0271457.g003
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daily maximum temperature, six stations show>0.3˚C increase with two in QLD (station 38

and 48), and one in NSW (station 55), TAS (station 72), WA (station 4) and NT (station 20).

The station 31 in QLD (located in Cardwell Marine Pde) shows a declining trend for both 0.5

and 0.9 quantiles (the top panels of Fig 3).

The pattern of the change in trend of Dmn is different from that of Dmx, as shown in the

bottom panels of Fig 3, where the values of the trend functions per decade mostly lie in the

range (0.0, 0.3), and more stations have a cooling trend with negative values for trend func-

tions. The trend function of the quantile 0.1 represents the change of temperature for the

extremely cold days, 12 stations show a cooling pattern and six of these have been cooling

>0.1˚C per decade during the study period, i.e., station 12 and 13 in WA, 44 in QLD, 65 and

69 in VIC, and 72 in TAS. Nine stations show an increasing trend with>0.3˚C per decade, i.e.,

station 3 in WA, station 26 in SA, six stations in QLD (station 31,34,36,39,41 and 42), and sta-

tion 55 in NSW (>0.4˚C). For the quantile level 0.5, eight stations show a cooling trend in the

south east and south west of Australia with negative values for the trend function, and four

(stations 12, 44, 65 and 69) have been cooling>0.1˚C per decade. Three stations (stations 3, 39

and 55) in WA and NSW show a warming trend of>0.3˚C. For the quantile level 0.9, only

four stations still show a cooling trend with two (stations 12 and 13) in WA, one (60) in NSW

Fig 4. Quantile trend as a function of quantile level for selected stations. The red curve is for Dmx and the blue

curve for Dmn. The horizontal dashed line represents coefficient being zero.

https://doi.org/10.1371/journal.pone.0271457.g004
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and one (63) in VIC. Three stations have an increasing trend >0.3˚C degrees with one (station

3) in WA, two (stations 29 and 39) in QLD and one in NSW (station 67).

In terms of the trend function against quantile levels, Fig 4 and 4 display stations with any

trend function >0.3˚C. Note that the red curve above the blue curve indicates that Dmx has

increased more than Dmn, and vice versa. Trend values that increase with quantile level indi-

cate larger variation in the series, and vice versa. A positive trend value in a high quantile of

Dmx means more extreme heat events and a negative value of the trend function in a low

quantile of Dmn means more extreme cold events.

For example, stations 4, 8, 20, 35, 38, 50, 52, 53, 59, 60, 61 and 72 in Fig 4 present such a pat-

tern with the red curve above the blue curve. For station 4, larger quantiles increase more than

smaller quantiles for both Dmx and Dmn with all >0, indicating warming trend and bigger

variation in both series, and more extreme heat events and less extreme cold events. Station 8

displays with warming trend but smaller variation in both series, while station 20 shows a

warming trend in Dmx series with larger variation and more extreme heat events. In contrast,

station 35 presents a warming trend with more extreme heat events but no larger variation in

Dmx. Station 52 and 53 present a similar pattern with trend coefficient decreasing with quan-

tile level in both series, which indicates a warming trend but smaller variation. Stations 60 and

61 have a warming trend in Dmx, but no clear trend in Dmn. Stations 50 and 59 have a warm-

ing trend in both series with smaller variation in Dmx.

Stations 3, 29, 31, 39 and 41 in Fig 4 have the blue curve above the red curve. Especially for

station 31, the Dmx series present a cooling trend for trend coefficient of most quantile <0

and a smaller variation. The Dmn show a warming trend and a smaller variation. Although

there are clear trends in both Dmx and Dmn, no such trend is appeared for the mean tempera-

ture, such trends might be difficult to obtain. For this station, extreme events occur less often.

Note that some stations have red and blue curves crossed. Examples are station 26, 35, 36,

42, 55 and 67, where at that quantile level both Dmx and Dmn have the same trend.

Spatial pattern of trend

The spatial pattern of trend functions across Australia is shown in Fig 5 for the trend of Dmx

(in the top panels) and Dmn (in the bottom panels), respectively. For the 0.1 quantile of Dmx,

the values of the trend function are all positive with a warming trend for cold days (after

removing seasonality). The north-east area including NSW, VIC, TAS, the south part of QLD

and east part of SA appear to experience more of an increase than other regions for the 0.1

quantile of Dmx, with�0.3˚C increase per decade in the last 60 years. This area covers most of

the Murray–Darling basin, which experienced water loss in the last few years [27]. We espe-

cially highlight TAS and the greater Sydney area which have increased the most at nearly

0.4˚C. In contrast, the far north QLD and the north-west corner of WA have experienced the

least change with around 0.1˚C increase in the same period. In terms of the 0.5 quantile of

Dmx, TAS and parts of NSW still have mostly increasing temperatures with>0.3˚C, while

other areas have 0.1˚C to 0.3˚C increase, except for the north of QLD and the north-west cor-

ner of WA showing a negligible increase of�0.1˚C. When it comes to the 0.9 quantile, parts of

the north of QLD also show a negligible increase, or even decrease. Other regions generally

have a warming trend of 0.2˚C to 0.3˚C.

Trend in the Dmn series perform differently. For 0.1 quantile of Dmn, south QLD, a small

region of north coast of WA, the coastal area near Sydney and Adelaide show a warming trend

around�0.3˚C. These areas continue to show a warming trend for the 0.5 quantile, but not for

the 0.9 quantile. In contrast other regions have a smaller increase with�0.2˚C for the 0.1

quantile, and some areas (south-east and south-west region of Australia) even show a cooling
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trend with a negative value of trend function. For 0.5 quantile, most parts of Australia do not

show a large increase, with most values of trend function lying between 0 and 0.1˚C, while the

south-east area of the country experienced consistent cooling of time. However, no such cool-

ing trend is shown for the 0.9 quantile. Instead, inland parts of QLD and north coast of WA

show an increase with 0.3˚C.

Discussion

This article has provided a detailed investigation of the changes in temperature across Austra-

lia in recent decades based on the original data set.

In this study, we raised the heterogeneity issue in the daily temperature time series with an

exploratory analysis, where the intra-annual sample variance has quasi-periodic variations and

temporal correlations. Such issues lead to inaccurate estimation of parameters coefficients, if

they are not handled appropriately. Specifically, the trend detected might be misleading to a

large extent. Many studies also suggest that the Long-range dependence (LRD) in a time series,

if a time series displays a slowly declining autocorrelation function (ACF) in variance, can sig-

nificantly increase the uncertainty of trend detection [14, 28–31]. Note that LRD can be also

reflected in the ACF of residuals in a mean regression model. To include all the heterogeneity

of variance into the model, GARCH model is used to model the variance of temperature time

series. It has been shown that a GARCH model can also capture the shape of the ACF of vola-

tility in daily financial return series, and is consistent with long-memory based on semipara-

metric and parametric estimates [32]. Hence, our variance model not only accounts for

seasonality and temporal correlation, but also reduces the uncertainty caused by LRD.

In this study, spatio-temporal quantile regression has been applied to analyze the tempera-

ture series from 72 meteorological stations in Australia. By including the variance term as

covariate in the quantile model, the proposed approach has considered a wide range of

Fig 5. Quantile trend of τ = 0.1, 0.5 and 0.9 for overall Australia during the study period. The color of point is the total degrees

Celsius that increased/decreased per decade from 1960 to 2019. The top panels are for the Dmx series and the bottom panels are for

the Dmn series.

https://doi.org/10.1371/journal.pone.0271457.g005
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heterogeneity including quasi-periodic variations and temporal correlations. We only include

the linear trend in the modeling, since both linear and quadratic trend showed a similar pat-

tern during the study period. However, this could be generated in other contexts.

Our results confirm the different patterns of climate change for different percentiles of

daily maximum and minimum temperature series over Australia. Overall, the country appears

to be experiencing a warming in daily maximum temperature except for a small area in far

north QLD, and both cold and hot days are tending to become warmer. A warming trend in

hot days will lead to more frequent extreme heat events. In general, NSW, south QLD and

TAS experience the most significant warming in daily maximum temperature compared with

other regions.

In terms of daily minimum temperature, South QLD and the north coast of WA experience

more warming than other regions of Australia. However, the warming trend is less substantive

than for daily maximum temperature. The daily minimum temperature series is associated

with extreme cold events. Specifically, three areas, VIC, TAS and south WA have increasing

numbers of extreme cold days. Notably, South QLD experiences an overall climate warming in

both maximum and minimum temperature, leading to more frequent hot days and fewer cold

days. The year round warming trends in South QLD may have significant adverse impacts on

agricultural production in Queensland which is currently aiming to boost from AUD$60 to

100 billion by 2030. The most populous state of Australia, NSW, is experiencing a climate

warming in daily maximum temperature with more hot days, but stable daily minimum tem-

perature. Our more southern states, VIC and TAS, have experienced more extreme weather,

where VIC results much more extreme cold days and slightly more extreme hot days, while

TAS has much more extreme hot days and slightly more extreme cold days. When we focus on

summer, the eastern half of Australia, NSW, VIC, SA and south QLD, have experienced more

warmer summer than other regions that have no substantive warming trend in summer. Win-

ter generally gets warmer in most regions in Australia but gets less warmer in VIC with regard

to daily maximum temperature. In daily minimum temperature series, QLD is becoming

warmer, while other regions only are slightly warmer or even colder in south WA, NSW and

VIC.

It is worth noting that our model results in different changing rates compared with these

presented in regional reports [10, 33–38]. This is because these reports focused on the period

between 1910 and 2013 and used a linear trend to obtain the changing rate. However, as noted

in the report [39], most warming in Australia occurs after 1950 and the post-1950 period has a

faster warming rate than the pre-1950 period.

It is also worth noting that the temperature data provided by bomrang is the original data.

A homogenized or modified data set, called Australian Climate Observations Reference Net-

work Surface Air Temperature (ACORN-SAT), has been provided by [40] and used to moni-

tor the long-term temperature trend by the Bureau of Meteorology Australia. Our study uses

the original temperature data set from R package bomrang rather than the homogenized ver-

sion, because the trend coefficients of the extreme quantiles can be drastically affected by

smoothing or modified outliers. This might lead to different results with some literature, espe-

cially on trend coefficients of the extreme quantiles at 0.1 and 0.9.

The interpretation of the spatial pattern of trend should consider the following limitations.

The interpolation of spatial pattern was simply based on the distance to the selected stations,

which are not distributed evenly as there are very few stations in the inland region of WA, NT

and SA. Moreover, the impacts of geography, e.g., river catchment, mountain range and dis-

tance to ocean, are not accommodated in the analysis. This could lead to over-generalization

of conclusions. However, these limitations do not affect the conclusions for selected stations.
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Further visualization and analysis can be carried out using other statistics, for example local

indicator of spatial association [41].

Finally, Our modeling has incorporated new components in climate data analysis and the

proposed method can be applied to any other data sets. Our R code and source files are avail-

able at https://github.com/ygwang2018/ClimateChange.
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