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Contingency tables provide a convenient format to publish summary data from confidential
survey and administrative records that capture a wide range of social and economic
information. By their nature, contingency tables enable aggregation of potentially sensitive
data, limiting disclosure of identifying information. Furthermore, censoring or perturbation
can be used to desensitise low cell counts when they arise. However, access to detailed cross-
classified tables for research is often restricted by data custodians when too many censored or
perturbed cells are required to preserve privacy. In this article, we describe a framework for
selecting and combining log-linear models when accessible data is restricted to overlapping
marginal contingency tables. The approach is demonstrated through application to housing
transition data from the Australian Census Longitudinal Data set provided by the Australian
Bureau of Statistics.
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1. Introduction

Governments, statistical agencies and data custodians are increasingly using contingency or

frequency tables to make data available to the public on a wide range of topics including

health, demography, education, and the economy. Tabular data can provide insights on

associations among variables and are underpinned by the long-standing statistical framework

of log-linear models (see Birch 1963; Bishop et al. 1975; Agresti, 1981; Cameron and

Trivedi 1998; Nelder and Wedderburn 1972; Agresti 2002; Bergsma et al. 2009, among

others). Importantly, contingency table data can provide statistical outputs whilst

preserving the privacy and anonymity of the individuals from which the data are derived.

Making data publicly available is difficult while maintaining the legal and ethical

requirements to protect individuals’ privacy. Recently, new software and resources have
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enabled organisations to provide safe online access to sensitive data by generating

contingency table summaries dynamically from user queries, for example TableBuilder

used by the Australian Bureau of Statistics, ABS (ABS 2012). The derived tables are only

released after balancing the utility and confidentiality risk (Chipperfield et al. 2016). These

dynamically-generated contingency tables are a powerful resource for applied researchers

to utilise for discovering patterns and associations in the data whilst preserving privacy. In

particular, dynamically-generated tables have found favour among national statistical

agencies, including the United States Census Bureau, the United Kingdom’s Office for

National Statistics, Statistics Netherlands, and the Australian Bureau of Statistics (Duncan

et al. 2011; Chipperfield et al. 2016), and are often used to release census data.

To mitigate privacy risks, data custodians can employ a number of statistical techniques

to control disclosure. For example, they may limit the number of variables allowed to be

reported simultaneously, or place limits on the frequency of small cell sizes. Query

restrictions, such as these, reduce disclosure risk for sensitive information, but do come at

a cost to statistical analysis (Domingo-Ferrer and Mateo-Sanz 1999). Specifically, these

restrictions may prohibit the user from accessing all the variables of interest in a single

contingency table which is problematic for robust analysis. Practically, users can mitigate

these restrictions by requesting a set of separate but overlapping contingency tables to

analyse individually. In this article we focus on overlapping tables, specifically a set of

contingency tables where the pairwise intersection of variables in any two tables is a common

nonempty subset of the available variables. Section 2 provides an illustrative example.

To address privacy and disclosure concerns in the analysis of unit record administrative

data, Lee et al. (2017) have recently proposed a modelling framework that computes

sufficient statistics from separate data sources that may include subsets of “similar

structure” (e.g., subsetting by natural spatial groupings such as state) from a single big

database, and potentially subsets from other databases that are relevant to different levels

of a hierarchical model. The sufficient statistics are computed by the data custodian, but

are combined by the researcher for construction of the log-likelihood to obtain model

estimates that approximate those that would be estimated from the full data set. It is further

proposed that this modelling framework could be incorporated into data extraction tools

provided by data custodians, such as TableBuilder. However, until this has been achieved,

researchers will need to rely on analysis of aggregated data from overlapping contingency

tables for many applications. In this article, we outline an approach for model estimation

by combining output from separate contingency tables.

In the framework of log-linear models we show that, after an appropriate adjustment,

model selection can be used to compare overlapping contingency tables, thereby

computing relative importance of the explanatory variables. In addition, we re-purpose an

existing technique to combine models for the overlapping tables to form the appropriate

higher order model allowable by the restricted data.

The article is structured as follows. In Section 2, an illustrative example of a relevant

scenario requiring access to and analysis of confidential data is explored. Section 3

provides an overview on (marginal) log-linear models, and describes the methods we use

to compare and combine the models in detail. Section 4 applies the methodology to

Australian housing tenure transition data from the Australian Longitudinal Census

Dataset, and a summary of the method and conclusions is discussed in Section 5.
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2. Illustrative Example

Scenario: A regional subset of a population census classifies each person by four sensitive

categorical variables. The data set is held securely by a data custodian who has chosen to

release the data online using dynamically generated contingency tables. However, the

custodian has deemed that releasing the full contingency table (the super-table) poses a

privacy risk due to the small regional population size (in reality this assessment can be

done in real-time based on some measured sparsity of the table requested, see Chipperfield

et al. (2016) for example). As such, they will only allow tables with up to two variables

(the marginal tables) to be released. Under this restriction, there are two analyses that may

be of interest – but currently unavailable to researchers. The first involves investigating

which two variables (of the four) best explain the count data observed. Meanwhile, the

second builds a model that encompasses all four marginal (overlapping) tables.

The above scenario is simplified, but in essence demonstrates the problem this article

addresses. The relationship between super- and marginal tables is illustrated in Figure 1,

where an inaccessible contingency table (the super-table S ) is marginalised into three

unique tables (the marginal tables M1, M2, and M3) each with fewer variables than the

super-table. In this example, the super-table has four categorical variables, C1, C2, C3, and

C4. All of which can each take one of two values in this example. For simplicity, we label

these values with integers 1 and 2. The marginal tables each contain two of the variables

from the super-table, always the overlapping variable C1 and one remaining variable from

{C2, C3, C4}. The count data are aggregated according to the marginalisation of the

variables excluded in each marginal table.

The issue here is that the log-linear models are not directly comparable when they are

estimated from the marginal tables. Specifically, straight-forward comparison requires that

the cell probabilities in the super-table are estimated under the constraints imposed by

each marginal model (Bergsma et al. 2009). As the super-table is inaccessible, neither the

cell probabilities nor the estimated model parameters can be compared without some

adjustment. After addressing this first issue, we will discuss how to perform joint inference

on the marginal tables.

3. Methods for Overlapping Marginal Log-Linear Models

3.1. Background

Contingency table cell counts can be used to fit log-linear models formulated under the

generalised linear modelling (GLM) framework (Nelder and Wedderburn 1972) with a log

link function and Poisson distributed counts. Contingency tables can also be modelled

with a multinomial distribution. These are also referred to as log-linear models as the

Poisson and multinomial regressions have equivalent maximum likelihood point estimates

under mild assumptions (Lang 1996).

The sufficient statistics of marginal log-linear models are the maximum likelihood

estimates of the expected frequencies under the corresponding marginal contingency table.

This follows from Birch’s theorem (Birch 1963), which implies that the maximum

likelihood estimates match the marginal distributions and also ensures that the associations

and interactions satisfy the model-implied patterns. In other words, there is a unique set of
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∑i,j y1i1j
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∑i,j y2i2j
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Fig. 1. Illustration of accessible marginal tables nested in an inaccessible super contingency table. Each

marginal table contains C1, the overlapping variable, and one of the remaining variables from the super-table

{C2,C3,C4}.
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fitted values that both satisfy the marginal model and match the data in the sufficient

statistics, and this unique solution is the maximum likelihood estimate. Regression

coefficients from log-linear regression models can be equivalently specified as

associations, expected counts or cell probabilities.

Following notation from Lang (1996), a probability vector p containing probabilities

from a contingency table can be specified by the log-linear model

logðEðpÞÞ ¼ j ¼ Xb ð1Þ

where the cell probabilities are related to the cell counts m by p ¼ n 21m, and n is the sum

of all counts. The vector j contains the expected probabilities on the log-scale, and Xb

codes the associations between cells as in generalised linear modelling with a Poisson

distribution.

Marginal log-linear models have been studied extensively (see Bergsma and Rudas

2002; Bergsma et al. 2009, and references therein). These can be used to fit models where

some associations (or equivalently cell probabilities) among the table cells are restricted or

removed. Marginal models can be estimated with restrictions specified by Lagrangian

multipliers added to the log-likelihood of the full model. Hence, the full data set is used in

the fitting procedure. This is appealing since it ensures that when several marginal models

are estimated, they are comparable because only the constraints have changed (the

likelihood is still based on the same data set). While this study considers marginal models,

the issue addressed here differs with regard to availability of the data for analysis.

Specifically, the joint (or full) contingency table is not accessible, hence the constrained

estimation approach to marginal models is not possible. We consider the situation where

several marginal, overlapping contingency tables are accessible instead.

To clearly distinguish the general contingency tables we reference within this article,

we refer to the inaccessible table which would encompass all of the marginal tables as

the super-table. In particular, we are interested in fitting and comparing decomposable

graphical log-linear models on this super-table.

Decomposable graphical models have several advantages over their non-decomposable

counterparts. First, the maximum likelihood estimates can be found explicitly. Second,

closed form solutions exist for the sufficient statistics. Third, a necessary condition for

decomposability is that the models are hierarchical; the absence of an interaction forces all

related higher-order interactions to be excluded, which aids in interpretability. Finally, an

attractive feature of decomposable graphical models is that they can be interpreted in terms

of their patterns of conditional independencies, which can also be displayed graphically.

A decomposition method for fitting hierarchical log-linear models with large

contingency tables was proposed by Dahinden et al. (2010). In essence, associated

subsets of variables are identified from a super-table, after which cell probabilities for each

subset (or marginal table) are estimated using log-linear models. The results are combined

using the decomposability property of graphical models (Lauritzen 1996). Sparsity can be

considered using Lasso or model selection on the sub-models. In our application, with

access restricted to marginal tables, it is the decomposability property that can be used to

combine the results from several marginal tables. This approach is described in

Subsection 3.3.
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3.2. Comparing Models from Overlapping Tables

When the super-table is inaccessible, the constrained formulation of marginal models is

not possible to implement. As such, the marginal models must be estimated from the

different marginal data sets available, as illustrated in Section 2.

The approach addressed in this article is the converse of the situation in Allison (1980),

where the results demonstrated the equivalence in estimated probabilities between

collapsed and uncollapsed data sets. Their intention was to fit marginal models on

contingency tables while avoiding collapsing the table itself. We, on the other hand, would

like to estimate the same probabilities (or equivalently frequencies) for the full table, using

only the collapsed data set.

Specifically, Allison (1980) demonstrates how the estimated cell frequencies from the

full table and the collapsed table are equivalent when the frequencies from the former are

also collapsed. The two frequency vectors share the same association structure (model

equation) that must be collapsible for the given data. Collapsibility, as discussed in Bishop

et al. (1975), is the key to ensuring these frequencies are equivalent (after adjusting for

multiplicity) – it says that collapsing over one set of variables will not affect the

parameters in a second set, if the two sets are independent. In our case, and in Allison

(1980), the collapsed variables are not included in the model, and are therefore

independent of the variables that are included.

In our analysis we fit several Poisson GLMs with overlapping explanatory categories

with their respective collapsed or marginal data. We adjust the log-likelihood of each

marginal model (after estimation) so that it is as if each model had been estimated using

the super-table data, which contains all categorical variables used in every model. The

association structure of each marginal model does not change. We must make this

adjustment so that model selection techniques can be appropriately applied. As mentioned,

the adjustment relies on the equivalence between probabilities from the model estimated

with marginal data to the same model fitted using the super-table (Bishop et al. 1975;

Allison 1980). The linear model coefficients (describing the associations) will be equal

under both scenarios, except for the intercept terms which differ depending on the number

of rows in each model matrix.

Below, we derive the exact adjustment needed to compare overlapping marginal

models using likelihood-based metrics such as AIC (Akaike 1974). This adjustment is

implicitly linked to sufficiency in marginal log-linear models and the constrained

formulation of marginal log-linear models (Bergsma et al. 2009), but the authors

have not been able to locate a previous derivation in the literature. Note that in the

following derivation we describe two estimated vectors of probabilities that share a

single association structure, the model equation. The first model is hypothetically

estimated using the super-table as data, since this data is unavailable in our application,

while the second model uses marginal data sufficient to estimate the model equation of

interest.

In order to prove our result, we start by establishing a connection between two log-linear

models estimating the model equation (identical design matrix, X, and coefficient vector,

b). The models differ only in the data used to fit each of them – but both data sets are

sufficient to estimate the given association structure. The first model uses the vector of
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counts y ¼ y1 y2 · · · ym

� �`
; of length m (counts from the super-table), while the second

uses a collapsed vector of counts yk ¼ yk1 yk2 · · · ykmk

� �`
; of length mk. This technique is

then applied to the set of marginal, overlapping data sets, so that correct model

comparisons can be made.

The following assumptions are required in order to equate the probabilities estimated

from the marginal data to those estimated using the super-table:

1. The association structures, or model equations, to be estimated for each data set of

counts (y and yk) are identical.

2. The marginal data (yk) is sufficient to estimate the model equation.

3. The counts (or cells) from the super-table, y, have been collapsed to yk using M, as

described in Equation (2).

4. The variables that are collapsed are irrelevant under the given model equation.

Of the above assumptions the fourth is the strongest, although it is one that we have to

make under any modelling strategy when only the marginal contingency table is

available.

Let M be a matrix that collapses a vector of counts, y, from the super-table to the

observed counts in the marginal table, yk. Specifically, these two vectors are related by

yk ¼My: ð2Þ

The matrix M is a mk £ m matrix containing only zeros and ones. Every column of

M contains only one unit element, while every row contains r ¼ m=mk (an integer) unit

entries. The matrix M is a type of incidence matrix that sums the counts in y to the

counts in yk and describes the marginalisation of the model. The following identity is

useful:

yki ¼
Xm

j¼1

Mijyj ¼
j:Mij¼1

X
yj ð3Þ

where the first equality holds by definition, and the last equality holds since each

element of M is either one or zero.

Using the illustrative scenario in Section 2 as an example, the matrix M that collapses

the counts in super-table S to the marginal table M1 is

M ¼

1`
4

1`
4

1`
4

1`
4

2

666664

3

777775
where 1`

4 ¼ 1 1 1 1
� �

with zeros filling the blank cells.

The estimated cell probabilities from the model with marginal data, say p̂k, are related

to the cell probabilities, p̂, in the constrained marginal formulation by

p̂k ¼Mp̂ ð4Þ
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under Assumptions 1–4. In other words, the estimated probabilities of the models with

collapsed data and uncollapsed data (super-table) are equal, up to a multiplicative constant

that accounts for the difference in the number of cells for each data set. This is only true

because the association structure being fitted, as in Allison (1980), does not change across

the marginal (collapsed) data and super-table (uncollapsed data).

Another property of the estimated probabilities, p̂, is that its elements repeat according

to the pattern of zeros and ones in M, as such

p̂s ¼ p̂t if Mis ¼ Mit ¼ 1; for some i [ 1; 2; : : : ; mk
f g: ð5Þ

That is, cells in the super-table that share the same association structure under the marginal

model (the marginal model mean equation) will have the same estimated probability

(Allison 1980).

The identity for the counts in Equation (3), also holds for the probabilities, that is

p̂k
i ¼

j:Mij¼1

X
p̂j ð6Þ

which can be combined with Equation (5) to give

p̂k
i ¼ rp̂j if Mij ¼ 1; ð7Þ

since each p̂j in the sum of Equation (6) for a given i are equal, and there are r probabilities

being summed in each row of M. To explain intuitively, as per Equation (5), using the

super-table to estimate the marginal model (instead of a sufficient collapsed data set)

results in dividing each probability evenly across r cells of the super-table since the same

mean equation is repeated r times. It is also true that

j:Mij¼1

X
1 ¼ r; ð8Þ

that is the row sums of M are equal to r, the multiplicity factor that arises from collapsing

the cells and hence probabilities.

Using the estimated cell probabilities, the Poisson log-likelihood for the model with

collapsed, or marginal data is

log L p̂kjyk
� �

¼
Xm k

i¼1

yki log p̂k
i þ log n

� �
2 np̂k

i 2 log yki !
� �

ð9Þ

for vector of observed count data, yk where n ¼
Pm k

i¼1yk
i : The log-likelihood for the

model with marginal data can be rewritten using Equations (3), (7), and (8) in the

following way
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log L p̂kjyk
� �

¼
Xmk

i¼1

  

j:Mij¼1

X
yj

!

log p̂k
i

� �
þ log n

� �
2 np̂k

i

!

þ c yk
� �

¼

 
Xmk

i¼1

 

j:Mij¼1

X
yj log p̂k

i

� �
þ log n

� �
!

2
1

r j:Mij¼1

X
np̂k

i

!

þ c yk
� �

¼

 
Xmk

i¼1 j:Mij¼1

X
yj log p̂k

i

� �
þ log n

� �
2

n

r
p̂k

i

� �
!

þ c yk
� �

¼

 
Xmk

i¼1 j:Mij¼1

X
yj log rp̂j

� �
þ log n

� �
2 np̂j

� �
!

þ c yk
� �

¼
Xm

j¼1

yj log p̂j þ log r þ log n
� �

2 np̂j

� �
þ c yk
� �

¼ log L p̂jy
� �

2 c y
� �
þ n log r þ c yk

� �
:

The integer n is the total of the counts, n ¼
Pm

i¼1yi ¼
Pmk

j¼1ykj ; whose equality across

holds approximately when perturbations have been added for further privacy. The

constants are defined as c yk
� �

¼ 2
Pmk

i¼1 log yki ! and c y
� �
¼ 2

Pmk

j¼1 log yi!. Thus an

equivalence between the log-likelihood using the super-table, log L p̂jy
� �

; and log-

likelihood using the marginal data, log L p̂kjyk
� �

; can be expressed as

log L p̂jy
� �

2 c y
� �
¼ log L p̂kjyk

� �
2 c yk
� �

þ n log mk 2 log m
� �

: ð10Þ

The constant c(y) cannot be calculated because the super-table is inaccessible.

However, for quantities where a difference is of interest, such as information criteria, the

c(y) cancel out. The relative adjusted AIC for a marginal-data model with probability

vector pk and size mk can be calculated as

aAIC pk;yk;k;mk
� �

¼2k22 logL p̂kjyk
� �

2c yk
� �

þ logmk2 logm
� �Xk

i¼1

yki

 !

: ð11Þ

The above aAIC is relative because it does not include the constant from the log-

likelihood. The number of association parameters is k, and the constant m should be fixed

for a given set of overlapping marginal tables. It is the product of the number of levels in

the set of unique variables among all marginal tables (see Subsection 4.2).

3.3. Combining Models for Overlapping Tables

We refer to the combination of marginal models as stitching and refer to the result as a

stitched model. The stitching process takes the several overlapping log-linear models and

generates the equivalent model if all parameters had been estimated jointly with a

contingency table that would enable this. The method we describe has been re-purposed

from Dahinden et al. (2010) who consider the case where the full data set is available.
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The stitching of marginal models is possible when the set of marginal models to be

combined together are a decomposition of a possible hierarchical model on the super-

table. Decomposability can be described by considering the log-linear regression as a

graphical model (Darroch et al. 1980) with graph G ¼ (V, E), having vertex set V, and

edge set E. Define a subgraph of G induced by W , V as G[W ] ¼ (W, {(u, v) [ E : u,

v [ W }), effectively the graph remaining from G after removing all vertices absent from

W (and all hanging edges). A partition of the vertex set, V, into {A, S, B} is a

decomposition if G[S ] separates G[A ] from G[B ], and G[S ] is a complete graph. A vertex

subset S , V is a (vertex) separator for A and B if its removal from G separates A and B

into disconnected components. We refer to the vertex set S as the separator.

The decomposability of a graph is defined recursively; a graph is decomposable if it is

complete or if there exists a decomposition {A, S, B} such that the subgraphs G[A < S ]

and G[S < B ] are decomposable. We refer the reader to Leimer (1993) for further

discussion. An example decomposable graph is shown in Figure 2 and a comprehensive

guide can be found in Darroch et al. (1980).

If a graph is decomposable then a relationship exists between the full graph and its

complete subgraphs: the separators and cliques (vertex set W is a clique if G[W ] is a

complete graph and, for our purposes, not a separator) (Frydenberg and Lauritzen 1989).

s1 s1

(a) Graph G

(c) Separator G[S] (d) Clique G[S     B]

b1

b2

a1

s2

s1

a1

s1

s2s2

s1 b1

b2s2

(b) Clique G[S     A]

Fig. 2. (a) Example of decomposable graph, G, with separator S ¼ {s1, s2}. After the removal of S from the

graph, the subgraphs with nodes A ¼ {a1} and B ¼ {b1, b2} are disconnected. (b) Clique graph G[S < A].

(c) Separator graph G[S]. (d) Clique graph G[S < B]. Notice that G[S < A] and G[S < B] are complete, and

hence this graph satisfies the decomposability definition. Moreover, if G[S < B] were not complete, it would need

to be decomposable to satisfy the recursive definition of decomposability.
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The relationship is the special structure afforded the graph –– conditioning on the

separator vertices emits a conditional decomposition of the graph. In the case of statistical

models where each vertex has associated parameter(s), separators act as the only

intermediaries between cliques, and fixing their values results in independence between

the remaining cliques (Frydenberg 1990). Let the set of cliques be C, and set of separators

be S and note that these sets can be constructed using the recursive definition of

decomposability above.

Following Dahinden et al. (2010) we change notation slightly to accomodate the graph

theory used in this section. Let p(i ) be the probability of belonging to particular categories

of a set of variables denoted by i, from a decomposable graph (log-linear model). Let p(iC)

and p(iS) denote the probability of the same categories but from the clique C and separator

S respectively. In terms of log-linear modelling, p(i ) is the estimated probability of a

particular observation from the super-table, whereas p(iC) and p(iS) are calculated from

specific marginal models (derived from the overlapping tables we have access to). The

relationship in logarithmic terms is

log p ið Þ ¼
C[C

X
log p iCð Þ2

S[S

X
v Sð Þ log p iSð Þ ð12Þ

where v(S) is the index of separator S, describing the number of times S acts as a separator

(Lauritzen 1996). Using the relation in Equation (12), the estimated marginal models can

be stitched or combined together. The resulting probabilities are from the equivalent joint

model on the inaccessible super-table. Equation (12) accounts for the multiplicity of

the separator in the estimates from the cliques in the decomposed graph. For example, the

separator S appears in both cliques shown in Figure 2. In this case, the index of

the separator is v(S) ¼ 2 2 1 ¼ 1 (see (Lauritzen (1996) for further details).

In the case of a log-linear model with a non-decomposable graphical counterpart, a

minimal triangulation can be used in order to form a decomposable graph [see Rose et al.

1976; Olesen and Madsen 2002, for example]. Under the overlapping structure we

consider, the graph generated by stitching saturated marginal models together is already

decomposable, so no triangulation is needed. However, for stitching non-saturated

marginal models together we suggest beginning with the triangulation equivalent to the

saturated models, then using thinning (removing edges added during triangulation) to

construct a minimal triangulation (Jones and Didelez 2017). In some circumstances, edge

removal (removing existing model edges) may also be necessary to guarantee a model that

is both decomposable and graphical – in order to ensure that the necessary sufficient

statistics are available from the marginal models.

Our analysis in Section 4 stitches the saturated models from each of the marginal tables

together to form a joint model across all available combinations of variables. The estimated

probabilities from the resulting model can be used to calculate standard model summaries,

such as estimated association coefficients, prevalence ratios, and information criteria.

4. Analysing Housing Transitions from the ACLD

Purchasing a home in Australia is a significant stage in an individual’s life course and the

prevalence of home ownership is an important indicator of a country’s economic
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performance. Understanding the drivers of transitions into home ownership is therefore of

considerable social and economic interest and is often the subject of life course research

(see, for example Spallek et al. 2014). In Australia, a rich source of data on housing tenure

transitions is the Australian Census of Population and Housing (“Census”), conducted

by the ABS. We investigate home ownership transitions and their associations with

demographic factors using a derivative of the 2006 and 2011 Censuses, the Australian

Census Longitudinal Dataset (ACLD), (Chipperfield et al. 2017).

4.1. Data

The 2006–2011 ACLD contains information from a five-percent random sample of the

Australian population selected from the 2006 Census and then subsequently linked to the

2011 Census. The final linked data set (the ACLD) consists of 800,759 records (ABS

2013). The differences between the original sample of the 2006 Census and the final linked

sample are attributable to either deaths and overseas departures that occurred between

the 2006 and 2011 censuses, or due to unsuccessful linkages because of inconsistent or

missing information. The ACLD may be accessed with the TableBuilder software product,

an online table creator that allows users to build contingency tables from ABS data without

accessing unit records (Chipperfield et al. 2016; ABS 2012). TableBuilder is subject to

both query restrictions and perturbations to ensure anonymity of the individuals from the

underlying data.

The ideal approach to investigating home ownership transitions using the ACLD would

be to create a super-table including housing tenure transitions cross-tabulated with all other

variables of interest. However, due to query restrictions, requests to TableBuilder with more

than 14 variables and 44 categories exceed the cell limit allowed for contingency tables.

Therefore, a new strategy is needed to develop a model with the required variables. We

created what we refer to as a base contingency table including housing tenure transitions

between 2006 and 2011, categorised by age, and gender. Transitions of each variable,

previously shown to be associated with housing tenure transitions, were added to the base

contingency table to form a new, separate contingency table. This resulted in six

contingency tables (CT1–CT6), where CT1-base contains age, gender and housing tenure

transitions; CT2-children contains all CT1-base variables and children status transition;

CT3-family contains all CT1-base variables and family status transition; CT4-labour

contains all CT1-base variables and labour transition; CT5-marital contains all CT1-base

variables and marital transition; and CT6-geography contains all CT1-base variables and

geographical transition. To assess which of these variables was most strongly associated

with housing tenure transitions, we applied a set of log-linear models to each of the

contingency tables CT1–CT6 and used the AIC to select the best model (BM1–BM6) for

each contingency table (CT1–CT6). The set of log-linear models applied to each of

CT1–CT6 ranged from models with single main effects to saturated models which includes

all interactions. After adjusting the AIC for each best model (BM1–BM6), as discussed in

Section 3, we compared BM1–BM6 to identify which of the demographic variables has the

strongest association with housing tenure transitions in conjunction with age group and sex.

The analytical sample in this example is restricted to non-Indigenous Australians aged

between 20 and 60 years old who did not own a house outright in 2006. We do not consider
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those aged over 60 years old, because individuals in this age group experience transitions

in home ownership related to different events, for example retirement. Our final sample

consists of 260,595 individuals from the ACLD who have data linked between the two

census time points.

Each of the six contingency tables (CT1–CT6) contain variables age, sex, housing

tenure transition, and one additional transition variable. Housing tenure transitions are

distinguished between renting (or other) and owning with a mortgage, coded as 1 and 2

respectively. Individuals owning a home outright are excluded from this analysis. For

illustrative analysis we consider the core variables of interest to be sex (coded as

1 ¼ ‘Male’; 2 ¼ ‘Female’) and age (coded as 1 ¼ ‘21 to 30 years old’; 2 ¼ ‘31 to 40 years

old’; and 3 ¼ ‘41 to 60 years old’), While the additional transition variables are; children

status (coded as 1 ¼ ‘No children (0–4 years)’; 2 ¼ ‘One child (0–4 years)’; 3 ¼ ‘Two

or more children (0–4 years)’; and 4 ¼ ‘Not applicable’), family status (coded as

1 ¼ ‘Couple family, no children’; 2 ¼ ‘Couple family, children under 15’; 3 ¼ ‘Couple

family, no children under 15’; 4 ¼ ‘One parent family, children under 15’; 5 ¼ ‘One

parent family, no children under 15’; 6 ¼ ‘Other family, or not applicable’), labour status

(coded as 1 ¼ ‘Employed’; 2 ¼ ‘Unemployed’; 3 ¼ ‘Not in the labour force or other’),

marital status (coded as 1 ¼ ‘Married’; 2 ¼ ‘Never married’; and 3 ¼ ‘Separated,

divorced, or widowed’), and geography status (coded as 1 ¼ ‘Australia Major Cities’;

2 ¼ ‘Australia Regional’; and 3 ¼ ‘Remote or other’). Table 1 summarises the

demographic variables of the analytical sample from the ACLD.

The analytical sample includes slightly more females than males (52.2% versus 47.8%),

with the majority being aged between 41–60 years (40.7%). In 2006, 36.6% of individuals

were renting, which decreased to 31.5% in 2011. The percentage of people owning their

own home with a mortgage increased, as would be expected with the same ageing

population, from 63.4% to 68.5% during these five years to 2011. In 2006 the majority of

people had no children between the age 0–4 years (41.1%), defined their family status as

being a couple family with children less than 15 years old (40.0%), were employed

(80.0%), married (55.9%) and lived in an Australian major city (72.3%). With regard

to these variables and related categories, there were no major differences in their

distributions between 2006 and 2011 with the exception of the percentage of married

individuals, which increased by 5.5%. While the distribution of individuals across the

categories of most variables was stable, this masks the changes at the individual level.

4.2. Empirical Validation

Before conducting the main analysis, we validate the comparison method discussed in

Subsection 3.2 by fitting the identical models on the six contingency tables (CT1–CT6)

generated by TableBuilder and introduced in Subsection 4.1. The “validating” log-linear

model regresses the counts from each table with combinations of the categories in Table 1

from sex (S), age (A), and housing tenure transition (T2006 £ T2011). The notation T2006 £

T2011 represents the interactions of the categories in housing tenure in 2006 and 2011,

namely, rent to rent, rent to own, own to rent, own to own (ownership is always with a

mortgage). In general, we will suppress multiplication symbol in C1 £ C2 and simply write

the C1 C2. The validating model can therefore be represented by the notation S A T2006 T2011.
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To use the adjusted log-likelihood (and hence the adjusted AIC) in Equation (10) we

need to calculate the size of the super-table, m, which would have CT1–CT6 as marginal

models. This can be calculated by taking all the unique variables in CT1–CT6, then

finding the product of the number of levels for each variable. Alternatively, since CT1 is

nested in each marginal model m can be calculated by m ¼ mk
1

Q6
i¼2

�
mk

i =mk
1

�
where mk

i is

the number of cells in CTi.

Table 2 contains the unadjusted and adjusted AIC values for each table using the model

S A T2006 T2011. The unadjusted AIC values demonstrate that although each contingency

table is derived from the same underlying information, and in aggregate will be almost

identical, the AIC values from an identical model still differ. There are two reasons why

the AIC values are different. Firstly, the number of cells differ across contingency tables

(see “n. cells” in Table 2) and secondly, some counts have been perturbed. Since each

contingency table is a non-identical data set the justification for the AIC no longer holds.

As discussed in Section 3, the relative adjusted AICs can be used for model comparison

instead. The relative adjusted AIC is shown as a value and as a proportion in columns 3

and 4 of Table 2. The relative value is given because the AIC from the super-table can only

be evaluated up to a constant, as noted in Subsection 3.2. The proportional value of the

adjusted AIC is shown to demonstrate the magnitude of the differences of the adjusted AIC

values. The adjusted AIC results show that there is a small discrepancy in the adjusted AIC

of less than 0.02%. This error is due to the perturbations that differ for every unique data

set retrieved from TableBuilder (Chipperfield et al. 2016).

4.3. Comparing Marginal Models from the ACLD

To identify the best model (BM1–BM6) for each of the contingency tables CT1–CT6, we

performed step-wise selection using the unadjusted AIC. The analysis was conducted in

the statistical language R (R Core Team 2016). Following this, the adjusted AIC is

calculated for each of the best models (BM1–BM6) so that a comparison is possible across

BM1–BM6. Table 3 shows these relative adjusted AIC along with the total number of

observations (mk), the number of coefficients in the model (k) and remaining degrees of

freedom (df). Table 3 is ordered by the relative adjusted AIC. The model including the

geographical transition was selected as the best model overall (of BM1–BM6), followed

by the models including labour status and family status transitions. Unsurprisingly, the

Table 2. Adjusted AIC of marginal contingency tables on validating model: S A T2006 T2011.

unadjusted
AIC

Relative adjusted AIC

Table n. cells aAIC 2 min(aAIC) aAIC
minðaAICÞ

2 1

%

CT1-Base 308 24 428 0.019
CT2-Children 450,743 384 140 0.006
CT3-Family 632,602 864 16 0.001
CT4-Labour 630,264 216 327 0.014
CT5-Marital 525,031 216 0 0.000
CT6-Geography 682,548 216 263 0.012
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base model which contains only age, sex and housing tenure transition yielded the highest

relative adjusted AIC and hence was the worst performing model by the AIC.

Table 4 details the interactions that are present in the best model (BM1–BM6) for each

of the six contingency tables (CT1–CT6). Each of BM1–BM6 contains the main effects

and all 2nd degree interactions, but inclusion of higher degree interactions differed

across models. For example BM1-base includes all 3rd but no 4th degree interactions,

namely the model represented by A T2006 T2011 þ S T2006 T2011 þ S A T2011 þ S A T2006.

Table 3. Adjusted AIC comparison of the best models for each marginal contingency table (CT1–CT6).

Best model mk k df

Relative adjusted AIC

aAIC 2 min(aAIC) Ranking

BM6-Geography 216 162 54 0 1
BM4-Labour 216 200 16 52,502 2
BM3-Family 864 684 180 54,644 3
BM5-Marital 216 178 38 157,406 4
BM2-Children 384 324 60 233,260 5
BM1-Base 24 22 2 680,874 6

Table 4. Best models (BM1–BM6) for each contingency table (CT1–CT6) by step-wise AIC. All BMs have main

effects and 2nd degree interactions.

Best model
3rd degree
interactions

4th degree
interactions 5th degree interactions

BM1-Base All None –

BM2-Children All All, excluding:
S A T2011 C2006,
S A T2011 C2011

S T2006 T2011 C2006 C2011,
S A T2006 C2006 C2011,
A T2006 T2011 C2006 C2011

BM3-Family All All, excluding:
S A T2011 F2006

S T2006 T2011 F2006 F2011,
A T2006 T2011 F2006 F2011

BM4-Labour All All S A T2006 L2006 L2011,
S A T2011 L2006 L2011,
S T2006 T2011 L2006 L2011,
A T2006 T2011 L2006 L2011

BM5-Marital All All, excluding:
S A T2011 M2006

S A T2006 T2011,
S T2006 T2011 M2011

S A T2006 M2006 M2011,
A T2006 T2011 M2006 M20ll

BM6-Geography All, excluding:
S T2006 G2006,
S T2011 G2006

All, excluding:
S A T2006 G2006,
S A T2011 G2006,
S T2006 T2011 G2006,
S T2006 G2006 G2011,
S T2011 G2006 G2011

S A T2006 T2011 G2011,
A T2006 T2011 G2006 G2011
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BM6-geography was found to be the best model including two of a possible six 5th degree

interactions, two-thirds of the possible 4th degree interactions, and almost all 3rd degree

interactions as specified in Table 4. Note that all models BM1-BM6 except the base model

(BM1-base) included a 5th degree interaction containing age, housing tenure transition,

and the transition of their additional variable. This indicates that there is an important

association with tenure transition across all the additional variables investigated.

Selected prevalence ratios from the BM6-geography are described in Table 5 to

demonstrate some inferences that can be draw from this model. The prevalence ratios

indicate that individuals remaining in the city (i.e., city to city transition) were most

associated with transitioning from renting in 2006 to owning (with a mortgage) in 2011,

across all age groups and sexes. The second strongest association was observed for

individuals remaining in regional locations, which also persisted across all age groups and

sexes. Females, aged 21 to 30 in 2006, and remaining in the city had the highest mean

association with transition into home ownership. The prevalence ratio indicated that

compared to females, aged 21 to 30, who remain in remote areas, females in the same age-

group who remain in the city were approximately 108.54 times more likely to move from

renting to owning. Comparing males to females in each age group and geographical

transition, shows that the confidence intervals for the prevalence ratios overlap. This is to

be expected since the two 5th degree interactions relevant to the best geography model

(see Table 4) do not include an interaction between sex and the geographical locations in

both years. Some of these results are not supported by the analysis once we combine the

models in Subsection 4.4.

4.4. Combining the ACLD Marginal Models

Table 6 contains a selection of results from the stitched model; the model combined from

five marginal models using the decomposability property discussed in Subsection 3.3.

It shows the same values as Table 5, but for the stitched model which has the (factored)

model equation

S A T2006 T2011 ½C2006 C2011þF2006 F2011þL2006 L2011þM2006 M2011þG2006 G2011�: ð13Þ

The stitched model has 1,800 parameters, which is small compared to the 10,077,696

cells of the contingency table that would usually be needed (inaccessible super-table).

To calculate the 95% confidence intervals of the prevalence ratios we used a stratified

(Pearson) residual bootstrap. In each iteration a new data set was randomly generated from

sampling the residuals, and the model estimated using the stitching method. Some

confidence intervals were unstable, and were omitted from the table. Bootstrapping

techniques for stitched log-linear models with variable cell counts will be developed

further in future research.

The mean prevalence ratios of the stitched model (Table 6) are very similar to the best

geography model (Table 5) with baseline geography transition remote-to-remote.

However, the 95% confidence intervals (that were stable) are generally wider than those

from the best geography model. The unstable confidence intervals indicate little

information is actually available for that estimate. The difference arises since the

confidence intervals in the best geography model are calculated from likelihood profiling
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rather than bootstrapping, and come from a model which is more likely to overfit the data

given that the relative number of parameters versus observations is high (162 vs 216), even

after AIC model selection. Even if bootstrapping were undertaken on the best geography

model, the low degrees of freedom will dictate smaller residual sizes and hence smaller

confidence intervals. As such, the stitched model with bootstrapping is a more robust

analysis given the data available to us. It shows that there is actually inconclusive evidence

for many of the categories we made inference about in Subsection 4.3.

There are several inferences from Table 6 that can be made. Females in the 31–40 age

bracket have high odds of becoming homeowners, especially those staying in the city,

staying in regional areas, or moving from regional to city areas. Females in the 21–30 age

group that are likely to become homeowners are those staying in regional areas and

moving from regional to city areas. The mean prevalence ratio for females aged 21–30

staying in the city was the highest estimate in Table 6 but had a large confidence interval.

5. Conclusion

Decomposition and combination of large log-linear models has been used in work by

Dahinden et al. (2010). We adapt this approach to the scenario where contingency table

output is restricted from table builders to a set of overlapping marginal tables. We also

discuss how to compare these separate marginal models appropriately, but find that in our

example the stitched model is more robust.

Table 6. Selected estimated prevalence ratio comparisons from combined log-linear model (stitched) related to

geography component of the model.

Prevalence ratios (95% CI)

21 to 30
Rent to own

31 to 40 41 to 60

Male Female Male Female Male Female

City ! City 81.43† 117.98 62.31† 72.18 43.31† 49.21†

(0.00, 2339.23) (22.76, 671.63)
City ! Region 3.75† 5.11 2.44† 2.46 1.97† 2.98†

(0.92, 55.05) (0.65, 23.00)
City ! Remote 0.57† 0.83 0.33† 0.42 0.34† 0.55†

(0.00, 10.20) (0.13, 3.75)
Region ! City 5.55† 8.4 4.16† 5.04 2.98† 3.89†

(2.24, 94.31) (1.87,44.90)
Region ! Region 20.7† 31.72 17.91† 20.54 16.03† 18.57†

(6.11,383.34) (1.38, 268.53)
Region ! Remote 0.68† 1.15 0.58† 1.16 0.58† 0.62†

(0.11, 13.24) (0.13, 12.02)
Remote ! City 0.33† 0.32 0.17† 0.12 0.22† 0.19†

(0.08, 3.00) (0.01, 1.07)
Remote ! Region 0.30† 0.47 0.06† 0.11 0.25† 0.13†

(0.15, 4.00) (0.00, 0.94)
Remote ! Remote 1* 1* 1* 1* 1* 1*

*Indicates baseline of comparison.
†Indicates that confidence intervals were unstable.
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Table 6 is one of many outputs that can be derived from the stitched model in our

example using housing tenure transitions. There are the other variables, and other housing

transition categories to consider. Different baselines can also be chosen, which emphasises

certain comparisons. We have presented Table 6 since it best relates to our research

question about how Australians move from renting to owning. Defining a research

question is very important in this analysis (as always) because it determined which tables

to request from TableBuilder, which results to extract from our stitched model, and how to

display these results.

This article contributes to the toolbox of applied statisticians and researchers to make

better use of tabular data where access is subject to query restrictions. It is particularly

useful to national statistical agencies (and users of their data sets) who are required to

preserve privacy and implement disclosure controls. Future research may address whether

similar methods can be used for over- or under-dispersed count data.
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Principles and Practice. Statistics for Social and Behavioral Sciences. Springer,

New York, NY, second edition.

Frydenberg, M. 1990. “Marginalization and collapsibility in graphical interaction

models.” The Annals of Statistics 8(2): 790–805. DOI: https://doi.org/10.1214/aos/

1176347626.

Frydenberg, M. and S.L. Lauritzen. 1989. Decomposition of maximum likelihood in

mixed graphical interaction models. Biometrika 76(3): 539–555. DOI: https://doi.org/

10.2307/2336119.

Jones, E. and V. Didelez. 2017. “Thinning a triangulation of a Bayesian network or

undirected graph to create a minimal triangulation.” International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems 25(3): 349–366. DOI: https://

doi.org/10.1142/S0218488517500143.

Lang, J.B. 1996. “On the comparison of multinomial and Poisson log-linear models.”

Journal of the Royal Statistical Society. Series B (Methodological) 58(1): 253–266.

Available at: https://www.jstor.org/stable/2346177 (accessed October 2017).

Lauritzen, S.L. 1996. Graphical models, volume 17. Clarendon Press.

Lee, J.Y., J.J. Brown, and L.M. Ryan. 2017. “Sufficiency revisited: Rethinking statistical

algorithms in the big data era.” The American Statistician 71(3): 202–208. DOI:

https://doi.org/10.1080/00031305.2016.1255659.

Leimer, H.-G. 1993. “Optimal decomposition by clique separators.” Discrete mathematics

113(1–3): 99–123. DOI: https://doi.org/10.1016/0012-365X(93)90510-Z.

Nelder, J. and R. Wedderburn. 1972. “Generalized linear models.” Journal of the Royal

Statistical Society. Series A (General) 135(3): 370–384. DOI: https://doi.org/

10.2307/2344614.

Olesen, K.G. and A.L. Madsen. 2002. “Maximal prime subgraph decomposition of

Bayesian networks.” IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics) 32(1): 21–31. DOI: https://doi.org/10.1109/3477.979956.

R Core Team. 2016. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria. 2016. Available at:

https://www.R-project.org/ (accessed November 2018).

Bon et al.: Analysing Data from Overlapping Contingency Tables 295

https://doi.org/10.1111/anzs.12177
https://doi.org/10.1002/bimj.200900083
https://doi.org/10.1002/bimj.200900083
https://doi.org/10.1214/aos/1176345006
https://doi.org/10.1016/S0898-1221(99)00281-3
https://doi.org/10.1214/aos/1176347626
https://doi.org/10.1214/aos/1176347626
https://doi.org/10.2307/2336119
https://doi.org/10.2307/2336119
https://doi.org/10.1142/S0218488517500143
https://doi.org/10.1142/S0218488517500143
https://www.jstor.org/stable/2346177
https://doi.org/10.1080/00031305.2016.1255659
https://doi.org/10.1016/0012-365X(93)90510-Z
https://doi.org/10.2307/2344614
https://doi.org/10.2307/2344614
https://doi.org/10.1109/3477.979956
https://www.R-project.org/


Rose, D.J., R.E. Tarjan, and G.S. Lueker. 1976. “Algorithmic aspects of vertex elimination

on graphs.” SIAM Journal on computing 5(2): 266–283. DOI: https://doi.org/10.1137/

0205021.

Spallek, M., M. Haynes, and A. Jones. 2014. “Holistic housing pathways for Australian

families through the childbearing years.” Longitudinal and Life Course Studies 5(2):

205–226. DOI: https://doi.org/10.14301/llcs.v5i2.276.

Received June 2019

Revised October 2019

Accepted February 2020

Journal of Official Statistics296

https://doi.org/10.1137/0205021
https://doi.org/10.1137/0205021
https://doi.org/10.14301/llcs.v5i2.276


© 2020. This work is published under 
http://creativecommons.org/licenses/by-nc-nd/3.0 (the
“License”).  Notwithstanding the ProQuest Terms and

Conditions, you may use this content in accordance with
the terms of the License.


