Architectural changes of the biceps femoris long head after concentric or eccentric training

Timmins, Ryan G., Ruddy, Joshua D., Presland, Joel, Maniar, Nirav and Williams, Morgan

This is a pre-copyedited, author-produced version of an article accepted for publication in Medicine and Science in Sports and Exercise.

This work © 2016 is licensed under Creative Commons Attribution-NonCommercial 4.0 International.
Title:
Architectural changes of the biceps femoris after concentric or eccentric training.

Authors:
Ryan G Timmins¹, Joshua D Ruddy¹, Joel Presland¹, Nirav Maniar¹, Anthony J Shield²,
Morgan D Williams³, David A Opar¹
¹School of Exercise Science, Australian Catholic University, Melbourne, Australia
²School of Exercise and Nutrition Sciences and Institute of Health and Biomedical
Innovation, Queensland University of Technology, Brisbane, Australia
³School of Health, Sport and Professional Practice, University of South Wales, Pontypridd,
Wales, UK

Corresponding author:
Ryan G. Timmins
School of Exercise Science, Australian Catholic University, 115 Victoria Parade, Fitzroy,
3065, Melbourne, Victoria, Australia
ryan.timmins@myacu.edu.au
Telephone: +61 3 9953 3742
Fax: +61 3 9953 3095

Running title:
Adaptability of biceps femoris architecture

Disclosure of funding:
N/A
ABSTRACT

Purpose: To determine i) the architectural adaptations of the biceps femoris long head (BFlf) following concentric or eccentric strength training interventions; ii) the time course of adaptation during training and detraining. Methods: Participants in this randomized controlled trial (control \[n=28\], concentric training group \[n=14\], eccentric training group \[n=14\], males) completed a 4-week control period, followed by 6 weeks of either concentric- or eccentric-only knee flexor training on an isokinetic dynamometer and finished with 28 days of detraining. Architectural characteristics of BFlf were assessed at rest and during graded isometric contractions utilizing two-dimensional ultrasonography at 28 days pre-baseline, baseline, days 14, 21 and 42 of the intervention and then again following 28 days of detraining. Results: BFlf fascicle length was significantly longer in the eccentric training group \(p<0.05\), \(d\) range: 2.65 to 2.98) and shorter in the concentric training group \(p<0.05\), \(d\) range: -1.62 to -0.96) after 42 days of training compared to baseline at all isometric contraction intensities. Following the 28-day detraining period, BFlf fascicle length was significantly reduced in the eccentric training group at all contraction intensities compared to the end of the intervention \(p<0.05\), \(d\) range: -1.73 to -1.55). There was no significant change in fascicle length of the concentric training group following the detraining period. Conclusions: These results provide evidence that short term resistance training can lead to architectural alterations in the BFlf. In addition, the eccentric training-induced lengthening of BFlf fascicle length was reversed and returned to baseline values following 28 days of detraining. The contraction mode specific adaptations in this study may have implications for injury prevention and rehabilitation.

Key Words: fascicle; muscle adaptation; hamstring; ultrasound; randomized controlled trial
INTRODUCTION

The ability of a muscle to produce force is partly governed by its architectural characteristics, such as muscle thickness, pennation angle and fascicle length (17). Architectural characteristics have been shown, in many different muscles, to change when exposed to mechanical stimuli, such as resistance training (2, 3, 21, 28, 32). Understanding the changes to muscle architecture in response to a given stimulus is important when aiming to alter muscle function and the risk of injury (2, 3, 7, 36).

During the terminal swing phase of the gait cycle, the hamstrings are required to actively lengthen to decelerate the extending knee and flexing hip (38). It is during this phase of the gait cycle where the hamstrings are at their longest, with the biceps femoris long head (BFlf) reaching approximately 110% of its length during upright stance (35). These high force, lengthening actions of the hamstrings may contribute to the high rate of strain injuries during running (26), the majority of which occur in the BFlf (16, 24). Interestingly, a previously strain injured BFlf possesses shorter fascicle lengths and greater pennation angles when compared to the contralateral uninjured BFlf (36). Furthermore differences in fascicle length can alter function, with muscles that possess longer fascicles having a greater maximal shortening velocity when compared to those with shorter fascicles (6, 17). Therefore it is important to develop an understanding of how muscle architecture can be altered by physical training in order to influence function, as well as guide hamstring strain injury prevention and rehabilitation practices.

Despite the large amount of research showing a range of architectural adaptations following eccentric training interventions (2, 3, 31), investigations which outline the time course for adaptation, including a period of detraining, are limited. Furthermore, the previous research into the adaptability of the BFlf following a training intervention only compared eccentric
training to a non-training control group (28). It is therefore it is unclear how BFlf architectural adaptations might differ after eccentric and concentric strength training.

Given the high incidence of hamstring injury in the BFlf (16, 24), it is of interest to see how its architecture is altered following either concentric or eccentric strength training. Therefore the purposes of this study were to: 1) determine the architectural adaptations of the BFlf following either a concentric or eccentric strength training intervention and; 2) determine the time course of BFlf architectural adaptations during a 6-week training intervention, and following a 28 day period of detraining.

METHODS

Participants

Twenty-eight recreationally active males (age 22.3±4.2 y; height 1.81±0.07 m; body mass 76.9±8.2 kg) with no history of lower limb injury in the past 12 months were recruited to participate in this study. All participants provided written informed consent prior to testing and training which was undertaken at the Australian Catholic University, Fitzroy, Victoria, Australia. Ethical approval for the study was granted by the Australian Catholic University Human Research Ethics Committee.

Study design

Participants undertook a maximal isokinetic dynamometry familiarization session no less than 7 days prior to having their BFlf architecture assessed. The familiarization session and architectural assessment was completed on both limbs. Following this initial testing session (28 days pre-baseline), the participants were paired according to passive BFlf fascicle length and randomly assigned to one of two training groups (allocation ratio 1:1) to undertake either concentric- or eccentric-only knee flexor strength training. All participants (n=28) returned to the lab 4 weeks later (baseline) and had the maximal knee flexor strength and BFlf
architectural characteristics assessed on both limbs. Following this the participants underwent 6 weeks of either a concentric- or eccentric–strength training intervention in a randomly selected limb (the contralateral limb served as a within-participant control). BFlf architecture of both limbs was re-assessed at days 14, 21 and 42 of the intervention, as well as 28 days after the completion of the strength training intervention. Knee flexor strength of both limbs was re-tested at the end of the training intervention (day 42) and 28 days after the completion of the intervention. All tests were performed at the same time of the day for each participant.

Outcome measures

Isokinetic dynamometry

All knee flexor strength testing was completed on a Humac Norm® isokinetic dynamometer (CSMI, Massachusetts, U.S.A), on both legs (left or right) in a randomized order. Participants were seated on the dynamometer with their hips flexed at approximately 85° from neutral and were restrained by straps around the tested/exercised thigh, waist and chest to minimise compensatory movements. All seating variables (e.g. seat height, pad position, etc.) were recorded to ensure the replication of the participants’ positions. Gravity correction for limb weight was also conducted and range of motion was set between 0° and 90° of knee flexion (full extension = 0°) with the starting position for each contraction during strength testing being 90° of knee flexion. The starting position for all training contractions were dependent on training group, with the concentric training group starting from 0° of knee extension and the eccentric group beginning from 90°. Prior to all testing sessions, participants undertook a warm-up consisting of three sets of three concentric knee extension and flexion contractions at an angular velocity of 240°/s. The intensity of these contractions increased each set (1st set ~75% and 2nd set ~90% of the participants perceived maximum) until the final set at this velocity was performed at a maximal level. The test protocol began one minute following the final warm-up set and consisted of three sets of three repetitions of concentric and eccentric
maximal voluntary contractions of knee flexion at 60°/s and 180°/s (30s inter-set rest). For all
concentric knee flexion efforts, the participants were instructed to ‘pull down’ against the
lever as fast as possible, whereas during eccentric contractions they were told to ‘resist’ the
lever arm from extending their knee as hard as they could. All participants were provided
visual feedback of their efforts as well as being verbally encouraged by the investigators to
ensure maximal effort for all contractions. The testing order of contraction modes was
randomized across the participant pool and the testing protocol has been previously reported
to not alter concentric- or eccentric-knee flexor strength (37). Dynamometer torque and lever
position data were transferred to computer at 1 kHz and stored for later analysis where it was
fourth-order low pass Butterworth filtered (5 Hz). Peak torques at 240, 180 and 60°/s for
centric and 180 and 60°/s for eccentric knee flexion were defined as the mean of the six
highest torque values for each contraction mode at each velocity.

BFlf architectural assessment

Muscle thickness and pennation angle of the BFlf were determined from ultrasound images
taken along the longitudinal axis (Figure 1) of the muscle belly utilizing a two dimensional,
B-mode ultrasound (frequency, 12 Mhz; depth, 8 cm; field of view, 14 x 47 mm) (GE
Healthcare Vivid-i, Wauwatosa, U.S.A). The same images were utilized to estimate BFlf
fascicle length. The scanning site was determined as the halfway point between the ischial
tuberosity and the popliteal crease, along the line of the BFlf. Once the scanning site was
determined, the distances of the site from various anatomical landmarks were recorded to
ensure its reproducibility for future testing sessions. These landmarks included the ischial
tuberosity, fibula head and the posterior knee joint fold at the mid-point between BF and
semitendinosus tendon. On subsequent visits the scanning site was determined and marked on
the skin and then confirmed by replicated landmark distance measures. All architectural
assessments were performed with participants in a prone position and the hip in a neutral
position following at least 5 min of inactivity. Assessments at rest were always performed first followed by the graded isometric contraction protocol. Assessment of BFln architecture at rest was performed with the knee at 0° of knee flexion. Assessment of BFln architecture during isometric contractions was always performed with the knee at 0° flexion and preceded by a maximal voluntary isometric contraction, performed in a custom made device (25). The graded isometric contractions of the knee flexors were performed in the same device at 25, 50 and 75% of maximum voluntary isometric contraction (MVIC) with the participants shown the real-time visual feedback of the force produced to ensure that target contraction intensities were met. Assessment of the MVIC of the knee flexors was undertaken in a prone position, with both the hip and knee fully extended (0°). Participants were instructed to contract maximally over a 5-s period, from which the peak force was used to determine the MVIC.

To gather ultrasound images, the linear array ultrasound probe, with a layer of conductive gel was placed on the skin over the scanning site, aligned longitudinally and perpendicular to the posterior thigh. Care was taken to ensure minimal pressure was placed on the skin by the probe as this may influence measurement accuracy (15). Finally, the probe orientation was manipulated slightly by the sonographer (RGT) if the superficial and intermediate aponeuroses were not parallel.

Analysis was completed off-line (MicroDicom, Version 0.7.8, Bulgaria). For each image, six points were digitized as described by Blazevich and colleagues (5). Following the digitizing process, muscle thickness was defined as the distance between the superficial and intermediate aponeuroses of BFln. A fascicle of interest was outlined and marked on the image. The angle between this fascicle and the intermediate aponeurosis was measured and given as the pennation angle (Figure 1). The aponeurosis angle for both aponeuroses was
determined as the angle between the line marked as the aponeurosis and an intersecting horizontal line across the captured image (5, 14). Fascicle length was estimated from an outlined fascicle between the aponeuroses. As the entire fascicle was not visible in the probe field of view its length was estimated via the following validated equation from Blazevich and colleagues (5, 14):

\[FL = \sin (AA + 90^\circ) \times MT / \sin(180^\circ - (AA + 180^\circ - PA)) \]

Where FL=fascicle length, AA=aponeurosis angle, MT=muscle thickness, AA=aponeurosis angle and PA=pennation angle.

Fascicle length was reported in absolute terms (cm) and also relative to muscle thickness (fascicle length/muscle thickness). The same assessor (RGT) conducted and analysed all scans and was blinded to participant identifiers during the analysis. The methodology utilized in this study to assess the BF1f architectural characteristics has been previously reported by our laboratory (36).

Intervention

The participants performed 6 weeks of either maximal eccentric- or concentric-knee flexion strength training, with two sessions in the intervention’s first week and 3 sessions a week thereafter on an isokinetic dynamometer (Humac Norm, CSMI, Massachusetts, U.S.A) using the same range of motion and seat positions configuration as dynamometry testing sessions. Only one limb received the strength training stimulus, with the contralateral limb acting as a within-participant control limb. Across the training period the volume (number) of contractions was increased following the progression below:

- **Week 1:**
 - Frequency (days/week) = 2
 - Sets = 4
 - Repetitions = 6
• Week 2:
 o Frequency (days/week) = 3
 o Sets = 4
 o Repetitions = 6
 o Total repetitions = 72

• Week 3:
 o Frequency (days/week) = 3
 o Sets = 5
 o Repetitions = 6
 o Total repetitions = 90

• Week 4:
 o Frequency (days/week) = 3
 o Sets = 5
 o Repetitions = 8
 o Total repetitions = 120

• Week 5:
 o Frequency (days/week) = 3
 o Sets = 6
 o Repetitions = 6
 o Total repetitions = 108

• Week 6:
 o Frequency (days/week) = 3
 o Sets = 6
 o Repetitions = 8
 o Total repetitions = 144

Each training session was separated by at least 48 hours. Contractions were distributed evenly across 60°/s and 180°/s. All participants started with two sets of three warm up efforts at 60°/s, in the contraction mode utilized for their training. For all training repetitions, the concentric training participants were moved to full knee extension (0°) by the investigator and were instructed to flex their knee as fast as possible through to 90° of knee flexion. The investigator then returned the lever arm to full knee extension and the subsequent repetition was completed. This was undertaken until all repetitions were completed in their respective set, with a 30-s inter-set rest period. The eccentric training participants began with their knee at 90° of flexion. They were then instructed to maximally flex against the lever arm until full knee extension was reached (0°). The participant was then instructed to relax, the lever arm was repositioned to 90° of knee flexion by the investigators and the subsequent contraction
was performed. This was undertaken until all repetitions were completed in each set, with a
30-s inter-set rest period. All participants were provided visual and verbal feedback on the
consistency of the torque produced during each repetition. These were compared against
personal best performances, which were known by the participant, to aid motivation. During
the pre-control (28 days pre-baseline to baseline), intervention (baseline to intervention day
42) and detraining periods (intervention day 42 to post-intervention day 28), participants
continued their habitual levels of physical activity. The only restriction was to not perform
any other lower limb strength exercises. Finally, training compliance was determined as a
percentage of sessions that were completed within 24 hours of the intended time.

Statistical analysis

All statistical analyses were performed using SPSS version 22.0.0.1 (IBM Corporation,
Chicago, IL). Where appropriate, data were screened for normal distribution using the
Shapiro-Wilk test and homoscedasticity using Levene’s test. Greenhouse-Geisser adjustment
was applied when the assumption of sphericity was violated (p<0.05 for Mauchly’s test of
sphericity). At each contraction intensity, a split-plot design ANOVA, with the within-
participant variables being limb (trained or untrained) and time point (28 days pre-baseline,
baseline, intervention day 14, intervention day 21, intervention day 42, post-intervention day
28) and the between-subject variable being group (eccentric or concentric), was used to
compare changes in BF1f architecture throughout the training study. Architectural changes
across the 28 day control period (28 days pre-baseline to baseline) were not significant
(p>0.05). Therefore when determining the alterations in BF1f architectural characteristics
following a 6-week intervention, all comparisons were made to baseline. Knee flexor peak
torque comparisons, at each contraction velocity, used a similar split-plot design ANOVA,
however, with different time point variables (baseline, intervention day 42, and post-
treatment day 28). Where significant limb x time x group interactions for architecture and
limb x time for knee flexor peak torque were detected, post-hoc t-tests with Bonferroni adjustments were used to identify which comparisons differed. Significance was set at a p<0.05 and appropriate Cohen’s d (8) was reported for the comparison effect sizes, with the levels of effect being deemed small ($d = 0.20$), medium ($d = 0.50$) or large ($d = 0.80$) as recommended by Cohen (1988).

Sample Size

Sample size analysis was completed *a-priori* using G-Power (9). The analysis was based on the anticipated differences in fascicle length following the strength training intervention. The effect size was estimated based on the only intervention study to date that has reported changes in the BFIf architecture (28). That study reported a 33% increase in fascicle length following the intervention with an approximate effect size of 1.9. Therefore an effect size of 1.2 was deemed as a reasonable starting point. Power was set at 80% with an alpha level of 0.05 returning a calculated sample size of 12 per group. As a cross-reference to confirm the effect size, fascicle length differences in individuals with a unilateral BFIf strain injury displayed an effect size of 1.34 when comparing between the previously injured and contralateral uninjured limb (36).
RESULTS

Participants

The two training groups were similar with respect to age, height and body mass (eccentric training group: age 21.2±2.7 y, height 1.81±0.06 m, body mass 77.9±9.3 kg; concentric training group: age 23.4±5.1 y; height 1.81±0.07 m; body mass 76.2±7.1 kg). Overall, compliance rates were acceptable for all participants (92%±2; min=85%; max=100%), with no differences when comparing the two groups (eccentric training group: 91%±2; concentric training group: 93%±1).

BFIf architectural comparisons

Control period, control limb changes and baseline comparisons

A significant limb x time x group interaction effect was found for fascicle length, fascicle length relative to muscle thickness and pennation angle (p<0.001). Post-hoc analyses showed no BFIf architectural variables changed during the 4-week pre-intervention control period (p>0.05, d range = 0.03 to 0.17). Similarly, there were no significant differences at any time point, in the non-training control limbs for any BFIf architectural variables (p>0.05, d range = 0.03 to 0.27). Comparisons of all the BFIf architectural variables at baseline displayed no significant differences between the concentric and eccentric training group in legs that were to be trained (i.e. the training leg) (p>0.05, d range = 0.22 to 0.43).

Fascicle length and fascicle length relative to muscle thickness changes

A significant limb x time x group interaction effect was found for fascicle length at all contraction intensities (p<0.001). Post-hoc analysis showed that fascicle length was significantly longer in the training limb of the eccentric training group (p<0.05, d range: 2.65 to 2.98, Table 1, Figure 2) and significantly shorter in the training limb of the concentric training group (p<0.05, d range: -1.62 to -0.96, Table 1, Figure 2) after 42 days of the
intervention compared to baseline, at all contraction intensities. Additionally there was a significant limb x time x group interaction effect for fascicle length relative to muscle thickness (p<0.001). All post-hoc comparisons for the training limbs of each group are presented in Table 1.

Following the 28 day detraining period, fascicle length was significantly reduced in the training limb of the eccentric training group in comparison to the end of the intervention, at all contraction intensities (p<0.05, d range: -1.73 to -1.55, Table 1, Figure 2). Post-hoc analysis showed that fascicle length in the concentric training group following 28 days of detraining was no different to that observed end of the intervention, at any contraction intensity (p>0.05, d range: 0.15 to 0.67, Table 1, Figure 2). All other post-hoc comparisons of fascicle length and fascicle length relative to muscle thickness, 28 days following the intervention period, in the training limbs of both groups are presented in Table 1 and Figures 1 to 4.

Muscle thickness and pennation angle changes

No significant limb x time x group interaction effect was found for muscle thickness at any contraction intensity (p>0.162). However, a significant limb x time x group interaction effect was detected for pennation angle at all contraction intensities (p<0.001). Post-hoc analysis showed that pennation angle was significantly reduced in the training limb of the eccentric training group (p<0.05, d range: -1.30 to -0.85, Table 1, Figure 2) and significantly increased in the training limb of the concentric training group (p<0.05, d range: 1.60 to 2.50, Table 1, Figure 1 to 4) after 14 days of the intervention compared to baseline, at all contraction intensities. All other comparisons of pennation angle changes in the training limb of both groups are presented in Table 1.
Pennation angle was not significantly different in the training limb of the eccentric training group in comparison to the end of the intervention, at any contraction intensity following the 28 day detraining period (p>0.05, \(d \) range: -0.55 to 0.02, Table 1, Figure 2). Post-hoc analysis showed that following the 28 days of detraining, pennation angle of the concentric training group was no different compared to the end of the intervention, at any contraction intensity (p>0.05, \(d \) range: -0.63 to -0.27, Table 1, Figure 2). All other comparisons of pennation angle changes following the 28 day detraining period are presented in Table 1.

Strength changes

A significant limb x time interaction effect for knee flexor peak torque was found at all contraction velocities for each group (p<0.001). Comparisons at all contraction velocities, at baseline, displayed no significant differences between the concentric and eccentric training group (p>0.05). Post-hoc analysis also revealed that knee flexor peak torque increased in both the training limb of the eccentric (p<0.05, \(d \) range: 0.63 to 0.78, Table 2) and the concentric training group (p<0.05, \(d \) range: 0.53 to 0.72, Table 2) after 42 days of the intervention, at all contraction velocities, when compared to baseline. There were no significant differences in knee flexor peak torque for the untrained limbs of either group after 42 days of the intervention when compared to baseline, at any contraction velocity (p>0.05, \(d \) range = 0.11 to 0.27).

There were no significant differences in knee flexor peak torque at any contraction velocity, in either group when comparing their strength following the 28 day detraining period to the values after 42 days of the intervention (p>0.05, \(d \) range: -0.30 to -0.16, Table 2). Additionally, knee flexor peak torques at all contraction velocities following the 28-day detraining period were significantly greater in the training limb of both training groups when compared to baseline (p>0.05, \(d \) range: 0.34 to 0.75, Table 2).
DISCUSSION

To the authors’ knowledge, this is the first study reporting divergent BFflf architectural adaptations in response to concentric- or eccentric-strength training. Moreover, it is the first to provide evidence that eccentric training-induced increases in BFflf fascicle length are reversed following 28 days of detraining. The main findings were that eccentric strength training resulted in an increase in estimated BFflf fascicle length and a reduction in pennation angle, whereas concentric strength training caused reductions in estimated fascicle length and increases in pennation angle. Additionally, in those who trained eccentrically, a significant reduction in BFflf fascicle length and a non-significant increase in pennation angle were found following a 28 day detraining period when compared to the end of the strength training intervention. In contrast, the concentrically trained group maintained their BFflf architectural characteristics following 28 days of detraining. Finally, improvements in knee flexor strength were not specific to training contraction mode, with significant improvements in concentric and eccentric strength found in both training groups that persisted through the detraining period.

Observations of increases in BFflf fascicle length and a reduction in pennation angle (measured at rest) following eccentric strength training in the current study (Figure 1) aligns somewhat with previous literature (28). Potier and colleagues (2009) found a 33% increase in resting BFflf fascicle length with a non-significant 3.1% reduction in resting pennation angle following 8 weeks of eccentric strength training. In comparison, the current study saw a significant 16% increase in resting BFflf fascicle length (the majority of which occurred within 14 days), with a non-significant 7.5% reduction in resting pennation angle. Differences in the training modalities employed (leg curl vs isokinetic dynamometry), intervention length (8 weeks vs 6 weeks) and the site of assessment may explain the different magnitudes of change reported in these studies. Additionally, no previous literature has
examined BFlf architectural alterations during graded isometric contractions, following an intervention. In the present study, increases in BFlf fascicle length were observed at the end of the intervention when assessed during all graded isometric contractions in the eccentrically trained individuals. These increases in fascicle length may occur as a result of the addition of in-series sarcomeres, as has been shown in rat vastus intermedius muscles after five days of downhill and presumably eccentric running exercise (18). However, the architectural alterations seen in this study may not be uniform along the BFlf length. Changes in fascicle length (4), muscle thickness and anatomical cross sectional area, after strength training interventions (3), are variable within a muscle. It is possible that the assessment of BFlf architecture in the current study may have occurred at a point on the muscle where the changes were less prominent in comparison to other studies (28). Alternatively, changes in tendon stiffness could theoretically result in altered fascicle lengths, with stiffer tendons causing an increased tension within the muscle which could then result in the elongation of resting BFlf fascicle length. Further research is needed to clarify the mechanism responsible for fascicle length alterations in humans.

No previous studies have compared the architectural alterations in the BFlf, following concentric and eccentric training. However, interventions which have employed concentric- or eccentric-knee extensor training have reported inconsistent architectural adaptations. Some have shown a contraction mode specific adaptation similar to that observed in the current study (10, 29) whilst others have not (3). Additionally knee extensor isometric strength training at short and long muscle lengths has also been shown to increase fascicle length (22). A range of factors such as the relative maximum load (3, 10), the participant’s age and physical capacity (29) as well as the training stimulus velocity (33) might explain some of the variance between these results. However it is not known why these alterations in the vastus lateralis differ to those reported in the current study. It is possible that differences in the
structural and functional characteristics of the muscles may account for this variability. However future research is needed to assist in determining the BFlf adaptive responses to these and many other variables.

The increases in BFlf fascicle length and reductions in pennation angle found in the current study following an eccentric strength training may have implications for hamstring strain injury prevention and rehabilitation. Elite athletes with a unilateral history of BFlf strain injury have shorter fascicles and greater pennation angles on their previously injured limb when compared to the contralateral uninjured limb (36). Individuals with a history of hamstring strain injury are at an increased risk of future injury in comparison to those without a history (24, 26). Therefore if shorter fascicles and greater pennation angles in a previously injured athlete are partial contributors to the elevated risk of re-injury, then understanding the most effective methods for altering these architectural characteristics will be of great value.

The current data indicates that the continual application of high-intensity, eccentric-only strength training should be considered in hamstring rehabilitation and prevention programs in order to increase BFlf fascicle length and reduce pennation angle. Additionally the current study results suggest that muscle length in training is possibly not the major factor, as previously suggested (12), in determining fascicle length changes as long length, concentric exercise resulted in shortening of fascicle length. Further research is needed to determine how the combination of both concentric and eccentric contractions during conventional strength training methods may alter BFlf architecture.

The very rapid response of BFlf architectural adaptations supports previous literature which has found significant increases in fascicle length and pennation angle in the vastus lateralis within 14 days of the commencement of an eccentrically biased strength training intervention (31). Furthermore, rat vastus intermedius in-series sarcomere numbers have been shown to increase within a week of commencing a downhill running protocol (18). In the current study,
the majority of fascicle length and pennation angle changes in the eccentric strength training group occurred within the first 14 days of training, with non-significant changes for the rest of the intervention (Figure 1 to 4). A similar, but inverse response was found in the concentric training group after 14 days of training, with non-significant changes for the remainder of the strength training intervention. These results, along with those from other studies (3, 31) suggest that early adaptations to strength training are not only from a neural mechanism (30), but may also be as a result of architectural adaptations.

The reported alterations in muscle architecture following periods of detraining are variable, with most conclusions being drawn from observations of prolonged periods of limb unloading, some of which show significant reductions in fascicle length, pennation angle and muscle volume (20, 32), whereas some display no alterations (1). In regards to the detraining responses following high-intensity eccentric- or concentric-strength training, only one study has investigated this, 3-months after a 10 week intervention in the vastus lateralis (3). Blazevich and colleagues (2007) found no significant alterations in knee extensor strength or vastus lateralis architectural characteristics following a 3-month detraining period. These results are inconsistent with the findings from the eccentric training group in the current study who displayed a significant reduction in BF1f fascicle length and an increase in pennation angle following 28 days of detraining. In comparison, the concentric group displayed similar findings to Blazevich and colleagues (2007), with architectural variables remaining unchanged following 28 days of detraining (3). The eccentric training group response to the intervention and then to detraining may be of interest for hamstring strain injury prevention and rehabilitation interventions as it has been argued that shorter fascicles (i.e. with fewer in-series sarcomeres) are more prone to muscle damage during high-intensity, eccentric contractions compared with longer fascicles (11, 19, 36). It remains to be seen what effect conventional strength training exercises, which possess both concentric and eccentric actions,
have on hamstring muscle architecture. In addition, the apparent rapid decrease in fascicle lengths when the eccentric stimulus is removed would indicate that constant exposure to eccentric exercise may be important to maintain changes in BFlf architecture following an intervention period.

The strength training interventions in the current study induced significant increases in concentric and eccentric strength in the training limb of both the concentric and eccentric training groups (Table 2). Previous research investigating knee flexor strength alterations following eccentric- or concentric-strength training interventions are variable (13, 28). To the authors’ knowledge, this is the first study to show improvements in both isokinetically derived concentric and eccentric knee flexor strength independent of training modality. However, improvements in concentric strength following an eccentric strength training intervention have been previously reported in the knee flexors, as well as within other muscle groups (27, 34). There is still some contradictory evidence as to whether a contraction mode-specific strength adaptation occurs following either concentric- or eccentric-training (3, 10, 29). The current study shows that increases in eccentric strength can be achieved through long length, concentric strength training in the knee flexors. It is unclear if there might be a contraction-mode specific adaptation in longer training programs. However the current findings must be considered in line with the divergent architectural alterations seen between the two strength training interventions.

The authors acknowledge that there are limitations in the current study. Firstly, there are methodological limitations with the use of two-dimensional ultrasound for the estimation of BFlf fascicle length. As the field of view utilised in this study does not capture the entire BFlf fascicle, estimation is required. The equation utilised in this study has been validated against cadaveric samples (14), however it must be recognized that there is still a level of error associated with estimations of BFlf fascicle length. Future studies should consider extended
field of view ultrasound methods (23) to reduce the level of error when estimating muscle
fascicle length. Secondly, the assessment of muscle architecture was only performed on the
BFlf and did not include the other knee flexors. Therefore it is unknown what adaptations
these other muscles displayed following the intervention and detraining period. However, as
the BFlf is the most commonly strain injured hamstring muscle (16), the alterations following
concentric and eccentric strength training interventions were of interest from a hamstring
strain injury risk and rehabilitation perspective. Finally, the training stimulus was provided
with an even distribution of the number of contractions across both slow and fast isokinetic
velocities. As vastus lateralis architectural adaptations have been shown to be velocity
dependent (33), it is not possible to determine if the changes in this cohort and muscle are due
to the velocities utilised. The aim of this study was to investigate the effect of contraction
mode, not velocity, on BFlf architectural changes as this may have greater implications for
hamstring strain injury prevention and rehabilitation. Further research is needed to determine
if there is a contraction velocity-specific adaptation in the knee flexors following a
concentric- or eccentric-strength training intervention.

In conclusion, the current study reports rapid, contraction-mode specific alterations in BFlf
arquitecture following 6 weeks of either eccentric or concentric strength training
interventions. Further, 28 days of detraining resulted in BFlf architectural characteristics
returning to baseline levels in individuals who had completed eccentric training, whilst
detraining had no influence on the BFlf architectural characteristics in those who completed
concentric strength training. The findings of the current study provide insight into BFlf
arquitectural alterations following concentric and eccentric strength training interventions.
These results may have implications for hamstring injury prevention and rehabilitation
programs which might consider architectural alterations to training interventions as a factor
that might mitigate risk of future injury.
ACKNOWLEDGMENTS

CONFLICT OF INTEREST

The authors report that this study was not funded at that no conflict of interest exists. Results of this study do not constitute endorsement of the American College of Sports Medicine.

REFERENCES

Figure 1: A two-dimensional ultrasound image of the biceps femoris long head. This image of the biceps femoris long head was taken along the longitudinal axis of the posterior thigh. From these images it is possible to determine the superficial and intermediate aponeuroses, muscle thickness, angle of the fascicle in relation to the aponeurosis. Estimates of fascicle length can then be made via trigonometry using muscle thickness and pennation angle.

Figure 2: Changes in the architectural characteristics of the BFIf when assessed at rest in the trained limb and the contralateral untrained limb of both groups following 14, 21 and 42 days of the training intervention and following the detraining period (day 70). A) fascicle length B) pennation angle C) muscle thickness D) fascicle length relative to muscle thickness. Error bars illustrate the standard deviation. * = p<0.05 vs Day 0, ** = p<0.001 vs Day 0, ## = p<0.001 vs Day 42.

Table 1: Changes in the BFIf architectural characteristics in the training limb of each group at the start (day 0), after 14, 21 and 42 days of the training intervention as well as following the detraining period (day 70). All data represented as mean±SD unless otherwise stated. SD = standard deviation, MT = muscle thickness, cm = centimetres, PA = pennation angle, RFL = fascicle length relative to muscle thickness, FL = fascicle length, MVIC = maximum voluntary isometric contraction. *=p<0.05 vs Day 0, ** = p<0.001 vs Day 0, # = p<0.05 vs Day 42, ## = p<0.001 vs Day 42.

Table 2: Changes in concentric and eccentric knee flexor peak torque at various contraction velocities in the training limb of each group before (day 0) and after the training intervention (day 42) as well as following the detraining period (day 70). All data represented as mean±SD unless otherwise stated. SD = standard deviation, °/s = degrees per second. *=p<0.05 vs Day 0, ** = p<0.001 vs Day 0.