The effects of teaching complex grapheme-phoneme correspondences: Evidence from a dual site cluster trial with at-risk Grade 2 students

Savage, Robert, Georgiou, George, Parrila, Rauno, Maiorino, Kristina, Dunn, Kristy and Burgos, Giovani

This is an Accepted Manuscript version of the following article, accepted for publication in Scientific Studies of Reading.

It is deposited under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
The Effects of Teaching Complex Grapheme-Phoneme Correspondences:
Evidence From a Dual Site Cluster Trial With At-Risk Grade 2 Students

Manuscript submitted 22nd June 2018
Manuscript resubmitted 23rd November 2018, 06th April 2019, and 26th August 2019
Abstract

We evaluated the impact of teaching complex grapheme–phoneme correspondences (GPC) derived from the Simplicity Principle (Vousden, Ellefson, Solity, & Chater, 2011) to at-risk poor readers in Grade 2 classrooms, using a two-arm dual site matched control trial intervention. Poor word readers ($n = 149$) were allocated to either a) Simplicity GPC ($n=79$) or b) Letter-Name Control ($n=70$) small group reading programs, and received intervention for 12-15 hours over 12 weeks. Students were matched on baseline reading, language, parent demographics, and observed regular classroom teaching quality. Results of hierarchical data modeling showed advantages for the GPC-group for word reading, pseudoword reading, and sentence comprehension at post-test moderated by pre-test phonological awareness skills. The results provide support for teaching complex GPCs derived from a ‘Simplicity Principle’ as an approach to intervention for word reading, but suggest that children with low PA need additional supports.

Keywords: dyslexia, intervention, phonics, prevention, reading, simplicity principle
The Effects of Teaching Complex Grapheme-Phoneme Correspondences: Evidence From a Dual Site Cluster Trial With At-Risk Grade 2 Students

The English spelling system is arguably best described as being ‘quasi-regular’ in nature because English is highly inconsistent in the way it maps orthography-phonology relationships (Daniels & Share, 2018; Seidenberg & McClelland, 1989). Many argue that English spelling simultaneously seeks to code both morphemic and phonemic aspects of language (Bowers & Bowers, 2018; Daniels & Share, 2018; Grainger & Ziegler, 2011; Venezky, 1999). Nevertheless, conceptual and computational modeling shows that combinations of 26 letters (graphemes) represent the 44 smallest speech sounds (phonemes) can guide the assembly of word pronunciations from component grapheme-to-phoneme correspondence (GPC) rules (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; Gontijo, Gontijo, & Shillcock, 2003), albeit in a complex fashion (Schmalz, Marinus, Coltheart, & Castles, 2015). Gontijo et al. (2003), for example, have argued that approximately 461 GPC rules can be derived from written English. Given these insights, is there value in teaching some of these complex GPCs to struggling readers? We explore this fundamental question here.

Teaching Grapheme-Phoneme Correspondence Rules

Phonics instruction involves teaching children to apply GPCs to assemble word pronunciations, often through phoneme blending. Much research suggests that GPC knowledge and phonemic awareness serve as dual foundations of phonics, operating as causal co-requisites to decoding (e.g., Byrne, 1999; Hjetland, Brinchmann, Scherer, & Melby-Lervåg, 2017; National Reading Panel, 2000; Schneider, Roth, & Ennemoser, 2000; Stuart & Stainthorp, 2015). Schaars, Segers, and Verhoeven (2017) followed 73 children at genetic risk of dyslexia and 73 matched controls. In kindergarten the “at risk” children demonstrated weak phonemic awareness. In Grade 1, these same children were less efficient word decoders than controls. Early phonemic
awareness and lexical retrieval predicted reading development of both groups of children. Most clearly of all, Hulme, Bowyer-Crane, Carroll, Duff, & Snowling (2012) showed, following an intervention in which teaching of letter-sound knowledge and phonemic awareness improved reading ability, that the improvements in reading were fully mediated by both phonemic awareness and GPC knowledge.

More generally, the evidence for the effectiveness of phonics interventions is also strong. Recently, Savage and Cloutier (2017) provided a tertiary narrative review of nine meta-analytic phonics reviews. All nine reviews showed at least some positive effects for phonics interventions. There is also supportive evidence from large quasi-experimental studies that evaluate national policy shifts towards the use of phonics (Machin & McNally, 2008).

Against this, Suggate (2010) argues that significant effects of phonics interventions are only evident up to Grade 1, with diminishing returns for phonics interventions apparent after Grade 1. There is also a consensus in the field that substantial minorities of ‘treatment non-responders’ continue to struggle to master decoding and word reading even after well-designed and executed phonics interventions (e.g., Jimerson, Burns, & Van Der Heyden, 2016). There is thus much debate currently about the optimal design and duration of sequential phonics programs within popular response-to-intervention (RtI) systems (see Al Otaiba, Kim, Wanzek, Petscher, & Wagner, 2014; Jimerson et al., 2016). Distinct from ‘phonics’ that teaches children how to use GPCs to read and spell words, little attention has been paid to the underlying content of phonics programs in terms of the GPCs taught, and more generally still, on principles and theory behind interventions and of ‘generative’ approaches that might potentially lead to more typical development (Compton, Miller, Elleman, & Steacy, 2014; Snowling & Hulme, 2011).

The Simplicity Principle
Some research has sought to understand the nature and number of GPCs that should be taught to young children (Vousden, Ellefson, Chater, & Solity, 2010; Vousden, Ellefson, Solity, & Chater, 2011). Vousden et al. (2011) generated a database of all words found in 685 popular contemporary children’s books read by children aged 5–7 years in the United Kingdom. All GPCs within these words were coded by frequency of occurrence in the children’s text. Vousden et al. (2011) used this frequency-coded GPC list, alongside the highest-frequency exception words, to model the optimal explanatory power of GPCs and exception words in predicting the percentage of all words in children’s texts rendered readable. Where few GPCs were known, few words could be read. While around 60-70 of the most commonly-occurring GPCs in children’s books yielded progressively larger numbers of words that could be read, adding GPCs after this point showed diminishing returns. This optimally efficient type and number of GPC units that lead to greatest generalization in words in children’s books is the Simplicity Principle for reading.

Vousden et al. (2010, 2011) undertook statistical modeling of text corpora. Only one published study presents behavioral evidence on the impact of using the Simplicity Principle in children. Chen and Savage (2014) explored the effects of teaching the most frequently-occurring complex GPCs derived from Vousden et al. (2011) on reading of Grade 1 and 2 students from one school using a randomized control trial design. Preliminary analysis showed that the students scored more than two standard deviations below average on a standardized reading test and were collectively an ‘at-risk’ group. In the Simplicity program, children were taught complex GPCs (vowel digraphs and other units such as <a_e>, <pp>, <tch>, <igh>, <ed>) ordered by their frequency of occurrence in children’s texts. Children then read texts that richly embodied the GPCs taught in that session and spelled target words that included the taught GPCs. Children were not explicitly taught how to blend GPCs. The children in the control condition were
exposed to the same content and spelling practice with the exception that they were not exposed to the pronunciation of phonemes associated with graphemes. Thirty-eight students received 30 supplemental small group sessions over nine weeks. Participants in the Simplicity group performed significantly better at post-test than the control group, with generally large effect sizes (Cohen’s $d = 1.85$, 0.96, & 0.34 for spelling, word recognition, and reading motivation, respectively).

Chen and Savage provide preliminary evidence of the impact of teaching complex GPCs using content derived from the application of the Simplicity Principle compared to an otherwise identical intervention, but where the individual GPCs were not taught. However, the study is limited by the modest and potentially unrepresentative sample. Given strong evidence that decoding is based upon the dual foundation of phonemic awareness and GPC knowledge (Hatcher et al., 2004; Hulme et al., 2012; National Reading Panel, 2000), one could further predict that teaching Simplicity Principle-derived GPCs will be most effective for children with stronger phonological awareness skills. In this sense, individual variation in phonemic awareness may moderate the effects of attempts to create optimal learning environments based on GPC frequency derived from corpus analysis. In Chen and Savage (2004), all students were reasonably capable phoneme blenders and most could blend CVCs; however, blending was not assessed using standardized tasks, limiting comparisons to other studies.

In the current study, we replicated Chen and Savage’s study at scale, in a large sample of Grade 2 poor readers drawn from multiple school sites in two distinct locations in Canada. We assessed phonemic awareness with a standardized measure and explored the moderating effects of phonemic awareness on students’ response to intervention. Given evidence that successful phonics-based interventions are mediated by the combination of GPC knowledge and phonemic awareness (Hulme et al., 2012), we hypothesized that the improvements in GPC teaching alone
would be strongest among children with stronger pre-test phonemic awareness. Hence, we predicted an interaction effect: Pre-test phonemic awareness will moderate literacy outcomes for the Simplicity-based GPC intervention condition. We also reasoned that children with stronger GPC knowledge and phonemic awareness will have a non-linear advantage over peers with weaker skills in these domains because this dual foundation underpins decoding. Decoding is generative in alphabetic spelling systems through the multiple self-teaching opportunities it engenders (Compton et al., 2011). We thus modelled an intervention x phonemic awareness interaction effect. Finally, given that existing theorizing suggests phonemic awareness and GPCs cause improvement in reading interventions (Hulme et al., 2012), these effects should still hold when we keep pre-test reading ability constant. We thus modelled that specific prediction here.

Method

Design

The study was a dual site cluster matched quasi-experimental pre-test/post-test efficacy intervention trial.

Participants

The participants of this study were 510 children (255 boys, 255 girls) attending Grade 2 in two Canadian provinces (Alberta and Quebec) recruited following university ethics committee approvals for the study and formal parental consent. The children were initially recruited for a larger study on Response to Intervention covering Kindergarten to Grade 3 (Authors, 2018). Children attended 44 classrooms within 21 schools in five school boards. Detailed information on how the initial sample was recruited can be found in Authors (2018).

We first matched schools for location (urban versus suburban schools) and then allocated 19 schools randomly to the two intervention conditions with 9 and 10 schools in each condition. Two schools consented to take part after randomization, so were subsequently added to the
sample through a process of minimization, one being added to each condition. Once the schools were allocated to the two intervention conditions, we tested all 510 children on the Wide Range Achievement Test Word Reading Task (Wilkinson & Robertson, 2006) to identify those at risk for reading difficulties. One hundred forty-nine children (78 boys, 71 girls) with a percentile score equal to or lower than 40 on word reading were deemed “at risk”. No “at-risk” children were excluded from the intervention. The 40th percentile has been widely used as a threshold for reading ‘at grade level’ statewide in the United States, including RtI initiatives and in tools such as DIBELS (Jimerson et al., 2016; Mellard & Johnson, 2008), and worldwide (e.g., in Australia; Reynolds, Wheldall, & Madelaine, 2011). Children attending schools in the Simplicity GPC condition received the Simplicity GPC intervention and children attending schools in the Control condition received the Letter Name intervention (see below). Interventions took place in the winter semester of Grade 2. Around 60 to 70% of the time when children participated in the intervention, it was during Language Arts.

A background information questionnaire revealed that 17.4% of mothers and 19.5% of fathers spoke to their child in French and 5.0% of the children in this sample were spoken to in a language other than English or French at home. Information on mother’s educational level from this questionnaire was compared to 2016 Canadian census data on education for females aged 25-54. The screening sample’s maternal University education level was not significantly different from that of the national population, $\chi^2 1(N = 510) = 0.19, p = .81, ns$. Parent-reported data on children’s learning difficulties was also collected and is reported with other matching data in Table 1.

Materials

Preliminary analyses in one site showed that up to 50% of the at-risk sample was unable to complete passage-level comprehension and fluency tests. Unfortunately, in the other site,
teachers requested that the passage comprehension tests not be administered. Therefore, these measures were not included in the paper.

Listening comprehension. Listening comprehension was assessed using the Group Reading Assessment and Diagnostic Evaluation (GRADE; Williams, 2001). This subtest required students to listen while a research assistant read aloud a sentence or pair of sentences such as ‘Neil will cross the street when the signal light changes’. The students then answered by marking an appropriate item among four line drawing pictures in a student booklet. Of the test questions, 12 of 17 were single-sentence stimuli and the rest contained two sentences. A participant’s score was the total number correct. The Spearman-Brown split-half internal reliability in our sample was .80.

Sentence comprehension. Sentence comprehension was assessed using the Group Reading Assessment and Diagnostic Evaluation (GRADE; Williams, 2001). This subtest required students to read a sentence and then choose a word that best fits into the context of the sentence from four choices. For example, students were asked to select from among the words ‘wish’, ‘show’ ‘give’, and ‘thank’ the word that best fits in the sentence “Remember to ____ your friend for the surprise”. A participant’s score was the total number correct. The Spearman-Brown split-half internal reliability in our sample was .90.

Word reading. Two measures assessed word reading: GRADE (Williams, 2001) and Wide Range Achievement Test-4 (WRAT; Wilkinson & Robertson, 2006). In GRADE, students were assessed on word reading and word meaning. These two word-reading sub-tests were combined to produce a composite that the GRADE manual labels a ‘Vocabulary’ standard score. In word reading, children identified the word read by the examiner from a choice of four visually and/or phonologically similar words (e.g., the word ‘thank’ from among ‘they’, ‘think’, ‘thank’, ‘take’. Word meaning required students to read a target word and choose its matching picture
from four choices (e.g., to select ‘garbage’ from pictures of a bottle, garbage, flowers, grapes). The Spearman-Brown split-half internal reliability of the Vocabulary score in our sample was .94.

In WRAT-4 (Wilkinson & Robertson, 2006, word identification subtest blue form), children were first asked to name 15 letters and then read from a list of 55 lowercase words arranged in increasing difficulty. The test was discontinued after 10 consecutive errors and a participant’s score was the total number correct (max = 70). The Spearman-Brown split-half internal reliability in our sample was .93.

Word Attack. This task from the Woodcock Johnson III Test of Achievement Form B (Woodcock, McGrew, & Mather, 2001) was used to assess students’ ability to decode orthographically legal pseudowords of increasing difficulty (e.g., ‘hap’, ‘mel’, ‘distrum’, ‘gradly’). Initial items required students to identify the sounds of a few single letters; remaining items required the decoding of increasingly complex letter combinations that follow regular patterns in English orthography, but are pseudowords. A child’s score was the total number of correctly read pseudowords (max = 32). The test was discontinued after six consecutive errors. The Spearman-Brown split-half internal reliability in our sample was .97.

Spelling. In the Woodcock Johnson III Test of Achievement Spelling subtest Form B (Woodcock et al., 2001), children were first asked to write upper or lower case letters and then asked to write single words to dictation. The test was discontinued after six consecutive errors and a participant’s score was the total number of correctly written letters and words. The Spearman-Brown split half internal reliability in our sample was .92.

Phonemic Awareness. The Blending Words subtest of the Comprehensive test of Phonological Processing 2 (CTOPP-2; Wagner, Torgesen, Rashotte, & Pearson, 2013) was used to assess students’ ability to blend sounds to words. For example, the tester said ‘what word do
these sounds make? /m/ / ōō / /n/, students had to say ‘moon’. The test was discontinued after three consecutive errors. A child’s score was the total number correct (max = 21). The Spearman-Brown split-half internal reliability in our sample was .83.

Receptive Vocabulary. Form A of Peabody Picture Vocabulary Test-4 (PPVT; Dunn & Dunn, 2007) was administered to assess vocabulary knowledge. Children pointed to a picture that best corresponded to the word provided by the examiner. A participant’s score was the total number correct. The test was discontinued after 8 errors in a block of 12 items. The Spearman-Brown split-half internal reliability in our sample was .93.

Procedure

Test administration. There were two testing periods: Pre-test (December/January of Grade 2) and post-test (May/June of Grade 2). At pre-test, WRAT Word Reading and Woodcock-Johnson Word Attack served to identify the at-risk children. Blending Words was also administered at the pre-test session. PPVT was administered in the spring of kindergarten in Quebec and winter of Grade 1 in Alberta and preliminary GRADE reading measures used to assess the quality of the match of the treatment and control groups were collected for all children initially sampled at the start of Grade 1, as part of our larger project (see Authors, 2018).

Research Assistants (RAs) conducted all testing. All RAs held or were studying for advanced degrees from education or psychology programs (B.A., M.A., and Ph.D) with some having teaching experience including resource room teaching and additional B.Ed qualifications. RAs were trained to administer the tests by the project coordinator and/or project leaders. The training sessions lasted approximately 1.5 – 3.5 hours. New RAs tested children independently only after being observed by the senior RAs.

The RAs were responsible for the scoring of all tests they administered. A senior RA was responsible for all data entry, and calculation of derived scores. All data scoring was double-
checked. An earlier data entry reliability analysis reported in a previous comparable study (Authors, 2018) established that the same RAs achieved 99% inter-rater reliability, with negligible differences in randomly distributed errors being not significant ($F < 1, ns$, in all cases).

Interventions. Small group interventions were run in the winter semester immediately after the pre-test. Interventions were typically run with groups of 3-4 children outside of the classroom for 30 minutes, 3 times a week on days and times agreed upon with the teachers. Group membership only stayed consistent when there was 1 group per class; otherwise group composition varied depending on teachers’ classroom plans. Occasionally, children from 2 or more classes were assigned to the same group based on availability. Groups typically reflected a range of different reading abilities. Children received an average of 12-15 hours of small group intervention overall in each of the two conditions over 12 school weeks.

RAs were trained to run the intervention by the researchers and the project coordinator or an advanced graduate student who was an experienced resource room teacher. Students gained skills in assessment and instruction in the details of Simplicity and Control interventions, respectively. Typically, there was a single group meeting of all RAs in each condition lasting approximately two hours. In that meeting, the trainer gave an overview of the intervention goals, reviewed lesson plans one lesson at a time in detail and acted out certain scenarios that could arise. Typically, RAs role-played lessons until they all felt ready. All RAs could and did contact the project coordinator and/or project leaders with questions at any point during the intervention. Observers also gave feedback directly following a lesson as part of the treatment integrity process (see below), if required.

The Simplicity GPC Intervention program. The Simplicity program was researcher-designed. Throughout the curriculum, the goals were: a) to teach children the most frequently occurring complex GPCs in the order of their frequency in books, b) have children recognize
those GPCs in text, and c) give children experience writing those GPCs embedded in words. The Simplicity approach is characterized by a systematic approach to the delivery of teaching of explicitly articulated complex grapheme-phoneme correspondences wherein the order of delivery was based on the identified GPC frequency in authentic children texts. Unlike in Chen and Savage (2014), in the present study, Canadian data were used to construct a database of complex GPCs. Electronic book records of the most frequently issued children’s books (juvenile fiction, non-fiction and ‘picture books’) were obtained from the Toronto District Metropolitan Library system between January 1, 2013 and March 30, 2014. Data from issuing patterns of some 100 libraries in the Toronto area were recorded in this database. Using these data, 363 of 500 books were obtained and all main text therein was entered into a word database containing 8636 word types and 179,678 word tokens. This database was then analyzed by Dr. Jonathon Solity’s UK team using the procedure described in Vousden et al. (2010, 2011) to create a Canadian-text based Simplicity Principle-derived GPC list. Isolated GPCs were used with the exception of <qu>, which was kept on frequency of co-occurrence and <-ing> because this unit also appears frequently as the gerund form.

Teaching typically involved four steps: 1) Introduction, definition, and spelling of a new ‘word of the day’; 2) search for that word in authentic children’s books selected to represent these words; 3) shared reading of researcher-written texts that repeated the word of the day wherein children and RA co-read the text with children reading the word of the day; and 4) introduction of the ‘sound of the day’ – a grapheme-phoneme correspondence within the word of the day explicitly articulated by the RA. Children said and wrote this grapheme and then identified this grapheme in texts that were often researcher-written and designed to incorporate a high density of taught GPCs, and also wrote a sentence using this grapheme pattern in their notebook, with emphasis on the sound of this GPC. Researcher-written texts sometimes included
words containing variants to pronunciations (e.g., unvoiced <s> in texts where the taught GPC was the voiced <s> rule). Such ‘incidental’ variants were not explicitly taught or drawn attention to. The intervention was delivered with significant differentiation of the curriculum. For example, if the GPC of the day was /ʃ/ associated with <sh>, where an RA judged that child was a weaker reader they would be asked to read the word “she” while a student the RA judged to be a stronger reader might be asked to read “seashell”. Stronger students were also encouraged to read whole sentences/pages of the book/short story while weaker students only were asked to read the word of the day or words with the GPC. Stronger students wrote more complex sentences (sometimes with two words containing the GPC) while weaker students only had to write a simple word. During the writing of the sentence the RAs called attention to aspects of writing, such as punctuation and capitalization.

The Control Intervention program. The Letter-Name control program was also created by this research team. It mirrored the Simplicity GPC intervention in all respects except that children were introduced to the ‘special spelling’ of the day. Here, the RAs did not call specific attention to the phoneme associated with a grapheme; instead, children were taught to identify a grapheme without reference to its corresponding phoneme. RAs referred only to the names of letters constituting complex GPCs to draw children’s attention to the relevant units. In all other respects the taught control condition was identical to the GPC intervention condition. Thus, the Control intervention acted as control for all aspects of the Simplicity GPC intervention beyond the instruction in grapheme-phoneme correspondences. An overview of all of the content of the two interventions is also provided in the Appendix.

Treatment integrity. In order to assess treatment integrity (TI), both reading interventions were frequently observed. We created a TI rubric that reflected: 1) the specific Content of each reading intervention, 2) adherence to the specified Time Management, 3) the
broader *Teaching Quality*, and 4) broader aspects of the small-group *Learning Environment*.

Each component was assessed with a series of between 3 and 11 sub-components on a 3-point scale (0 = ‘not done’, 1 = ‘partly done’, 2 = ‘fully done’). Observers of TI were all experienced RAs. RAs received training explaining the role and structure of TI in the interventions. Generally, the person doing the TI was also someone who intervened, so they were already trained on the interventions.

Overall, approximately 20% of all of the teaching sessions were observed by RAs. Of these sessions, 10% of the intervention sessions were independently observed by two RAs to ensure ongoing inter-rater reliability. Observations in one provincial site were audio recorded and independently assessed by the first and fourth author. Analyses of all these scores showed 97% agreement in Simplicity and 98% in Control interventions. Mean scores for each RA were then calculated for all observed sessions separately for each of the four TI components. Mean rankings were high (Mean = 1.81, SD = 0.21, for Simplicity and 1.67, SD = 0.23, for Control on a maximum possible of 2). Mann-Whitney *U* tests for each TI component by condition (Simplicity versus Control), adjusting for multiple contrasts were non-significant (*p* > .10 in all cases), confirming that both interventions were equally well implemented.

Classroom observations. The overall pedagogical quality of all regular classes was observed using the Early Literacy and Language Classroom Observation tool (ELLCO K-3; Smith, Brady, & Clark-Chiarelli, 2008). The ELLCO has been used in other cluster intervention studies to assess teaching quality (e.g., Savage et al., 2013, 2018). The ELLCO assesses *Classroom Structure and Climate* (CS, classroom climate and management and organization), *Curriculum* (CR, integration of language and literacy, independent learning, diversity), *Language Environment* (LE, discourse quality and vocabulary learning), *Books and Reading* (BR, resources and phonic, fluency, and comprehension strategy teaching), and *Print and*
Writing (PW, writing instruction, environment and products). Each sub-component of teaching is assessed on a 5-point scale (1 = Deficient, 2 = Inadequate, 3 = Basic, 4 = Strong, and 5 = Exemplary). ELLCO training was given either by a lead researcher or the project coordinator. Training involved systematic review of the tool followed by independent rating of a YouTube video of an elementary school English Language Arts (ELA) lesson. Independent ELLCO ratings were then compared and the process repeated where necessary until 80% inter-rater reliability was achieved. Across pairs of RAs, the inter-rater agreement prior to observing ‘live’ sessions was in excess of 90%. In ‘live’ classroom sessions a pair of observers rated the lesson independently and then compared scores and came to an agreed score.

Pairs of RAs observed all English Language Arts lessons twice for approximately 1 hour in total at times agreed upon with the teacher. Overall, 70% of classes from which at-risk students were drawn were observed. Equal and representative proportions of teachers across the 2 conditions were observed. Analyses of all class observations showed 99.5% inter-rater agreement on CS, 99% agreement on CR, 98% agreement on LE, 94% agreement on BR, and 93% agreement on the PW components of ELLCO. These observations also suggested that it was very rare for teachers to teach any GPCs in Grade 2.

Results

Preliminary Data Analyses

All data were first screened for the presence of deviations from normality. No significant problems in the distributions of the measures were detected. For the purpose of evaluating the possible impact of outliers, all scores at least 1.5 and 2 standard deviations above or below a given variable’s mean were initially considered as potential outliers. Analyses reported below were then conducted both with and without candidate outliers and the results were contrasted. There were no significant differences between results of analyses with and without the outliers,
so analyses based on the full sample are presented below. The total missing data was 1.83%. A Missing Value Analysis revealed that missing data were Missing Completely at Random, according to Little’s test $x^2 (8) = 4.09, p = .85, ns$. Observation of teachers’ practices using the ELLCO observation tool showed that across all intervention conditions, 99% of all-agreed observer ratings of teacher practices suggested they were ‘Basic’, ‘Strong’ or ‘Exemplary’.

Results of the Group Matching Process

Prior to conducting any analyses, we assessed the quality of match achieved across the two intervention conditions on a comprehensive range of candidate measures including pre-test attainment, parent–reported developmental history, listening comprehension and the observed quality of their concurrent Grade 2 teaching. Results are reported in Table 1. None of the group comparisons reached significance, showing good overall matching by condition.

Intervention Results

Raw score data were analyzed with HLM to account for the nested nature of our data (e.g., Hox, 2010; Raudenbush & Bryk, 2002). In standard ‘bottom-up’ fashion, the final HLM models were built sequentially from preliminary analyses. Model 1, an unconditional one-way ANOVA model with random effects, confirmed that there was significant classroom and school-level variance at pre-test and post-test on primary achievement measures and spelling beyond variance attributable to students (intra-class correlations ranged between .05 and .07), and thus that HLM was appropriate. For the GRADE Sentence Comprehension and Vocabulary sub-tests, classroom- and school-level ICC did not exceed .02 at either level.

With the intervention randomized at the school level, the final three-level hierarchical model examined whether variance on post-test achievement outcome measures at school level (level 3) was explained by an interaction between Condition (Simplicity versus Control, at level
3) and children’s phonological awareness skill (level 1), after controlling for Province (level 3) and pre-test classroom-level achievement (level 2).

An ANCOVA model was appropriate because controls for nested pre-test attainment improve the power of analyses even if the covariate is not statistically significant (e.g., Raudenbush et al., 2011) and because we explicitly sought to test the Simplicity x PA interaction in predicting growth in attainment even after controls for pre-test reading ability. Equations 1, 2, and 3 describe this final model at the student, classroom, and school levels, for student \(i \) in classroom \(j \) in school \(k \), respectively, with equation 4 describing the mixed model.

1) Equation for Student Level 1 Model:
\[
Y_{ijk} = \pi_{0jk} + \pi_{1jk} (phonological awareness)_{ijk} + e_{ijk}
\]

2) Equations for Classroom Level 2 Model:
\[
\pi_{0jk} = \beta_{00k} + \beta_{01k} (pretest attainment)_{jk} + r_{0jk} \\
\pi_{1jk} = \beta_{10k}.
\]

3) Equations for School and Province Level 3 Model:
\[
\beta_{00k} = \gamma_{000} + \gamma_{001} (province)_{k} + \gamma_{002}(intervention)_{k} + \mu_{00k} \\
\beta_{01k} = \gamma_{010} \\
\beta_{10k} = \gamma_{100} + \gamma_{101}(intervention)_{k}
\]

4) Mixed Model:
\[
Y_{ijk} = \gamma_{000} + \gamma_{001}(province)_{k} + \gamma_{002}(intervention)_{k} + \gamma_{010}(pretest attainment)_{jk} \\
+ \gamma_{100}(phonological awareness)_{ijk} + \gamma_{101}(phonological awareness)_{ijk} *(intervention)_{k} \\
+ r_{0jk} + \mu_{00k} + e_{ijk}
\]

In all analyses, predictor variables were grand mean-centered except for the bivariate condition and province terms. These exceptions were made to facilitate interpretation of the
intercept and the binary cases. Identical 3-level models were run for all variables with mid-test WRAT Word Reading classroom mean as the covariate.

The means and standard deviations for the two conditions are presented in Table 2. Where a test yielded standard scores they are also reported. Inspection of these data suggests few advantages at post-test for the Simplicity program over the Control program at post-tests on WRAT Word Reading, Woodcock-Johnson Word Attack and Spelling, and GRADE Sentence Comprehension measures compared to the mid-test immediately prior to intervention.

Results of the HLM analyses are reported in Table 3 where researcher created dummy-coded Simplicity is compared against the zero-coded Control condition. Dummy codes were also created for the effect of province, where Alberta served as the zero reference category.

The Simplicity intervention involved teaching complex GPC correspondences so that children could read the many words containing these correspondences. Reflecting content, our primary outcome measures were WRAT Word Reading and Woodcock-Johnson Word Attack, so unadjusted alpha was applied for these two measures. All other measures were secondary outcomes and alpha adjustments were made for the total number of secondary outcomes ($\alpha = .05/3 = .017$). Research predictions were specific and directional so planned comparisons were undertaken.

The results showed that there was no significant main effect of Intervention for any measure. Effect sizes expressed as post-test mean differences over pooled post standard deviations for each of WRAT reading, Woodcock –Johnson Word Attack, Spelling, and GRADE vocabulary and sentence comprehension were 0.08, -0.27, 0.02, 0.02, and 0.08 respectively. There was, however, a significant Intervention x Phonological Awareness interaction effect for WRAT Word Reading ($p < .01$), Woodcock-Johnson Word Attack ($p < .05$), and Sentence Comprehension ($p < .05$) at post-test. In each case, this favored Simplicity over Control for the
children with stronger phonemic awareness ability at pre-test (see Figures 1 to 3). Other effects did not reach significance. Finally, we re-ran all analyses excluding the two schools added after randomization and the results remained the same.

Discussion

The present study explored the hypothesis that an intervention teaching GPCs derived from the application of the Simplicity Principle would impact performance on standardized reading and spelling tasks over a matched intervention where children were exposed to the same GPCs but only letter names were used to label the GPCs. From previous evidence (Hulme et al., 2012), we predicted that the effects of intervention would be strongest where children had stronger phonemic awareness skills. We used pre-test phonemic awareness as a moderator of outcomes and explicitly predicted an interaction between pre-test phonemic awareness and exposure to GPCs on subsequent reading development. We specifically predicted these interaction effects would still hold even after keeping pre-test reading ability constant. This hypothesis was supported by some of the present data. Significant effects that were highly specific to the more phonologically able children were evident on our two primary literacy outcomes and one secondary outcome, sentence comprehension, in comparison to a taught control intervention identical in content except for the explicit attention drawn to the pronunciation of GPCs.

Our study replicates and substantially extends the only other intervention study exploring GPC teaching using the Simplicity Principle (Chen & Savage, 2014). The current findings place research in this domain on a substantially stronger empirical footing because the present study assessed performance in a matched control dual-site trial drawing children from 44 classrooms in 21 schools. Chen and Savage (2014) drew children from 2 classrooms in one school. This larger study was also able to formally test for an interaction between the complex GPCs taught and
underlying phonemic awareness skills. The interpretation of results is strengthened by the inclusion of a taught control group who received the same small-group intervention as the main intervention but where only letter names were used to identify the GPC spelling units.

While the idea that reading is co-determined by GPC knowledge and phonological awareness is well established in a general sense (e.g., Byrne, 1999; Hjetland et al., 2017; Hulme et al., 2012; National Reading Panel, 2000), it was important to establish the value and the possible limitations on the application of the Simplicity Principle not established in prior smaller scale work. Results clearly confirm that phonemic awareness moderates the impact of teaching using a Simplicity Principle. This general pattern of moderation of effects of phonics intervention by phonemic awareness in at-risk readers replicates results reported by other teams (see e.g., Hulme et al., 2012; Schaars et al., 2017). The combination of phonic intervention plus mediation analysis undertaken by Hulme et al. (2012) described earlier has been interpreted as suggesting causal links between both GPCs and phonemic awareness on one hand and reading on the other. Data presented here are consistent with the view that phonemic awareness and GPCs together drive growth in reading following a principled intervention teaching complex GPCs.

How then does phonemic awareness facilitate reading development? Hulme et al. (2012) argued that: “to master the alphabetic principle, children need phonemically structured representations of speech as well as letter sound knowledge” (p. 576). We suggest that such representations of speech allow children to connect otherwise abstract declarative knowledge of GPCs to strong letter representations. Such a proposal is also consistent with Schaars et al.’s (2017) proposal that phonemic awareness operates to make GPC-based decoding and the establishment of stable lexical representations, more efficient.

Finally, while this study does not directly speak to Suggate’s (2010) notion about diminishing returns of phonics after Grade 1 because children here were not taught phonics skills
of how to use GPCs to read and spell words, it does suggest that teaching GPCs, a common component of synthetic phonics programs, is useful in Grade 2, albeit with complex GPCs and for at-risk children with stronger blending skills.

Our approach here has been described as optimizing the learner’s statistical learning environment through increasing the chance of item-level learning (Steacy, Elleman, & Compton, 2017). It should be noted, however, that the optimality of the Simplicity–derived GPCs over other candidate GPC schemes remains to be established empirically through interventions with children. Meaningful conceptual links can also be made from our approach of making the statistical properties of print-sound relations apparent, to connectionist modeling of orthography-to-phonology rules and to the statistical learning processes they embody (e.g., Coltheart et al., 2001; Grainger & Ziegler, 2011; Plaut, McClelland, Seidenberg, & Patterson, 1996).

Developmentally, if fluent word reading reflects the automation of underpinning GPCs (Ehri, 2014), then using a frequency-based approach for explicit teaching of these GPCs is likely to be helpful in moving at-risk readers with sufficient phonemic awareness to a consolidated alphabetic stage of word reading. Here, GPCs were taught regularly, in conjunction with the reading and spelling of words, and with shared passage reading where taught GPCs were frequently represented, intimately connecting the two processes (Savage et al., 2018). Such approaches potentially bootstrap wider development and are potentially ‘generative’ of the rich orthographic knowledge beyond specific GPCs that is associated with typical development (Compton et al., 2014; Steacy et al., 2018). The interaction we report between phonemic awareness and the GPC-taught intervention producing significant growth in word reading, pseudoword decoding, and sentence comprehension only for the more phonologically able suggests that attempts to create an optimal learning environment based on GPC frequency alone, while sufficient for the phonemically aware, will not in themselves suffice for children with
weaker phonemic awareness. Pedagogical support for the development of both phonemic awareness and complex GPC knowledge of the weakest readers in Grade 2 is suggested.

Some limitations of our study are worth noting. First, results speak only to the utility of teaching complex GPCs to at-risk readers in Grade 2 compared to an intervention that showed children letter names for target spellings. The Simplicity GPC intervention was by no means a ‘magic bullet’ as while all coefficients for our condition by phonological ability interaction consistently showed advantages favoring the Simplicity intervention, effects were not significant for any secondary outcome measures except sentence comprehension. Post-test stanine scores on the sentence comprehension task, while significantly higher in the Simplicity condition than for the Control condition, nevertheless remained more than 1.5 standards deviations below average. Many children did not improve in word reading and spelling ability in this study. Improved Simplicity Principle-inspired interventions, especially for those with poor phonological awareness abilities, are suggested. We did not teach variable vowels, or other ‘strategies’ for reading words with complex or inconsistent GPCs that are known to be helpful (Compton et al., 2014; Savage et al., 2018; Steacy, Elleman, Lovett, & Compton, 2016; Steacy et al., 2018). We did not explicitly teach children how to use taught GPCs to read or spell. It may well be that phonics instruction, for example teaching children how to blend Simplicity–derived GPCs to read and spell words, produces larger effect sizes than those reported here. Finally our analysis model was based on the study as a well-matched quasi-experiment with school-level randomization, and would benefit from replication in an RCT.

In sum, this is the first larger scale study to take a principled approach to developing and delivering complex GPC progressions within an intervention. GPC progressions were based on statistical corpus analysis and were then used to teach complex GPCs to at-risk readers in Grade 2. Results suggest that teaching complex GPCs is of value over interventions that do not teach
these GPCs and instead teaches letter names. Effects of intervention are, as predicted, moderated by phonological awareness skills. These results provide some preliminary support for using computational approaches to modeling potentially optimal GPC content underpinning advanced phonics programs based upon the content of authentic children’s books. The most direct educational implication is that some at-risk children in Grade 2 with stronger phonemic awareness may benefit from being taught complex GPCs derived from the Simplicity Principle, in interventions delivered in the manner outlined above. This work also sets the stage for exploring optimal interventions for children who were non-responders or where low phonemic awareness itself does not respond to wider treatment, and where the approach might fit within contemporary RtI frameworks more generally (Fuchs, Fuchs, & Compton, 2012). Future programmatic work should explore the optimality of this Simplicity-derived GPC content over other candidate GPC schemes, and whether combining phonological awareness training with Simplicity-derived GPC progression and incorporating phonics is efficacious for children with low phonological awareness, and in comparison with alternative approaches to intervention. Future research might also usefully explore the effects of greater content repetition and ‘intensity’ of delivery, impact of such interventions on diagnosed dyslexics, and confirmation of sustained effects of intervention in delayed post-tests. The first phase of this work is currently underway.
References

Table 1

Matching Characteristics of the Intervention Sample by Condition

<table>
<thead>
<tr>
<th>Variable</th>
<th>Simplicity</th>
<th>Control</th>
<th>Significance F (1, 148)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (% female)</td>
<td>53</td>
<td>41</td>
<td>0.15</td>
</tr>
<tr>
<td>Parent-reported learning difficulties</td>
<td>7</td>
<td>11</td>
<td>0.24</td>
</tr>
<tr>
<td>Chronological Age in months</td>
<td>89.60 (4.78)</td>
<td>89.20 (4.31)</td>
<td>-0.54</td>
</tr>
<tr>
<td>Mother’s education</td>
<td>4.78 (1.42)</td>
<td>4.52 (1.22)</td>
<td>0.27</td>
</tr>
<tr>
<td>Mother-child language</td>
<td>1.65 (0.91)</td>
<td>1.54 (0.89)</td>
<td>0.11</td>
</tr>
<tr>
<td>Father-child language</td>
<td>1.60 (0.89)</td>
<td>1.50 (0.83)</td>
<td>0.60</td>
</tr>
<tr>
<td>Peabody Picture Vocabulary Test</td>
<td>91.85 (18.58)</td>
<td>91.07 (16.11)</td>
<td>0.05</td>
</tr>
<tr>
<td>Wide Range Achievement Test</td>
<td>85.04 (11.24)</td>
<td>86.88 (13.17)</td>
<td>-0.91</td>
</tr>
<tr>
<td>GRADE vocabulary composite</td>
<td>73.62 (13.09)</td>
<td>73.43 (13.34)</td>
<td>0.94</td>
</tr>
<tr>
<td>Woodcock Johnson III Pseudo-word spelling</td>
<td>94.45 (15.19)</td>
<td>96.15 (11.31)</td>
<td>-0.76</td>
</tr>
<tr>
<td>Woodcock Johnson III Spelling of sounds</td>
<td>92.90 (14.70)</td>
<td>93.75 (10.72)</td>
<td>-0.40</td>
</tr>
<tr>
<td>GRADE Listening comprehension</td>
<td>3.44 (1.63)</td>
<td>3.07 (1.49)</td>
<td>1.23</td>
</tr>
<tr>
<td>Observer–rated grade 2 teaching</td>
<td>10.07 (1.82)</td>
<td>11.20 (1.91)</td>
<td>-1.46</td>
</tr>
</tbody>
</table>

Note. Values are represented by (a) standard scores (b) observed scores (c) percentage. The Province PPVT data were collected at different times (K in Province 1 and Grade 2 in Province 2). We ran an ANOVA by Province and Condition with no effects for ‘Province’ or Province x Condition (all Fs < 1).
Table 2
Means and Standard Deviations for Pre- and Post Test Post-Test Literacy Measures by Intervention Group

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Simplicity</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure</td>
<td>Pre-test</td>
<td>Post-test</td>
</tr>
<tr>
<td></td>
<td>WRAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85.68 (9.75)</td>
<td>89.36 (10.55)</td>
</tr>
<tr>
<td></td>
<td>Word Attack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>93.87 (8.32)</td>
<td>94.13 (9.64)</td>
</tr>
<tr>
<td></td>
<td>Spell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>91.18 (9.37)</td>
<td>91.35 (10.23)</td>
</tr>
<tr>
<td></td>
<td>Vocab</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82.22 (12.14)</td>
<td>82.53 (12.58)</td>
</tr>
<tr>
<td></td>
<td>Sentence Comp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.66 (1.68)</td>
<td>2.54 (1.48)</td>
</tr>
</tbody>
</table>

*Note: Values are represented by (a) standard scores, (b) stanines.

Key:
- WRAT: Wide Range Achievement Test III, Reading sub-test
- Word attack: Woodcock-Johnson III Test of Achievement, Pseudoword reading sub-test
- Spelling: Woodcock-Johnson III Test of Achievement, Spelling sub-test
- Vocab: GRADE Reading Test Vocabulary sub-test
- Sentence comp: GRADE Reading Test Sentence Comprehension sub-test
Table 3
HLM Results for the Effect of Intervention Condition by Phonological Ability on Post-Test Attainment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Child-Level</th>
<th>Classroom-Level</th>
<th>School/Province-Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
<td>SE</td>
<td>Coefficient</td>
</tr>
<tr>
<td>A) WRAT word reading Post = Dependent Variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>29.22</td>
<td>(0.75)***</td>
<td></td>
</tr>
<tr>
<td>Phonological Ability</td>
<td>0.32</td>
<td>(0.15)*</td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>1.12</td>
<td>(1.21)</td>
<td></td>
</tr>
<tr>
<td>Intervention x Phonological Ability</td>
<td>0.37</td>
<td>(0.16)**</td>
<td></td>
</tr>
<tr>
<td>WRAT word reading pre-test</td>
<td></td>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td>Province</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child</td>
<td>17.42</td>
<td>(4.17)</td>
<td></td>
</tr>
<tr>
<td>School</td>
<td></td>
<td></td>
<td>3.74</td>
</tr>
<tr>
<td>B) Woodcock-Johnson Word Attack Post = Dependent Variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>11.79</td>
<td>(0.72)***</td>
<td></td>
</tr>
<tr>
<td>Phonological Ability</td>
<td>0.26</td>
<td>(0.11)*</td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>0.26</td>
<td>(1.01)</td>
<td></td>
</tr>
<tr>
<td>Intervention x Phonological Ability</td>
<td>0.24</td>
<td>(0.12)*</td>
<td></td>
</tr>
<tr>
<td>WRAT word reading pre-test</td>
<td></td>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td>Province</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child</td>
<td>15.69</td>
<td>(3.96)</td>
<td></td>
</tr>
<tr>
<td>School</td>
<td></td>
<td></td>
<td>2.36</td>
</tr>
</tbody>
</table>
C) Woodcock-Johnson Spelling = Dependent Variable
 Intercept 23.47 (0.72)***
 Phonological Ability 0.21 (0.11)*
 Intervention 0.44 (0.49)
 Intervention x Phonological Ability 0.03 (0.11)
 WRAT word reading pre-test 0.46 (0.10)***
 Province -1.79 (0.96)

 Variance components
 Child 7.81 (2.80)
 School 0.09 (0.29)

D) GRADE Vocabulary = Dependent Variable
 Intercept 48.15 (1.80)***
 Phonological Ability 0.88 (0.28)**
 Intervention 0.72 (1.20)
 Intervention x Phonological Ability 0.35 (0.26)
 WRAT word reading pre-test 1.04 (0.24)***
 Province -10.12 (2.25)***

 Variance components
 Child 88.99 (9.21)
 School 0.02 (0.12)

E) Post-test GRADE Sentence Comp = Dependent Variable
 Intercept 10.49 (0.72)***
 Phonological Ability 0.20 (0.09)*
 Intervention 0.46 (0.64)
 Intervention x Phonological Ability 0.19 (0.08)*
 WRAT word reading pre-test 0.41 (0.20)*
 Province -2.87 (0.71)***
Variance Components

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Child</td>
<td>18.26</td>
<td>(4.27)</td>
<td></td>
</tr>
<tr>
<td>School</td>
<td>0.01</td>
<td>(0.19)</td>
<td></td>
</tr>
</tbody>
</table>

*Note. HLM = hierarchical linear modeling; WRAT = Wide Range Achievement Test III, Reading subtest; GRADE = Group Reading Assessment and Diagnostic Evaluation.*** p < .001, ** p < .01, * p <.05*
Figure 1. The Effects of Phonological Awareness on WRAT Word Reading by Intervention
Figure 2. The Effects of Phonological Awareness on WJ Pseudo Word Reading by Intervention
Figure 3. The Effects of Phonological Awareness on Sentence Comprehension by Intervention

Predicted GRADE Sentence Comprehension

Phonological Awareness

Control Group

Intervention Group
Appendix

A. Overview of the interventions

<table>
<thead>
<tr>
<th>Simplicity Intervention</th>
<th>The Control Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review (1 min): Children recall the word from the previous lesson, what the sound was, and how it is written. More time dedicated to review if children had poor word or GPC recollection or spelling.</td>
<td>Review (1 min): Children recall the last lesson’s word, how it is written and what it meant. More time was dedicated to review if the spelling was not recalled.</td>
</tr>
<tr>
<td>Introduce a new word + its definition (1 min): Children were told a word asked to define it. RA defined word if needed.</td>
<td>Introduce a new word + its definition (1 min): Children were told a word asked to define it. RA defined word as needed and gave alternate meanings if such existed.</td>
</tr>
<tr>
<td>Spell the word (1 min): Either through letter cards to be place in order, a quick game of hangman or letter stamps, the kids were asked how they thought the word was spelled. Once they figured it out, they wrote the word in their notebooks. RA made sure spelling was correct.</td>
<td>Spell the word (1 min): Either through letter cards to be place in order, a quick game of hangman or letter stamps, the kids were asked how they thought the word was spelled. Once they figured it out, they wrote the word in their notebooks. RA made sure spelling was correct.</td>
</tr>
<tr>
<td>Find the word in the book (5-7 mins): Robert Munsch stories. Children helped RA read the book reading the word of the day and previous ‘word of the day’ items.</td>
<td>Find the word in the book (5-7 mins): Robert Munsch stories. Children helped RA read the book reading the word of the day and previous ‘word of the day’ items.</td>
</tr>
<tr>
<td>Introduce sound of the day (2 mins): Children were told which GPC in the word made the sound of the day by linking the spelling and the pronunciation of the GPC and articulated the phoneme themselves. Children circled the GPC in their notebooks.</td>
<td>Introduce spelling of the day (2 mins): Children were told which GPC in the word was the special spelling that day using letter names only. The RA did not call attention to the phoneme that the GPC made, but acknowledged it if a child mentioned it. Children circled the special spelling in their notebooks.</td>
</tr>
<tr>
<td>Find words with special GPC in researcher written texts (5-7 mins): Researchers created texts with high frequencies of the grapheme-phoneme correspondence that was taught that day. Children read the texts (with RA assistance when needed) and highlighted words that contained the grapheme-phoneme</td>
<td>Find words with special spelling in researcher written texts (5-7 mins): Researchers created texts with high frequencies of the grapheme that was taught that day. Children read the texts (with RA assistance when needed) and highlighted words that contained the ‘special spelling’. Often the same story was...</td>
</tr>
</tbody>
</table>
correspondence, teacher and child saying the GPC and the word. Often the same story was used for more than one GPC, allowing review of previous sounds as well. Texts often contained words that embodied rules as well as words that broke or were variant GPC rules (e.g. voiced and unvoiced ‘s’ plurals, ‘ea’ and ‘ee’).

<table>
<thead>
<tr>
<th>Write a sentence in the notebook (2 mins):</th>
<th>Write a sentence in the notebook (2 mins):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children were asked to come up with their own sentence with the word of the day and write it in their notebook. RAs checked not only for spelling of the word of the day, but also the other words in the sentence. RA also called attention to other aspects of writing like capitalizing the first word and ending with punctuation, if the child forgot.</td>
<td>Children were asked to come up with their own sentence with the word of the day and write it in their notebook. RAs checked not only for spelling of the word of the day, but also the other words in the sentence. RA also called attention to other aspects of writing like capitalizing the first word and ending with punctuation, if the child forgot.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wrap up, (1 min):</th>
<th>Wrap up, (1 min):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children chose a sticker and returned to class.</td>
<td>Children chose a sticker and returned to class.</td>
</tr>
</tbody>
</table>
B. Texts and lessons in the intervention

<table>
<thead>
<tr>
<th>Lesson / Target word</th>
<th>Grapheme</th>
<th>Book:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Came</td>
<td>a _e</td>
<td>Roar (2 instances) or The Dark (8 instances)</td>
</tr>
<tr>
<td>2. Time</td>
<td>i _e</td>
<td>Smelly Socks (3 instances)</td>
</tr>
<tr>
<td>3. Bone</td>
<td>o _e</td>
<td>Roar (3 instances)</td>
</tr>
<tr>
<td>4. Cute</td>
<td>u _e</td>
<td>Roar (8 instances)</td>
</tr>
<tr>
<td>5. Kids</td>
<td>s</td>
<td>Just One Goal (3 instances) or Moira’s Birthday (19 instances)</td>
</tr>
<tr>
<td>6. Happy</td>
<td>y*</td>
<td>Show and Tell (1 instance)</td>
</tr>
<tr>
<td>7a. Acted</td>
<td>ed</td>
<td>Smelly Socks (1 instance)</td>
</tr>
<tr>
<td>7b. Walked</td>
<td>ed</td>
<td>Smelly Socks (3 instances)</td>
</tr>
<tr>
<td>7c. Cried</td>
<td>ed</td>
<td>Show and Tell (1 instance)</td>
</tr>
<tr>
<td>8. Going</td>
<td>ing</td>
<td>Smelly Socks (4 instances) or We Share Everything (4 instances)</td>
</tr>
<tr>
<td>9. Back</td>
<td>ck</td>
<td>Smelly Socks (6 instances) or Paper Bag Princess (6 instances)</td>
</tr>
<tr>
<td>10. Please</td>
<td>ea</td>
<td>Smelly Socks (2 instances) or Moira’s Birthday (5 instances)</td>
</tr>
<tr>
<td>11. Water</td>
<td>er</td>
<td>Just One Goal (3 instances)</td>
</tr>
<tr>
<td>12. Seen</td>
<td>ee</td>
<td>Smelly Socks (1 instance)</td>
</tr>
<tr>
<td>13. She</td>
<td>sh</td>
<td>Paper Bag Princess (9 instances) or Fire Station (8 instances)</td>
</tr>
<tr>
<td>14. Each</td>
<td>ch</td>
<td>Roar (1 instance)</td>
</tr>
<tr>
<td>15. Dark</td>
<td>ar</td>
<td>The Dark (22 instances)</td>
</tr>
<tr>
<td>16. Paint</td>
<td>ai</td>
<td>We Share Everything (2 instances)</td>
</tr>
<tr>
<td>17. School</td>
<td>oo</td>
<td>Smelly Socks (3 instances) or Show and Tell (8 instances)</td>
</tr>
<tr>
<td>18. For</td>
<td>or</td>
<td>Show and Tell (4 instances) or Smelly Socks (4 instances)</td>
</tr>
<tr>
<td>19. Around</td>
<td>ou</td>
<td>Roar (3 instances) or Paper Bag Princess (3 instances)</td>
</tr>
<tr>
<td>20. Toast</td>
<td>oa</td>
<td>Moira’s Birthday (1 instance)</td>
</tr>
<tr>
<td>21. Right</td>
<td>igh</td>
<td>Smelly Socks (2 instances) or Roar (7 instances)</td>
</tr>
<tr>
<td>22. This</td>
<td>th</td>
<td>The Dark (2 instances) or We Share Everything (10 instances)</td>
</tr>
<tr>
<td>23. First</td>
<td>ir</td>
<td>We Share Everything (5 instances)</td>
</tr>
<tr>
<td>24. play</td>
<td>ay</td>
<td>Fire Station (4 instances)</td>
</tr>
<tr>
<td>25. burn</td>
<td>ur</td>
<td>Paper Bag Princess (1 instance)</td>
</tr>
<tr>
<td>26. saw</td>
<td>aw</td>
<td>The Dark (5 instances)</td>
</tr>
<tr>
<td>27. quiet</td>
<td>qu</td>
<td>Roar (2 instances)</td>
</tr>
<tr>
<td>28. what</td>
<td>wh</td>
<td>We Share Everything (5 instances)</td>
</tr>
</tbody>
</table>
29. noise oi Show and Tell (2 instances) or Just One Goal (2 instances)
30. know kn Smelly Socks (1 instance) or Show and Tell (3 instances)
31. because au The Paper Bag Princess (1 instance) or Just One Goal (3 instances)
32. flew ew Smelly Socks (2 instances)
33. chair air The Dark (1 instance)
34. ears ear Show and Tell (1 instance)
35. boy oy Fire Station (2 instances)
36. telephone ph Moira’s Birthday (1 instance)
37. door oor Paper Bag Princess (7 instances) or Fire Station (9 instances)
38. Hockey ey Just one Goal (6 instances)

*Note: we taught children that ‘y’ only makes /i/ phoneme when in a word with more than one syllable and in word-final positions. If a word has one syllable and/or other word positions, it makes the /j/ phoneme.

Note: Books varied occasionally across participants, most often due to text availability across sites. The book that was used was always balanced across Simplicity intervention condition and Vocabulary control condition, by child such that no confound was introduced.

Bibliography
Munsch, R. (1999) *We Share Everything*. Scholastic Canada
C. Researcher-developed and additional text passages
Lessons 5 (s=15 taught +4 s alternate untaught pronunciations), (y=5 +1 alternate untaught pronunciation), 8 (ing=14)

Hands come in all shapes, sizes and colors. There are a lot of things your hands are meant to do. Hands are for saying hello. Hands are for greeting and communicating. They can show if you are feeling happy or angry or silly or sad. Hands are for learning, for counting, typing, painting and asking questions. There is something that hands are not for. Hands are not for hitting. Hitting isn’t friendly. How does it feel when someone hits? It hurts a person’s body. It hurts a person’s feelings too. Total words = 90

Lesson 7a,b,c, (ed=d (7) = t (6)= id (2))
- We wrote d, t and id at the bottom of the page and gave the kids highlighters they matched with each sound.

Total words = 99
Lesson 9 (ck=15), 20 (oa=4), 22 (th=28), 34 (ear=3)
Total words = 115
Lesson 10 (ea =13), 12 (ee=7)
The heat was overwhelming and I was so sleepy. I couldn’t take it anymore. “Please mom”, I begged, “Please let me have some ice cream!” “Fine”, she answered, “as long as you clean your room when we get home!”. I agreed and we walked up the street to get the cone. The cool ice cream was so sweet and I enjoyed eating every bite. When I got home, I raked the leaves in the yard and made my room neat and tidy by changing the sheets on my bed. Mom was so pleased with my work that she gave me a big glass of ice tea and promised to take me to the beach the following weekend as a special treat. I couldn’t wait to take a cool dip in the sea, put my feet in the sand and have a picnic - I hoped I wouldn’t get stung by a bee!
Shirley was a girl who had hair that curled and swirled and twirled around her. It was so long it went past her purple skirt and always got tangled in either the buttons of her shirt or the strap of her purse. She loved to walk near the water and look at the flowers and see her animal friends. Sometimes, birds would play in her curls and would pull too hard. It hurt Shirley’s head. Her hair was so long, that sometimes it got dirty by dragging on the floor as she walked. She was sick of the mess, and didn’t want her hair full of dirt or birds or germs, so she decided to cut her curls and hurl them into the river. Everyone was surprised by Shirley’s new look, but she was much happier and glad that her hair would be short from now on.

As a chef, it is my job to think of tasty dishes to serve at my restaurant. For breakfast, French toast is most popular. People love it served with different fruit, like bunches of grapes or fresh cherries and peaches. Kids love it with chocolate sprinkles. For lunch, the best sellers are cheese sandwiches, nachos and hot chili. Finally, for dinner, I love to prepare roast chicken or many different kinds of fish, including shellfish like shrimp. I serve everything with a side of vegetables like mashed potatoes, squash, radishes or spinach.
money. I was starting to feel sad, but I decided to try one last thing. I joined a volunteer club where we cleaned up parks and collected jars of food for the poor. We even organized a Christmas party and wrote holiday cards for sick people at the hospital. It was so nice to help people!

Total words = 132

Lesson 16 (ai=12) Lesson 17 (oo=7) lesson 19 (ou=4 +2 untaught alternate pronunciations)
Last night, when I went to pick up the mail, I found a small snail crawling in the grass by my house. I did not want to crush it, so I picked it up and placed it in a pail to bring home. Then I had a great idea. My homework was to choose an animal and talk about it the next day at school. Some people chose a zoo animal, but I had a real snail so I knew I wouldn’t fail my presentation. I described my snail, and I didn’t forget a detail: he was short, he had a small tail and a shell, his favorite food was grass. Everyone thought my talk was sort of cool, but that I should let my snail free at the end of the day because keeping it in a pail was like him being in jail. That night, when the moon was shining, I put the snail back outside, in the area around the pool.

Total words = 164

Lesson 18 (or=11) All or pronunciations were judged sufficiently close to Canadian pronunciation by native speakers to be taught as a single rule

Yesterday, we had a visitor at school. It was the author of my favorite story, who was there for the Book Fair. Before she came, we made a card for her. I put in a lot of effort because I wanted her to like it. Then she was here. She gave us information about her story and read a short passage. It was so interesting that I will never forget it.

Total words = 71

Lesson 21 (igh=10)
Last night, after I turned off the light, I feel asleep. I dreamt I was a knight sitting high on my horse, and running to fight a dragon who was attacking a village. It must have been quite a sight, me fighting the monster all by myself! To my delight, I won the battle. When I woke up the next day, sunlight was coming through my window and I sighed, “I wish it hadn’t been a dream”.

Total words = 77

Lesson 24 (ay=7) Lesson 26 (aw=7) Lesson 28 (wh=5 plus one untaught alternate pronunciation)

One day, I saw a horse in a field eating some hay and wheat. What a surprise! I hoped he would stay around until Friday, when it was my birthday. Horses were my favorite animals, even though my sister preferred whales and my brother loved hawks. I was afraid of hawks because of their claws, but I loved horses, especially white and gray ones, like the one in the field. When I got home, I told my whole family about what I had seen. The next morning I woke up at dawn but the horse had left and I didn’t know why. I felt awful, but then my friends came and we had the party. It was fun, the sun’s rays were warm and we had a relay race. I had forgotten all about the horse when suddenly, it ran right across the lawn. That was the best gift!

Total words = 149

Lesson 27 (qu=12)

Once upon a time there was a very quiet little boy named Quincy. He was quiet and shy because the other children teased him about his name. He asked them to quit it, but it did not do one bit of good. Quincy decided to go on a quest to try and impress the kids in his class. He thought about what he could do and decided to try and qualify for the football team. He
tried out and the quality of his playing as well as his ability to quickly run up and down the field made him a star player. He then went to class and got perfect marks on his quiz – he didn’t miss one question! His classmates were impressed and decided to quit teasing Quincy, who became a much happier little boy!

Total words = 136