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Abstract

In this study, we contrast two competing approaches, not previously compared, that balance the rigor of
CFA/SEM with the flexibility to fit realistically complex data. Exploratory SEM (ESEM) is claimed to provide an
optimal compromise between EFA and CFA/SEM. Alternatively, a family of three Bayesian SEMs (BSEMs)
replace fixed-zero estimates with informative, small-variance priors for different subsets of parameters: cross-
loadings (CL), residual covariances (RC) or CLs and RCs (CLRC). In Study 1, using three simulation studies,
results showed that (1) BSEM-CL performed more closely to ESEM; (2) BSEM-CLRC did not provide more
accurate model estimation compared with BSEM-CL; (3) BSEM-RC provided unstable estimation; (4) different
specifications of targeted values in ESEM and informative priors in BSEM have significant impacts on model
estimation. The real data analysis (Study 2) showed that the differences in estimation between different models
were largely consistent with those in Studyl but somewhat smaller.

Key words: factor analysis, Bayesian statistics, exploratory structural equation modeling, informative

priors.
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Factor analysis is a mainstream statistical technique for multivariate data analysis. Typically, confirmatory

factor analysis (CFA) models are used to formalize measurement hypotheses and develop measurement
instruments. However, in CFA, unnecessarily strict constraints with inappropriate exact zero cross-loadings and
residual covariances can result in poor model fit; substantial parameter biases in estimation of factor loadings and
correlations; and a series of model modifications capitalizing on chance features of the data (Cole, Ciesla, &
Steiger, 2007; MacCallum, Roznowski, & Necowitz, 1992; Marsh et al., 2009; 2017). In recent years, competing
approaches to structural equation modeling (SEM) have been developed which aim to balance CFA/SEM rigor
with the flexibility to fit realistically complex data. These include various specifications for Bayesian Structural
Equation Modeling (BSEM; Muthén & Asparouhov, 2012; see Van de Schoot, Winter, Ryan, Zondervan-
Zwijnenburg, & Depaoli, 2017 for a review) and Exploratory Structural Equation Modeling (ESEM) with a
reliance on target rotation (Asparouhov & Muthén, 2009, Marsh et al., 2009; Marsh, Morin, Parker, & Kaur, 2014).
Although ESEM and BSEM approaches are based on different methodological frameworks (Maximum Likelihood
[ML] and Bayesian respectively), both allow researchers to freely estimate inappropriate exact zero cross-loadings
or residual covariances and still have a priori control on the expected factor structure, thus better representing
substantive theory. However, few studies to our knowledge have directly compared the two approaches in
estimation of factor structure. In particular, the great modeling flexibility of BSEM allows researchers to assess and
estimate measurement models in the various ways (e.g., using informative cross-loading priors or/and residual
covariance priors, see below for more discussion). Nevertheless, the performance of BSEM models incorporating
different subsets of priors has not been systematically examined. To fill this gap, this study is among the first to
provide a comprehensive comparison of CFA, ESEM, and alternative BSEM approaches based on both real and
simulated data.
Factor Analysis: EFA vs. CFA

In the SEM framework, factor analysis is a dimensional reduction procedure that extracts information from
high-dimensional observed indicators to an underlying set of latent variables of lower dimensionality through the

following equations:

Y, =t A +E (1)
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V(y,)=AYAN +0O (2)

where i = 1, ..., N; N is the sample size; U isa p X1 vector of intercepts; y; is a p X 1vector of observed
indicators; 1; is a ¢ X1 vector of latent variables; ¢; is a p X 1vector of measurement errors; A isa pXxgq loading

matrix, reflecting the relations between observed indicators and latent factors; ‘¥ is a factor covariance matrix; and
O is a residual covariance matrix. Standard assumptions of this model are that 1; and ¢; are normally distributed
and independent.

Historically, exploratory factor analysis (EFA; Jennrich & Sampson, 1966) and confirmatory factor analysis
(CFA; Joreskog, 1969) are the two key variants of factor analysis, each following different approaches and
assumptions to estimate A. EFA and CFA have certain advantages and disadvantages. EFA is an important
precursor of CFA that is used to identify and distinguish between key psychological constructs (Cudeck &
MacCallum, 2007). EFA first optimizes a target function for the parameters based on a minimally identified
version of the model in Equation 1 to generate preliminary estimates. These preliminary estimates are then applied
with rotation to produce a parsimonious A that optimizes a specific simplicity function. Analytic rotation of the
factor pattern matrix involves the postmultiplication of the pattern matrix by the inverse of an optimal

transformation matrix:

A = AT 3)
where T"is an ¢ X g optimal transformation matrix, determined by minimizing a continuous complexity function,
f (M), of the elements in the pattern matrix. Various rotation procedures define f(A) differently and yield
different rotated matrices A" with a simple pattern of loadings. A mechanical rotation criterion (e.g., geomin') is

thought to be relatively easy to implement. However, in the mechanical approach “the factors are extracted from

the data without specifying the number and pattern of loadings between the observed variables and the latent factor

» m 1/m
! The rotation function for the Geomin rotation criterion is (A) = Z H (/13 +¢)

=1\ j=1 '
Where € is a small positive constant added by Browne (2001) to reduce the problem of indeterminacy. Geomin has performed relatively

well when numbers of non-zero cross-loadings for each latent variables are greater than 1 in both simulation and empirical examples,
when compared with other mechanical rotation criteria (Marsh et al., 2009; McDonald, 2005).
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variables” (Bollen, 2002, p. 615), thus providing little to no opportunity to incorporate a priori factor structure into

the f(A). In contrast, CFA starts with stronger theoretical assumptions by specifying numbers, associations, and

the pattern of free parameters in A (Joreskog, 1969). The basic independent cluster model of CFA (ICM-CFA)
posits each observed indicator is only allowed to load on one latent factor (McDonald, 1985). In this regard, all
cross-loadings that are freely estimated in EFA are constrained to be zero in ICM-CFA. These constraints mean
that many psychological measures with well-defined EFA factor structures are not supported in ICM-CFA (Marsh
et al., 2009, 2014). Marsh and his colleagues (Marsh et al., 2009, 2013, 2014; also see Asparouhov, Muthén, and
Morin, 2015) argue that ICM-CFA is too restrictive for psychological and applied research, because most
psychological items have multiple determinants and small cross-loadings which are logically justifiable in terms of
substantive theory or item content (e.g., method effects). The inappropriate imposition of zero factor loadings
usually results in systematically inflated factor correlations associated with poor discriminant validity, poor model
fit to item-level factor structures, and biased structural parameter estimates in SEMs (Marsh et al., 2009, 2013,
2014). Furthermore, the strategies often used to compensate for ICM-CFA model’s inadequacies (e.g., a stepwise
relaxation of parameters in relation to cross-loadings and residual covariances using model modification indices)
can be misleading (Asparouhov et al., 2015; Marsh et al., 2014, 2017; Muthén & Asparouhov, 2012).
Conceptually, EFA with target rotation (Browne, 2001) can be assumed to lie in-between the mechanical
approach of EFA rotation (weak a priori factor structure) and ICM-CFA model specification (strong a priori factor
structure; Asparouhov & Muthén, 2009; Marsh et al., 2014). The target rotation criterion is designed to find a

rotated solution f(A) that is closest to a targeted pattern matrix. In the early versions of target rotation in EFA, a

fully specified target matrix was indirectly used (Horst, 1941; Tucker, 1944), whereas its later versions were direct
and could be based on only a partially specified target matrix (Browne, 1972a, 1972b; Gruvaeus, 1970). For

identification purposes at least g — 1 entries must be specified in each column for oblique rotation and (g—1)/2

entries must be specified in each column for orthogonal rotation. The rotation function is:

FA)=3 Y, (4, - @)

=1 j=1
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where a, = lif )%j is a target and 0 if lij is not a target, and bij is the targeted value. Note that the user must

provide a, and bg- , to define f(A). Supposed a structure of the loading matrix ( p =9,q = 3) with population

values A, which includes main loadings (.8), major cross-loadings (.2) and minor cross-loadings (.01) (see Figure
1). Two matrices were provided in EFA with target rotation: a matrix A that designates whether each pattern
coefficient was (1) or was not (0) a target, and a matrix B that provides values that targeted elements will be

rotated toward and denotes nontargeted elements with a ? sign. As shown in Figure 1, 0 was chosen for target

values b,-,- in B, which is the most common specification in practice (see Marsh et al., 2014 for a review). In such

cases, the cross-loadings of the rotated factor pattern matrix are only made as close to the specified zeros as
possible (Browne, 2001), whereas in CFA cross-loadings are constrained to be the specified values of zero. Thus,
target rotation allows researchers to have more a priori control on the expected factor structure and have

approximately fixed-to-zero cross-loadings estimates.
Recently researchers examined how the number of targets and target error (i.e., bi]. Z* l”,) influence the

accuracy and stability in relation to a rotated pattern matrix in EFA with target rotation (e.g., Myers, Ahn, & Jin,
2013, Myers, Jin, Ahn, Celimli, & Zopluoglu, 2015). Myers et al. (2013, 2015) found that the effects of target error
on both accuracy (bias) and stability (variability) in relation to the rotated pattern matrix were negligible, but a
small positive effect of (increasing) the number of targets specified was evident. In comparison with an easier-to-
use mechanical rotation criterion (i.e., geomin rotation), target rotation has been shown to perform better in terms
of accuracy, particularly when factor structures were more complex, whereas geomin rotation produced more
stable factor solutions (Asparouhov & Muthén, 2009; Myers et al., 2015).

In the EFA framework, however, the new and evolving methodologies associated with CFA and SEM
cannot be appropriately evaluated and applied. For example, in EFA it is not feasible to test measurement
invariance (relating to groups, time, and covariates) and evaluate relations between latent variables with other
constructs (Marsh et al., 2009, 2014, see below). Recently, in order to resolve these dilemmas between CFA and

EFA, researchers have developed ESEM and BSEM approaches that allow researchers to define more
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appropriately the underlying factor structure and still apply the advanced statistical methods relating to CFAs and

SEMs (Marsh et al., 2014; Muthén & Asparouhov, 2012).

The most basic ESEM model is equivalent to EFA. Nevertheless, ESEM offers greater flexibility as it can
accommodate residual covariances, covariates, and measurement invariance test in an EFA model (Asparouhov &
Muthén, 2009; Marsh et al., 2009). In ESEM, multiple sets of CFA and/or ESEM factors can be included in the
loading matrix A. Specifically, the CFA factors are identified as in traditional SEM in which each factor is
associated with a different set of indicators. ESEM factors can be divided into blocks of factors so that different
sets of indicators can be used to estimate ESEM factors within different blocks. However, each indicator can be
assigned to more than one set of CFA and/or ESEM factors (see Asparouhov & Muthén, 2009; Marsh et al., 2014
for more details). Assignments of items to CFA and/or ESEM factors should rely on a priori theoretical and
practical considerations and preliminary tests conducted with the data (Marsh et al., 2009, 2014).

Given that the basic ICM-CFA model is nested under the corresponding ESEM, conventional approaches to
model comparison can be used to compare the fit of the two models. CFA models typically do not provide an
adequate fit to the data and tend to be misspecified due to the restrictive assumption that each indicator is allowed
to load on only one factor. Such independent cluster models appear to be rare in populations of interest. Typically,
when true positive cross-loadings are constrained to be zero in ICM-CFA models, the factor correlations are likely
to be positively biased, which might undermine the discriminant and predictive validity of the factors that form
instruments (Marsh et al., 2014). Indeed, based on simulated data, the ESEM solution consistently provided
improved model fit and more accurate factor correlation estimates than ICM-CFA solution (Marsh et al., 2010).
Bayesian Structural Equation Modeling (BSEM)

Bayesian analysis is a broad topic and has been well established in mainstream statistics (Kaplan, 2014;

Van de Schoot et al., 2017). In the Bayesian approach, a prior distribution p(6) is specified for each of the CFA

model parameters, i.e., = (i, A, ¥, ®); this prior distribution reflects previous knowledge about the parameters

(see Kaplan, 2014, for an introduction). Based on the observed data ¥ =(y,,.... ) a posterior distribution p(9|Y )
is then determined, which is proportional to the likelihood function p(9|Y ) of the data given the model parameters

multiplied by the prior distribution: p(6|Y)= p(¥|8)p(6)/ p(¥) = p(¥|8)p(6).
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The likelihood for model (1) is

- s /2 7, o™ AN r r -1
prle)=T1pr)or=TT| oy [awa’ +6f" xexp{—;Z(y;u) (A¥A” +0) (y,.—mH. 5)

Various prior distributions of 8 may be used. In the SEM framework, it is conceptually convenient to

specify the prior distributions of the model parameters as sets of common conjugate distributions (see Kaplan &
Depaoli, 2012). For the CFA model, let 6 = { u,A} be the set of free model parameters which prior distributions

are assumed to follow a normal distribution:

0,,, ~N(LQ) (©)

norm

where are the mean and variances hyperparameters of the normal prior, respectively. Different choices of Y and

Q will yield different degrees of informativeness for the prior distributions. For example, the variance of 0.01 for a
cross-loading yields a prior where 95% of the loading variation is between -0.2 and 0.2 (see below for more
discussion).

The prior distribution that is typically used for the covariance matrix of multivariate normally distributed
variables, such as W and 0, is known as the inverse-Wishart distribution (Barnard, McCulloch, & Meng, 2000;
Gelman et al., 2013; Kaplan, 2014). The inverse-Wishart distribution is a conjugate prior for multivariate normally
distributed variables implying that when combining with the likelihood function, it will result in a posterior

distribution that belongs to the same distributional family. Another important advantage of the inverse-Wishart

distribution is that it ensures positive definiteness of the covariance matrix. Let 8, = {‘P,G)} be the set of free
model parameters that are assumed to follow an inverse-Wishart distribution:

6, ~IWR,df) (7
where R is a positive definite scale matrix and dfis the number of degrees of freedom with df > p—1, where p is

the number of observed variables. The larger the df , the higher the certainty about the information in R, and the

more informative the distribution is (Gelman et al., 2013; see below for detailed discussion).
An important benefit of the BSEM approach is the flexible specification of models that would be

unidentified in a likelihood-based approach (e.g., in CFA where all cross-loadings are given small-variance priors
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or where all residual covariances are specified; Bollen, 1989; also see Scheines, Hoijtink, & Boomsma, 1999). By

replacing fixed-zero parameters relating to cross-loadings and residual covariances in ICM-CFA with small
variance priors, the BSEM approach provides a more realistic model specification (see below for more discussion).
For Bayesian estimation, the most common algorithm is based on Markov chain Monte Carlo (MCMC)

sampling (Kaplan, 2014). The general idea of MCMC is to draw specially constructed samples from the posterior
distribution p(9|Y ) of the model parameters rather than attempting to analytically solve for the moments and

quantiles of the posterior distribution. In the present study we use the Gibbs sampler (Geman & Geman, 1984) as

implemented in Mplus (Muthén & Muthén, 2018). The Gibbs sampler begins with an initial set of starting values

for the CFA model parameters: 6'° 6. The Gibbs sampler then produces 6", from 6% 6"’ as follows:

1' Sample ei:)-:rln) from p(enurm GA(/;V)’y) (8)
2. Sample 6" from p(6,,6") ) )

where s=1,2,...,S are the Monte Carlo iterations. The computational details can be found in (Asparouhov

& Muthén, 2010). Using Gibbs sampling, the empirical distribution of the N; MCMC samples after No burn-in
iterations?, denoted as { U AY P OVIN, <s<SN +N 1}> approximates the posterior distribution p(0|Y )on
which Bayesian estimates and inference are based. For example, the mean or mode of p(0|Y )is often used as the

Bayesian point estimate, and the percentiles of p(9|Y )are used to form credible intervals.

BSEM with Informative Cross-Loadings Priors [BSEM-CL]. As mentioned above, the ICM-CFA

model is based on the highly restrictive assumption that all cross-loadings are fixed to zero in A . In practice, most
indicators present both a certain level of random noise as well as construct-relevant association with other

constructs (see Asparouhov et al., 2015). In BSEM-CL, the cross-loadings are allowed to be estimated by

determining cross-loadings priors. The proposed approach operates as follows: ){,'k is the element in the jth row

and kth column of independent Gaussian prior distributions N( ,u].k,o"fk) are assigned to l].k as

2 Once the Markov chain has stabilized, the iterations prior to the stabilization (referred to as the “burn-in> phase)
are discarded.
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p(A|Z°’K°)OCeXp{ZZ (4, ﬂjk) } (10)

J=1 k=1 jk
where [ and o are hyperparameter assumed to be known from prior knowledge, and X, and K are matrices
J! Jk 0 0

containing all 4, and O'_fk . The /”tjk s are further divided into two groups. The first group consists of main
(hypothesized) loadings generally implemented in standard CFA as supported by substantive knowledge. The main

loadings are given diffuse (non-informative) priors (i.e., 4, = 0 with large O'fk) to allow ljk to take on values that

deviate substantially from zero. The second group comprises the remaining elements of ljk s that are fixed to zero
in the ICM-CFA model. In the original BSEM-CL model proposed by Muthén and Asparouhov (2012), these strict

constraints were replaced by “soft” constraints characterized by prior distribution of /l/k with small variance O'Jz.k
(i.e., O'fk =0.0l)and u, = 0, which reflect the prior beliefs that these /l_l.k have large prior probability near 0. This
informative prior structure concentrates the posterior distributions for ljk around zero. However, if prior
knowledge indicates that a large number of cross-loadings are positive, it may be more appropriate to use i, > 0

(e.g., M, = 0.1) with small variance O-ik .

Hence, in terms of the parameter specification, BSEM-CL is similar to ESEM with target rotation, which
allows researchers to have more a priori control on the expected factor structure. However, BSEM-CL enables
researchers to specify a prior distribution for cross-loadings by varying the prior mean and variance and thus make
stronger assumptions about the strength of the cross-loadings. Such specification is not readily available in an
ESEM approach even with target rotation. To some extent, target rotation can be adjusted by specifying the target
value according to a researcher’s judgement, normally using zero target value for cross-loadings. Target rotation,
however, does not allow user-specified stringency of closeness to zero. Therefore, BSEM-CL can be viewed to lie
on a continuum between CFA and ESEM with target rotation (Muthén & Asparouhov, 2012). Using a combination
of real and simulated data, Muthén and Asparouhov (2012) demonstrated that BSEM-CL is superior to ICM-CFA

in terms of model fit and the coverage of parameters; although the changes in prior variance for cross-loadings may
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affect factor correlations (but not main loadings), the influence was small and of little substantive importance. No

study to our knowledge, however, has systematically compared BSEM-CL to ESEM.

BSEM with Informative Residual Covariances Priors [BSEM-RC]. Another important feature of BSEM
is that all residual covariances among observed indicators can be freely estimated using informative priors. Zyphur
and Oswald (2013) claimed that it is impossible to assume exactly zero covariance among residuals because the
content between items could covary to some small extent beyond the trait being measured, even in a
unidimensional scale. Basically, BSEM-CL and BSEM-RC follow the same idea, which is to explicitly model
some otherwise unmodeled source of influence on the indicators in a measurement model (Asparouhov et al.,
2015). While cross-loadings model the relationships between indicators and nontarget factors, residual covariances
model shared sources of influence on the indicators that are unrelated to the factors, such as method effects (e.g.,
negatively worded or parallel worded items). The failure to include a priori correlated uniquenesses (CUs; the
specific residual covariance between two observed indicators) can result in inflated factor correlations, biased
parameter estimates, and even improper solutions such as a nonpositive definite ¥ (Marsh et al., 2010, 2013).

Given that freeing all residuals covariances ©® would lead to an unidentified model (Bollen, 1989), it is
difficult to discern which residuals should covary in the likelihood-based framework. BSEM-RC provides a

possible approach to this problem by applying an informative inverse-Wishart prior IW (R,df)on ©. The means

and covariance matrix of the inverse-Wishart distribution are a function of the elements 7, on row m and column
n from R (e.g., pX p scale matrix), with degrees of freedom df and number of variables p. The density of the

inverse-Wishart distribution is

dari2
|R | | |—(a’f+p+1)/2 e—tr(RX_l)IZ

27T (df | 2)! (1)

where Fp and () are the multivariate Gamma function and the trace function, respectively. The mean of the

inverse-Wishart distribution is

R
E[X]=m (12)

and the variance of each element of the inverse-Wishart distribution is
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— (df — p + l)rnzm + (df — p — l)rmmrnn (1 3)
(df - pXdf = p=1)'(df = p=3)

Var[x, |

where the elements » —are on row m and column m from R and r  are onrow » and column » from R.

The variances for the diagonal elements of the inverse-Wishart distribution simplify to

Varlx, 1= 2,;’”’" (14)
(df —p-1)(df —p-3)

Equation (13) indicates that when df increases, the denominator will increase more rapidly than the
numerator, and thus the variance will become smaller. It implies that the larger the value of df , the more

informative the prior is. Equation (13) also indicates the size of variance is partially determined by R :the smaller
the elements of R, the smaller the variance, and thus the more informative the prior is. Nevertheless, setting the
scale to large values also impacts the position of the inverse-Wishart distribution in parameter space (see Equation

12). Hence, specifying an inverse-Wishart distribution requests balance the df and the size of R . In practice, a
typically used informative inverse-Wishart prior is an identity matrix R = I with varying df . Note that to obtain a
proper posterior where the marginal mean and variance are defined, df should be greater than p+3. For example,
following the specification strategy recommended by Muthén and Asparouhov (2012), an identity matrix R = I

and df = p+6 for 6}y, gives prior means of zero and variance of roughly 0.01 for residual covariances (see p. 335

in Muthén & Asparouhov, 2012 for a detailed description). Note that the specification of the priors in BSEM
depends on the scale of the observed variables and that the guidelines by Muthén and Asparouhov assume that the
variables have a SD close to one (see Muthén & Asparouhov, 2012, p. 316, for a discussion).

Using an inverse-Wishart prior specification was shown to outperform other prior specification approaches
for residual covariances in terms of good convergence and coverage for main loadings and correlations in the
simulation study (see Asparouhov & Muthén, 2010, Muthén & Asparouhov, 2012 for more discussion). However,
it is not feasible to specity priors to the specific residual covariance elements (e.g., freely estimated single
correlated uniqueness) using an inverse-Wishart prior because the inverse-Wishart distribution assumes a prior for
the whole covariance matrix and does not allow to modify single entries of the matrix. Specifically, the parameter

df in the inverse-Wishart distribution (see Equations 7, 11-14) is equal for all parameters in the same inverse
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Wishart prior block.

The present study uses the inverse-Wishart prior method to apply informative priors to residual
covariances. While both BSEM-CL and BSEM-RC involve adding to the model a set of potentially misspecified
parameters with small priors, BSEM-RC requires heavier computations because of larger numbers of estimated
parameters and slow MCMC convergence (Muthén and Asparouhov, 2012; Muthén et al., 2015). Although very
few studies have directly compared these two approaches, it is expected that BSEM-RC provides a better model fit
given more free parameters (see below for more discussion). However, the bias and coverage of estimated
parameters (e.g., main loadings, factor correlations) between these two approaches needs further study.

BSEM with Informative Cross-loadings and Residual Covariances Priors [BSEM-CLRC]. The BSEM
technique also allows for simultaneous inclusion of informative, normal priors for all cross-loadings and inverse-
Wishart priors for residual covariances (i.e., BSEM-CLRC; Muthén & Asparouhov, 2012). It takes into account the
presence of trivial cross-loadings in the CFA model and many minor residual covariances among the observed
indicators. Recent empirical studies have shown that, compared to BSEM-CL, BSEM-CLRC provides a better
model fit given that large numbers of fixed parameters are converted to free parameters (e.g., Fong & Ho, 2013;
Stromeyer et al., 2015). Again, little is known about which approach leads to more accurate parameter estimates in
relation main loadings, cross-loadings, and factor correlations.

Despite improved model fit in BSEM-RC and BSEM-CLRC, the complexity in model specifications has
received growing concerns. For example, Stromeyer et al. (2015) argued that the relaxing of restrictions on all
residual covariances might result in perfect model fit even in the presence of fundamental model misspecifications.
MacCallum et al. (2012) also expressed similar concerns in that the complexity of BSEM models with freely
estimated residual covariances results in an increase in estimation error, which in turn might diminish stability and
generalizability of the solution. In other words, improved fit is obtained at the expense of modeling idiosyncratic
sample characteristics that are unlikely to generalize in subsequent samples (Myung, 2000; Zucchini, 2000). These
concerns emphasize the importance of cross-validation in evaluating BSEM-RC and BESM-CLRC models. In a
recent empirical study, Asparouhov et al., (2015) cross-validated the BSEM-CLRC solution between two
independent samples and found strong support for measurement invariance where all parameters are held equal

across samples. However, the measurement model was employed in Asparouhov et al.’s (2015) study is relatively
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simple, containing only 17 observed indicators and 5 latent factors. In the present study, we expand this approach

and compare and cross-validate different BSEM models (i.e., BSEM-CL, BSEM-RC, BSEM-CLRC) using a more
complex factor structure (60 observed indicators and 5 latent factors) with longitudinal and A-fold cross-validation
approaches using empirical data.
Applications of ESEM and BSEM Studies in the Literature

In the last decade, ESEM has been increasingly used in clinical and applied psychological research (see
Marsh et al., 2014 for a review). It has been extended to evaluate longitudinal and multi-group measurement
invariance tests, differential item functioning, and relations between latent variables with other constructs (Marsh
etal., 2009, 2010, 2013, 2014). However, BSEM (Muthén & Asparouhov, 2012) has also recently garnered interest
in psychological research (Van de Schoot et al., 2017). Nevertheless, researchers have used this technique in many
alternative, potentially inconsistent ways because of the great flexibility in model specifications in BSEM. We
reviewed recent studies utilizing BESM approaches for factor analyses (Table 1) based on different approaches to
setting informative priors. However, only two of these are simulation studies in which BSEM estimates can be
compared with known population values. Unfortunately, neither of them has directly compared BSEM models with
different subsets of informative priors, based on which it is difficult to give practical guidelines for researchers to
apply different BSEM optimal strategies and estimation procedures when developing a measurement model. Given
that ESEM and BSEM (particularly BSEM-CL) adhere to similar logic (see above), the main purpose in this article
is to systematically evaluate and compare ESEM and BSEM models with different subsets of informative priors
based on simulated and real data and derive constructive and practical guidelines for applied researchers.

The Present Investigation

The purpose of the present investigation is to evaluate and compare ESEM and BSEM approaches designed
to resolve the dilemmas between EFA and CFA. To achieve this goal, we conducted two studies: 1) in a simulation
study, we evaluated the appropriateness of ESEM and BSEM (BSEM-CL, BSEM-RC, BSEM-CLRC) models in
relation to known population parameters under a variety of different conditions including varying specifications of
target rotations in ESEM and of informative priors in BSEM; 2) in an empirical study with real data, we compared
and cross-validated different models based on the most widely used Big-Five personality instrument (12 items for

each factor; Costa & McCrae, 1992).
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Based on a limited amount of BSEM research, we test the following a priori hypotheses across two studies:

Hypothesis 1(H1): Model fit: We hypothesize that BSEM-RC and BSEM-CLRC fit the data better (e.g.,
having low model rejection rate) than BSEM-CL and ESEM given a large additional number of freely estimated
parameters.

Hypothesis 2(H2): Close performance between ESEM and BSEM-CL. We anticipate that ESEM will
perform more closely to BSEM-CL than BSEM-RC and BSEM-CLRC in terms of model fit, bias, coverage, and
power in estimation of major loadings and factor correlations as they function on a similar logic.

Research question 1(Q1): Comparison between ESEM and different BSEM models. We leave as a
research question which model (ESEM vs. different BSEM models) is superior in accurately estimating
parameters, particularly when the model specifications were substantially manipulated, such as varying the
number, location, and size of the targeted values in ESEM and the distribution of informative priors in different
BESM models.

Research question 2(Q2): comparison between simulation and real data results. Given that factor
structure is usually more complex in reality than that in simulation, we leave open the question as to the
consistency of results between simulation and real data.

Study 1: Stimulation Study

In this simulation study, two factor loading structures were used. In order to enhance comparability, the
first loading structure, based on the simulation design that Muthén and Asparouhov (2012) used to introduce
BSEM, addresses several critical issues left unanswered by the Muthén and Asparouhov demonstration. Compared
to the first loading structure, the second and the third were more complex (with multiple major cross-loadings for
each factor instead of just one). Thus, the three simulation designs allow us to closely compare CFA, ESEM, and
different BSEMs with different subsets of priors, and evaluate results in relation to a priori hypotheses.

Method

Data generation. On the basis of the Muthén and Asparouhov (2012) simulation, we generated data using
three latent factor models with five indicator variables for each factor. The first structure of the loading pattern
(Design 1) in Table 2 is considered where A denotes a main loading, B denotes major cross-loadings, and C

denotes minor cross-loadings. In Design 1, one major cross-loading and nine minor cross-loadings were
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incorporated for each factor—a total of three major cross-loadings and 27 minor cross-loading across the three

factors. The simulation design factors manipulated for the first loading structure included: (a) the sizes of the three
major cross-loadings (0.1, 0.2, and 0.3) that are considered to be of little importance, some importance, and
importance respectively (Cudeck & O’Dell, 1994); (b) sample size (N = 200, 500, and 1000); and (c) approaches
(CFA, ESEM, BSEM-RC, BSEM-RC, and BSEM-CLRC). In total, Design 1 resulted in 45 conditions. The other
parameters were set such that: the main loadings were all 0.8, the minor cross-loadings were all 0.01, the
correlations among the three factors were all 0.5, and the residual variances of indicator variables were all 0.5. The
factor metric is determined by fixing the variances of each factor at 1.

In Design 2, four major cross-loadings (0.1, 0.2, 0.3, and 0.4) and six minor cross-loadings (i.e., 0.01) were
incorporated for each factor (see Table 2)—a total of 12 major cross-loadings across the three factors. Note that all
cross-loadings were positive (i.e., the sum/average of the sizes of the cross-loadings for each factor = 1.06/0.106),
which results in an unbalanced (positively oriented) factor structure. A balanced factor structure (i.e., Design 3)
was then investigated where four major cross-loadings for each factor were set to -0.1, 0.2, 0.3, -0.4, respectively
and six minor cross-loadings were set to a combination of 0.01 and -0.01 (see Table 2). Hence, Design 3 led to a
completely balanced factor structure (i.e., the sum of the sizes of the cross-loadings for each factor = 0). In Designs
2 and 3, the model specifications were substantially manipulated for both ESEM and BSEM models, resulting in
14 model designs (see below for more details) coupled with three sample sizes (N =200, 500, and 1000). In total,
42 conditions were tested for each design (2 and 3). The other parameters were defined as same as those in Design
1. A total of 500 replications were used in both simulation designs.

ESEM specification. The ESEM models were estimated based on oblique target rotation (Asparouhov &
Muthén, 2009; Browne, 2001). According to the most common specification of target rotation, all cross-loadings
were “targeted” to be close to zero by setting the target value to be 0, while all of the main loadings were freely
estimated in standard ESEM models used in simulation and real data studies. In Designs 2 and 3 of the simulation
study, the specification of target rotation was varied in terms of the number and location of targets as well as the
size of the targeted values in relation to matrices A and B in Figure 1. Specifically, the number of targets were
manipulated by freely estimating 2 major or 2 minor cross-loadings; the location of targets were manipulated by

only targeting on minor cross-loadings (i.e., freely estimating 4 major cross-loadings); and the size of target values
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were manipulated by specifying to 0.1 (rather than zero; see Appendix 1 for the specified targeted pattern matrix).

In addition, ESEM with a mechanical rotation criterion (i.e., geomin®) was added and compared with target
rotation. In total, six ESEM models were symmetrically evaluated in Designs 2 and 3.

It should be noted that in ESEM “the order of the latent factors is interchangeable and each factor is
interchangeable with its negative” (p. 436, Asparouhov & Muthén, 2009); these indeterminacies (i.e., the order and
sign pattern) are particularly important in simulation studies (Asparouhov & Muthén, 2009). Without evaluating
and correcting the order and sign pattern for each replication, the results would be biased in relation to parameter
bias, mean square error, and coverage in simulation studies (Myers, Ahn, Lu, Celimli, & Zopluoglu, 2017). As
such, we carefully reviewed all ESEM solutions and corrected (i.e., reordered or re-signed) parameter estimates for
each replication so that all replications uniformly aligned with the pattern defined by the population values.

Choice of Priors in BSEM. The posterior distribution of Bayesian estimation was approximated by using
an MCMC algorithm with the Gibbs sampler method. Note that choices of the prior variance are associated with
the scale of the observed variables. For example, a prior variance of 0.01 corresponds to a small loading for an
observed variable with unit variance, but it corresponds to an even smaller loading for an observed variable with
variance larger than one (Muthén and Asparouhov, 2012). For convenience, observed variables were standardized
to establish a common scale. In BSEM-CL normal priors with mean zero and variance 0.01 were used for the
cross-loadings’ priors; and standard non-informative prior distributions were used for other parameters: main
loadings ~N(0, infinity), residual variances ~ Inverse Gramma I'"%(-1,0), and intercepts ~N(0, infinity). We used
Mplus default improper prior IW(0, —q — 1) for the latent factor covariance matrix (where g is the number of latent
factors). This is a widely used diffuse prior and allows the variance parameters to be any nonnegative value from O
to infinity and the covariance parameters to be any value from —infinity to +infinity (Depaoli & van de Schoot,
2017). It should also be noted that the informative priors are applied not only to the major cross-loadings used to
generate the data, but to all minor cross-loadings in the analysis model to reflect a real-data analysis situation. In

relation to residual covariance priors in BSEM-RC and BSEM-CLRC, the inverse-Wishart prior /W(R, df) with R

3 In geomin rotation, the constant€ was set to .05 which has been widely used in empirical studies (Marsh et al., 2009; 2010, 2014). A
recent simulation study (Celimli, Myers, & Ahn, 2018) found that the geomin rotation with € = .05 provided more stable but less accurate
factor solutions than the default geomin rotation (where € = .001 in Mplus) with very small effect size; the accuracy of factor solutions in
geomin rotation with € = .05 increased when the factors are more correlated.
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=TI and df=p + 6 (p = number of indictor variables) was used, corresponding to prior mean and variance for

residual covariances of zero and 0.01 respectively (Gucciardi & Zyphur, 2016; MacKinnon, 2008; Muthén and
Asparouhov, 2012). Table 3 lists the specific priors used in each BSEM approach (also see Supplemental
Materials, Appendix 7 for the annotated Mplus syntax).

Variation of prior specification. In the simulation designs 2 and 3, we have further considered various
informative priors for factor loadings and residual covariances, in addition to the standard priors setup (M =0, Var
=0.01). First, the variance of cross-loadings priors in BSEM-CL and of residual covariances priors in BSEM-RC
were varied to 0.02 and 0.005. Second, informative priors with mean 0.1 (rather than zero) for cross-loadings were
implemented in BSEM-CL to reflect in situations where researchers have a priori information (based on theory or
prior research) indicating that the cross-loadings are likely to be positive. In total, eight ESEM models were
symmetrically evaluated in designs 2 and 3.

Model fit in BSEM. Convergence of BSEM models is evaluated by the potential scale reduction (PSR;
Asparouhov & Muthén, 2010). PSR is the ratio of total variance across chains and pooled variance within a chain.
A PSR value of 1.00 represents perfect convergence (Muthén & Muthén, 1998-2015; Kaplan & Depaoli, 2012).
With a large number of parameters, a PSR < 1.10 for each parameter indicates that the convergence of the MCMC
sequence is obtained (Muthén & Muthén, 1998-2015; Gelman, Carlin, Stern, & Rubin, 2004). In this study, we
used PSR < 1.05 as an appropriate convergence criterion (Zyphur & Oswald, 2013). For each replication, BSEM
models were estimated with 10,000 MCMC iterations with two Markov Chains in Mplus (Muthén & Muthén,
1998-2017), on which PSRs were assured to be < 1.05 (see Tables 4&5). We report the model rejection rate that is
computed as the proportion of replications (in each condition of the simulation design) with a Bayesian posterior
predictive p (PP p) value for BSEM models (or maximum likelihood [ML] p value for CFA and ESEM) of smaller
than 0.05. Small PP p values (i.e., <.05) indicate poor model fit because this means that the observed data rarely fit
better than generated data (e.g., < 5% of the time). We also reported another two indices for comparing Bayesian
models: deviance information criterion (DIC) and Bayesian information criteria (BIC; Muthén, 2010). Smaller BIC
and DIC values indicate better models, and models can be compared using the DIC even when they are not nested
(Zyphur & Oswald, 2013). DIC is preferable to BIC when sample sizes are large, coupled with a large number of

observed indicators (Asparouhov et al., 2015).
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To provide a comprehensive evaluation of different ML and Bayesian approaches, we considered a variety

of measures of accuracy and precision. We reported the mean and SD of relative bias (difference between the
estimated and the true value divided by the true value) for main loadings and factor correlations across the 500
replicates. Generally, a relative bias less than 5% could be considered negligible, and less than 10% could be
acceptable. In addition, we reported the 95% coverage that refers to the proportion of the replications for which the
95% Bayesian credibility interval covers the true parameter values used to generate data in BSEM models. We also
reported the corresponding 95% coverage for ESEM models using a ML bootstrap confidence interval.
Specifically, we drew 500 bootstrap samples from each replication to estimate a confidence interval. It is also
interesting to study what corresponds to power in a frequentist setting for a Bayes setting, particularly with respect
to major cross-loadings. For Bayes, power is computed as the proportion of the replications for which the 95%
Bayesian credibility interval (or the ML bootstrap confidence interval) does not cover zero (see Power in Tables 6,
8, and 9, also see Appendices 2&3 in Supplemental Materials for the summary of cross-loadings).
Results: Design 1

The ML 5% rejection rate for ESEM was appropriately small (5%-9%), whereas the nominal 5% rejection
rate of the Bayes PP p value was close to zero (BSEM-CL, < 1%), or actually zero (BSEM-RC and BSEM-CLRC).
Tables 6 reports the average relative bias of parameters (main loadings and factor correlations) across 45
conditions. To provide a comprehensive evaluation of the impact of different conditions on simulation results (i.e.,
models, sample sizes, sizes of major cross-loading), an ANOVA with the conditions of the simulation design as
factors was employed (see Table 7). Results showed that the variances of relative bias across conditions for main
loadings were largely explained by different models (R-square 89.1%) rather than sizes of major cross-loadings (R-
square 5%) and sample sizes (R-square 1%). The sizes of relative bias in relation to main loadings across different
models were all acceptable (0.6% to 10.5%). Even though ESEM resulted in the smallest relative bias of main
loadings followed by BSEM-CL, all models have similar and small SDs of relative bias.

For factor correlations, the sizes of bias varied for the different models (R-square 54.7%) and size of major
cross-loadings (R-square 37.5%) but not sample sizes (R-square 0.4%). When sizes of major cross-loadings were

small and moderate (i.e., 0.1 and 0.2), BSEM-RC and BSEM-CLRC showed slightly smaller relative bias than
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ESEM and BSEM-CL. These differences disappeared when the major cross-loading was 0.3. Note that overall the

differences in the SD of relative bias among different models were relatively small (< 0.8%).

Of particular relevance to the present investigation, we compared coverage and power results across
different conditions (see Table 5). The differences in 95% coverage for main loadings and factor correlations were
largely explained by different models (R-square 78.6% and 65.1%, respectively). ESEM, BSEM-CL, and BSEM-
CLRC had similar and good coverage (> .900), whereas BSEM-RC resulted in relatively low coverage when major
cross-loadings and sample sizes were large. In addition, all models showed excellent power to detect main loadings
and factor correlations across different sample sizes.

Results: Design 2

In Design 2, a more complex and unbalanced (positively oriented) factor structure was utilized, in which
multiple positive major cross-loadings instead of one were incorporated for each factor. We started with the
standard comparison among the models (ESEM, BSEM-CL, BSEM-RC, and BSEM-CLRC) evaluated in Design 1,
and then compared different variation of model specification in relation to BSEM and ESEM. In total, 14 models
(6 ESEM models and 8 BSEM models) with three different sample sizes were evaluated in Design 2.

Similar to Design 1, BSEM-CL showed slightly lower rejection rate than ESEM* (.022 to .064 for BSEM-
CL and .056 t0.100 for ESEM). BSEM-RC and BSEM-CLRC showed a zero rejection rate in terms of Bayesian p
(PP p) value. The relative bias and its SD and coverage for main loadings and factor correlations across conditions
were largely explained by different models (R-square 58.8% to 99.0%, see Table 7). As seen in Tables 8 and 9,
ESEM consistently showed the smaller relative bias in estimation of main loadings (4.3% to 5.7%) and factor
correlations (19.3% to 22.9%), and better coverage than different BSEM models. Even though similar sizes of
relative biases for main loadings (12.1% to 18.4%) were found across different BSEM models, BSEM-RC showed
slightly larger SD of bias (15.7% to 17.4%) and lower coverage (.445 to .548) in main loadings than other BSEM

models. Relative bias and coverage for factor correlations were substantially large across different BSEM models

4 We also compared BIC between ESEM and BSEM-CL and found that ESEM had consistently smaller BIC than BSEM-CL to a
small extent (diff= 53 to 64 to across different sample sizes). In addition, given that the DIC was developed as the Bayesian
counterpart of AIC in frequentist analysis, we compared AIC in ESEM with DIC in BSEM-CL and found that the differences were
tiny (diff= 7 to 12 to across different sample sizes). Even though these fit indices are fairly good approximations for model
comparisons between ML and Bayesian estimation, there is no full simulation studies that have confirmed that. Hence, the small
differences in these fit indices should be treated as inconclusive (see http://www.statmodel.com/cgi-bin/discus/show.cgi?9/6256 for
further discussion in Mplus discussion forum). Also see below for model fit comparison among different BSEM models (Table 5).
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(36.4% to 40.6% and .000 to .275, respectively), although all models showed 100% power to detect factor

correlations.

ESEM with different specifications. Note that changing the number and location of targets, sizes of target
values, and the rotation method in ESEM resulted in identical model fit. As seen in Tables 8 and 9, ESEM with
geomin rotation showed small and negative relative bias in estimation of main loadings (-3.2% to -2.8%) and factor
correlations (-16.7% to -17.9%) with small SD and good coverage and power. Overall, the size of these measures
in geomin rotation were quite similar with that in target rotation. When the number of targets were manipulated,
freely estimating minor cross-loadings resulted in larger relative bias and lower coverage, with the reverse being
true for freely estimating major cross-loadings (see Figure 2). Particularly, when all major cross-loadings were
freely estimated (i.e., only minor cross-loadings were targeted), ESEM showed the smallest relative bias and
coverage. Finally, when the targeted values were changed to .1, the ESEM model resulted in substantively smaller
relative bias (-.6% to 8.2%) than the typical ESEM model where targeted values were set to zero.

BSEM with different specifications of priors. To better evaluate the influence of prior specifications on
BSEM model solutions, we also included BIC and DIC in addition to rejection rate for model fit comparisons (see
Table 5). Whereas BSEM-RC and BSEM-CLRC had smaller (zero) rejection rate than BSEM-CL, BSEM-CL
provided smaller BIC and DIC than BSEM-RC (A=350 and A=50, respectively) and BSEM-CLRC (A~650 and
A~50, respectively). When the variances of cross-loadings priors in BSEM-CL and residual covariances priors in
BSEM-RC were set to 0.05 and 0.02 (instead of 0.01), the BSEM models remained highly similar model fit and
estimation solutions (see Tables 8&9 and Figure 3). However, when the mean of cross-loadings priors in BSEM-
CL was set to 0.1, the BSEM solution improved substantially and resulted in very small relative bias and excellent
coverage and power in estimation of main loadings and factor correlations, even though the model fit remained
similar.

Results: Design 3

In simulation designs considered thus far, we have only considered positive cross-loadings, which resulted
in an unbalanced and positive-oriented factor structure. In Design 3, we evaluated a balanced factor structure by
incorporating both positive and negative cross-loadings (e.g., -0.1, 0.2, 0.3, -0.4, for major loadings). Again, we

started with the standard comparison among the models (ESEM, BSEM-CL, BSEM-RC, and BSEM-CLRC), and
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then compare different variation of model specifications in relation to BSEM and ESEM. In total,14 models (6

ESEM models and 8 BSEM models) with three different sample sizes were evaluated in Design 3.

Similar to Designs 2, BSEM-RC and BSEM-CLRC showed a zero rejection rate, followed by BSEM-CL
(.006 to .010) and ESEM (.054 to .082). The relative bias and its SD and coverage for main loadings and factor
correlations across conditions were largely explained by different models (R-square 64.5% to 98.7%, Table 7). As
seen in Tables 8 and 9, small sizes of relative biases for main loadings were found across the ESEM (-2.9% to -
2.3%) and BSEM-CL (1.9% to 2.2%) and BSEM-CLRC (1.8% to 3.2%), whereas the bias of factor correlations in
ESEM (-18.6% to -16.2%) was much larger than BSEM-CL (3.9% to 4.0%) and BSEM-CLRC (2.6% to 4.7%).
ESEM, BSEM-CL, and BSEM-RC showed excellent coverage and power for main loadings and factor
correlations. Although most of BSEM-RC resulted in acceptable size of relative bias for main loadings (-4.5% to -
6.6%) and factor correlations (-4.7% to 19.1%), particularly when sample sizes were small, the SD of relative bias
for main loading (25.7% to 28.0%) and factor correlations (12.0% to 44.4%) in BSEM-RC was much larger than
that in other models. It is also evident that BSEM-RC resulted in lower coverage and power in detecting main
loadings and factor correlations.

ESEM with different specifications. ESEM with geomin rotation showed smaller relative bias (-6.4% to -
6.0%) but lower coverage (.623 to .883) in estimation of main loadings than that with target rotation to a small
extent. However, geomin rotation resulted in much larger relative bias for factor correlations (-47.7% to -47.0%)
with smaller SD and lower coverage than target rotation (see Figure 2). Again, freely estimating minor cross-
loadings resulted in larger relative bias and lower coverage, with the reverse being true for freely estimating major
cross-loadings. When the targeted values were changed to .1, the ESEM model resulted in much larger relative bias
-63.7% to -56.6%) than the typical ESEM model where targeted values were set to zero.

BSEM with different specifications of priors. Similar to Design 2, BSEM-CL provided smaller BIC and
DIC than BSEM-RC (A=400 and A=50, respectively) and BSEM-CLRC (A=600 and A=50, respectively), although
BSEM-RC and BSEM-CLRC showed a smaller rejection rate than BSEM-CL. Again, changing variances of
informative priors on cross-loadings in BSEM-CL and residual covariances in BSEM-RC led to similar model fit

and estimation solutions (See Tables 8&9 and Figure 3). However, when the mean of cross-loadings priors in
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BSEM-CL was changed to 0.1, the relative biases for main loadings and factor correlations substantially increased

(-47% to -46.6%) with larger SD and lower coverage and power, even though the model fit remained similar.
Summary of the Three Stimulation Designs.

Given that in factor analyses applied researchers usually start with CFA that are likely to be misspecified in
reality, we also evaluated CFA in Design 1. Results revealed that CFA was ill fitting and resulted in the worst
model fit and the largest bias in estimating factor correlations (see Appendix 2).

In relation to model fit, BSEM-RC and BSEM-CLRC consistently showed lower rejection rates than
BSEM-CL given an enormous increase in the number of free parameters, whereas BSEM-CL showed lower DIC to
a very small extent. Although the differences in BIC favored by BSEM-CL (low value is preferred) were much
larger than those in DIC, this finding should be interpreted cautiously because BIC unnecessarily penalizes the
BSEM model by counting small-variance prior parameters as actual parameters and thereby overshadows
information provided by BSEM (Asparouhov et al, 2015). Overall, relaxing the restrictions on either cross-loadings
or residual covariances (or both) in BSEM did not lead to large differences in model fit. Compared to BSEM
models, ESEM resulted in lower rejection rate but is somewhat closer to BSEM-CL (also see more discussion in
the footnote 4).

For the estimation of main loadings and factor correlations, the pattern of results was substantially varied
by the factor structures. ESEM resulted in more accurate parameter estimates in main loadings and factor
correlations than different BSEM models in most of cases in designs 1 and 2 where only positive cross-loadings
were implemented. This advantage was stronger particularly when the stimulated factor structure was complex
(Design 2) and the sample size was small. When both positive and negative cross-loading were introduced in a
balanced factor structure (Design 3), the BSEM-CL and BSEM-CLRC provided more accurate estimation in factor
correlations than ESEM, whereas these three models resulted in small bias, and its SD as well as good coverage
and power for main loadings. In terms of the direction of bias, BSEM-CL and BSEM-CLRC tend to result in more
positive bias in estimating main loadings and factor correlations than ESEM, particularly when the factor structure
was unbalanced. BSEM-CL provided unstable estimation solutions in terms of larger SD bias, lower coverage, and

less power than other models, although sometimes the sizes of relative bias in BSEM-CL were acceptable.
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In relation to different model specification, specifying mean of cross-loadings to 0.1 in BSEM-CL and

target value to 0.1 in ESEM performed much better than the ESEM and BSEM models (where mean and target
values were zero, respectively) in the unbalanced factor structure, with the reverse being true in the balanced factor
structure (see Figure 2). However, change variances of cross-loadings and residual covariances in BSEMs led to
similar results. Target rotation was, superior to geomin rotation in estimating factor correlations when the factor
structure was balanced; however, Geomin rotation produced more stable factor solutions. For ESEM with target
rotation, changing the number of targets by freely estimating major cross-loadings improved the model solutions.
In contrast, freely estimating minor cross-loadings led to more biased results. In a typical case, when only minor
cross-loadings were targeted, ESEM provided almost accurate estimates parameters. This pattern of results
consistently showed in both designs 2 and 3.
Study 2: Real data - NEO-FFI Big-Five Personality Example

An empirical example used data from a large German study (Transformation of the Secondary School
System and Academic Careers [TOSCA]; Trautwein, Neumann, Nagy, Ludtke, & Maaz, 2010; Marsh et al., 2010).
The Big-Five personality factors (Agreeableness, Conscientiousness, Extraversion, Neuroticism, and Openness)
were measured by using the German version of the NEO-FFI (Borkenau & Ostendorf, 1993), where 12 items were
used to measure each of the five factors. Using these data, Marsh et al. (2010) applied ESEM to demonstrate that
the a priori scales showed a well-defined five-factor solution and that ESEM resulted in substantially more
differentiated (less correlated) factors than did CFA. They also defined an a priori set of correlated uniquenesses
(CUs, correlated errors between indicators) inherent to the design of the NEO-FFI (see below). Their results
provided apparently the first acceptable fit to the Big-Five factor structure based on the 60 NEO-FFI items, and
was used to counter suggestions that factor analysis might not be an appropriate tool in personality research. Their
study was also one of the strongest demonstrations of the usefulness of ESEM in applied research. Hence, these
data provide an ideal setting for comparing CFA, ESEM, and BSEM with different (cross-loadings or residual
covariances) informative priors.
Method

Data. The 60-item NEO-FFI (Costa & McCrae, 1992) provides a short measure of the Big-Five personality

factors. For each factor, 12 items from the 180 items of the longer NEO-PI (and the full 240-item NEO-PI-R;
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McCrae & Costa, 1989) were selected. The NEO-FFI responses by late-adolescent Germans showed high

reliability, validity, and comparability with responses of the original English-language version (Borkenau &
Ostendorf, 1993; Trautwein et al., 2010). Two waves of data were used in this study. At Wave 1, the students (N =
3,390; 45% men, 55% women) were in their final year of upper secondary schooling; T2 was assessed (N = 1,570,
39% men, 61% women) 2 years after graduation from high school. Marsh et al. (2010) revealed that sample
attrition effects were statistically significant in some domains, but the effect sizes were small and indicative of only
small selectivity effects. Coefficient alpha reliabilities of the five factors at Wave 1 and Wave 2 were acceptable
(.72 - .87, also see Marsh et al., 2010).

A priori CUs. In the full NEO-PI-R (with 240 items), each of the Big-Five factors is represented by six
facets, and each facet is represented by multiple items (see McCrae & Costa, 2004). However, in the 60-item NEO-
FFI, all items were selected to best represent each of the Big-Five factors without reference to the facets. Marsh et
al. (2010) posited that the correlations between items that came from the same facet of a specific Big-Five factor
would be higher than those between items that came from different facets of the same Big-Five factor—beyond
correlations that could be explained in terms of the common Big-Five factor that they represented. They found that
test—retest factor correlations were substantially inflated and might result in improper solutions due to the failure to
include CUs relating each pair of items from the same facet. In total, an a priori set of 57 CUs were included in this
study.

Priors Choice. In line with the simulation study, normal priors with mean zero and variance 0.01 were used
for cross-loadings priors. In BSEM-CL, the a priori CUs were freely estimated by using noninformative (diffuse)
normal priors with mean zero and variance 1000 (hereafter BSEM-CL+CUs). In BSEM-RC and BSEM-CLRC, the
inverse-Wishart prior IIW(R, df) with R = I and df = 66 (60[number of indictor variables] + 6) was used for residual
covariances, corresponding to mean zero and SD roughly 0.1, respectively (Muthén & Asparouhov, 2012). Due to
high auto-correlation among the MCMC iterations, only every 10th iteration was used with a total of 100,000
iterations to describe the posterior distribution (Muthén & Asparouhov, 2012).

Goodness of fit. We evaluated a number of traditional indices (Marsh, Hau, & Grayson, 2005): the
comparative fit index (CFI), the root- mean-square error of approximation (RMSEA), and the Tucker- Lewis Index

(TLI). Values greater than .95 and .90 for CFI and TLI typically indicate excellent and acceptable levels of fit to
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the data. RMSEA values of less than .06 and .08 are considered to reflect good and acceptable levels of fit to the

data. Apart from posterior predictive p values and ML likelihood-ratio chi-square values, we also reported another
two indices for comparing Bayesian models: deviance information criterion (DIC) and Bayesian information
criteria (BIC; Muthén, 2010). Smaller BIC and DIC values indicate better models, and models can be compared
using the DIC even when they are not nested (Zyphur & Oswald, 2013). DIC is preferable to BIC when sample
sizes are large, coupled with a large number of observed indicators (Asparouhov et al, 2015).

Cross-validation and External validity. The cross-validation is important for BSEM approaches,
particularly for BSEM with residual covariance priors (BSEM-RC and BSEM-CLRC) because a large number of
freely estimated parameters can lead to over-fitting. We compared model fit and parameter estimates (factor
loadings, CUs, and factor correlations) across different approaches based on Wave 1 data and then cross-validated
the parameter estimates using Wave 2 data. More specifically, we sampled the Wave 2 data with replacement
10,000 times and then computed Root Mean Square Residual (RMSR) by comparing the variance-covariance
matrix of indicator variables at Wave 2 and the estimated (implied) variance-covariance matrix based on different
models at Wave 1. In addition, we calculated RMSEA by employing all parameter estimates from the Wave 1
solution as fixed parameters to estimate the same model based on Wave 2 data. Based on the same logic, we also
cross-validated the Wave 2 parameter estimates to Wave 1 data.

Each model (e.g., CFA, ESEM) was estimated five times to different partitions of the data (80% of the data
each time), the results (i.e., parameter estimates as fixed values) were applied to the remaining 20% of the sample
(Grimm, Mazza, & Davoudzadeh, 2016). Also, we provide another set of cross-validation analysis by estimating
each model five times to different partitions of the data (20% of the data each time) and applying the results to the
remaining 80% of the sample. RMSEA was reported for five-fold cross-validation results. Finally, we tested the
construct validity of the big-five factors in relation to external criteria (e.g., life-satisfaction, positive/negative
affect) across different estimation procedures.

Results

Model fit. Consistent with previous studies (e.g., Marsh et al., 2010), the CFA solution did not provide an

acceptable fit to the data (e.g., CFI = .684, see Table 10). The next CFA model incorporated a priori CUs; results

were still inadequate, albeit improved (e.g., CFI =.750). The corresponding ESEM solution fit the data much
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better. Although the fit of the ESEM without a priori CUs was still not acceptable (e.g., CFI = .850), the inclusion

of a priori CUs fitted the data reasonably well (e.g., CF1 =.912). Aligned with CFA and ESEM, the BSEM with
cross-loadings priors with a priori CUs (BSEM-CL +CUs) resulted in much better fit to the data, compared to that
with no a priori CUs (ADIC = 3069; ABIC = 2720). However, the low PP p values (p <.05) indicated poor fit for
both BSEM-CL models. When residual covariance priors were incorporated, the fit of the BSEM models (BSEM-
RC and BSEM-CLRC) improved substantially but had many more freely estimated parameters compared to
BSEM-CL+CUs (A number of parameters = 1476). Although more parameters were freely estimated in BSEM-
CLRC than in BSEM-RC (Aparameters = 240), both models resulted in similar model fit. Given that the models
with no a priori CUs provided relatively poor model fit, the subsequent analyses focused on the CFA, ESEM and
BSEM models with the a priori CUs.

Factor loadings. To enhance interpretability, the items measuring Neuroticism were reversed coded to
represent a measure of Emotional Stability. For main loadings, different approaches resulted in similar and
substantial sizes of loadings except for BSEM-RC where the size of factor loadings was slightly smaller (see
Figure 4, also see Appendix 4 for the Mean, SD, and Range of loadings for the Big-Five factors across models).
Next, we compared cross-loadings across ESEM+CUs, BSEM-CL+CUs, and BSEM-CLRC. While sizes of cross-
loadings were substantially smaller than those of main loadings in the three models, BSEM-CLRC resulted in
slightly smaller cross-loadings than ESEM+CUs and BSEM-CL+CUs.

CUs. Consistent with previous studies (e.g., Marsh et al. 2010), the a priori CUs were significant across
different estimation procedures (M = from .087 to .168; see Appendix 5). In the model where the full set of CUs
was considered (i.e., BSEM-RC and BSEM-CLRC), the sizes of the a priori CUs were substantially larger than
those of other CUs (AM =.116 and .087, respectively).

Correlations. All factor correlations were statistically significant in CFA and ESEM solutions, but the
coefficients in CFA+CUs (Mean[M] = .184, SD = .191) were systematically higher than those in ESEM+CUs (M
=.095, SD =.114, Table 11). Although BSEM-CL+CUs and BSEM-CLRC had a similar pattern of correlations
with ESEM+CUSs, the correlations in BSEM-CL+CUs and BSEM-CLRC were slightly higher (M= .112, SD
=.160; M= .137, SD = .168, respectively). BSEM-RC resulted in the much lower correlations, and most of these

were close to zero and less than 0.1 in absolute value (M= .009, SD = .093). The correlations in BSEM-CL+CUs
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showed low degree of uncertainty with a small posterior SD. However, the posterior SDs were considerably larger

in BSEM-CL+CUs and BSEM-CLRC. Thus, a majority of correlation coefficients were insignificant in the sense
of their 95% posterior distribution credibility intervals covering zero.

Cross-validation. We cross-validated the findings across two waves of data and reported mean and 2.5%
and 97.5% Quantiles of RMSR as well as RMSEA with 90% confidence interval (Table 12). Results showed that
there was a stronger cross-validation support for the ESEM and BSEM models, compared to CFA. The support for
ESEM+CUs and BSEM-CL+CUs was almost identical and slightly weaker than that for BSEM-RC and BSEM-
CLRC when cross-validating the results from Wave 1 (N = 3,390) to Wave 2 (N = 1,750) data. However, these four
models had similar cross-validation support when cross-validating from Wave 2 to Wave | data. Five-fold cross-
validation analysis also showed that BSEM-RC and BSEM-CLRC cross-validated better than others when cross-
validating the results from 80% (N =2,711) to 20% (N = 679) data at Wave 1, whereas ESEM+CUs cross-
validated best followed by BSEM-CL+CUs when cross-validating the results from 20% to 80% data (see Table
13). These findings indicated that the cross-validation results vary by sample sizes. When the sample size (of the
training data) was large, BSEM-RC and BSEM-CLRC provided slightly more predictive accuracy than
ESEM+CUs and BSEM-CL+CUs; the reverse was true when the sample size was small.

External validity. We evaluated the construct validity of the Big-Five constructs in relation to five external
criteria (i.e., life-satisfaction, positive/negative affect, self-esteem, and Emotional Stability self-concept) across
different estimation procedures (see Appendix 6). Specifically, consistent with prior research (e.g., Diener, Suh,
Lucas, & Smith ,1999; McCrae & Costa, 1999), CFA+CUs, ESEM+CUs, BSEM-CL+CUs, and BSEM-CLRC
showed that Emotional Stability was highly correlated with negative affect (rs =-.638, -.630, -.633, -.631,
respectively) and Extraversion was substantially correlated with positive affect (rs = .570, .505, .524, .548,
respectively). However, the sizes of corresponding correlations coefficients in BSEM-RC were significantly
smaller (» = -.408 for Emotional Stability and negative affect, » =296 for Extraversion and positive affect).
Similarly, as expected (e.g., Asendorpf & vanAken, 2003; Marsh, Trautwein, Ludtke, Koller, & Baumert, 2006),
high correlations of Emotional Stability with self-esteem and Emotional Stability self-concept were evident across
models except for BSEM-RC (s =.350 and .453, respectively). In total, CFA+CUs, ESEM+CUs, BSEM-

CL+CUs, and BSEM-CLRC revealed similar and substantially higher correlation patterns between the Big-Five
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factors and the five external criteria than BSEM-RC. This indicates that BSEM-RC results in much weaker support

for the external validity of the big-five constructs than other models.

Comparisons between simulation and real data results. The pattern of results revealed in the simulation
study in Study 1 was largely consistent with the findings based on real data. Firstly, CFA, even including a priori
CUs, consistently had a poorer fit to the data than ESEM. Again, BSEM-RC and BSEM-CLRC again provided
similar and better model fit than BSEM-CL. Secondly, BSEM-CL and BSEM-CLRC had slightly higher main
loadings and factor correlations across the Big-Five factors than ESEM (consistent with the finding that they
tended to result in more inflated estimated parameters than ESEM in the simulation study). However, the
differences in estimation of factor loadings among ESEM, BSEM-CL, and BSEM-CLRC were smaller than the
simulation results. BSEM-RC resulted in the lowest main loadings and factor correlations among different
estimation procedures, which is not consistent with the simulation results where it tends to have positively biased
estimated parameters. Importantly, BSEM-RC also provided weak support for the convergent validity of the big-
five factors for external validity criteria.

Overall Discussion

This study evaluated CFA, ESEM and BSEM approaches based on two simulation designs and one real
data example which covered different sample sizes and a variety of degrees of model misspecification (complexity)
of the factor structure. Thus, the juxtaposition of simulation and real data studies provide insights into the
performance of different estimation procedures. Table 14 summaries key findings of the present study and
indicates whether these findings supported our expectations. The critical findings are discussed as follows.
Comparison ESEM with BSEM-CL

BSEM-CL and ESEM (with target rotation) work on a similar logic: taking into account unmodeled source
of influence on the indicators through conversion from fixed-to-zero cross-loadings to approximately fixed-to-zero
cross-loadings while having a priori control on the expected factor structure. In this regard, BSEM-CL performs
more closely to ESEM than other BSEM models in terms of bias, SD of bias, coverage, and power, particularly in
large sample sizes where the likelihood dominates the estimation of posteriors. Particularly, we found that

changing targeted value to 0.1 in ESEM resulted in a similar pattern of results by changing mean of priors on
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cross-loadings to 0.1 in BSEM-CL, indicating that targeted value in ESEM and mean of cross-loadings work in the

similar way.

However, BSEM-CL differs from ESEM in two major ways. Firstly, BSEM-CL provides researchers with
more control on cross-loadings by specifying different degrees of small variance priors (additional to small mean
priors) and thus acts in a more confirmatory nature than ESEM (see below for further discussion). Secondly, in
ESEM, the optimal rotation is determined only on the basis of the unrotated loadings as in EFA (Muthén &
Asparouhov, 2012). This means that the effects of residual covariances are not considered in the optimal rotation.
By contrast, the optimal rotation in BSEM-CL is determined by all parts of the model (Muthén & Asparouhov,
2012). In the empirical example, the inclusion of a priori CUs allows us to examine the influence of residual
covariances on these two models. However, both models result in almost identical estimation of a priori CUs (most
of them are statistically significant) and similar model solutions and cross-validation results.

BSEM with Different Subsets of Informative Priors

Muthén and Asparouhov (2012) proposed an alternative BSEM technique that designates subsets of
parameters that are assigned informative priors. Small-variance priors can be assigned to different subsets (i.e.,
cross-loadings, residual covariances) or a combination of subsets of parameters in different models. One of the key
aims of this article is to systematically evaluate BSEM models with different subsets of informative priors.

In the simulation study, BSEM-CL is well-fitting and further inclusion of residual covariance priors (i.e.,
BSEM-CLRC) only results in slightly better model fit. These residual covariance priors, however, appear to have
small and negative effects on estimation of factor loadings — main loadings become more positively biased and
cross-loadings become more negatively biased (see Appendices 2&3). However, these differences are quite small.
Again, in the real data example both BSEM-CL+CUs and BSEM-CLRC perform very similarly, even though
further inclusion of residual covariance priors (i.e., BSEM-CLRC) achieves a large improvement in model fit. This
indicates that the BSEM-CL+CUs misfit is likely due to small and unimportant residual correlations and the main
parameter estimates tend to remain unchanged.

BSEM-RC provide slightly more biased estimated parameters for main loadings and factor correlations
than other BSEM models, the solution of BSEM-RC is much more unstable particularly when both positive and

negative biases are included, evident by large SD of bias. Thus, it partially explains why the results in the
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simulation study are substantially different from those in the real data example for BSEM-RC. Specifically, the

factor loadings and correlations are considerably smaller in BSEM-RC than those in BSEM-CLRC (as well as in
ESEM and BSEM-CL), which leads to weak support for the external validity. Another potential reason for these
differences is that no residual covariances were proposed in the simulation study, whereas in the real data study 57
pairs of the a priori CUs that came from the same facet of a specific Big-Five factor were included and shown to be
important in terms of goodness of fit (Marsh, et al., 2010). In this case, the variances of observed indicators can be
largely explained by residual covariances, which leads to attenuated main loadings and factor correlations in
BSEM-RC. Additionally, a possibility is that this study applies small variance on inverse-Wishart priors for the
residual covariances matrix (Muthén & Asparouhov, 2012), in which the a priori CUs cannot be specified with
their own priors (i.e., noninformative prior) in BSEM-RC. Although this method was found to perform better than
others in the relatively simple simulation design with only two large residual covariances (Muthén & Asparouhov,
2012), further evaluation of influence of the underlying mechanism of residual covariances on factor structure is
clearly warranted.

Another issue of BSEM-RC and BSEM-CLRC is that the estimation of large numbers of additional
parameters (associated with residual covariances) brings with it an enormous increase in the posterior SD when the
factor structure is complex (e.g., many factors and observed indictors). Although imposing small variance
(e.g., .01) on the priors for these new parameters rather than freely estimating them may alleviate the negative
impact of the increased estimation error, the stability and generalizability of model solutions is still be affected.
Study 2 examines this issue by cross-validating our findings using longitudinal and 5-fold cross-validation
techniques, which are often ignored in the model comparisons in relation to BSEM (e.g., Lu et al., 2016).
Consistent with previous research (MacCallum & Tucker, 1991; Cudeck & Browne, 1983), cross-validation results
indicate that more complex models (i.e., BSEM-RC and BSEM-CLRC) have a smaller likelihood of cross-
validating than the simple model (i.e., BSEM-CL+CUs) when sample size is small, whereas the reverse is true
when sample size is large. To further examine the impact of model specification with the choice of different priors
on cross-validation, we used both more informative priors (SD = 0.05 and 0.01) and less informative priors (SD =
0.3) for residual covariances. All BSEM-RC and BSEM-CLRC resulted in good convergence (PSR < 1.05) and

model fit (PP p value = from .474 to .525), and led to similar cross-validation results. Our findings suggest that
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BSEM-RC and BSEM-CLRC should be used cautiously when the factor structure is complex and the sample size

is small, given that they may capture idiosyncratic sample characteristics. However, further investigation for this
important issue is still needed.
Model specification and factor structure

This study is the first to provide a comprehensive evaluation of the relations between model specifications
and different simulated factor structures by varying the number, location, and size of targeted values in ESEM and
the distribution of informative priors in different BESM models. Results suggest that the performance of different
model specification is highly associated with factor structures: changing mean of cross-loadings priors to 0.1 in
BSEM-CL and targeted value to 0.1 in ESEM performed worse in a balanced factor structure (average of the sizes
of the cross-loadings for each factor = 0) but much better in an positive-oriented unbalanced factor structure (where
only positive major cross-loadings are included). Typically, in our simulation study, the average of the sizes of the
cross-loadings for each factor was 0.106 in the unbalanced factor structure. As such, changing the targeted value
and mean of cross-loadings priors to 0.1 produced almost perfect estimated parameters (relative bias < 1.2%).
Alternatively, in ESEM freeing substantive cross-loadings in the target loading matrix can also improve model
estimation, whereas freeing trivial cross-loadings will deteriorate model estimation. It is expected that the logic
behind changing the number and location of targeted value in ESEM also works in BSEM-CL, where using non-
informative priors for substantive cross-loadings will improve model estimation, the reverse is true in using non-
informative priors for trivial cross-loadings. Certainly, ESEM and BSEM-CL would perform even better when
targeted values and informative priors for specific cross-loadings are set close to the population values.
Nevertheless, these non-zero targeted value and informative priors should be applied very cautiously and should
not be based on ex-post facto adjustments to models following preliminary analyses with the same data.

As mentioned above, a strength of BSEM-CL is the flexibility of specitying prior variance of cross-
loadings. As prior variance of cross-loadings increased (from 0.005 to 0.02), factor correlations became less biased
but main loadings became more biased, however, these differences were small. Similarly, specifying different prior
variances of residual covariances (from .005 to 0.02) in BSEM-CR did not change the pattern of results. Thus, our
study confirms previous findings (Muthén & Asparouhov, 2012), indicating that the prior variance choice did not

have an important impact on the results in terms of model fit and biases of factor loadings and factor correlations.
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Implications

The variance and flexibility in model specifications in BSEM make it challenging to guide researchers in
deciding the most appropriate or optimal strategies and estimation procedures when developing a measurement
model. However, based on our findings derived from both simulated and real data, we propose some constructive
strategies for practices. Before providing these recommendations, however, we caution readers should not mistake
these strategies as golden rules. Indeed, readers should be cautious of all golden rules presented in relation to SEM
(Marsh, Hau, & Wen, 2004). Thus, we encourage readers to think about the unique situation of their own data and
modelling needs; considering the strategies below as useful guides only.

First, EFA with mechanical rotation should be used in early pilot studies of a measurement instrument.
Researchers can move to ESEM or BSEM approaches once they gain knowledge about the factor indicators and
the factors (see below for discussion about informative priors for main loadings). Researchers should start with
ESEM where targeted values are set to 0 for cross-loadings and BSEM-CL where only weakly informative priors
on variance (i.e., variance = 0.01 with Mean = 0) are incorporated for cross-loadings. These two models can be
used as benchmarks against which choices of targeted value and other priors can be compared. And then more
substantive (previous) knowledge can be incorporated into the estimation process (via targeted value and
informative priors on mean). Given that model specification on targeted values and informative priors have a
significant impact on model estimation, the elicitation of targeted values and informative priors should be based on
evidence-based approach rather than personal opinion that in principle bias toward a specific outcome (Kaplan,
2014). Specifically, the elicitation can be based on the results of a meta-analysis and previous publications.
Compared to ESEM, an advantage of BSEM-CL is having more control on the variance of cross-loadings. In such
cases, the informative priors can be chosen with smaller and smaller variances, reflecting a switch from an
exploratory to confirmatory nature (also see Depaoli & van de Schoot, 2017).

We recommend not using BSEM-CLRC when model fit for ESEM and BSEM-CL is reasonable and
particularly when sample size is small. The reason is that BSEM-CLRC require heavy computational burden and
do not provide more accurate parameters estimates. Particularly, handling a multivariate variance prior (e.g., the
covariances matrix) has technical complexities where some severe issues can arise; it is quite difficult to encode

prior knowledge into probability distributions and requires detailed consideration during implementation in
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practice (Depaoli & van de Schoot, 2017). However, when ESEM and BSEM-CL result in ill fit and sample size is

large, BSEM-CLRC may be preferred. In such cases, researchers should start with small df values (see Equation 7)
of inverse Wishart prior on residual covariances (i.e., relatively large variance priors) and increase d values by
checking the rate of convergence in the Bayesian iterations and PP p value. We recommend that BSEM-RC should
be used cautiously given the instability of model estimation and poor cross-validation and external validity.

Overall, we recommend that researchers experiment with a variety of priors, verify frequency coverage of
key parameters estimates, assess sensitivity of results, and report all available findings (see Hamra, MacLehose, &
Cole, 2013 for more discussion). More recently, Depaoli and van de Schoot (2017) developed a succinct checklist:
the WAMBS-checklist (When to worry and how to Avoid the Misuse of Bayesian Statistics) which provides a
guideline for Bayesian users to evaluate the influence of different priors and to interpret Bayesian results.
Limitations and Directions for Further Research

There are several limitations of the current study that motivate future research. First, an advantage of the
BSEM technique proposed by Muthen & Asparouhov (2012) is that it produces posterior distributions for cross-
loadings and residual covariances that can be used in line with modification indices (MIs). Researchers can free
parameters, where the credibility interval does not cover zero, using noninformative priors and re-estimate the
model. This technique benefits researchers to examine the degree of deviation of all parameters from zero in a
single step, rather than relying on one-at-a-time Mls under conventional ML-based SEM (MacCallum et al., 2012).
The one-at-a-time nature is associated with an inflated risk of capitalizing on chance (MacCallum et al., 1992;
Marsh et al., 2017). However, model modifications under BSEM depend on which subsets of parameters have been
specified to have small-variance priors. Furthermore, the estimation of the residual covariances parameters are not
independent. In other words, the BSEM model may show more than one statistically significant residual
covariances to compensate the misfit, although only one covariance is misfitted in the CFA model (see Asparouhov
et al., 2015 for more discussion). Thus, it is beneficial to further compare BSEM with Mls-like respecification to
ESEM and other BSEM models.

Second, like previous BSEM studies, all main loadings are specified by noninformative prior distribution (a
diffuse prior) in the present study, which allows the data to dominate the estimation of posteriors through the

likelihood (Zyphur & Oswald, 2013). However, in practice applied researchers might have ‘better available’
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information/knowledge about main loadings that can be incorporated into a prior distribution, compared to cross-

loadings. Very few studies have put informative priors on main loadings that are expected to be large according to
evidence-based knowledge. For example, Rindskopf (2012) suggests one can have a normal prior with a mean of
0.6/0.7 with a SD of .15 or have a normal prior with an unknown mean. In both cases, the SD should be large
enough to allow reasonable variation in main loadings. Therefore, the specification of main loadings with
informative priors needs further research.

Another avenue for further investigation is to examine how different heterogeneous errors for the indicator
variables (all were set to 0.5 in this study) influence the estimation, given that heterogeneity is not uncommon in

real data sets and can cause problems.
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Comparison between ESEM and BSEM
Table 1.

Overview of Previous Studies Using BSEM Approaches

Studies

Muthén & Asparouhov (2012)

Golay, Reverte, Rossier, Favez, & Lecerf (2013)
Zyphur & Oswald (2013)

Fong & Ho (2013)

De Bondt, & Van Petegem (2015)

Stromeyer, Miller, Sriramachandramurthy, &
DeMartino (2015)

Asparouhov, Muthén, & Morin (2015)

Lu, Chow, & Loken, 2016

Gucciardi & Zyphur (2016)

Type BSEM approaches
Simulation and empirical BSEM-CL, BSEM-CLRC
Empirical BSEM-CL

Empirical BSEM-RC

Empirical BSEM-CL, BSEM-CLRC
Empirical BSEM-CL

Empirical BSEM-CL, BSEM-CLRC
Empirical BSEM-CL, BSEM-CLRC

Simulation and empirical BSEM-CL

Empirical

BSEM-CL

Table 2.
Simulation Designs

Design 1

Design 2 Design 3

Variable Factorl Factor2 Factor3

Factorl

Factor2 Factor3 Factorl Factor2 Factor3
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Note. A (Major factor loadings) = 0.8; B (Major cross-loadings) = 0.1, 0.2, and 0.3(three conditions); C (Minor cross-loadings) = .01; D
(Minor cross-loadings) = -.01; Factor correlations = 0.5 (see Appendix 7 for the Mplus syntax)

Table 3.

Choice of Priors in BSEM for Simulation Study

BSEM approaches Informative priors Non-informative priors

BSEM-CL Cross-loadings ~ N(0, .01) main loadings ~N(0, infinity),
residual variances ~ I'"%(-1,0),
latent factor covariances ~ IW(0, —q — 1)
intercepts ~N(0, infinity).

BSEM-RC Residual covariance matrix ©: main loadings ~N(0, infinity),

diagonal elements: IW(1,p + 6)
oft-diagonal elements: /W(0, p + 6)

latent factor covariances ~ IW(0, —q — 1)
intercepts ~N(0, infinity)

BSEM-CLRC Cross-loadings ~ N(0, .01)
Residual covariance matrix ©:
diagonal elements ~ I/W(1, p + 6)

off-diagonal elements ~ /17(0, p + 6)

main loadings ~N(0, infinity),
latent factor covariances ~ IW(0, —q — 1)
intercepts ~N(0, infinity)

Note. p is the number of observed variables; g is the number of latent variables; BSEM-CL = BSEM+cross-loading priors; BSEM-
RC=BSEM-+residual covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors.Also see p. 775 in Mplus

Uers’ Guide (8th) for detailed description.
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Comparison between ESEM and BSEM

Table 6.
Relative bias, Coverage, and Power across Models based on Simulation Design 1.
Model MajorCL Size  Relative Bias  SD of Relative Bias 95% coverage Power
MFL FC MFL FC MFL FC MFL FC

ESEM 0.1 200 0.6% 3.5% 10.5% 12.3% 959 997 1.000 1.000
BSEM-CL 0.1 200 4.7% 7.7%  10.0% 12.5% 944 986 1.000 1.000
BSEM-RC 0.1 200 89% -3.9% 9.3% 11.7% 887 946  1.000 1.000
BSEM-CLRC 0.1 200 8.8% -33% 9.3% 11.4% 976 997  1.000 1.000
ESEM 0.1 500 1.5% 6.5% 6.6% 7.7% 953 .993 1.000 1.000
BSEM-CL 0.1 500 3.5% 83% 6.4% 7.8% 961 999  1.000 1.000
BSEM-RC 0.1 500 8.1% -4.8% 6.4% 7.1% 877 913 1.000 1.000
BSEM-CLRC 0.1 500 7.0% -2.8% 5.9% 7.0% 997  1.000 1.000 1.000
ESEM 0.1 1000 1.8% 7.5% 4.7% 5.5% 947 953 1.000 1.000
BSEM-CL 0.1 1000 3.1% 8.6% 4.7% 5.5% 977  1.000 1.000 1.000
BSEM-RC 0.1 1000 7.9% -5.0% 5.2% 5.0% 868  .853 1.000 1.000
BSEM-CLRC 0.1 1000 6.4% -2.1% 4.4% 5.0% 1.000 1.000 1.000 1.000
ESEM 0.2 200 1.2% 5.8% 10.6% 11.9% 959 994  1.000 1.000
BSEM-CL 0.2 200 5.8% 12.4% 10.2% 12.1% 932 969 1.000 1.000
BSEM-RC 0.2 200 93% 29% 11.4% 11.4% 839 949 1.000 1.000
BSEM-CLRC 0.2 200 9.8% 2.1% 9.9% 11.1% 965 998  1.000 1.000
ESEM 0.2 500 2.1% 8.8% 6.6% 7.5% 947 984  1.000 1.000
BSEM-CL 0.2 500 4.7% 12.8% 6.6% 7.5% 946 989  1.000 1.000
BSEM-RC 0.2 500 8.4% 22% 9.4% 7.0% 812 957  1.000 1.000
BSEM-CLRC 0.2 500 8.1% 2.5% 6.6% 6.8% 991 1.000 1.000 1.000
ESEM 0.2 1000 2.5% 9.8% 4.7% 5.3% 937  .904 1.000 1.000
BSEM-CL 0.2 1000 4.3% 13.1% 4.7% 5.3% 962 997  1.000 1.000
BSEM-RC 0.2 1000 8.2% 2.2% 8.7% 4.9% 800 952 1.000 1.000
BSEM-CLRC 0.2 1000 7.5% 32% 5.3% 4.8% 996  1.000 1.000 1.000
ESEM 0.3 200 14% 6.7% 10.7% 11.6% 958  .995 1.000 1.000
BSEM-CL 0.3 200 6.8% 17.0% 10.5% 11.8% 918  .921 1.000 1.000
BSEM-RC 0.3 200 94% 11.1% 14.7% 11.1% .803 .840 1.000 1.000
BSEM-CLRC 0.3 200  10.5% 8.0% 11.2% 10.8% 941 990  1.000 1.000
ESEM 0.3 500 24% 9.6% 6.7% 7.4% 944 975 1.000 1.000
BSEM-CL 0.3 500 5.7% 17.1% 6.7% 7.3% 929  .943 1.000 1.000
BSEM-RC 0.3 500 8.4% 10.9% 13.3% 6.7% 797 721 1.000 1.000
BSEM-CLRC 0.3 500 9.0% 84% 8.1% 6.6% 967 1.000 1.000 1.000
ESEM 0.3 1000 2.7% 10.6% 4.7% 5.2% 933 .877  1.000 1.000
BSEM-CL 0.3 1000 5.4% 17.1% 4.8% 5.2% 940  .965 1.000 1.000
BSEM-RC 0.3 1000 8.1% 11.1% 13.0% 4.7% 799 531 1.000 1.000
BSEM-CLRC 0.3 1000 8.5% 9.0% 6.9% 4.7% 974 1.000 1.000 1.000

43

Note. MFL = Main factor loading; FC = Factor correlation; BSEM-CL = BSEM+cross-loading priors; BSEM-RC=BSEM-+residual
covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors. Power refers to proportion of 95% credibility

interval not covering 0 in a Bayes setting and proportion of 95% confidence interval not covering 0 in a frequentist setting,

respectively.



Comparison between ESEM and BSEM

Table 7.
ANOVA Testing Variance Explained by Different Design Conditions
Relative Bias SD of Relative Bias  95% coverage Power
MFL FC MFL FC MFL FC MFL FC
Design 1
Model 89.1% 54.7% 17.5% 1.5% 78.6% 65.1% - -
Size of major cross-loading 5.0%  37.5% 17.5% 0.4% 89%  73% - -
Sample sizes 1.0%  04%  46.5% 97.8% 06% 53% - -
Design 2
Model 9.0% 995% T740% 37.6% 90.1% 88.8% - -
Sample sizes 01% 01% 224% 588% 41% 45% - -
Design 3
Model 98 7% 968% 937% 645% 81.9% 84.7% - -
Sample sizes 03% 08% 4.0% 21.8% 6.6% 7.19% - -

Note. MFL = Main factor loading; FC = Factor correlation; cov = 95% coverage; Power refers to proportion of 95% credibility
interval not covering 0 in a Bayes setting and proportion of 95% confidence interval not covering 0 in a frequentist setting,
respectively.
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Table 11.
Correlation among the Big-Five Factors (Emotional Stability = reversed Neuroticism/RN])

Model C E RN o M(SD)
CFA+CUs  Agreeableness (A) -

Conscientiousness (C) 243(.022)* -

Extraversion (E) 253(.02D)*  .395(.023)* -

Emotional Stability (RN) .305(.019)*  .142(.023)*  .502(.019)* -

Openness (O) -.092(.022)*  .061(.024)*  .081(.023)* -.054(.022)* .184(.191)
ESEM+CUs  Agreeableness (A) -

Conscientiousness (C) .078(.016)* -

Extraversion (E) 189(.017)*  .181(.015)* -

Emotional Stability (RN) .239(.015)*  .071(.015)*  .227(.015)* -

Openness (O) .006(.018) -.051(.017)* .090(.018)* -.085(.017)* .095(.114)
BSEM-CL+  Agreeableness (A)
CUs' Conscientiousness (C) .099(.103)

Extraversion (E) 237(.101)*  .232(.105)*

Emotional Stability (RN) .313(.087)*  .107(.100) .318(.095)*

Openness (O) -.050(.099)  -.069(.099)  .057(.105)  -.124(.095)  .112(.160)
BSEM-RC Agreeableness (A)

Conscientiousness (C) .076(.045)

Extraversion (E) .018(.036) .007(.097)

Emotional Stability (RN) .054(.047) -.044(.050)  .192(.065)*

Openness (O) -.146(.031)*  .042(.036) -.019(.039) -.087(.050)  .009(.093)
BSEM- Agreeableness (A)
CLRC Conscientiousness (C) .160(.123)

Extraversion (E) 208(.104)*  .235(.126)*

Emotional Stability (RN) .312(.096)*  .131(.126) A432(.104)*

Openness (O) -.060(.095)  .020(.115) .030(.110) ~ -.100(.100)  .137(.168)

Note. ' A priori correlated uniquenesses were freely estimated by using noninformative priors; BSEM-CL = BSEM+cross-loading
priors; BSEM-RC=BSEM-+residual covariance priors; BSEM-CLRC=+cross-loading priors + residual covariance priors; CUs
= correlated uniquenesses;* indicates p < .05 for CFA and ESEM but it indicates significance in the sense of their 95% posterior
distribution credibility intervals not including zero for BSEM models. We also report standard errors of correlation coefficients for CFA
and ESEM and posterior standard deviation for BSEM.
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Comparison between ESEM and BSEM
N=200
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N=1000

BSEM-RC

BSEM-RC(Var=.02)
BSEM-R({Var=.005)

BSEI".«1-(|‘;!S

BSEM-CLRC
BSEM-CL(Var=.02)
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Figure 3. Relative bias of factor correlations across BESM models based on unbalanced (Design 2) and balanced

factor structure (Design 3).
Note. BSEM-CL = BSEM-+cross-loading priors (M = 0, Var = .01); BSEM-CL(Var=.005) = BSEM-+cross-loading priors (M =0, Var
=.005); BSEM-CL(Var=.02) = BSEM+cross-loading priors (M = 0, Var = .02); BSEM-RC = BSEM+Residual covariances (M = 0, Var
=.01); BSEM-RC(Var=.005) = BSEM+Residual covariances (M = 0, Var = .005); BSEM-RC(Var=.02) = BSEM+Residual covariances
(M =0, Var =.02); BSEM-CLRC= BSEM+Residual covariances and cross-loadings (M=0, Var=.01); BSEM-CL(M=1) = BSEM-cross-

loading priors (M =1, Var =.

01).
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Maijor loadings
AGRE EMOT EXTR OPEN
CFA+CUs - L 3 L 2 L L
ESEM+CUs - * s - -
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Cross-loadings
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Figure 4. Factor loadings across models based on the Big-five Data.

Note. Dot points present average major loadings or cross-loadings for each factor; error bars present +/- SE of correlation coefficients for
CFA and ESEM and +/- posterior SD for BSEM models. BSEM-CL = BSEM+cross-loading priors; BSEM-RC=BSEM-+residual

covariance priors; BSEM-CL

RC=tcross-loading priors + residual covariance priors
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