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Abstract

Recent advances in diffusion magnetic resonance imaging (dMRI) analysis techniques

have improved our understanding of fibre-specific variations in whitematter microstruc-

ture. Increasingly, studies are adopting multi-shell dMRI acquisitions to improve the

robustness of dMRI-based inferences. However, the impact of b-value choice on the

estimation of dMRI measures such as apparent fibre density (AFD) derived from spheri-

cal deconvolution is not known. Here, we investigate the impact of b-value sampling

scheme on estimates of AFD. First, we performed simulations to assess the correspon-

dence between AFD and simulated intra-axonal signal fraction across multiple b-value

sampling schemes. We then studied the impact of sampling scheme on the relationship

between AFD and age in a developmental population (n = 78) aged 8–18 (mean = 12.4,

SD = 2.9 years) using hierarchical clustering and whole brain fixel-based analyses. Multi-

shell dMRI data were collected at 3.0T using ultra-strong gradients (300 mT/m), using

6 diffusion-weighted shells ranging from b = 0 to 6,000 s/mm2. Simulations revealed

that the correspondence between estimated AFD and simulated intra-axonal signal frac-

tion was improved with high b-value shells due to increased suppression of the extra-

axonal signal. These resultswere supported by in vivo data, as sensitivity to developmen-

tal age-relationships was improved with increasing b-value (b = 6,000 s/mm2, median

R2 = .34; b = 4,000 s/mm2, median R2 = .29; b = 2,400 s/mm2, median R2 = .21;

b = 1,200 s/mm2, median R2 = .17) in a tract-specific fashion. Overall, estimates of AFD

and age-related microstructural development were better characterised at high

diffusion-weightings due to improved correspondencewith intra-axonal properties.
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1 | INTRODUCTION

Diffusion magnetic resonance imaging (dMRI; Le Bihan & Breton, 1985)

offers a magnified window into white matter by probing the tissue micro-

structure properties. Various dMRI modelling and analysis techniques are

available, which aim to summarise the local architecture of white matter

as a quantitative metric. However, the biological interpretations around

commonly investigated dMRI metrics rest heavily on whether the acquisi-

tion protocol can capture the relevant microstructural attributes (Lebel &

Deoni, 2018; Tournier, Mori, & Leemans, 2011).

Traditionally, studies have acquired dMRI data with one

diffusion-weighting (or b-value shell), opting for either low b-values
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(e.g., b = 1,000 s/mm2) for diffusion tensor imaging (DTI) analyses

(Jones, Horsfield, & Simmons, 1999; Landman et al., 2007), or

moderate-to-high b-values (e.g., b ≥ 3,000 s/mm2) for probabilistic

tractography (Tournier, Calamante, & Connelly, 2013). More recently,

with the advent of multi-slice accelerated imaging (Barth, Breuer,

Koopmans, Norris, & Poser, 2016), the acquisition of multiple dMRI

shells has become more feasible. This has considerably improved data

acquisition capabilities for sensitive populations (such as children and

clinical populations) which may not withstand long acquisition times

(Kunz et al., 2014; Silk et al., 2016; Somerville et al., 2018).

Multi-shell dMRI data has been used in conjunction with various

analysis approaches (Novikov, Veraart, Jelescu, & Fieremans, 2018;

Zhang, Schneider, Wheeler-Kingshott, & Alexander, 2012) across a

variety of applications (Genc, Malpas, Ball, Silk, & Seal, 2018; Kunz

et al., 2014; Pines et al., 2019). Measures derived from constrained

spherical deconvolution (CSD; Dell'Acqua & Tournier, 2019) can infer

the intra-axonal signal fraction along multiple fibre pathways

(Dell'Acqua, Simmons, Williams, & Catani, 2013; Raffelt et al., 2012).

One such measure of microstructural organisation, termed apparent

fibre density (AFD), can indicate relative differences in the white mat-

ter fibre density per unit volume of tissue. Given that the specificity

to the intra-axonal water signal is maximised at high b-values due to

higher restriction of water diffusion (Figure 1), AFD can be sensitive

to axon density at high diffusion-weightings (Raffelt et al., 2012).

Analysis frameworks such as fixel-based analysis (FBA; Raffelt

et al., 2017) provide a means to test fibre-specific differences in AFD

within a population. FBA offers two major advantages over alternative

dMRI analysis techniques: sensitivity to fibre properties (density and

morphology), and specificity to fibre populations within voxels

(or “fixels”). This combination of improved sensitivity and specificity

increases the possibility of assigning group differences in fibre proper-

ties to specific fibre populations (Dimond et al., 2019; Gajamange

et al., 2018; Genc et al., 2018; Mito et al., 2018).

In practise, FBA is compatible with both single-shell (Dhollander,

Raffelt, & Connelly, 2016) and multi-shell (Jeurissen, Tournier, Dhollander,

Connelly, & Sijbers, 2014) dMRI data. An intuitive choice might be to use

all available dMRI data to compute fibre-specific AFD. However, this

might not be compatible with the underlying assumptions of AFD

reflecting intra-axonal properties. In addition, sensitivity to the extra-

axonal signal upon the inclusion of lower b-values can influence the

response function choice, resulting in a potential mismatch between the

response function and the true underlying fibre properties.

Combining FBA with the very latest in MRI gradient hardware

(300 mT/m) (Jones et al., 2018), we explore the impact of sampling

scheme on AFD estimates using a rich developmental dataset com-

prising multi-shell diffusion MRI data with b-values ranging from

0 to 6,000 s/mm2. Firstly, we simulate multiple fibre geometries to

showcase how discrepancies in “true” microstructural configurations

can influence the interpretations of AFD generated from both

single-shell and multi-shell dMRI data. We then conduct experi-

ments to confirm the theory that AFD is more sensitive and specific

to axon density at higher b-values, demonstrated by sensitivity to

detecting age-relationships in a developmental population of chil-

dren and adolescents.

2 | METHODS

2.1 | Simulations

Single fibre populations were simulated with the intra- and extra-

axonal spaces represented by axially symmetric tensors; the second

and third eigenvalues were set to zero for the intra-axonal tensor and

equal but non-zero for the extra-axonal tensor (Jespersen, Kroenke,

Ostergaard, Ackerman, & Yablonskiy, 2007; Kroenke, Ackerman, &

Yablonskiy, 2004). The intra-axonal and extra-axonal parallel diffusiv-

ities were set to 1.9 μm2/ms, and 42 different combinations were sim-

ulated with intra-axonal signal fraction f = [0.2,0.3,0.4,0.5,0.6,0.7,0.8]

and extra-axonal perpendicular diffusivity De,⊥ = [0.2,0.4,0.6,0.8,1,

1.2] μm2/ms. 100 Rician noise generalisations were computed

with three different signal-to-noise ratio (SNR) values on the b = 0

signal (SNR = 50; 35; and 20). The response function, which

should reflect the properties of a single fibre population (Tax,

Jeurissen, Vos, Viergever, & Leemans, 2014), was set to have f = 0.3

and De,⊥ = 0.8 μm2/ms informed by values estimated from the group-

wise response function used in this study. These values are in the

F IGURE 1 Spherical harmonics (zero order) maps derived from a representative participant (aged 8 years). Visually, increasing b-value from
0 to 6,000 s/mm2 leads to greater specificity to the signal attributed to the intra-axonal space
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range of previously reported estimates of white matter in vivo

(Fieremans, Jensen, & Helpern, 2011; Novikov et al., 2018).

2.2 | Participants

We scanned a sample of typically developing children aged 8–18 years

recruited as part of the Cardiff University Brain Research Imaging Centre

(CUBRIC) Kids study (Genc et al., 2019; Raven et al., 2019). This study

was approved by the School of Psychology ethics committee at Cardiff

University. Participants and their parents/guardians were recruited via

public outreach events. Written informed consent was provided by the

primary caregiver of each child participating in the study, and adolescents

aged 16–18 years additionally provided written consent. Children were

excluded from the study if they had nonremovable metal implants, and if

they reported history of a major head injury or epilepsy. All procedures

were completed in accordance with the Declaration of Helsinki.

A total of 78 children between the ages of 8–18 years (Mean = 12.4,

SD = 2.9 years) were included in the current study (45 female).

2.3 | Diffusion magnetic resonance imaging

2.3.1 | Image acquisition and pre-processing

Diffusion MRI data were acquired on a 3.0T Siemens Connectom sys-

tem with ultra-strong (300 mT/m) gradients. Multi-shell dMRI data

were collected using the following parameters: TE/TR = 59/3000 ms;

voxel size = 2 × 2 × 2 mm; b-values = 0 (14 volumes, interleaved),

500 (30 directions), 1,200 (30 directions), 2,400 (60 directions), 4,000

(60 directions), and 6,000 (60 directions) s/mm2. The larger number of

volumes across the higher diffusion weightings were to compensate

for lower SNR and to capture the higher angular resolution present at

higher b-values (Tournier et al., 2013). Diffusion MRI data were

acquired using electrostatic repulsion generalised across multiple

shells (Caruyer, Lenglet, Sapiro, & Deriche, 2013). Data were acquired

in an anterior–posterior (AP) phase-encoding direction, with one addi-

tional PA volume. The total acquisition time (across four acquisition

blocks) was 16 min and 14 s.

Pre-processing of dMRI data involved steps largely in line with rec-

ommended steps for standard 3.0T systems, interfacing various tools

such as FSL (Smith et al., 2004), MRtrix3 (Tournier et al., 2019), and

ANTS (Avants et al., 2011). These steps included: denoising (Veraart,

Fieremans, & Novikov, 2016), slicewise outlier detection (SOLID; Sai-

ranen, Leemans, & Tax, 2018), and correction for drift (Vos et al., 2017);

motion, eddy, and susceptibility-induced distortions (Andersson,

Skare, & Ashburner, 2003; Andersson & Sotiropoulos, 2016); Gibbs

ringing artefact (Kellner, Dhital, Kiselev, & Reisert, 2016); bias field

(Tustison et al., 2010); and gradient nonlinearities (Glasser et al., 2013;

Rudrapatna, Parker, Roberts, & Jones, 2018). Root mean squared (RMS)

displacement from eddy (Andersson & Sotiropoulos, 2016) was used as

a summary measure of global head motion. Estimates of SNR were per-

formed by taking the signal in the white matter and dividing this by the

signal outside of the brain (for each b = 0 image). SNR estimates in the

in vivo data were: mean = 48.02, SD = 7.46.

2.3.2 | Image processing and analysis

To compare multiple sampling schemes, pre-processed dMRI data

were further processed and analysed separately for each sampling

scheme in a common population-template space, using a rec-

ommended framework (Raffelt et al., 2017). Firstly, data were inten-

sity normalised and spatially upsampled to 1.3 mm3 isotropic voxel

size to increase anatomical contrast and improve tractography (Dyrby

et al., 2014). For single-shell (ss) single-tissue constrained spherical

deconvolution (CSD), a fibre orientation distribution (FOD; Tournier,

Calamante, & Connelly, 2007) was estimated in each voxel with maxi-

mal spherical harmonics order lmax = 8 for shells with high angular res-

olution (b = 2,400, 4,000, 6,000 s/mm2 – 60 directions each) and

lmax = 6 for shells with lower angular resolution (b = 1,200 s/mm2 –

30 directions). Multi-shell (ms) multi-tissue CSD was performed using

a separate framework (Dhollander et al., 2016; Jeurissen et al., 2014).

Following FOD estimation, we derived a population template using all

diffusion volumes (msall), and subsequently registered subject-specific

and sampling-scheme-specific FOD maps to this template (Figure S1).

We then computed an apparent fibre density (AFD) map containing

fibre-specific AFD along each fixel for each subject (Raffelt

et al., 2017).

In order to estimate AFD along various commonly investigated

white matter fibre pathways, white matter tract segmentation was per-

formed. We applied the automated TractSeg technique (Wasserthal,

Neher, Hirjak, & Maier-Hein, 2019; Wasserthal, Neher, & Maier-Hein,

2018) in population template space, as this technique provides a balance

between manual dissection and atlas-based tracking approaches. Of the

existing library of 72 tracts, we chose to delineate 38 commonly investi-

gated fibre pathways bilaterally for the left (L) and right (R) hemisphere

(Figure S2). This included: AF: arcuate fasciculus; ATR: anterior thalamic

radiation; CA: anterior commissure; CC: corpus callosum [1 = rostrum,

2 = genu, 3 = rostral body, 4 = anterior midbody, 5 = posterior midbody;

6 = isthmus, 7 = splenium]; CG = cingulum; CST: corticospinal tract; FX:

fornix; ICP: inferior cerebellar peduncle; IFOF: inferior fronto-occipital

fasciculus; ILF: inferior longitudinal fasciculus; MCP: middle cerebellar

peduncle; MLF: middle longitudinal fasciculus; OR: optic radiation; supe-

rior longitudinal fasciculus: SLF [I, II, III]; and UF: uncinate fasciculus. Each

tractography map was converted to a fixel map to segment fixels

corresponding to streamlines, and AFD was computed within each tract-

specific fixel map for further statistical analysis.

2.4 | Statistical analyses

2.4.1 | Impact of b-value sampling scheme

Statistical analyses were performed within R (v3.4.3) and visuali-

sations were carried out in RStudio (v1.2.1335). The coefficient of
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determination (R2) was computed to summarise the proportion of

variance explained by age for each sampling-scheme in each tract.

Linear models were computed, whereby AFD in each tract was

entered as the dependent variable, age was entered as the indepen-

dent variable, and sex and RMS displacement were set as nuisance

variables. To compare sampling schemes in terms of their relation-

ship with age, the difference in R2 was bootstrapped with 10,000

samples to compute 95% bias corrected accelerated (BCa) confi-

dence intervals.

Hierarchical clustering was performed to discern clusters of

sensitivity to age-relationships across various combinations of b-

value sampling schemes and white matter tracts. These results

were visualised as a heatmap with hierarchical clustering using the

“gplots” package (Warnes et al., 2015) using Euclidean distance and

complete agglomeration for clustering. To account for family-wise

error (FWE) we made use of a strict Bonferroni correction by

adjusting our p-value threshold by the 152 comparisons (38 tracts

× 4 sampling schemes). As a result, our statistical significance was

defined as p < 3.3e-4.

2.4.2 | Whole-brain fixel-based analysis

Separate statistical analyses were performed for each single-shell

sampling scheme (b = 1,200; 2,400; 4,000; 6,000 s/mm2) using

connectivity-based fixel enhancement (CFE), which provides a

permutation-based, family-wise error (FWE) corrected p-value for

every individual fixel in the template image (Raffelt et al., 2015). For

each sampling scheme, we tested the relationship between AFD and

age, covarying for sex. For these whole-brain analyses, statistical

significance was defined as pFWE < .05. Statistically significant fixels

were converted into binary fixel maps, and an intersection mask

was computed to quantify the proportion of significant fixels over-

lapping between sampling schemes.

3 | RESULTS

3.1 | Simulations

The results of the simulations for AFD across various fibre geometries

and sampling schemes is summarised in Figure 2. Compared to the

highest single shell acquisition (ss6000), we observe a statistically signifi-

cant three-way interaction between De,⊥, f, and sampling-scheme for

ss1200: β [95% CI] = .80 [.44, 1.2]; ss2400: β [95% CI] = .55 [.19, .91];

msall: β [95% CI] = .83 [.47, 1.2]. These observed differences are visually

reflected by a greater dependency of AFD and f on simulated De,⊥ as a

result of the discrepancy with the response function.

When considering the full multi-shell acquisition (msall) there are

multiple degenerate scenarios whereby different combinations of

f and De,⊥ could result in the same AFD, compared with high b-value

shells (i.e., ss4000 or ss6000). From the simulated scenarios for example,

if AFD (msall) = 1.2, it can be seen that there are at least six combina-

tions of f and De,⊥resulting in this value (Figure 2). Whereas a change

F IGURE 2 AFD for simulated fibre geometries across five sampling schemes. Variations to simulated intra-axonal signal fraction and
perpendicular diffusivity of the extra-axonal space (De,⊥) were tested to compare AFD across multiple fibre geometries. Sampling schemes reflect
the chosen b-values, in s/mm2
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in AFD computed from the highest b-value shell could more directly

reflect a change in the underlying f, reducing the potentially con-

founding effect of discrepancies with the response function.

The addition of noise had negligible effects on these relationships

(Figure S3). However, we observed that with decreasing SNR (greater

noise), the estimated AFD was more variable.

3.2 | In vivo developmental data

3.2.1 | Impact of b-value sampling scheme

In order to assess the impact of b-value sampling-schemes on tract-

specific age relationships, we visualise our data as a heatmap

(Figure 3; S4). The coefficient of determination (R2) derived from the

linear model for each tract is organised into hierarchical clusters with

branching dendrograms.

3.2.2 | Single-shell single-tissue FBA

We observe two main clusters of single-shell b-value sampling-schemes:

the first including low and moderate diffusion-weightings (b = 1,200;

2,400 s/mm2); and the second including high diffusion-weightings

(b = 4,000; 6,000 s/mm2). Secondly, two tract-specific hierarchical clus-

ters are observed, represented by branching dendrograms (Figure 3:

clusters 1 and 2a,b). Sensitivity to age relationships was improved at

high diffusion-weightings (Table 1), whereby AFD exhibited a signifi-

cantly stronger relationship with age at ss6000 compared with: ss4000

(6/38 tracts); ss2400 (25/38 tracts); and ss1200 (27/38 tracts).

The first tract cluster is composed of a sub-cluster of regions

where a high proportion of age-related variance is described across all

diffusion weightings (median R2 = .40). The first sub-cluster (Figure 3:

cluster 1) includes several association tracts (left MLF, bilateral IFOF,

left SLF II, bilateral SLF III, bilateral ATR, bilateral AF) and commissural

tracts (corpus callosum: full extent, genu, rostral body). Significant

age-relationships are observed for all of the sampling schemes

(b = 1,200; 2,400; 4,000; 6,000 s/mm2), with an increase in the esti-

mated R2 when going to higher diffusion weightings (Figure 4). The

proportion of variance explained for the high diffusion-weightings

(b = 4,000 and 6,000 s/mm2) ranged from 38% to 53% (Table 1).

Despite the consistent sensitivity to age-related development in this

tract cluster, a greater b-value dependence on these relationships was

observed when moving from low to high b-values, particularly for

association tracts such as bilateral SLF III, left SLF I, left IFOF and

left MLF.

The second tract cluster is composed of a sub-cluster (Figure 3: 2a)

of association tracts (left SLF_I, right SLF_II, bilateral ILF, right MLF,

left CG, bilateral OR), projection tracts (bilateral CST), and commis-

sural tracts (corpus callosum: anterior midbody, isthmus). In this sub-

cluster, significant age-relationships are predominantly observed at

high diffusion-weightings where the proportion of variance ranged

from 24% to 39%, compared with at low-to-moderate diffusion-

weightings (10–28%). The second sub-cluster (Figure 3: 2b) includes

cerebellar tracts (MCP, bilateral ICP), rostrum of the corpus callosum,

bilateral fornix, right SLF_I and bilateral UF. This represented a sub-

cluster of tracts which captured little-to-no variation across develop-

ment across moderate-low b-values (1–15%).

3.2.3 | Multi-shell multi-tissue FBA

Consistent with the single-shell single-tissue results, sensitivity to age

relationships was improved at high diffusion-weightings for multi-shell

analyses (Table S1). We observed two main clusters of multi-shell b-

value sampling schemes; the first including multiple combinations of

low, moderate, and high b-value sampling schemes, and the second

including various combinations of high b-value sampling schemes

(Figure S5). In addition, we observed two main tract-clusters consis-

tent with the single-tissue results: the first including various left-

lateralised association tracts and corpus callosum projections; and the

second including predominantly cerebellar tracts, projection tracts

(CST) and association tracts (including right SLF_II, SLF_I, ILF, CG, and

OR). Overall, we observed a general reduction in the proportion of

detectable age-related variance when adding multiple shells for AFD

estimation (Figure S5) across various tracts.

3.2.4 | Whole brain fixel-based analysis

In order to evaluate the sensitivity of FBA to age-related microstruc-

tural development across sampling-schemes, we performed four sepa-

rate statistical analyses. For each single-shell sampling scheme

(b = 1,200; 2,400; 4,000; 6,000 s/mm2) we tested the relationship

between age and AFD using the CFE method (Raffelt et al., 2015).

FBA revealed a significantly positive relationship between AFD

and age across all b-values (pFWE < .05). No significant age effects

were observed in the opposite direction (pFWE > .05). We observed a

general decrease in the number of significant fixels (nsig) when mov-

ing from high to low b-values (ss6000: nsig = 13,382; ss4000:

nsig = 10,070; ss2400: nsig = 7,283; ss1200: nsig = 5,506). In terms of

anatomical overlap between results, 58% of significant fixels over-

lapped between ss6000 and ss4000, 43% of significant fixels over-

lapped between ss6000 and ss2400; and 20% of significant fixels

overlapped between ss6000 and ss1200. Visualisations of significant

and overlapping fixels across diffusion-weightings are depicted in

Figure 5. The core regions overlapping across all sampling schemes

include the body and splenium of the corpus callosum, left IFOF, left

ATR, left SLF, and right CST.

4 | DISCUSSION

In this study we demonstrate a b-value dependence on estimates of

apparent fibre density. Our results highlight that AFD more prominently

reflects age-related white matter development at high b-values.
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F IGURE 3 Dendrogram heatmap highlighting clusters of tracts which differentially describe age-related differences in apparent fibre density
(AFD) across various single-shell b-value sampling schemes. Heatmap colour intensity reflects range of R2 values derived from a linear model
including age, sex, and RMS displacement. Significant age-effects (p < 3.3e-4) are annotated with an asterisk (*). A depiction of several fibre
pathways in one cluster is presented on the right
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TABLE 1 Variance in AFD explained by age for each single-shell sampling scheme across tracts

Tracts
R2 R2 difference [95% CI]

ss6000 ss4000 ss2400 ss1200 ss6000 > ss4000 ss6000 > ss2400 ss6000 > ss1200

AF L .50 .49 .39 .35 .01 [−.11, .06] .12 [−.01, .18] .15 [.07, .23]

R .46 .43 .37 .33 .02 [−.08, .09] .08 [−.03, .13] .13 [.03, .21]

ATR L .53 .50 .43 .42 .03 [−.15, .11] .11 [−.05, .20] .11 [.02, .27]

R .48 .42 .38 .36 .06 [−.01, .13] .10 [.01, .21] .12 [−.05, .21]

CA .06 .03 .03 .11 .04 [−.01, .12] .03 [−.06, .12] −.05 [−.17, .13]

CC Full .44 .39 .32 .31 .04 [−.07, .10] .12 [.03, .20] .13 [−.04, .21]

1 .05 .02 .02 .05 .03 [−.04, .13] .03 [−.04, .17] .01 [−.12, .14]

2 .45 .43 .38 .38 .03 [−.13, .10] .07 [−.07, .17] .07 [−.04, .19]

3 .48 .46 .43 .42 .02 [−.03, .07] .05 [.01, .14] .06 [−.03, .14]

4 .35 .31 .24 .25 .04 [−.02, .08] .11 [.05, .21] .10 [−.03, .17]

5 .22 .16 .11 .06 .06 [.02, .10] .12 [.06, .19] .16 [.07, .23]

6 .34 .29 .21 .14 .04 [−.02, .08] .13 [.07, .20] .19 [.10, .31]

7 .31 .29 .22 .18 .02 [−.04, .08] .09 [.04, .15] .13 [.05, .20]

CG L .38 .27 .18 .10 .11 [−.03, .23] .20 [.06, .34] .28 [.11, .41]

R .21 .20 .11 .06 .01 [−.14, .10] .10 [−.02, .20] .16 [.05, .29]

CST L .34 .27 .19 .16 .07 [−.01, .15] .15 [.06, .21] .18 [.05, .27]

R .29 .28 .20 .15 .01 [−.08, .09] .09 [−.01, .17] .14 [.05, .26]

FX L .06 .03 .01 .01 .02 [−.04, .10] .04 [−.02, .12] .05 [−.01, .16]

R .05 .02 .01 .01 .03 [−.04, .10] .05 [−.04, .16] .03 [−.12, .18]

ICP L .21 .18 .11 .04 .03 [−.01, .14] .11 [.02, .23] .17 [.02, .31]

R .11 .11 .07 .08 −.01 [−.07, .07] .03 [−.07, .14] .03 [−.10, .16]

IFOF L .44 .40 .34 .29 .03 [−.02, .13] .10 [.01, .18] .15 [.09, .26]

R .46 .42 .40 .33 .04 [−.02, .12] .06 [−.01, .14] .12 [.02, .22]

ILF L .39 .34 .27 .22 .05 [−.02, .16] .13 [.05, .22] .18 [.10, .27]

R .35 .26 .24 .21 .09 [.01, .19] .10 [.04, .24] .14 [.05, .25]

MCP .07 .06 .05 .08 .01 [−.03, .05] .02 [−.07, .10] −.02 [−.13, .15]

MLF L .43 .39 .30 .26 .04 [.01, .09] .13 [.06, .17] .17 [.10, .24]

R .39 .34 .28 .20 .05 [−.04, .09] .11 [.02, .18] .19 [.07, .25]

OR L .36 .30 .25 .18 .05 [.01, .13] .11 [.05, .21] .17 [.10, .28]

R .28 .25 .19 .13 .03 [−.04, .10] .09 [.02, .17] .15 [.05, .30]

SLF_III L .47 .44 .33 .30 .04 [.01, .08] .14 [.08, .19] .18 [.11, .26]

R .41 .38 .31 .28 .04 [−.09, .10] .10 [.01, .18] .13 [.01, .24]

SLF_II L .41 .40 .32 .29 .01 [−.04, .06] .09 [.02, .14] .12 [.06, .20]

R .31 .29 .21 .17 .02 [−.05, .05] .10 [.04, .15] .13 [.07, .22]

SLF_I L .29 .24 .19 .15 .05 [.01, .11] .10 [.05, .15] .14 [.05, .22]

R .22 .20 .15 .08 .02 [−.03, .06] .07 [.02, .13] .14 [.06, .24]

UF L .27 .23 .11 .10 .04 [−.05, .16] .16 [.07, .27] .16 [.03, .28]

R .17 .09 .04 .04 .08 [−.01, .21] .13 [.03, .26] .13 [.02, .32]

Note: R2 represents the multiple coefficient of determination computed using a linear model for each tract, with age, sex and motion as predictors.

Difference indicates difference between R2 coefficients. Square brackets show 95% bias corrected accelerated (BCa) confidence intervals computed with

10,000 bootstrapped samples. Bold = differences in R2 where 0 was not captured by the confidence intervals. Abbreviations: AF, arcuate fasciculus; ATR,

anterior thalamic radiation; CA, anterior commissure; CC, corpus callosum [1 = rostrum, 2 = genu, 3 = rostral body, 4 = anterior midbody, 5 = posterior

midbody; 6 = isthmus, 7 = splenium]; CG = cingulum; CST, corticospinal tract; FX, fornix; ICP, inferior cerebellar peduncle; IFOF, inferior fronto-occipital

fasciculus; ILF, inferior longitudinal fasciculus; MCP, middle cerebellar peduncle; MLF, middle longitudinal fasciculus; OR, optic radiation; superior

longitudinal fasciculus: SLF [I, II, III]; UF, uncinate fasciculus.
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F IGURE 4 The relationship between AFD and age across four regions including: the right anterior thalamic radiation (ATR_right), inferior
longitudinal fasciculus (ILF_right), corticospinal tract (CST_left), and superior longitudinal fasciculus I (SLF_I_right). Each region is representative of
individual tract clusters where a progressive increase in the coefficient of determination (R2) is observed when moving from low to high diffusion-
weightings. Sampling schemes whereby AFD was significantly associated with age are coloured in purple
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4.1 | Simulations

The simulations for multiple sampling schemes revealed an improved

correspondence between estimated AFD and the underlying intra-

axonal fibre properties when using high b-value shells (b = 4,000 or

b = 6,000 s/mm2). When moving to lower b-values, or including the

complete set of multi-shell data, we observed a larger dependency of

AFD on extra-axonal perpendicular diffusivity. This could suggest that

any changes in the true underlying fibre density could be camouflaged

by concomitant changes in perpendicular diffusivity, whereby a simul-

taneous reduction of the intra-axonal volume fraction and De,⊥ could

result in the AFD remaining the same.

AFD is hypothesised to be proportional to the intra-axonal sig-

nal fraction of a fibre population (Raffelt et al., 2012). With increas-

ing b-value, the intra- and extra-axonal signal is differentially

attenuated, leading to greater signal contribution from the intra-

axonal space (Tournier et al., 2013). Therefore, an increase in AFD

can suggest alterations to axonal properties, such as axon count,

packing density, and diameter (Raffelt et al., 2017). However, our

results suggest that AFD is dependent on the extra-axonal signal

when including lower b-values, as the mismatch between estimated

AFD and simulated intra-axonal signal fraction across varying De,⊥

is exaggerated.

As such, a change in AFD estimated at high diffusion-weightings

(in this case b = 4,000 or 6,000 s/mm2) could more directly reflect a

change in the underlying axon density compared with lower b-value

shells or multi-shell acquisitions, reducing the potential confounding

effect of discrepancies with the response function.

4.2 | In vivo developmental data

When considering in vivo developmental data, the dependence of b-

value on estimates of AFD was reflected by improved sensitivity to

age relationships. Several association tracts consistently described

age-related differences in AFD across moderate to high diffusion-

weightings, including the left MLF, bilateral IFOF, left SLF II, bilateral

SLF III, bilateral ATR, bilateral AF, and anterior segments of the cor-

pus callosum. These regions, particularly the corpus callosum, arcu-

ate and superior longitudinal fasciculus, appear to be sensitive to

age-related differences in microstructure regardless of dMRI acquisi-

tion scheme or analysis technique (Genc, Smith, et al., 2018;

F IGURE 5 Fixel-based analysis results. Top row displays fixels exhibiting a significantly positive relationship between age and AFD for each
b-value sampling scheme (pFWE < .05). The second (ss6000 vs. ss4000; ss6000 vs. ss2400; ss6000 vs. ss1200) (ss4000 vs. ss2400; ss4000 vs. ss1200) and third
(ss vs. ss; ss vs. ss)(ss4000 vs. ss2400) rows display maps of the tracts traversing overlapping fixels between separate FBA results. Results are shown
on a representative sagittal slice
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Ladouceur, Peper, Crone, & Dahl, 2012; Lebel & Beaulieu, 2011;

Sawiak et al., 2018).

A group of left-lateralised association tracts (e.g., left CG, MLF,

OR, SLF_III, SLF_I, IFOF) better described age-related variance in

AFD when comparing the highest b-value (b = 6,000 s/mm2) with

high to moderate b-values (b = 4,000 or 2,400 s/mm2). Left-

lateralisation of language has been well documented (Catani, Jones, &

ffytche, 2005) and related to microstructure (Lebel & Beaulieu,

2009). The microstructure of lateralised association tracts is likely

linked with the ongoing development of complex cognitive pro-

cesses throughout childhood and adolescence (Blakemore &

Choudhury, 2006; Jung & Haier, 2007). Our results suggest that lat-

eralised association tracts linked with language and cognitive devel-

opment are better characterised at high b-values. This is likely due to

improved sensitivity and specificity to axonal microstructure in the

branching endpoints of these tracts integrating such higher order

functions across fronto-parietal, fronto-occipital, and occipito-

temporal pathways. Future work should focus on investigating

subject-specific branching endpoints of these tracts, to assess indi-

vidual variation in microstructure.

One key observation was that a higher proportion of age-related

variance was observed in the single-tissue analyses compared with

the multi-tissue analyses. A decrease in discriminative power of age-

related development was observed across a number of multi-shell

configurations, more heavily weighted towards those which included

low-to-moderate b-values. It is possible that single-shell analyses at

higher b-values may better isolate the true effect of changing intra-

axonal properties, and not clutter it with mismatches of the response

function and/or other effects in the extra-axonal space. Future work

comparing the current approach with emerging methods such as

single-shell three-tissue CSD (Aerts, Dhollander, & Marinazzo, 2019;

Dhollander, Mito, Raffelt, & Connelly, 2019) and simultaneous voxel-

wise estimation of the response function and FOD (Jespersen et al.,

2007) are warranted to explore this further.

The results of the whole-brain FBA revealed a b-value depen-

dence on age-related differences in AFD. Notably, more widespread

associations with age were observed at high diffusion-weightings,

implicating a number of regions which were not found using other

sampling-schemes. This b-value dependence suggests that whilst

some core regions such as the body and splenium of the corpus cal-

losum are clearly exhibiting strong age-related development across all

sampling schemes, a degree of anatomical sensitivity and specificity is

lost at lower diffusion-weightings. This is not to say that studies per-

forming FBA with low-to-moderate b-values will completely lose sen-

sitivity to age-related effects or clinical group differences. However,

in conditions with subtle differences in underlying neurobiology or

microstructure, going to higher b-values may improve the characteri-

sation of AFD and thus improve the detectability of clinically signifi-

cant group differences.

Overall, AFD derived from high b-values (b = 4,000 or 6,000 s/mm2)

best modelled age-relationships for the majority of white matter tracts

tested. These results, combined with the simulations, suggest that axonal

properties (such as axon density) dominate age-related variance in AFD

at high b-values, whereas extra-axonal signal contamination at decreasing

diffusion-weightings incrementally suppress this effect.

4.3 | Implications

Our results bear implications for fixel-based analysis applications

using retrospectively collected dMRI data which may not be optimal

for the estimation of AFD. The biological interpretation of group dif-

ferences in AFD should be tailored to the acquisition scheme used.

Relative differences in AFD at high b-values could relate to the true

underlying axon density; at moderate b-values could relate to overall

white matter fibre density; and at low b-values could relate to white

matter fibre density including potential extra-axonal signal

contamination.

Although we have demonstrated a clear b-value dependence on

developmental patterns of AFD, it is important to note that

the in vivo results at high diffusion-weightings are specific to the

ultra-strong gradient system used here, resulting in a higher SNR

compared with what could be a achieved on a standard MR system.

Promisingly, our simulation results suggest that the effect of b-value

and discrepancy with the response function dominates the effect of

noise (Figure S3), even at a lower SNR which closely matched our

in vivo data (SNR = 50). Therefore, we expect that our observations

at high b-values may be reproducible on a standard 3.0T system. As

strong gradient systems become increasingly available, the practical-

ities of acquiring such high quality dMRI data at higher b-values is

becoming less cumbersome (Chamberland, Tax, & Jones, 2018;

McKinnon & Jensen, 2019; Moss, McKinnon, Glenn, Helpern, &

Jensen, 2019).

Whilst in this study we have used a developmental population of

children and adolescents as an exemplar of a b-value dependence on

estimates of AFD, these findings can be applied more broadly and

bear implications for a range of group studies (e.g., clinical groups or

ageing adults).

4.4 | Limitations and future directions

One limitation of the current study is that we have no ground truth

on the development of axonal density over childhood and adoles-

cence. Therefore, our interpretations of improved intra-axonal signal

sensitivity rests on age-relationships investigated here, which has also

been used previously (Maximov, Alnæs, & Westlye, 2019; Pines et al.,

2019). Whilst we have attempted to understand how AFD can vary

across multiple simulated fibre geometries, we do not know how the

underlying fibre properties (such as axon diameter) vary with age.

Despite this consideration, a recent study of histological validation

suggests that AFD is a reliable marker of axonal density in the pres-

ence of axonal degeneration (Rojas-Vitea et al., 2019). This is a prom-

ising indicator of the neurobiological properties proportional to AFD.

Future work should adopt multi-dimensional approaches to extract

meaningful components (Chamberland et al., 2019), enhance data
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quality (Alexander et al., 2017) and harmonise existing data (Maximov

et al., 2019; Tax et al., 2019).

5 | CONCLUSION

We summarise our findings with three main conclusions: (a) the corre-

spondence between apparent fibre density and simulated intra-axonal

signal fraction is improved with high b-value shells; and (b) AFD better

reflects age-related differences in axonal microstructure with increas-

ing b-value (b = 4,000 or 6,000 s/mm2) over childhood and adoles-

cence; and (c) these relationships differ across the brain, with a

greater b-value dependence in association tracts and posterior projec-

tions of the corpus callosum. Together, our results suggest that axonal

properties dominate the variance in AFD at high b-values.
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