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ABSTRACT 25 

Purpose: To determine i) the architectural adaptations of the biceps femoris long head (BFlf) 26 

following concentric or eccentric strength training interventions; ii) the time course of 27 

adaptation during training and detraining. Methods: Participants in this randomized 28 

controlled trial (control [n=28], concentric training group [n=14], eccentric training group 29 

[n=14], males) completed a 4-week control period, followed by 6 weeks of either concentric- 30 

or eccentric-only knee flexor training on an isokinetic dynamometer and finished with 28 31 

days of detraining. Architectural characteristics of BFlf were assessed at rest and during 32 

graded isometric contractions utilizing two-dimensional ultrasonography at 28 days pre-33 

baseline, baseline, days 14, 21 and 42 of the intervention and then again following 28 days of 34 

detraining. Results: BFlf fascicle length was significantly longer in the eccentric training 35 

group (p<0.05, d range: 2.65 to 2.98) and shorter in the concentric training group (p<0.05, d 36 

range: -1.62 to -0.96) after 42 days of training compared to baseline at all isometric 37 

contraction intensities. Following the 28-day detraining period, BFlf fascicle length was 38 

significantly reduced in the eccentric training group at all contraction intensities compared to 39 

the end of the intervention (p<0.05, d range: -1.73 to -1.55). There was no significant change 40 

in fascicle length of the concentric training group following the detraining period. 41 

Conclusions: These results provide evidence that short term resistance training can lead to 42 

architectural alterations in the BFlf. In addition, the eccentric training-induced lengthening of 43 

BFlf fascicle length was reversed and returned to baseline values following 28 days of 44 

detraining. The contraction mode specific adaptations in this study may have implications for 45 

injury prevention and rehabilitation. 46 

Key Words: fascicle; muscle adaptation; hamstring; ultrasound; randomized controlled trial  47 
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INTRODUCTION 48 

The ability of a muscle to produce force is partly governed by its architectural characteristics, 49 

such as muscle thickness, pennation angle and fascicle length (17). Architectural 50 

characteristics have been shown, in many different muscles, to change when exposed to 51 

mechanical stimuli, such as resistance training (2, 3, 21, 28, 32). Understanding the changes 52 

to muscle architecture in response to a given stimulus is important when aiming to alter 53 

muscle function and the risk of injury (2, 3, 7, 36).   54 

During the terminal swing phase of the gait cycle, the hamstrings are required to actively 55 

lengthen to decelerate the extending knee and flexing hip (38).It is during this phase of the 56 

gait cycle where the hamstrings are at their longest, with the biceps femoris long head (BFlf) 57 

reaching approximately 110% of its length during upright stance (35). These high force, 58 

lengthening actions of the hamstrings may contribute to the high rate of strain injuries during 59 

running (26), the majority of which occur in the BFlf (16, 24). Interestingly, a previously 60 

strain injured BFlf possesses shorter fascicle lengths and greater pennation angles when 61 

compared to the contralateral uninjured BFlf (36). Furthermore differences in fascicle length 62 

can alter function, with muscles that possess longer fascicles having a greater maximal 63 

shortening velocity when compared to those with shorter fascicles (6, 17).  Therefore it is 64 

important to develop an understanding of how muscle architecture can be altered by physical 65 

training in order to influence function, as well as guide hamstring strain injury prevention and 66 

rehabilitation practices.  67 

Despite the large amount of research showing a range of architectural adaptations following 68 

eccentric training interventions (2, 3, 31), investigations which outline the time course for 69 

adaptation, including a period of detraining, are limited. Furthermore, the previous research 70 

into the adaptability of the BFlf following a training intervention only compared eccentric 71 
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training to a non-training control group (28). It is therefore it is unclear how BFlf 72 

architectural adaptations might differ after eccentric and concentric strength training.  73 

Given the high incidence of hamstring injury in the BFlf (16, 24), it is of interest to see how 74 

its architecture is altered following either concentric or eccentric strength training. Therefore 75 

the purposes of this study were to: 1) determine the architectural adaptations of the BFlf 76 

following either a concentric or eccentric strength training intervention and; 2) determine the 77 

time course of BFlf architectural adaptations during a 6-week training intervention, and 78 

following a 28 day period of detraining. 79 

METHODS 80 

Participants 81 

Twenty-eight recreationally active males (age 22.3±4.2 y; height 1.81±0.07 m; body mass 82 

76.9±8.2 kg) with no history of lower limb injury in the past 12 months were recruited to 83 

participate in this study. All participants provided written informed consent prior to testing 84 

and training which was undertaken at the Australian Catholic University, Fitzroy, Victoria, 85 

Australia. Ethical approval for the study was granted by the Australian Catholic University 86 

Human Research Ethics Committee. 87 

Study design 88 

Participants undertook a maximal isokinetic dynamometry familiarization session no less 89 

than 7 days prior to having their BFlf architecture assessed. The familiarization session and 90 

architectural assessment was completed on both limbs. Following this initial testing session 91 

(28 days pre-baseline), the participants were paired according to passive BFlf fascicle length 92 

and randomly assigned to one of two training groups (allocation ratio 1:1) to undertake either 93 

concentric- or eccentric-only knee flexor strength training. All participants (n=28) returned to 94 

the lab 4 weeks later (baseline) and had the maximal knee flexor strength and BFlf 95 
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architectural characteristics assessed on both limbs. Following this the participants underwent 96 

6 weeks of either a concentric- or eccentric–strength training intervention in a randomly 97 

selected limb (the contralateral limb served as a within-participant control). BFlf architecture 98 

of both limbs was re-assessed at days 14, 21 and 42 of the intervention, as well as 28 days 99 

after the completion of the strength training intervention. Knee flexor strength of both limbs 100 

was re-tested at the end of the training intervention (day 42) and 28 days after the completion 101 

of the intervention. All tests were performed at the same time of the day for each participant.  102 

Outcome measures 103 

Isokinetic dynamometry 104 

All knee flexor strength testing was completed on a Humac Norm® isokinetic dynamometer 105 

(CSMI, Massachusetts, U.S.A), on both legs (left or right) in a randomized order. Participants 106 

were seated on the dynamometer with their hips flexed at approximately 85° from neutral and 107 

were restrained by straps around the tested/exercised thigh, waist and chest to minimise 108 

compensatory movements. All seating variables (e.g. seat height, pad position, etc.) were 109 

recorded to ensure the replication of the participants’ positions. Gravity correction for limb 110 

weight was also conducted and range of motion was set between 0° and 90° of knee flexion 111 

(full extension = 0°) with the starting position for each contraction during strength testing 112 

being 90° of knee flexion. The starting position for all training contractions were dependent 113 

on training group, with the concentric training group starting from 0° of knee extension and 114 

the eccentric group beginning from 90°.  Prior to all testing sessions, participants undertook a 115 

warm-up consisting of three sets of three concentric knee extension and flexion contractions 116 

at an angular velocity of 240°/s. The intensity of these contractions increased each set (1st set 117 

~75% and 2nd set ~90% of the participants perceived maximum) until the final set at this 118 

velocity was performed at a maximal level. The test protocol began one minute following the 119 

final warm-up set and consisted of three sets of three repetitions of concentric and eccentric 120 
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maximal voluntary contractions of knee flexion at 60°/s and 180°/s (30s inter-set rest). For all 121 

concentric knee flexion efforts, the participants were instructed to ‘pull down’ against the 122 

lever as fast as possible, whereas during eccentric contractions they were told to ‘resist’ the 123 

lever arm from extending their knee as hard as they could. All participants were provided 124 

visual feedback of their efforts as well as being verbally encouraged by the investigators to 125 

ensure maximal effort for all contractions. The testing order of contraction modes was 126 

randomized across the participant pool and the testing protocol has been previously reported 127 

to not alter concentric- or eccentric-knee flexor strength (37). Dynamometer torque and lever 128 

position data were transferred to computer at 1 kHz and stored for later analysis where it was 129 

fourth-order low pass Butterworth filtered (5 Hz). Peak torques at 240, 180 and 60°/s for 130 

concentric and 180 and 60°/s for eccentric knee flexion were defined as the mean of the six 131 

highest torque values for each contraction mode at each velocity. 132 

BFlf architectural assessment  133 

Muscle thickness and pennation angle  of the BFlf were determined from ultrasound images 134 

taken along the longitudinal axis (Figure 1) of the muscle belly utilizing a two dimensional, 135 

B-mode ultrasound (frequency, 12 Mhz; depth, 8 cm; field of view, 14 x 47 mm) (GE 136 

Healthcare Vivid-i, Wauwatosa, U.S.A). The same images were utilized to estimate BFlf 137 

fascicle length. The scanning site was determined as the halfway point between the ischial 138 

tuberosity and the popliteal crease, along the line of the BFlf. Once the scanning site was 139 

determined, the distances of the site from various anatomical landmarks were recorded to 140 

ensure its reproducibility for future testing sessions. These landmarks included the ischial 141 

tuberosity, fibula head and the posterior knee joint fold at the mid-point between BF and 142 

semitendinosus tendon. On subsequent visits the scanning site was determined and marked on 143 

the skin and then confirmed by replicated landmark distance measures. All architectural 144 

assessments were performed with participants in a prone position and the hip in a neutral 145 
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position following at least 5 min of inactivity. Assessments at rest were always performed 146 

first followed by the graded isometric contraction protocol. Assessment of BFlf architecture 147 

at rest was performed with the knee at 0º of knee flexion. Assessment of BFlf architecture 148 

during isometric contractions was always performed with the knee at 0º flexion and preceded 149 

by a maximal voluntary isometric contraction, performed in a custom made device (25). The 150 

graded isometric contractions of the knee flexors were performed in the same device at 25, 50 151 

and 75% of maximum voluntary isometric contraction (MVIC) with the participants shown 152 

the real-time visual feedback of the force produced to ensure that target contraction 153 

intensities were met.  Assessment of the MVIC of the knee flexors was undertaken in a prone 154 

position, with both the hip and knee fully extended (0°). Participants were instructed to 155 

contract maximally over a 5-s period, from which the peak force was used to determine the 156 

MVIC. 157 

To gather ultrasound images, the linear array ultrasound probe, with a layer of conductive gel 158 

was placed on the skin over the scanning site, aligned longitudinally and perpendicular to the 159 

posterior thigh. Care was taken to ensure minimal pressure was placed on the skin by the 160 

probe as this may influence measurement accuracy (15). Finally, the probe orientation was 161 

manipulated slightly by the sonographer (RGT) if the superficial and intermediate 162 

aponeuroses were not parallel.  163 

Analysis was completed off-line (MicroDicom, Version 0.7.8, Bulgaria). For each image, six 164 

points were digitized as described by Blazevich and colleagues (5). Following the digitizing 165 

process, muscle thickness was defined as the distance between the superficial and 166 

intermediate aponeuroses of BFlf. A fascicle of interest was outlined and marked on the 167 

image. The angle between this fascicle and the intermediate aponeurosis was measured and 168 

given as the pennation angle (Figure 1). The aponeurosis angle for both aponeuroses was 169 
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determined as the angle between the line marked as the aponeurosis and an intersecting 170 

horizontal line across the captured image (5, 14). Fascicle length was estimated from an 171 

outlined fascicle between the aponeuroses. As the entire fascicle was not visible in the probe 172 

field of view its length was estimated via the following validated equation from Blazevich 173 

and colleagues (5, 14):  174 

FL=sin (AA+90°) x MT/sin(180°-(AA+180°-PA)). 175 

Where FL=fascicle length, AA=aponeurosis angle, MT=muscle thickness, AA=aponeurosis 176 

angle and PA=pennation angle. 177 

Fascicle length was reported in absolute terms (cm) and also relative to muscle thickness 178 

(fascicle length/muscle thickness). The same assessor (RGT) conducted and analysed all 179 

scans and was blinded to participant identifiers during the analysis. The methodology utilized 180 

in this study to assess the BFlf architectural characteristics has been previously reported by 181 

our laboratory (36). 182 

Intervention 183 

The participants performed 6 weeks of either maximal eccentric- or concentric-knee flexion 184 

strength training, with two sessions in the intervention’s first week and 3 sessions a week 185 

thereafter on an isokinetic dynamometer (Humac Norm, CSMI, Massachusetts, U.S.A) using 186 

the same range of motion and seat positions configuration as dynamometry testing sessions. 187 

Only one limb received the strength training stimulus, with the contralateral limb acting as a 188 

within-participant control limb. Across the training period the volume (number) of 189 

contractions was increased following the progression below: 190 

• Week 1: 191 

o Frequency (days/week) = 2 192 

o Sets = 4 193 

o Repetitions = 6 194 
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o Total repetitions = 48 195 

• Week 2: 196 

o Frequency (days/week) = 3 197 

o Sets = 4 198 

o Repetitions = 6 199 

o Total repetitions = 72 200 

• Week 3: 201 

o Frequency (days/week) = 3 202 

o Sets = 5 203 

o Repetitions = 6 204 

o Total repetitions = 90 205 

• Week 4: 206 

o Frequency (days/week) = 3 207 

o Sets = 5 208 

o Repetitions = 8 209 

o Total repetitions = 120 210 

• Week 5: 211 

o Frequency (days/week) = 3 212 

o Sets = 6 213 

o Repetitions = 6 214 

o Total repetitions = 108 215 

• Week 6: 216 

o Frequency (days/week) = 3 217 

o Sets = 6 218 

o Repetitions = 8 219 

o Total repetitions = 144 220 

Each training session was separated by at least 48 hours. Contractions were distributed evenly 221 

across 60°/s and 180°/s. All participants started with two sets of three warm up efforts at 222 

60°/s, in the contraction mode utilized for their training. For all training repetitions, the 223 

concentric training participants were moved to full knee extension (0°) by the investigator 224 

and were instructed to flex their knee as fast as possible through to 90° of knee flexion. The 225 

investigator then returned the lever arm to full knee extension and the subsequent repetition 226 

was completed. This was undertaken until all repetitions were completed in their respective 227 

set, with a 30-s inter-set rest period. The eccentric training participants began with their knee 228 

at 90° of flexion. They were then instructed to maximally flex against the lever arm until full 229 

knee extension was reached (0°). The participant was then instructed to relax, the lever arm 230 

was repositioned to 90° of knee flexion by the investigators and the subsequent contraction 231 
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was performed. This was undertaken until all repetitions were completed in each set, with a 232 

30-s inter-set rest period. All participants were provided visual and verbal feedback on the 233 

consistency of the torque produced during each repetition. These were compared against 234 

personal best performances, which were known by the participant, to aid motivation. During 235 

the pre-control (28 days pre-baseline to baseline), intervention (baseline to intervention day 236 

42) and detraining periods (intervention day 42 to post-intervention day 28), participants 237 

continued their habitual levels of physical activity. The only restriction was to not perform 238 

any other lower limb strength exercises. Finally, training compliance was determined as a 239 

percentage of sessions that were completed within 24 hours of the intended time. 240 

Statistical analysis 241 

All statistical analyses were performed using SPSS version 22.0.0.1 (IBM Corporation, 242 

Chicago, IL). Where appropriate, data were screened for normal distribution using the 243 

Shapiro-Wilk test and homoscedasticity using Levene’s test. Greenhouse-Geisser adjustment 244 

was applied when the assumption of sphericity was violated (p<0.05 for Mauchly’s test of 245 

sphericity). At each contraction intensity, a split-plot design ANOVA, with the within-246 

participant variables being limb (trained or untrained) and time point (28 days pre-baseline, 247 

baseline, intervention day 14, intervention day 21, intervention day 42, post-intervention day 248 

28) and the between-subject variable being group (eccentric or concentric), was used to 249 

compare changes in BFlf architecture throughout the training study. Architectural changes 250 

across the 28 day control period (28 days pre-baseline to baseline) were not significant 251 

(p>0.05). Therefore when determining the alterations in BFlf architectural characteristics 252 

following a 6-week intervention, all comparisons were made to baseline.  Knee flexor peak 253 

torque comparisons, at each contraction velocity, used a similar split-plot design ANOVA, 254 

however, with different time point variables (baseline, intervention day 42, and post-255 

intervention day 28). Where significant limb x time x group interactions for architecture and 256 
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limb x time for knee flexor peak torque were detected, post-hoc t-tests with Bonferroni 257 

adjustments were used to identify which comparisons differed. Significance was set at a 258 

p<0.05 and appropriate Cohen’s d (8) was reported for the comparison effect sizes, with the 259 

levels of effect being deemed small (d = 0.20), medium (d = 0.50) or large (d = 0.80) as 260 

recommended by Cohen (1988). 261 

Sample Size 262 

Sample size analysis was completed a-priori using G-Power (9). The analysis was based on 263 

the anticipated differences in fascicle length following the strength training intervention. The 264 

effect size was estimated based on the only intervention study to date that has reported 265 

changes in the BFlf architecture (28). That study reported a 33% increase in fascicle length 266 

following the intervention with an approximate effect size of 1.9. Therefore an effect size of 267 

1.2 was deemed as a reasonable starting point. Power was set at 80% with an alpha level of 268 

0.05 returning a calculated sample size of 12 per group. As a cross-reference to confirm the 269 

effect size, fascicle length differences in individuals with a unilateral BFlf strain injury 270 

displayed an effect size of 1.34 when comparing between the previously injured and 271 

contralateral uninjured limb (36). 272 
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RESULTS 273 

Participants 274 

The two training groups were similar with respect to age, height and body mass (eccentric 275 

training group: age 21.2±2.7 y, height 1.81±0.06 m, body mass 77.9±9.3 kg; concentric 276 

training group: age 23.4±5.1 y; height 1.81±0.07 m; body mass 76.2±7.1 kg). Overall, 277 

compliance rates were acceptable for all participants (92%±2; min=85%; max=100%), with 278 

no differences when comparing the two groups (eccentric training group: 91%±2; concentric 279 

training group: 93%±1).  280 

BFlf architectural comparisons 281 

Control period, control limb changes and baseline comparisons 282 

A significant limb x time x group interaction effect was found for fascicle length, fascicle 283 

length relative to muscle thickness and pennation angle (p<0.001). Post-hoc analyses showed 284 

no BFlf architectural variables changed during the 4-week pre-intervention control period 285 

(p>0.05, d range = 0.03 to 0.17). Similarly, there were no significant differences at any time 286 

point, in the non-training control limbs for any BFlf architectural variables (p>0.05, d range = 287 

0.03 to 0.27). Comparisons of all the BFlf architectural variables at baseline displayed no 288 

significant differences between the concentric and eccentric training group in legs that were 289 

to be trained (i.e. the training leg) (p>0.05, d range = 0.22 to 0.43). 290 

Fascicle length and fascicle length relative to muscle thickness changes 291 

A significant limb x time x group interaction effect was found for fascicle length at all 292 

contraction intensities (p<0.001). Post-hoc analysis showed that fascicle length was 293 

significantly longer in the training limb of the eccentric training group (p<0.05, d range: 2.65 294 

to 2.98, Table 1, Figure 2) and significantly shorter in the training limb of the concentric 295 

training group (p<0.05, d range: -1.62 to -0.96, Table 1, Figure 2) after 42 days of the 296 
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intervention compared to baseline, at all contraction intensities. Additionally there was a 297 

significant limb x time x  group interaction effect for fascicle length relative to muscle 298 

thickness (p<0.001). All post-hoc comparisons for the training limbs of each group are 299 

presented in Table 1.  300 

Following the 28 day detraining period, fascicle length was significantly reduced in the 301 

training limb of the eccentric training group in comparison to the end of the intervention, at 302 

all contraction intensities (p<0.05, d range: -1.73 to -1.55, Table 1, Figure 2). Post-hoc 303 

analysis showed that fascicle length in the concentric training group following 28 days of 304 

detraining was no different to that observed end of the intervention, at any contraction 305 

intensity (p>0.05, d range: 0.15 to 0.67, Table 1, Figure 2). All other post-hoc comparisons of 306 

fascicle length and fascicle length relative to muscle thickness, 28 days following the 307 

intervention period, in the training limbs of both groups are presented in Table 1 and Figures 308 

1 to 4. 309 

Muscle thickness and pennation angle changes 310 

No significant limb x time x group interaction effect was found for muscle thickness at any 311 

contraction intensity (p>0.162). However, a significant limb x time x group interaction effect 312 

was detected for pennation angle at all contraction intensities (p<0.001). Post-hoc analysis 313 

showed that pennation angle was significantly reduced in the training limb of the eccentric 314 

training group (p<0.05, d range: -1.30 to -0.85, Table 1, Figure 2) and significantly increased 315 

in the training limb of the concentric training group (p<0.05, d range: 1.60 to 2.50, Table 1, 316 

Figure 1 to 4) after 14 days of the intervention compared to baseline, at all contraction 317 

intensities. All other comparisons of pennation angle changes in the training limb of both 318 

groups are presented in Table 1.  319 



 

 

14 

 

Pennation angle was not significantly different in the training limb of the eccentric training 320 

group in comparison to the end of the intervention, at any contraction intensity following the 321 

28 day detraining period (p>0.05, d range: -0.55 to 0.02, Table 1, Figure 2). Post-hoc analysis 322 

showed that following the 28 days of detraining, pennation angle of the concentric training 323 

group was no different compared to the end of the intervention, at any contraction intensity 324 

(p>0.05, d range: -0.63 to -0.27, Table 1, Figure 2). All other comparisons of pennation angle 325 

changes following the 28 day detraining period are presented in Table 1. 326 

Strength changes  327 

A significant limb x time interaction effect for knee flexor peak torque was found at all 328 

contraction velocities for each group (p<0.001). Comparisons at all contraction velocities, at 329 

baseline, displayed no significant differences between the concentric and eccentric training 330 

group (p>0.05). Post-hoc analysis also revealed that knee flexor peak torque increased in both 331 

the training limb of the eccentric (p<0.05, d range: 0.63 to 0.78, Table 2) and the concentric 332 

training group (p<0.05, d range: 0.53 to 0.72, Table 2) after 42 days of the intervention, at all 333 

contraction velocities, when compared to baseline. There were no significant differences in 334 

knee flexor peak torque for the untrained limbs of either group after 42 days of the 335 

intervention when compared to baseline, at any contraction velocity (p>0.05, d range = 0.11 336 

to 0.27).  337 

There were no significant differences in knee flexor peak torque at any contraction velocity, 338 

in either group when comparing their strength following the 28 day detraining period to the 339 

values after 42 days of the intervention (p>0.05, d range: -0.30 to -0.16, Table 2). 340 

Additionally, knee flexor peak torques at all contraction velocities following the 28-day 341 

detraining period were significantly greater in the training limb of both training groups when 342 

compared to baseline (p>0.05, d range: 0.34 to 0.75, Table 2). 343 
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DISCUSSION 344 

To the authors’ knowledge, this is the first study reporting divergent BFlf architectural 345 

adaptations in response to concentric- or eccentric-strength training. Moreover, it is the first 346 

to provide evidence that eccentric training-induced increases in BFlf fascicle length are 347 

reversed  following 28 days of detraining. The main findings were that eccentric strength 348 

training resulted in an increase in estimated BFlf fascicle length and a reduction in pennation 349 

angle, whereas concentric strength training caused reductions in estimated fascicle length and 350 

increases in pennation angle. Additionally, in those who trained eccentrically, a significant 351 

reduction in BFlf fascicle length and a non-significant increase in pennation angle were found 352 

following a 28 day detraining period when compared to the end of the strength training 353 

intervention. In contrast, the concentrically trained group maintained their BFlf architectural 354 

characteristics following 28 days of detraining. Finally, improvements in knee flexor strength 355 

were not specific to training contraction mode, with significant improvements in concentric 356 

and eccentric strength found in both training groups that persisted through the detraining 357 

period.  358 

Observations of increases in BFlf fascicle length and a reduction in pennation angle 359 

(measured at rest) following eccentric strength training in the current study (Figure 1) aligns 360 

somewhat with previous literature (28). Potier and colleagues (2009) found a 33% increase in 361 

resting BFlf fascicle length with a non-significant 3.1% reduction in resting pennation angle 362 

following 8 weeks of eccentric strength training. In comparison, the current study saw a 363 

significant 16% increase in resting BFlf fascicle length (the majority of which occurred 364 

within 14 days), with a non-significant 7.5% reduction in resting pennation angle. 365 

Differences in the training modalities employed (leg curl vs isokinetic dynamometry), 366 

intervention length (8 weeks vs 6 weeks) and the site of assessment may explain the different 367 

magnitudes of change reported in these studies. Additionally, no previous literature has 368 
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examined BFlf architectural alterations during graded isometric contractions, following an 369 

intervention. In the present study, increases in BFlf fascicle length were observed at the end 370 

of the intervention when assessed during all graded isometric contractions in the eccentrically 371 

trained individuals. These increases in fascicle length may occur as a result of the addition of 372 

in-series sarcomeres, as has been shown in rat vastus intermedius muscles after five days of 373 

downhill and presumably eccentric running exercise (18). However, the architectural 374 

alterations seen in this study may not be uniform along the BFlf length. Changes in fascicle 375 

length (4), muscle thickness and anatomical cross sectional area, after strength training 376 

interventions (3), are variable within a muscle. It is possible that the assessment of BFlf 377 

architecture in the current study may have occurred at a point on the muscle where the 378 

changes were less prominent in comparison to other studies (28). Alternatively, changes in 379 

tendon stiffness could theoretically result in altered fascicle lengths, with stiffer tendons 380 

causing an increased tension within the muscle which could then result in the elongation of 381 

resting BFlf fascicle length. Further research is needed to clarify the mechanism responsible 382 

for fascicle length alterations in humans.  383 

No previous studies have compared the architectural alterations in the BFlf, following 384 

concentric and eccentric training. However, interventions which have employed concentric- 385 

or eccentric-knee extensor training have reported inconsistent architectural adaptations. Some 386 

have shown a contraction mode specific adaptation similar to that observed in the current 387 

study (10, 29) whilst others have not (3). Additionally knee extensor isometric strength 388 

training at short and long muscle lengths has also been shown to increase fascicle length (22). 389 

A range of factors such as the relative maximum load (3, 10), the participant’s age and 390 

physical capacity (29) as well as the training stimulus velocity (33) might explain some of the 391 

variance between these results. However it is not known why these alterations in the vastus 392 

lateralis differ to those reported in the current study. It is possible that differences in the 393 
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structural and functional characteristics of the muscles may account for this variability. 394 

However future research is needed to assist in determining the BFlf adaptive responses to 395 

these and many other variables.  396 

The increases in BFlf fascicle length and reductions in pennation angle found in the current 397 

study following an eccentric strength training may have implications for hamstring strain 398 

injury prevention and rehabilitation. Elite athletes with a unilateral history of BFlf strain 399 

injury have shorter fascicles and greater pennation angles on their previously injured limb 400 

when compared to the contralateral uninjured limb (36). Individuals with a history of 401 

hamstring strain injury are at an increased risk of future injury in comparison to those without 402 

a history (24, 26). Therefore if shorter fascicles and greater pennation angles in a previously 403 

injured athlete are partial contributors to the elevated risk of re-injury, then understanding the 404 

most effective methods for altering these architectural characteristics will be of great value. 405 

The current data indicates that the continual application of high-intensity, eccentric-only 406 

strength training should be considered in hamstring rehabilitation and prevention programs in 407 

order to increase BFlf fascicle length and reduce pennation angle. Additionally the current 408 

study results suggest that muscle length in training is possibly not the major factor, as 409 

previously suggested (12), in determining fascicle length changes as long length, concentric 410 

exercise resulted in shortening of fascicle length. Further research is needed to determine how 411 

the combination of both concentric and eccentric contractions during conventional strength 412 

training methods may alter BFlf architecture.  413 

The very rapid response of BFlf architectural adaptations supports previous literature which 414 

has found significant increases in fascicle length and pennation angle in the vastus lateralis 415 

within 14 days of the commencement of an eccentrically biased strength training intervention 416 

(31). Furthermore, rat vastus intermedius in-series sarcomere numbers have been shown to 417 

increase within a week of commencing a downhill running protocol (18). In the current study, 418 
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the majority of fascicle length and pennation angle changes in the eccentric strength training 419 

group occurred within the first 14 days of training, with non-significant changes for the rest 420 

of the intervention (Figure 1 to 4). A similar, but inverse response was found in the 421 

concentric training group after 14 days of training, with non-significant changes for the 422 

remainder of the strength training intervention. These results, along with those from other 423 

studies (3, 31) suggest that early adaptations to strength training are not only from a neural 424 

mechanism (30), but may also be as a result of architectural adaptations.   425 

The reported alterations in muscle architecture following periods of detraining are variable, 426 

with most conclusions being drawn from observations of prolonged periods of limb 427 

unloading, some of which show significant reductions in fascicle length, pennation angle and 428 

muscle volume (20, 32), whereas some display no alterations (1). In regards to the detraining 429 

responses following high-intensity eccentric- or concentric-strength training, only one study 430 

has investigated this, 3-months after a 10 week intervention in the vastus lateralis (3). 431 

Blazevich and colleagues (2007) found no significant alterations in knee extensor strength or 432 

vastus lateralis architectural characteristics following a 3-month detraining period. These 433 

results are inconsistent with the findings from the eccentric training group in the current study 434 

who displayed a significant reduction in BFlf fascicle length and an increase in pennation 435 

angle following 28 days of detraining. In comparison, the concentric group displayed similar 436 

findings to Blazevich and colleagues (2007), with architectural variables remaining 437 

unchanged following 28 days of detraining (3). The eccentric training group response to the 438 

intervention and then to detraining may be of interest for hamstring strain injury prevention 439 

and rehabilitation interventions as it has been argued that shorter fascicles (i.e. with fewer in-440 

series sarcomeres) are more prone to muscle damage during high-intensity, eccentric 441 

contractions compared with longer fascicles (11, 19, 36). It remains to be seen what effect 442 

conventional strength training exercises, which possess both concentric and eccentric actions, 443 
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have on hamstring muscle architecture. In addition, the apparent rapid decrease in fascicle 444 

lengths when the eccentric stimulus is removed would indicate that constant exposure to 445 

eccentric exercise may be important to maintain changes in BFlf architecture following an 446 

intervention period.  447 

The strength training interventions in the current study induced significant increases in 448 

concentric and eccentric strength in the training limb of both the concentric and eccentric 449 

training groups (Table 2). Previous research investigating knee flexor strength alterations 450 

following eccentric- or concentric-strength training interventions are variable (13, 28). To the 451 

authors’ knowledge, this is the first study to show improvements in both isokinetically 452 

derived concentric and eccentric knee flexor strength independent of training modality. 453 

However, improvements in concentric strength following an eccentric strength training 454 

intervention have been previously reported in the knee flexors, as well as within other muscle 455 

groups (27, 34). There is still some contradictory evidence as to whether a contraction mode-456 

specific strength adaptation occurs following either concentric- or eccentric-training (3, 10, 457 

29). The current study shows that increases in eccentric strength can be achieved through 458 

long length, concentric strength training in the knee flexors. It is unclear if there might be a 459 

contraction-mode specific adaptation in longer training programs. However the current 460 

findings must be considered in line with the divergent architectural alterations seen between 461 

the two strength training interventions.  462 

The authors acknowledge that there are limitations in the current study. Firstly, there are 463 

methodological limitations with the use of two-dimensional ultrasound for the estimation of 464 

BFlf fascicle length. As the field of view utilised in this study does not capture the entire BFlf 465 

fascicle, estimation is required. The equation utilised in this study has been validated against 466 

cadaveric samples (14), however it must be recognized that there is still a level of error 467 

associated with estimations of BFlf fascicle length. Future studies should consider extended 468 
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field of view ultrasound methods (23) to reduce the level of error when estimating muscle 469 

fascicle length. Secondly, the assessment of muscle architecture was only performed on the 470 

BFlf and did not include the other knee flexors. Therefore it is unknown what adaptations 471 

these other muscles displayed following the intervention and detraining period. However, as 472 

the BFlf is the most commonly strain injured hamstring muscle (16), the alterations following 473 

concentric and eccentric strength training interventions were of interest from a hamstring 474 

strain injury risk and rehabilitation perspective. Finally, the training stimulus was provided 475 

with an even distribution of the number of contractions across both slow and fast isokinetic 476 

velocities. As vastus lateralis architectural adaptations have been shown to be velocity 477 

dependent (33), it is not possible to determine if the changes in this cohort and muscle are due 478 

to the velocities utilised. The aim of this study was to investigate the effect of contraction 479 

mode, not velocity, on BFlf architectural changes as this may have greater implications for 480 

hamstring strain injury prevention and rehabilitation. Further research is needed to determine 481 

if there is a contraction velocity-specific adaptation in the knee flexors following a 482 

concentric- or eccentric-strength training intervention.   483 

In conclusion, the current study reports rapid, contraction-mode specific alterations in BFlf 484 

architecture following 6 weeks of either eccentric or concentric strength training 485 

interventions. Further, 28 days of detraining resulted in BFlf architectural characteristics 486 

returning to baseline levels in individuals who had completed eccentric training, whilst 487 

detraining had no influence on the BFlf architectural characteristics in those who completed 488 

concentric strength training. The findings of the current study provide insight into BFlf 489 

architectural alterations following concentric and eccentric strength training interventions. 490 

These results may have implications for hamstring injury prevention and rehabilitation 491 

programs which might consider architectural alterations to training interventions as a factor 492 

that might mitigate risk of future injury.  493 
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Figure 1: A two dimensional ultrasound image of the biceps femoris long head. This image of 600 

the biceps femoris long head was taken along the longitudinal axis of the posterior thigh. 601 

From these images it is possible to determine the superficial and intermediate aponeuroses, 602 

muscle thickness, angle of the fascicle in relation to the aponeurosis. Estimates of fascicle 603 

length can then be made via trigonometry using muscle thickness and pennation angle. 604 

Figure 2: Changes in the architectural characteristics of the BFlf when assessed at rest in the 605 

trained limb and the contralateral untrained limb of both groups following 14, 21 and 42 days 606 

of the training intervention and following the detraining period (day 70). A) fascicle length 607 

B) pennation angle C) muscle thickness D) fascicle length relative to muscle thickness. Error 608 

bars illustrate the standard deviation. *=p<0.05 vs Day 0, ** = p<0.001 vs Day 0, ## = 609 

p<0.001 vs Day 42. 610 

 611 

Table 1: Changes in the BFlf architectural characteristics in the training limb of each group at 612 

the start (day 0), after 14, 21 and 42 days of the training intervention  as well as following the 613 

detraining period (day 70). All data represented as mean±SD unless otherwise stated. SD = 614 

standard deviation, MT = muscle thickness, cm = centimetres, PA = pennation angle, RFL = 615 

fascicle length relative to muscle thickness, FL = fascicle length, MVIC = maximum 616 

voluntary isometric contraction. *=p<0.05 vs Day 0, ** = p<0.001 vs Day 0, # = p<0.05 vs 617 

Day 42, ## = p<0.001 vs Day 42.  618 

Table 2: Changes in concentric and eccentric knee flexor peak torque at various contraction 619 

velocities in the training limb of each group before (day 0) and after the training intervention 620 

(day 42) as well as following the detraining period (day 70). All data represented as 621 

mean±SD unless otherwise stated. SD = standard deviation, °/s = degrees per second. 622 

*=p<0.05 vs Day 0, ** = p<0.001 vs Day 0.  623 
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