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Method for Multi-Group Factor Analysis Comparison of Latent Means Across Many Groups 

Abstract 

Scalar invariance is an unachievable ideal that in practice can only be approximated; often using 

potentially questionable approaches such as partial invariance based on a stepwise selection of 

parameter estimates with large modification indices. Study 1 demonstrates an extension of the power 

and flexibility of the alignment approach for comparing latent factor means in a large-scale studies 

(30 OECD countries, 8 factors, 44 items and N = 249,840), for which scalar invariance is typically 

not supported in the traditional confirmatory factor analysis approach to measurement invariance 

(CFA-MI). Importantly, we introduce an alignment-within-CFA (AwC) approach, transforming 

alignment from a largely exploratory tool into a confirmatory tool, and enabling analyses that 

previously have not been possible with alignment (testing the invariance of uniquenesses and factor 

variances/covariances; multiple-group MIMIC models; contrasts on latent means) and structural 

equation models more generally. Specifically, it also allowed a comparison of gender difference in a 

30-country MIMIC AwC (i.e., a SEM with gender as a covariate) and a 60-group AwC CFA (i.e., 30 

countries x 2 genders) analysis. Study 2, a simulation study following up issues raised in Study 1, 

showed that latent means were more accurately estimated with alignment than with the scalar CFA-

MI, and particularly with partial invariance scalar models based on the heavily criticized stepwise 

selection strategy. In summary, alignment augmented by AwC provides applied researchers from 

diverse disciplines considerable flexibility to address substantively important issues when the 

traditional CFA-MI scalar model does not fit the data. 

 

Keywords: measurement invariance; alignment method; stepwise selection strategies, 

modification indices; MIMIC models; PISA 
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What to Do When Scalar Invariance Fails: The Extended Alignment Method for  

Multi-Group Factor Analysis Comparison of Latent Means Across Many Groups 

We begin with the premise that the model of complete scalar invariance based on the 

confirmatory factor analysis approach to measurement invariance (CFA-MI) is an unachievable ideal 

that in practice can only be approximated. Furthermore, in relation to current standards of acceptable 

fit, even acceptable approximations to the complete scalar CFA-MI are rare in large-scale studies 

based on many factors, items/factors, and groups. Nevertheless, consistently with typical practice, 

post-hoc adjustments to the a priori scalar CFA-MI model using a traditional stepwise selection 

strategy based on modification indices will eventually achieve an apparently acceptable fit for a 

partial scalar CFA-MI (CFA-MIPart) model if sufficient adjustments are introduced. However, 

consistently with severe criticisms of such stepwise procedures in the statistical literature, and related 

caveats by Byrne, Shavelson, and Muthén (1989; also see Reise, Widaman, & Pugh, 1993) when they 

first introduced partial invariance, we agree with Asparouhov and Muthén's (2014) supposition that 

the traditional partial invariance approach to invariance is unlikely to lead the simplest, most 

interpretable model for large-scale studies, leading them to introduce the CFA-MIAL model. 

Based on a large real data demonstration, followed by a simulation study, we extend the 

usefulness of a new, evolving statistical procedure: multiple group factor analysis alignment 

(Asparouhov & Muthén, 2014; Muthén & Asparouhov, 2013)—hereafter referred to as the CFA-MIAL 

model. For multiple group data, particularly when the number of groups is large, alignment can be 

used to compare latent factor means even when there is not support for complete scalar invariance. 

However, the starting point for alignment is still the typical set of CFA-MI tests of the multigroup 

invariance of factor loadings, intercepts, and latent means (e.g., Marsh, Muthén, et al., 2009; Meredith, 

1993; Millsap, 2011; Vandenberg & Lance, 2000; Widaman & Reise, 1997). Indeed, if there is good 

support for complete scalar invariance, there is no need to pursue alignment. However, in large-scale 

studies, scalar CFA-MI models are almost always rejected. In applied research, it is typical to not 

even test for violations of the underlying invariance assumptions, to simply ignore them, or to explore 

a potentially large number of alternative, partial invariance models, in which some invariance 

restrictions are relaxed.  
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Particularly in large-scale studies, the stepwise selection process of relaxing invariance 

constraints one parameter at a time is highly cumbersome, idiosyncratic, and likely to capitalize on 

chance, so that the final solution is not replicable. The alignment (CFA-MIAL) model is an easily 

applied, viable alternative to traditional CFA-MIPart models; it is “based on the configural model and 

essentially automates and greatly simplifies measurement invariance analysis. The method also 

provides a detailed account of parameter invariance for every model parameter in every group” 

(Asparouhov & Muthén, 2014, p. 1). Despite the great promise of CFA-MIAL to address practical 

problems associated with multiple group tests of invariance, there are important limitations in the 

currently available version of the CFA-MIAL model that substantially limit its usefulness in applied 

research and leave a number of unanswered questions about its appropriateness under different 

situations. Thus, alignment can only be used to test a limited number of CFA models, and cannot 

incorporate cross-loadings, covariates, or tests of structural equation models (SEMs) more generally. 

For these reasons it was initially seen primarily as an exploratory tool useful in preliminary analyses. 

In the present investigation we introduce what we refer to as Alignment-within-CFA (AwC), 

which transforms the CFA-MIAL model from an exploratory tool into a confirmatory tool, allows 

researchers to pursue nearly all issues that can be addressed with traditional CFA and SEM models, 

and greatly enhances the usefulness of the CFA-MIAL model for applied research. The AwC solution 

is equivalent to the CFA-MIAL model solution in that it has the same degrees of freedom, same 

goodness of fit, and same parameter estimates as the CFA-MIAL model. Indeed, the AwC model in its 

basic form is the same as the alignment model, but reconfigured as a more general CFA model. In this 

respect, support or lack of support for the alignment model applies to the basic AwC model as well.   

With AwC, applied researchers have more flexibility in terms of constraining or further 

modifying the basic AwC model (as it is a true CFA model) than they would with the CFA-MIAL 

model upon which it is based (also see Appendices A and B in the online Supplemental Materials). 

More generally, with the AwC extension of CFA-MIAL, it is possible to test SEMs that are more 

general than CFA measurement models, which are the focus of the CFA-MIAL model. Thus, AwC 

provides a useful complement to the CFA-MIAL model, overcoming what were thought to be inherent 

limitations of its usefulness. Here we outline traditional CFA approaches to testing measurement 
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invariance, describe the CFA-MIAL model, introduce the AwC extension of the CFA-MIAL model, and 

briefly review the inherent limitations of the traditional stepwise approach to scalar CFA-MIPart 

models. In Study 1 we then provide an application of the AwC to substantively important issues in 

testing the measurement invariance of the Programme for International Student Assessment (PISA) 

motivation and engagement constructs over 30 OECD countries (Nagengast & Marsh, 2013). Finally, 

in Study 2 we present a simulation study to address questions about alignment raised by Study 1: in 

particular, a comparison of alignment and CFA-MIPart models in relation to bias in the estimation of 

latent means, which is a primary focus of scale CFA-MI models. 

Multiple Group CFAs and Tests of Measurement Invariance 

The Importance of Measurement Invariance  

Comparisons of results across multiple groups (e.g., multiple countries) require strong 

assumptions about the invariance of the factor structure across the groups. Unless the underlying 

factors really do reflect the same construct, and the measurements themselves are operating in the 

same way (across groups, over age and time, or across different levels of continuous variables), mean 

differences and other comparisons might be invalid. If the underlying factors are fundamentally 

different, then there is no basis for interpreting observed differences (the “apples and oranges” 

problem). Important issues for applied researchers are the implications of the inevitable failures of 

these tests of invariance—in relation to the development of measurement instruments and the 

interpretation of results based on even well-established measures. However, these issues are 

frequently ignored in applied research. For example, in cross-national studies of motivational 

differences such as those considered here, interpretations of mean differences—or even relations 

among different constructs—presuppose that the factors are the same across countries. However, in 

their review of 48 cross-cultural research studies published in the Journal of Personality and Social 

Psychology between 1985 and 2005, Chen (2008; also see Nagengast & Marsh, 2013) reported that 

less than 17% tested measurement invariance, even though many of the published findings suggested 

violations of measurement invariance.  
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General Multigroup CFA Model 

In its most general form, the CFA-MI model for p indicators, m latent variables and g groups 

is defined by the following equations (Sörbom, 1974; also see Nagengast & Marsh, 2013): 

𝒙(𝒈) = 𝝉𝒙
(𝒈)

+ 𝚲𝒙
(𝒈)

𝝃(𝒈) + 𝜺(𝒈)     (1) 

𝑬(𝝃(𝒈)) = 𝝂(𝒈)     (2) 

𝑽𝒂𝒓(𝝃(𝒈)) = 𝚽(𝒈)     (3) 

𝑽𝒂𝒓(𝜺(𝒈)) = 𝚯𝜺
(𝒈)

     (4) 

In the CFA-MI model, the p-dimensional group-specific response vectors 𝒙(𝑔) that are 

typically of high-dimensionality (indicators of the latent factors) for each of g groups are explained by 

an underlying set of latent variables 𝝃(𝑔) of lower dimensionality: an m-dimensional vector. The p x m 

—dimensional factor loading matrix 𝚲𝑥
(𝑔)

 specifies the relations of the latent variables and the 

indicators. The p-dimensional vector 𝝉𝑥
(𝑔)

contains the group-specific intercepts, one for each 

indicator, and the p-dimensional vector 𝜺(𝑔) contains the residuals with a p x p-dimensional variance-

covariance matrix 𝚯𝜀
(𝑔)

 that is typically assumed to be a diagonal matrix, implying that residuals 

associated with different indicators are uncorrelated. The m-dimensional mean vector of the latent 

variables is given by 𝝂(𝑔), the m x m-dimensional variance-covariance matrix of relations among the 

multiple latent factors by 𝚽(𝑔). Both the latent variables 𝝃(𝑔) and the residuals 𝜺(𝑔) are assumed to be 

normally distributed. The superscripts (g) indicate that the corresponding vectors and matrices can 

vary across the multiple groups. The model implies group-specific p x p-dimensional variance-

covariance matrices 𝚺𝑥𝑥
(𝑔)

 and  p-dimensional mean vectors 𝝁𝑥
(𝑔)

 for the observed variables 

𝝁𝒙
(𝒈)

= 𝝉𝒙
(𝒈)

+ 𝚲𝒙
(𝒈)

𝝂(𝒈),      (5) 

𝚺𝒙𝒙
(𝒈)

= 𝚲𝒙
(𝒈)

𝚽(𝒈)𝚲𝒙
(𝒈)

+ 𝚯𝜺
(𝒈)

.     (6) 

Thus, individual responses (yipg ) are defined as: 

yipg = 𝝂pg + λpg ηig + ipg      (7) 

where p = 1, ... , P and P is the number of observed indicator variables, g = 1, . . ., G and G is the 
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number of groups, i = 1, . . ., Ng where Ng is the number of independent observations in group g, and  

ηig is a latent variable. The discrepancy between the model implied and the observed mean vectors 

and covariance matrices constitutes the basis for global tests of model fit. 

Traditional Multigroup CFA Tests of Measurement Invariance 

Typically, CFA-MI tests (see Marsh, Muthén et al., 2009; Meredith, 1993; Vandenberg & 

Lance, 2000; Widaman & Reise, 1997) begin with a configural invariance model in which the factor 

loading matrices 𝚲𝑦
(𝑔)

are restricted to have the same pattern of fixed and freed elements across the 

groups. In this model, none of the estimated parameters are constrained to be invariant over groups 

(except for those constrained to fixed values—typically 0 or 1—used to identify the factor structure in 

each group). If this model does not fit the data, there are fundamental differences in the 

dimensionality of assessed constructs across the multiple groups, and cross-country comparisons on 

common scales are fraught with difficulty (see Marsh & Grayson’s 1994 discussion of a hierarchy of 

invariances and of what interpretations might be justified without at least partial configural 

invariance). The configural invariance model also serves as a reference model against which to 

compare the fit of more restrictive invariance models that impose further constraints, setting 

parameters to be invariant across the multiple groups.  

The second CFA-MI model is usually the metric invariance model (Vandenberg & Lance, 

2000, or the weak measurement invariance model, Meredith, 1993). In this model, the factor loading 

matrices are set to be invariant across the multiple groups (i.e. 𝚲𝑦
(𝑔)

= 𝚲𝑦). When metric invariance 

holds, the indicators are related to the latent variables in the same way in all groups. Differences in the 

latent variables get translated into differences in the indicators in a similar way across the groups. 

Metric invariance is the precondition for meaningful comparisons of the variance-covariance matrices 

of the latent variables 𝚽(𝑔) across the groups, as they are defined by similar measurement models 

(Marsh, Hau, Artelt, Baumert, & Peschar, 2006; Meredith, 1993; Widaman & Reise, 1997). 

After establishing metric invariance, there is no universal agreement on what restrictions to 

test next (Nagengast & Marsh, 2013). Marsh, Muthén, et al. (2009) presented a 13-model taxonomy 

of measurement invariance that systematically incorporates many combinations of invariance tests. 
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The configural invariance model and the metric invariance model are included as the first two models 

in this taxonomy. All further models are built on the metric invariance model, and further restrict 

parameters to be invariant across multiple groups. However, for the present purposes, and in many 

other applications, the main focus is on the scalar invariance model (Vandenberg & Lance, 2000; also 

referred to as strong measurement invariance; Meredith, 1993), which is usually included in tests of 

measurement invariance. In this model, the item intercepts are set to be invariant across the multiple 

groups (i.e. 𝝉𝑥
(𝑔)

= 𝝉𝑥). Scalar invariance is a precondition for comparing latent factor means across 

the multiple groups (Marsh, Muthén et al., 2009; Meredith, 1993; Widaman & Reise, 1997). If this 

restriction holds, there are no systematic differences in the average item responses between groups 

that are not due to differences in the mean level of latent variables. Although this is not always a focus 

of measurement invariance studies, further tests might include uniquenesses, factor variances, factor 

covariances, path coefficients, latent means, or various combinations of these different sets of 

parameters (e.g., Marsh, Muthén et al., 2009). 

Criticisms of the Traditional Approach to Partial Scalar CFA-MI Solutions 

All statistical models are false. An overarching premise of the present investigation is the 

now widely accepted truism all that statistical models—including CFA and SEMs—only reflect 

approximations to reality that are always wrong (e.g., MacCallum, 2003; Marsh, Lüdtke, et al., 2013; 

McDonald, 2010; but also see Box, 1979; Thurstone, 1930; Tukey, 1961). As emphasized by 

MacCallum (2003, p. 114) in his presidential address:  

Regardless of their form or function, or the area in which they are used, it is safe to say that these 

models all have one thing in common: They are all wrong. Simply put, our models are implausible if 

taken as exact or literal representations of real world phenomena. 

From this perspective, it is essential for applied researchers to evaluate how model misspecification 

influences their interpretations and conclusions. As applied here, the complete scalar CFA-MI model, 

based on the assumption that a large number of parameters have exactly the same values in a large 

number of groups, is highly implausible if based on real data. Indeed, in the same way that from a 

philosophical perspective all statistical models are wrong, even the assumption that any two 

parameters are exactly the same is always wrong, and will be shown to be false from a statistical 
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perspective when based on a sufficiently large N. From this statistical perspective the critical question 

becomes whether the approximation provided by the complete scalar CFA-MI is acceptable and, if 

not, whether an appropriate approximation to this model can be found.  

Large-scale application of CFA-MI models. Classic demonstrations of support for complete 

scalar CFA-MI models typically are based on small-scale studies in which the numbers of factors, 

groups, and indicators are all small (e.g., Byrne et al., 1989; Reise, Widaman, & Pugh, 1993). In 

contrast, in large-scale studies like the cross-national PISA research with many groups, factors, 

items/factor and participants like the Nagengast and Marsh (20130 study), which was the starting 

point of the present investigation, an acceptable fit of the complete scalar CFA-MI model is rarely 

achieved (e.g., Davidov, Meuleman, Cieciuch, Schmidt, & Billiet, 2014; He & Kubacka, 2015; 

Rutkowski & Svetina, 2014; Zercher, Schmidt, Cieciuch, & Davidov, 2015).  

Thus, Rutkowski and Svetina (2014) contended that most studies in support of measurement 

invariance were based on a few groups and relatively small sample sizes, and that there were 

relatively few published studies that even tested scalar invariance in large-scale applications with 

typical numbers of groups and sample sizes in cross-national surveys such as the Trends in 

International Mathematics Study (TIMSS), PISA, the Teaching and Learning International Survey 

(TALIS), and in many surveys not focused on education outcomes—such as those administered by 

the World Health Organization and UNICEF. Rutkowski (semnet@listserv.ua.edu, 6 June, 2016) also 

chaired an expert group for the 2013 TALIS survey that conducted multiple group analyses on dozens 

of scales across some 32 countries, but found scalar invariance untenable in nearly all cases (also see 

He & Kubacka, 2015).  

Similarly, in apparently the largest published study of scalar CFA-MI ever conducted, 

Zercher et al. (2015) evaluated the invariance of responses to a total of 90 groups (15 countries in 

each of 6 waves of the European Social Survey (ESS; Total N = 173,071) for a single 3-item scale 

designed to measure universalism. Demonstrating that the scalar CFA-MI model was unacceptable for 

analyses across the 15 countries in each wave considered separately, as well as for the analysis of 90 

groups across the six waves, they then deleted groups that were not at least partially invariant, 

eliminating all but 37 of 90 groups. Had they considered the multiple factors from instruments from 
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which this scale was selected, or included more than just three items, support for even partial 

invariance would probably have been much worse. Noting the limitations of the scalar CFA-MI 

approach in large-scale studies, they recommended further research using recent developments in 

invariance testing, including the alignment approach considered here. 

 Problems with stepwise approaches to partial invariance.  Byrne, Shavelson, and Muthén 

(1989) introduced and popularized the CFA-MIPart model, particularly in relation to testing differences 

in latent means. Based on a small-scale application (two groups, 11 indicators designed to measure 

four factors), they relied heavily on modification indices supplemented by substantive knowledge and 

intuition to make post-hoc corrections to achieve a scalar CFA-MIPart model. Emphasizing that post-

hoc adjustments are problematic, rendering probability values meaningless, they lamented that 

applied researchers “must await the research efforts of statisticians in resolving this important 

psychometric obstacle” (p. 465). As an interim remedy they recommended cross-validation, but noted 

that “the relaxation of many parameters is likely to yield an unsuccessful cross-validation” (p. 465) 

and stressed the need for the use of sound judgment. However, more than a quarter of a century after 

this seminal work, the common practice is to produce scalar CFA-MIPart models based substantially on 

forward stepwise application of modification indices (Schmitt & Kuljanin, 2008), with some post-hoc 

justification for the reasonableness of adjustments that had not been hypothesized a priori. Thus, 

Asparouhov and Muthén (2014) proposed alignment as a potentially more useful alternative to the 

potentially dubious scalar CFA-MIPart model. 

 It is worthwhile briefly reviewing well-known problems with the application of forward 

stepwise selection procedures to achieve an acceptable fitting model. Although these issues are more 

widely recognized in relation to stepwise multiple regression, a similar logic applies to the use of 

modification indices to achieve an acceptable fit in scalar CFA-MIPart models. The starting point is a 

complete scalar invariance model that does not provide an acceptable fit to the data, and that typically 

is predicated on acceptable fit of the corresponding configural model. In traditional CFA-MIPart 

models the applied researcher selects the estimated parameter with the largest modification index and 

frees this parameter. This process is repeated until an acceptable fit is achieved and the freeing of 

additional parameters does not substantially improve the fit. In large-scale studies with many groups, 
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factors, and measured variables it is entirely possible that acceptable fit in relation to current standards 

of goodness of fit will require hundreds or even thousands of adjustments.  

In scathing attacks on stepwise strategies, statistician Frank Harrell (2011), along with many 

others (e.g., Davison, 2003; Judd & McClelland, 1989; MacCallum, Roznowski & Necowitz, 1992) 

underlined the weaknesses of stepwise strategies, particularly forward stepwise strategies, as used in 

the typical CFA-MIPart model. Harrell  (2001, p. 56) emphasizes that: 

Stepwise variable selection has been a very popular technique for many years, but if this 

procedure had just been proposed as a statistical method, it would most likely be rejected 

because it violates every principle of statistical estimation and hypothesis testing. 

Davison (2003, p. 400) notes that “These three procedures [forward selection, backward elimination, 

and stepwise regression] have been shown to fit complicated models to completely random data, and 

although widely used they have no theoretical basis”. Similarly, Judd and McClelland (1989, p. 204) 

note that “An unfocused search through many possible models (sometimes referred to as a ‘fishing 

expedition’) increases the likelihood of capitalizing on chance and finding a model which represents 

only a spurious relationship”.  

More specifically, the typical forward stepwise selection procedure based on modification 

indices to achieve partial scalar CFA-MI in large-scale studies is dubious in that: goodness of fit and 

related indices are positively biased. For the selected parameters that are freed, modification indices 

(and extent of non-invariance) are positively biased. In contrast, for unselected parameters for which 

non-invariance is assumed to be zero, modification indices are negatively biased. Furthermore, 

because there is extreme multicollinearity in the modification indices, variable selection becomes 

arbitrary. CFA-MIPart models identified by stepwise methods have an inflated risk of capitalizing on 

chance features of the data, such that the final scalar CFA-MIPart that is the end result of this stepwise 

process is not optimal when cross-validated with new data, but the final model is rarely tested in this 

way. Indeed, the iterative stepwise selection process will sometimes find a local minimum and get 

stuck in a suboptimal region of model space, so that potentially better models are not even considered. 

Even among alternative stepwise procedures, the forward approach is generally not the preferred 

method, in that it results in suppression effects, such that adjustments are only significant after an 
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earlier adjustment has been made. Thus, in their review of model modifications in CFAs, MacCallum 

et al. (1992) demonstrated that stepwise procedures produced inconsistent and erratic cross-validation, 

bringing them to “a position of considerable skepticism with regard to the validity of the model 

modification process as it is often used in practice” (p. 502). 

There are, of course, some issues that are idiosyncratic to the application of stepwise 

procedures for partial scalar invariance. In particular, predicated on the finding of a well-fitting 

configural model, adjustments are made primarily (or exclusively) in relation to factor loadings and 

intercepts, in order to achieve an acceptable goodness of fit for the scalar CFA-MI model compared to 

the corresponding configural model. However, goodness of fit provides a dubious basis for evaluating 

the model, as freeing enough parameters ultimately will achieve a fit that approaches that of the 

configural model, which has already been shown to provide an acceptable fit. Also, as emphasized 

earlier, the main purpose of the scalar invariant model (partial or complete) is to provide a 

justification for the evaluation of latent means and related statistical models, but there is no guarantee 

that the stepwise selection process, based on freeing factor loadings and intercepts to achieve an 

acceptable goodness of fit, will facilitate this objective of providing unbiased means. 

Alignment Method to Test Measurement Invariance 

In the typical test of scalar invariance, the intercepts 𝜈pg and loading parameters λpg are held 

equal across groups; the factor mean and variance in one group are fixed to 0 and 1 respectively. As 

already emphasized, this fully invariant scalar model will frequently not provide an acceptable fit to 

the data, particularly when the numbers of items, latent factors, and groups are large, as is the case in 

the PISA 2006 data considered here. In contrast, the CFA-MIAL model (Asparouhov and Muthén, 

2014) does not assume measurement invariance, but seeks an optimal measurement invariance pattern 

based on a simplicity function that is similar to the rotation criteria used with exploratory factor 

analysis. With this approach it is possible to estimate all of the parameters (vpg, λpg, αg, ψg), while 

holding non-invariance to a minimum. 

The alignment approach begins with a traditional CFA-MI analysis and is predicated on the 

assumption that the fit of the configural model is acceptable and substantially better than the scalar 

model. Following these initial analyses, the first step of the CFA-MIAL model is a configural model 
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(M0) in which all factor means and variances are constrained across all groups to be 0 and 1 

respectively, but all factor loadings and intercepts are freely estimated. The final alignment model 

(CFA-MIAL) has the same fit as M0. Asparouhov and Muthén (2014) describe the relation between 

M0 and CFA-MIAL as parallel to unrotated and rotated EFA models in which the rotated model 

simplifies the interpretation without compromising model fit. This is accomplished by minimizing a 

total loss/simplicity function that accumulates measurement non-invariance across G groups with 

respect to αg and ψg, based on the component loss function, which has been used in EFA (see, e.g., 

Jennrich, 2006). In this way, a non-identified model where factor means and factor variances are 

added to the configural model is made identified, by adding a simplicity requirement. This loss 

function is minimized when there are a few large non-invariant measurement parameters and many 

approximately invariant measurement parameters, rather than many medium-sized non-invariant 

measurement parameters. This is akin to EFA rotation functions, which aim for either large or small 

loadings, but not midsized loadings (see Asparouhov & Muthén, 2014 for more details).  

Following the selection of the CFA-MIAL model, alignment offers a detailed analysis to 

determine which parameters are approximately invariant and which are not. For each measurement 

parameter, the largest set of groups is found such that the estimate for each group is not significantly 

different from the average parameter estimate across all groups in the invariant set using a multiple 

comparison process, with additional rules to ensure that the process stabilizes. The relative 

contribution of each parameter to the simplicity/loss function provides an indication of the degree of 

non-invariance (differential item functioning) associated with parameter estimates that can be useful 

in the refinement of items in future applications.  

Asparouhov and Muthén (2014) demonstrated support for the CFA-MIAL model on the basis 

of a simulation and also on analysis of real data. In their simulation study, they varied the sample size 

(100 or 1,000 per group), number of groups (2, 3, 15 or 60), and extent of non-invariance (0%, 10%, 

20%). Results showed that known population parameters were accurately estimated even when there 

was substantial non-invariance, particularly when sample sizes were large. Even in the worst case 

(substantial non-invariance, small Ns, large number of groups), biases tended to be small. In the real-

data example from the European Social Survey (49,894 subjects in 26 European countries), 



ALIGNMENT-WITHIN-CFA (AWC)        14 

Asparouhov and Muthén (2014) tested the cross-country invariance on the basis of four items 

designed to measure a single factor in which the CFA scalar model showed a poor fit to the data. The 

alignment approach also showed considerable non-invariance for three of the four items, but relatively 

little non-invariance in the fourth item. Although the authors highlighted some differences between 

the CFA-MIAL and traditional scalar models in terms of latent means, the relative ranking of the 26 

countries was very similar in respect of the traditional scalar CFA-MI and alignment models. In 

concluding remarks, Asparouhov and Muthén argued that alignment provides many advantages over 

the traditional CFA-MI approach to complete or partial scalar invariance; tests of some of these 

assertions are the focus of the present investigation.  

Despite the great promise of the CFA-MIAL model to address practical problems associated 

with multiple group tests of measurement invariance, there are important limitations in the currently 

available version that substantially limit its usefulness in applied research (Asparouhov & Muthén, 

2014; see earlier discussion of AwC) in relation to the full range of tests of measurement invariance in 

CFAs and SEMs more generally. On this basis, the early CFA-MIAL was characterized as primarily an 

exploratory tool. Largely overcoming these current limitations, here we introduce the Alignment-

within-CFA (AwC) approach, which transforms alignment from an exploratory to a confirmatory tool, 

allowing the researcher to pursue nearly all issues that can be addressed with traditional CFA and 

SEM models, and greatly enhancing its usefulness for applied research.  

The AwC approach is based on a similar logic to the exploratory structural equation model 

(ESEM) within CFA (EwC), which similarly transformed the usefulness of ESEM (Asparouhov & 

Muthén, 2009; Marsh,  Muthén, et al., 2009; Marsh, Nagengast, & Morin, 2013; Marsh, Morin, 

Parker, & Kaur, 2014). In AwC the first step is to test a standard CFA-MAL, as described by 

Asparouhov and Muthén (2014). However, the next step is to reconfigure this model as a standard 

CFA model, using as starting values the final CFA-MIAL estimates with appropriate fixed and free 

parameter estimates, such that the AwC solution is equivalent to the CFA-MIAL solution in terms of 

number of estimated parameters, goodness of fit, and definition of the factor structure (see subsequent 

discussion in Methods section and a detailed description in Appendix B of the online Supplemental 

Materials). Indeed, the AwC model in its basic form is the same as the alignment model, only being 
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reconfigured as a more general CFA model, so that support for the CFA-MIAL solution necessarily 

implies support for the AwC. However, the AwC provides the flexibility to test this solution within a 

broader range of CFA and SEMs as demonstrated in Study 1  

Study 1: An Overview of the Substantive and Methodological Focus 

The data considered here are based on the student background questionnaire of PISA 2006, 

which contains eight scales measuring a variety of motivational and engagement constructs in science 

(e.g. academic self-concept, self-efficacy, and value; see Supplemental Materials, Appendix 1 for 

further discussion). Here we apply the CFA-MI and CFA-MIAL models to evaluate the measurement 

properties of these scales for nationally representative samples of 15-year-old students from 30 OECD 

countries (total N = 249,840). Using these data, Nagengast and Marsh (2013) applied traditional CFA-

MI models to demonstrate that the a priori scales showed a well-defined eight factor solution. There 

was reasonable support for the invariance of factor loadings across countries (metric invariance), but 

not for the invariance of item intercepts (scalar invariance), making mean comparisons across 

countries dubious. Hence, these data provide an ideal application of the CFA-MIAL model, which is 

specifically designed for such purposes. In this respect the substantive orientation of this investigation 

is to evaluate cross-cultural differences in latent means of science-related motivational constructs as 

well as relations between these motivational factors and important covariates: gender, science 

achievement, and socioeconomic status (SES).  

In pursuing our methodological aims, we demonstrated the flexibility of AwC and its 

applicability to substantively important issues. We began by comparing the estimated factor means 

based on the new CFA-MIAL model and the traditional scalar invariance model, and then introduced 

AwC. Based on AwC, we extended alignment to include tests of the invariance of factor variance-

covariance and item uniqueness. We then integrated the MG-CFA models and the multiple indicators 

multiple cause (MIMIC) models with AwC, to test the invariance of relations between the 

motivational constructs and the covariate variables, particularly for gender. In an alternative approach 

to the evaluation of gender differences in factor means, we conducted a 60-group (30 countries x 2 

genders) AwC with a priori contrasts within each country, comparing these results with those based 

on the corresponding 30-group MIMIC analysis. 
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Methods 

Data 

Our data are nationally representative responses by 15-year-old students from all 30 OECD 

countries in PISA 2006 (N = 249,840). These raw data are readily available through the OECD-PISA 

website (https://www.oecd.org/pisa/pisaproducts/) as well as in the extensive documentation, 

manuals, and technical reports. The samples were collected using a complex two-stage sampling 

design and were, after using the appropriate survey weights, representative of the national population 

(OECD, 2009). Although academic achievements in reading, mathematics, and science were assessed 

in PISA 2006, only science-related motivation items were included in the questionnaire (see OECD, 

2009). Overall, 44 motivation items were used to measure eight motivational constructs on a 4-point 

Likert scale, with 1 indicating that the participants “strongly agree” and 4 indicating “strongly 

disagree”, with two exceptions: science self-efficacy (ranging from “do easily” to “could not do it” on 

a 4-point Likert scale) and extracurricular activities (ranging from “very often” to “hardly ever” on a 

4-point Likert scale). For the present purposes, responses were reverse-scored, so that higher values 

represent more favorable responses and thus, higher levels of motivation. 

Eight motivational constructs. The Science self-concept scale assessed students’ self- 

perceptions of their ability in science (e.g., “I learn science topics quickly”). The science self-efficacy 

scale assesses students’ confidence in performing real world science-related tasks (e.g., “Identify the 

science question associated with the disposal of garbage”). The Enjoyment of science learning scale 

assessed the enjoyment a student gains from performing a science-related activity (e.g., “I am 

interested in learning about science”). The instrumental motivation scale assesses how well science 

achievement relates to current and future goals (e.g., “I study science because I know it is useful for 

me”). The future-oriented science motivation scale assessed students’ expectations about tertiary 

science studies and working in science-related careers (“I would like to work in a career involving 

science”). The scales that assessed students’ perceptions of general value of science (e.g., “science is 

valuable to society”; henceforth referred to as “general value”) and personal values of science (e.g., 

“Science is very relevant to me”) were also included. Finally, extracurricular activities in science 

assessed the frequency of students engaging in out-of-school activities related to science (e.g., 

https://www.oecd.org/pisa/pisaproducts/
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“Borrow or buy books on science topics”). Scale reliabilities for the eight motivational factors were 

acceptable (see Table 1). 

Covariates. Gender (0 = male, 1 = female), SES (Economic, Social and Cultural Index 

[ESCS]; see OECD, 2009) and science achievement were treated as covariates in MIMIC models. To 

prevent biased population estimates, PISA measured science abilities using five plausible values for 

each subject (with a mean of 500 and a standard deviation of 100). Hence, to be able to correct the 

measurement error appropriately, these sets of plausible values were used to measure students’ 

achievement (see OECD, 2009).  

Statistical Analyses 

All analyses were conducted with Mplus (Version 7.11; Muthén & Muthén, 1998–2015). A 

main focus in the present investigation is the application of AwC to MIMIC and MG-CFA models 

based on the robust maximum likelihood estimator (MLR), with standard errors and tests of fit that 

are robust in relation to non-normality and non-independence of observations. In addition, we applied 

corrected standard errors and model fit statistics to control for the nesting of students within schools, 

based on the TYPE = COMPLEX option in Mplus. The HOUWGT weighting variable was also taken 

into account in data analysis, in order to correct the computation of standard errors and tests of 

statistical significance (see Nagengast & Marsh, 2013 for more discussion). For the present purposes 

we used the FIXED option available in the Mplus CFA-MIAL model, in which the latent factor mean 

and variance of one arbitrarily selected group (in this case the first group, Australia) were fixed to 0 

and 1 respectively (see Appendix B in the online Supplemental Materials for the Annotated Mplus 

syntax; also see Asparouhov & Muthén, 2014 for more discussion).  

As discussed earlier, if the invariance of item intercepts (or even factor loadings) is not 

supported and the scalar model provides a poor model fit, an alignment analysis can be employed to 

evaluate latent mean comparisons. AwC can be applied when there is a need to conduct additional 

analysis that cannot be easily implemented within the alignment framework but that can be estimated 

with CFA and SEM models. All parameter estimates from the alignment solution should be used as 

starting values to estimate the AwC model. For purposes of identification, one item from each factor 

is arbitrarily selected (e.g., the first indicator) as a referent indicator, and the factor loading and 
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intercept of this indicator are fixed to the estimated values from the alignment solution (using starting 

values supplied by the Mplus package). However, it is also possible to achieve identification using 

other traditional approaches (e.g., fixing factor variances). The alignment solution (as well as the 

AwC solution, which  is equivalent to the alignment solution), has the same degrees of freedom, the 

same chi-square and goodness of fit statistics as the configural MG-CFA model (see Supplemental 

Materials, Appendix 2, for further discussion). 

This process of constructing the AwC model from the MAL solution is demonstrated in 

Appendix 2 (Supplemental Materials). The output file for the MAL solution contains the start values–

parameter estimates based on the final MAL solution, which are then used to construct the AwC 

syntax. For each latent factor loading, the first indicator of that factor and the corresponding indicator 

intercept is fixed, and this process is repeated for each of the multiple groups. Output from the MAL  

and AwC demonstrates that all parameter estimates are the same for the MAL  and AwC solutions (this 

is shown in Appendix 2 for one country, USA; this was also the case for all 30 countries).1 However, 

because the AwC is merely a CFA model, it is possible to conduct other CFA and SEM models that 

cannot be tested with the CFA-MIAL model. 

Missing data. In order to account for the five plausible values for each achievement score, all 

data analyses involving achievement were run separately for each of the five plausible values. For 

each of the five data sets, each based on different plausible values, we used full information maximum 

likelihood (FIML) estimation (Enders, 2010) to handle missing data on the remaining items, given the 

relatively small amount of missing data (mean coverage rates across the 44 items being .974). This 

approach is similar to using FIML within each of the five data sets and treating achievement as an 

auxiliary variable (Enders, 2010). Final parameter estimates, standard errors and goodness-of-fit 

statistics were obtained with the automatic aggregation procedure implemented in Mplus for multiple 

imputation, to properly handle plausible values (Rubin, 1987). 

Goodness of fit. A number of traditional indices that are relatively independent of sample 

size were utilized to assess model fit (Hu & Bentler, 1999; Marsh, Balla, & McDonald, 1988; Marsh, 

Hau & Wen, 2004): the comparative fit index (CFI), the root-mean-square error of approximation 

(RMSEA) and the Tucker-Lewis Index (TLI). Values greater than .95 and .90 for CFI and TLI 
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typically indicate excellent and acceptable levels of fit to the data. RMSEA values of less than .06 and 

.08 are considered to reflect good and acceptable levels of fit to the data. However, these cutoff values 

constitute only rough guidelines, rather than golden rules (Marsh, Hau & Wen, 2004). Typically it is 

more useful to compare the relative fit of different models in a nested taxonomy of measurement 

invariance models than to compare the relative fit of single models (Marsh, Muthén, et al., 2009). 

Cheung and Rensvold (2002) and Chen (2007) have suggested that if the decrease in CFI is not more 

than .01, and the RMSEA increases by less than .015 for the more parsimonious model, then 

invariance assumptions are tenable. Again, all these proposals should be considered as rough 

guidelines only, or rules of thumb.  

Results 

Factor Structure: Preliminary CFA  

In preliminary analyses, we evaluated the factor structure and relations with covariates on the 

basis of the total group. The total group CFA model provided a good fit to the data (CFI = .963, TLI 

= .960, RMSEA = .012, see Model TG1CFA, Table 2) and the factor loadings of the eight scales 

range from .564 to .869 (see Table 1). We then added the three covariates (gender, SES, and 

achievement) to the total group CFA model (TG2CFA), which also provided a good fit to the data 

(CFI = .955, TLI = .950, RMSEA = .013).  

The correlations among the 8 factors and three covariates (Table 3; see Appendix 4 in the 

Supplementary Materials for a more detailed summary) are of substantive interest, and serve as an 

advance organizer for subsequent analyses. Not surprisingly, all 28 correlations among the eight 

motivational constructs were positive (M r = .547, .370 to .785), and all were statistically significant, 

due in part to the large sample size. Boys had somewhat higher scores than girls (r = .024 to .094) for 

these science constructs. Science achievement was significantly positively correlated with all the 

motivational constructs (r = .081 to .372) except for extracurricular activities (r = .012, ns), whilst 

correlations with SES (r = -.030 to .114) were smaller.  

Traditional CFA Test of Measurement Invariance of Factor Structure Over Countries  

Next we conducted a series of increasingly stringent tests of measurement invariance across 

the 30 countries. The configural invariance model (MG1 in Table 2) fitted the data well (CFI = .952, 
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TLI = .948, RMSEA = .027) and served as a baseline model that was later used for comparison 

purposes with more restrictive invariance models. We then tested metric invariance (Model MG2, 

Table 2) by constraining the factor loadings to be invariant across the 30 countries. This more 

parsimonious model resulted in a small decrease in fit indices compared to the configural model (CFI 

= .006, TLI = .005, RMSEA = .001). In support of metric invariance, these differences were less than 

the recommended cutoff values typically used to argue for the less-parsimonious model.  

In Model MG3, we tested the scalar invariance model in which the 44 item intercepts, as well 

as the factor loadings, were constrained to be invariant across countries. The fit of the scalar model 

might be seen as minimally acceptable (e.g., CFI = .906, TLI = .906; RMSEA = .058) by some 

standards, but compared to the metric invariance model (MG2), the decrease in fit indices (CFI = .040, 

TLI =.037, RMSEA = .020) was substantially greater than the recommended cutoff values for MG3. 

These results demonstrate a lack of support for scalar invariance.  

When scalar invariance is rejected, alternative tests of partial invariance based on 

modification indices are suggested (Byrne, Shavelson, & Muthén, 1989). However, there are many 

large modification indices based on the MG3—thousands of which are statistically significant; for 

intercepts alone, 201 in the range of 100 to 200, 159 in the range of 200 to 500, and 59 in the range of 

500 to 2928. Hence, the process of freeing parameter estimates one at a time until an acceptable fit is 

obtained would be very laborious. More importantly, as noted earlier, the stepwise approach to partial 

invariance has been severely criticized on the grounds of being biased, capitalizing on chance, and not 

resulting in an optimal model (e.g., Davison, 2003; Harrell, 2011; Judd & McClelland, 1989; 

MacCallum, Roznowski, & Necowitz, 1992) leading Asparouhov & Muthén (2014) to suggest that 

this approach is unlikely to result in the most useful model (see earlier discussion on stepwise 

strategies). In summary, these results suggest a lack of support for the scalar measurement model; 

such support is prerequisite for comparing the means of the latent motivational constructs across 30 

countries (similar conclusions are reached in Nagengast & Marsh, 2013). 

The MG-CFA Model With the Alignment Method 

In pursuit of the comparison of latent means, we applied the CFA-MIAL model to evaluate a 

MG-CFA model of the eight motivational constructs. Although alignment attempts to minimize the 
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amount of non-invariance, it does not compromise the model fit. Thus, the MG-CFA with alignment 

(MG4AL) has the same fit as the configural model (MG1), indicating that the alignment model fits the 

data well. More importantly, alignment allows us to compare mean differences of latent factors, and 

greatly simplifies measurement invariance analyses.  

A potentially important contribution of the CFA-MIAL model is to provide a detailed account 

of parameter invariance for every model parameter in every group. For example, inspection of Table 1 

shows that, on average, there is more non-invariance associated with item intercepts than there is with 

factor loadings. This is of course consistent with the CFA-MI results, which showed that there was 

reasonable support for the invariance of factor loadings, but not item intercepts. However, even within 

the set of items designed to measure the same construct there were substantial differences. For 

example, in the General Value factor the item intercepts of the item “Advances in science usually 

improve people’s living conditions” were invariant across 22 of 30 groups, whereas the intercept was 

only invariant across 10 groups for the item “Science is valuable to society”. Such information is 

especially useful for developing or revising a scale for future research (see Table 4 for more details 

about the invariance status of item loadings and intercepts involving self-concept and general value).  

Although it is useful, diagnostic information about the extent of violation of invariance based 

on the CFA-MIAL model is based on tests of statistical significance that are highly influenced by 

sample size. However, such values can easily be transformed into standardized differences in the 

metric of Cohen's D that provide a potentially more meaningful summary of practical significance. 

For example, we present the difference between the alignment and scalar models for each of the eight 

factors (Table 1)—the mean and standard deviation across items within each scale and the 30 

countries. Although the mean differences are consistently small, the standard deviations these 

differences are larger in size, particularly for the intercepts, which previous results have shown to be 

more non-invariant. Similarly, we show differences between the alignment and scalar model in 

relation to Cohen's D for individual items in the self-concept and general value scales (Table 2). 

Alternatively, these values can be represented as box plots, which provide a more heuristic 

representation of the distribution of differences in relation to Cohen’s D values (see the boxplots in 

Appendix 6, Supplemental Materials). Although traditional modification indices and expected change 
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parameters are not included in the alignment output at this time, these values can be easily obtained 

from the equivalent AwC model (see Appendix 7, Supplemental Materials). 

Latent Means Comparisons: Alignment vs. Scalar Methods 

In an attempt to look more closely at latent mean differences based on the CFA-MIAL model 

and the traditional scalar invariance method, we focus on two motivational constructs: self-concept, 

and general value of science. Graphs of the latent means (Figure 1) for self-concept based on the 

alignment model (MG4AL) and the scalar invariance model (MG2) demonstrate that latent mean 

differences are highly similar (i.e., factor means are close to the diagonal). Both methods show that 

Mexico (MEX) has the highest level of self-concept and Japan (JPN) the lowest level. For general 

value, the similarity in the pattern of means for the two approaches is somewhat lower than for self-

concept. For example, the scalar method indicates that Iceland (ISL) has a substantially different 

mean from Greece (GRC), whereas the CFA-MIAL model indicates essentially no difference between 

these two countries. In contrast, for general value the CFA-MIAL model indicates a substantial mean 

difference between Norway (NOR) and Austria (AUT), whereas the factor means of these two 

countries are similar for the scalar method. In summary, the pattern of factor means based on the 

CFA-MIAL model was more closely related to those based on scalar invariance for self-concept than 

for general value. This is also consistent with our findings that the self-concept scale fitted the data 

better than the general value scale, when the two constructs were considered separately.  

Tests of the Invariance of the Latent Factor Variance–Covariance Matrix 

Subsequently, we tested invariance constraints on various combinations of uniquenesses, 

factor variances, and factor covariances, using the AwC extension of the CFA-MIAL model. Although 

there is no a priori rationale for the ordering of these models, they are all nested under the alignment 

model (MG4AL in Table 2). In this respect, the results are informative about the nature of invariance, 

but also demonstrate the usefulness of AwC.  

Inspection of the fit indices suggests that constraining factor variances and covariances to be 

equal across the 30 OECD countries is reasonable (e.g., MG4 vs MG7AwC in Table 2; CFI = .005, 

TLI = .003, RMSEA = .001), whereas constraints associated with the invariance of 
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uniquenesses are not acceptable (e.g., MG4 vs MG5AwC in Table 2; CFI = .029, TLI = .028, 

RMSEA = .006; also see MG8AwC,  which constrains uniquenesses as well as factor variance and 

covariances). Relations among the eight factors are essentially the same as those observed with the 

total group Model (i.e., TG2CFA; see Table 2 and Appendix 3 in the Supplemental Materials) and so 

are not considered further. The lack of support for uniqueness invariance suggests that comparison of 

the manifest means of the constructs across countries is inappropriate. Although the implications of 

these results are not critical for the evaluation of latent means, as in the present investigation, they do 

dictate caution in the evaluation of manifest means, which is a focus of many PISA studies. 

Relations to Achievement, Gender, and SES: Integration of Multiple-Group and MIMIC 

Approaches  

Here we used a multiple-group MIMIC (MG-MIMIC) model to evaluate country-to-country 

variation in how the three covariates (achievement, gender, and SES) are related to each of the 

motivational constructs. More specifically, the eight motivational constructs were regressed on each 

of the three covariates, and we evaluated differences across the 30 OECD countries. However, to 

make the presentation manageable, we focus on the effects of the MIMIC variables on self-concept 

and general value, but note that the same approach was used for each of the eight motivation factors 

(also see Table 2). Again, we note that this SEM analysis is one that could not be evaluated with the 

standard alignment model, but is possible with the AwC extension introduced here. 

The configural MIMIC with no invariance constraints provided a reasonable fit to the data 

(MG-MIMIC1 in Table 2; CFI = .942, TLI = .937, RMSEA = .028). Constraining factor loadings to 

be invariant over the 30 groups led to a small decrease in fit indices (MG-MIMIC1 vs. MG-MIMIC2 

in Table 2; CFI = .006, TLI = .005, RMSEA = .001). However, the fit of the scalar model with 

the invariance of item intercepts (CFI = .898, TLI = .895, RMSEA = .036) was unsatisfactory, 

compared to Model MG-MIMIC2, in that the decrement in fit was substantial ( CFI = .038, TLI 

= .037). Hence, these results based on MIMIC models largely parallel those based on the 

corresponding models without MIMIC variables, in which the scalar invariance model did not fit the 

data. In models without MIMIC variables, this problem was circumvented by the use of the CFA-
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MIAL model. However, covariates and SEMs more generally cannot be accommodated by the CFA-

MIAL model; this limitation is overcome by the AwC extension of the CFA-MIAL model.  

As discussed earlier, the AwC solution is equivalent to the configural MG-CFA model in that 

it has the same degree of freedom, goodness of fit, and measurement parameter estimates. The MG-

MIMIC model with AwC (MG-MIMIC4AwC)2 and the configural MG-MIMIC1 model provide a 

reasonable fit to the data (i.e., CFI = .942, TLI = .937, RMSEA = .028).   

The pattern of path coefficients across countries is graphed in Figure 2. On average, 

achievement and SES positively predict self-concept and general value; achievement had stronger 

predictive effects than did SES. The pattern of path coefficients involving achievement varied 

substantially over countries for general value (.189 to .472, median = .285) and, in particular, self-

concept (.033 to .496, median = .236), whereas the pattern involving SES was smaller and more 

consistent for both constructs (self-concept: .000 to .169, median = .051; general value: -.007 to .147, 

median = .086). Thus, students with high science ability and from higher SES backgrounds were more 

likely to have high self-concept and general value of science.  

Alternative Approaches to Gender Differences: AwC Extensions of the Alignment Method 

The MIMIC model provides a parsimonious summary of the effects of covariates and the 

motivation factors, but is based on scalar invariance assumptions that the factor loadings and 

intercepts of the PISA factors are invariant over gender. Although the assumption of invariant 

intercepts is testable in the MIMIC model, the assumption of invariant factor loadings is not. Here, the 

fit of MIMIC models does not differ substantially from that of the corresponding models without 

MIMIC variables. However, particularly if this were not the case, it would be useful to fit less 

parsimonious but potentially more appropriate models in which MIMIC variables are represented as 

multiple group variables. We build on an early example (Little 1997) of juxtaposing MIMIC and 

multiple-group approaches to evaluate gender differences, in four countries. We illustrate how this 

approach can be adapted and extended to alignment and AwC models (also see Marsh, Nagengast & 

Morin, 2013, who extended this approach and adapted it to ESEM). 

Here, we are particularly interested in how the patterns of gender differences in the 

motivational constructs vary across countries. Because we already know that the scalar invariance 
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model does not fit the data, we evaluated gender differences with two alternative approaches, both 

based on the CFA-MIAL model using AwC—again focusing on self-concept and general value to 

make the presentation more manageable (but also see the pattern of gender differences for all eight 

motivation factors for the total sample in Table 2). The first approach is an extension of the traditional 

MIMIC model, to evaluate the consistency of gender differences across the 30 countries. In the 

second approach we transformed the 30-group analysis into a 60-group analysis in which responses 

by boys and girls within each country were used to form separate groups.  

MIMIC model gender differences: AwC extensions of the CFA-MIAL model. Because the 

scalar invariance model does not fit the data, we instead evaluate gender differences based on the 

MG-MIMIC model with AwC (MG-MIMIC4AwC; see Appendix 2 for syntax in an annotated 

example). Gender differences (and confidence intervals) in each of the 30 countries are graphed in 

Figure 3 for self-concept and general value. Controlling for SES and achievement, boys tend to have 

higher self-concepts across all 30 countries (β = .010 to .243, median = .135). Although boys are also 

favored in general value, the differences are smaller (-.085 to .157, median = .041), and in some 

countries the differences favor girls. Consistent with these observations, the result of the WALD test 

applied to gender difference shows highly significant country-to-country variability in the size of 

gender differences in self-concept (Wald χ2(29) = 494.630, p < .001) and, to a lesser extent, general 

value (Wald χ2(29) = 225.015, p < .001)  

60-group CFA model of gender differences: AwC extensions of alignment. In an 

alternative approach to testing gender differences, we began with 60 (30 countries x 2 genders) groups 

rather than 30. This approach is less parsimonious than the MIMIC approach but more flexible in 

terms of testing the scalar invariance assumption over gender, which is not easily tested with the MG-

MIMIC model. The configural 60-group CFA model with the eight motivational constructs (MCG1 in 

Table 2) provided a good fit to the data (CFI = .950, TLI = .946, RMSEA = .036). As in earlier 

analyses there was only a small decrease in fit indices for the metric model in which factor loadings 

were constrained to be equal over the 60 country-gender groups (MCG2 in Table 2; CFI = .007, 

TLI = .005, RMSEA = .002). However, again the scalar invariance of intercepts (MCG3) was 
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not supported in relation to the substantial decreases in fit indices compared with Model MCG2 (

CFI = .049, TLI = .045, RMSEA = .013), leading us to pursue the 60 country-gender groups 

CFA model with alignment and AwC. 

It should be noted that the MG-CFA approach used here relies heavily on the flexibility of the 

“model constraint” command in Mplus to calculate gender differences, with the delta method being 

utilized to estimate the standard errors. The AwC alignment model (MCG4AwC) has the same degrees 

of freedom, same chi-square and model fit as the configural CFA model (MCG1). For the purposes of 

this investigation, a graphical depiction of the patterns of gender differences in self-concept and 

general value is presented in Figure 3. There is clear evidence that gender differences in self-concept 

and general value vary substantially by countries (Wald χ2(29) = 264.292, p < .001, Wald χ2(29) = 

194.702, p < .001, respectively). 

Furthermore, to explore the sizes of latent mean differences in motivational constructs across 

countries and gender, we decomposed variance estimates into contrast tests of differences associated 

with the 30 countries, the two gender groups, and their interactions; and estimated variance 

components for each of these differences (sums of squares and variance components in Table 5) using 

the “model constraint” command in Mplus. Thus, we used these constraints to obtain analysis-of-

variance-like estimates of the statistical significance and proportion of variance in latent mean 

differences explained by the 30 countries, the two gender groups, and the 30 Country X Gender 

interactions (see Marsh et al., 2013 for a related approach). Comparison of the variance components 

shows that first-order gender differences (.040 and .006 for self-concept and general value 

respectively) are much smaller than those associated with either the gender-by-country interactions 

(.135 & .116) or, and in particular, the first-order effects of country (2.404 & 1.366). However, due to 

the large sample sizes, all these effects are highly significant.  

Of particular interest to the application of the CFA-MIAL model and the AwC, we compared 

the pattern of gender differences based on 60 group alignment models with those based on the 30-

group MIMIC model (see Figure 4). Inspection of the caterpillar plots for the two approaches 
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demonstrates that they highly similar, particularly for self-concept, but to a lesser extent also for 

general value. 

Discussion, and Implications: Study 1 

Study 1 is apparently the first large-scale applications of the CFA-MIAL model proposed by 

Asparouhov and Muthén (2014) in which there were multiple factors as well as large numbers of 

items, factors, groups, individuals, and estimated parameters. Particularly the 60-group analysis used 

to assess gender differences is one of the largest published CFA-MI studies. In accomplishing this 

goal, we introduced the new AwC approach and demonstrated its usefulness, substantially enhancing 

the flexibility of the CFA-MIAL model in relation to substantively important issues that could not be 

evaluated appropriately using traditional MG-CFA methods. Of particular interest, invariance of item 

intercepts was not supported, and the scalar model provided poor model fit on the basis of the 

traditional scalar CFA-MI model; this implied the incomparability of factor means. However, we 

found that the CFA-MIAL model provided a much better fitting model that allowed us to compare 

means across the 30 countries. We also demonstrated how alignment was useful for developing or 

revising a scale measuring science motivation, in terms of cross-cultural generalizability. 

In demonstrating the substantive usefulness of the CFA-MIAL model and the AwC extension, 

we evaluated the consistency over 30 OECD countries of latent means of the motivational constructs, 

as well as relations between the motivation constructs and the three criterion variables (gender, 

achievement, and SES). The associations between the motivational constructs and the criterion 

variables varied substantially over countries. On average, science achievement was positively 

associated with the motivational constructs, whereas associations of gender and SES to the 

motivational constructs were mostly small. Of particular interest, we evaluated gender differences in 

self-concept and general value on the basis of the 30-group MIMIC model (i.e., gender as a MIMC 

variable) and the 60-group AwC model (60 = 30 countries x 2 genders). Both models resulted in 

highly similar patterns of results, indicating that boys tended to have high self-concept in science, 

whereas the gender difference favoring boys in general value was relatively small. There was, 

however, country-to-country variation in the results, which necessitated the AwC extension of the 

CFA-MIAL model. In pursuing the methodological aims of this investigation, we demonstrated the 
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flexibility of the AwC extension of the CFA-MIAL model and its applicability to a wide variety of 

different situations that are likely to be useful for applied researchers, given that the CFA-MIAL model 

as currently operationalized can only be used to test a limited number of CFA models.  

In summary, the results of Study 1 are supportive of alignment, particularly when extended to 

include the AwC transformation. Nevertheless, as alignment is a new statistical approach, “best 

practice” will evolve with experience. In particular, there are key questions arising from the results of 

Study 1 that we address in Study 2, which is based on simulated data, to provide a stronger basis for 

evaluating alignment in relation to viable alternatives. 

Study 2: An Overview of the Substantive and Methodological Focus 

Study 2 a simulation study, allowed us to evaluate the appropriateness of alignment in 

relation to known population parameters under a variety of different conditions. Of particular 

relevance to our earlier discussion of problems with the stepwise approach in the traditional partial 

invariance model, we compare the known parameter values from the population generating model 

with estimated values based on the alignment model and both the complete and the partial invariance 

scalar models. In order to enhance comparability, we then built on the simulation design that 

Asparouhov and Muthén (2014) used to introduce alignment, and address several critical issues left 

unanswered by Study 1 and the Asparouhov and Muthén demonstration—particularly in relation to 

estimates of latent means, which were the primary focus of Study 1, as they are in studies of scalar 

invariance more generally. More specifically we addressed the following issues that followed from 

limitations of Study 1, which relied on “real” data and a limited amount of alignment research to test 

the following a priori hypotheses: 

1. When scalar invariance does not hold, bias in estimation of known latent means is 

consistently smaller for alignment than for either the complete or partial scalar approaches. 

(We leave as a research question the difference in bias between the complete and partial 

scalar CFA-MI solutions, and whether this difference is consistent over different conditions.)  

2. When scalar invariance does hold, bias in estimates will be small and similar in size for both 

the scalar invariance and alignment models.  
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3. Cross-validation using new data from the same population generating model will support the 

superiority of alignment in relation to Hypothesis 1. 

In addition to these a priori hypotheses, in Study 2 and subsequent discussion we address the 

unresolved question of how to evaluate the suitability of the alignment and AwC models. 

Methods 

In Study 2 we extended the original Asparouhov and Muthén (2014) simulation study, 

providing an overview of the quality of the alignment estimation in comparison with configural, 

scalar, and partial invariance models. An apparently unique feature of our simulation is that we 

rejected the typical assumption of CFA-MI models (and most simulation studies) that some parameter 

estimates are completely invariant across all groups. Instead, none of the parameter values in our 

population generating model were all non-invariant (i.e., none were exactly the same in the multiple 

groups), as would be the case in practice with real data. In this respect, we explore how well the 

alignment optimization functioned under the complete non-invariance condition with different 

patterns of large and small non-invariant parameters. As in study 1, the fixed alignment estimation 

method was used with 500 replications and maximum Likelihood in this simulation study. 

Data Generation 

On the basis of the Asparouhov and Muthén (2014) simulation study, we generated data using 

a one-factor model with five indicator variables and 15 groups. In all groups the residual variances of 

indicator variables were set to 1. The simulation design factors manipulated in the study included: (1) 

group size (N = 100 and 1000), (2) magnitude and percentage of non-invariance (10% large + 90% 

small; 20% large + 80% small); (3) approaches to invariance testing (alignment, configural, complete 

scalar, and partial scalar). Using the same method as Asparouhov and Muthén (2014), we generated 

three group types, and then repeated those types to create 15 groups. Each group type had the same 

parameter values. For example, the first, fourth, and seventh groups were simulated in the same 

manner. For group type 1 the distribution of the factor was α = 0, ψ = 1; for group type 2, α = .3, ψ = 

1.5; and for group type 3, α = 1, ψ = 1.2: this is consistent with the group types in Asparouhov and 

Muthén (2014). The alignment factor mean and factor variance were fixed to 0 and 1 respectively in 
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the first group; this matches the metric used to generate the data (see Asparouhov & Muthén, 2014 for 

more details). 

Magnitude and percentage of non-invariance. For the pattern of loading and intercept non-

invariance, two misfit conditions (small and large) were simulated. In each group there was one large 

non-invariant intercept parameter (e.g.,  = .50 or -.50) and one large non-invariant loading parameter 

(e.g.,  = 1.40, .50, or .30). The rest of the intercept and loading parameters were set to reflect a small 

extent of non-invariance ( = 0 ±.05 𝑎𝑛𝑑 ± .10 and  = 1 ± .05 𝑎𝑛𝑑 ± .1). On the basis of this 

design (see Table 6), the ranges of the standard deviation of each loading and intercept across groups 

were from .04 to .23 and from .08 to .25 (see Table 6). In order to vary the percentage of large non-

invariant parameters, we replaced large non-invariant loading values with small non-invariant values 

from each odd-numbered group and replaced large non-invariant intercept values with small non-

invariant values from each even-numbered group. Also, to provide a test of the alignment model when 

there was complete scalar invariance, we simulated two additional groups with all non-invariant 

loading and intercept values ( = 0,  = 1). 

Approaches to Invariance Testing 

We compared the alignment estimation with configural, scalar, and partial invariance models 

across all conditions (number of groups, magnitude and percentage of non-invariance, and approaches 

to invariance testing), totaling 12 conditions. This is apparently one of the few simulation studies to 

test the traditional stepwise adjustments to the scalar invariance model, and the first to juxtapose it 

with alignment. We suspect that this is due at least in part to the unique complications of applying this 

stepwise approach across a large number of replicates, even when the population generating model is 

known. In particular, the final solution for each replication can differ substantially terms of the 

number of post-hoc adjustments that are made, as well as which parameter estimates that are actually 

freed. In our operationalization of the stepwise approach to partial invariance, we first compared 

relative model fits for the configural and scalar invariance models based on each replication. At each 

step of the stepwise procedure within a given replication, if the CFI was greater than .01 (Cheung 

and Rensvold, 2002 and Chen, 2007), an additional parameter, that having the largest modification 
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index, was freed. We repeated this procedure until CFI ≤ .010, at which point we terminated the 

iterative process and started again with the next replicate. Note that this procedure was used for each 

replication, so that although the CFI for each of the 500 replicates was necessarily similar to the 

configural model, the number and choice of invariance constraints that were freed varied across the 

different replicates.  

Measurement estimate analyses. To explore how well alignment estimated the group-

specific measurement models, we considered a variety of measures of accuracy and precision. Our 

emphasis was on the latent means that are the focus of the present investigation, as they are in most 

scalar invariance studies. However, across the 500 replicates we also report the mean, SD and average 

mean square error (MSE) of bias (difference between the estimated and the true value) for factor 

means, factor variances, loadings, and intercepts. The MSE captures the bias and variability of the 

estimates by summing the square of the bias and the variance of the estimate. In addition, for every 

replicate solution in each condition, we cross-validated the parameter estimates to test Hypothesis 3. 

This was accomplished separately for each replicate by using the fixed values based on the solution 

for that replicate applied to a new sample of cases generated from the same population generating 

model (i.e., same sample size and values for large and small non-invariant parameters).  

Results 

 The goodness of fit measures (Table 7) merely confirm the design of the simulation study. 

The goodness of fit measures (Table 7) merely confirm the design of the simulation study. The fit of 

the configural and partial invariance models were similar and extremely high (e.g., CFIs ≥ .989) for 

all conditions (i.e., small vs. large N; 10% vs 20% large misfit). The fit of the metric model was 

marginal (CFIs = .905 to .942) and the fit of the scalar model was clearly unacceptable (CFIs = .819 

to .876). For both the scalar and metric models, the fit was noticeably worse when the number of large 

non-variant parameters was larger. Also of note, the number of post-hoc estimates freed in the partial 

invariance models (i.e., the number of parameters in the partial solution less the number of parameters 

in the scalar solution) varied systematically across replicates within each condition; on average, the 

number of adjustments was greater when the amount of misfit was greater, but also when the sample 

size was larger.  
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Latent Mean Bias When Scalar Invariance is Violated (Hypothesis 1) 

The central results of the simulation study (Table 8) were designed to test Hypothesis 1. For 

the present purposes we focus on bias in the estimation of the latent factor means ( in the column 

labeled "average bias" in Table 8), but also present values for other parameter estimates as well. 

Consistent with a priori predictions, across all conditions average bias in latent means was 

systematically smaller for the alignment solutions than for either the complete or partial scalar 

solutions. Although bias was left as a research question, it is important to note that the average bias 

was also consistently larger for the partial than for the complete scalar condition. This pattern of 

differences (alignment better than scalar; complete scalar better than partial scalar) is consistent 

across all sample sizes and non-invariant conditions. 

The pattern of results was somewhat more complicated for the variation in bias estimates 

across the different conditions ( in the column labeled "SD of bias" in Table 8). Again, consistent 

with Hypothesis 1, the variation in bias in latent mean estimates is consistently smaller than variation 

for the complete and partial scalar solutions. However, when the number of large non-invariant 

parameters is small (10% vs. 20%), the variation in bias is greater for the complete scalar than the 

partial scalar solutions, whereas when the number of large non-invariant parameters is large variation 

in bias estimates is greater for the partial solutions than the scalar solutions. Not surprisingly, the 

variation in bias estimates is systematically smaller when sample size is larger (1,000 vs. 100). 

Average mean square error (MSE in Table 1) integrates average bias and variation in bias into 

a single index. Hence, it is not surprising that the alignment solutions performed systematically better 

than either the complete or partial scalar solutions. Consistently with the average bias results, the 

complete scalar solutions performed better than did the partial scalar solutions. However, consistently 

with the SD of bias results, the difference between complete and partial scalar conditions was larger 

when the number of large non-invariant parameters was small.  

In the final columns in Table 8, we have translated the size of bias estimation in the latent 

means into an effect-size metric—average bias divided by the pooled standard deviation of the latent 

mean estimates. However, these values closely mirror those based on the average bias.  
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In summary, there is clear support for Hypothesis 1. At least in terms of the conditions in our 

simulation, alignment outperformed both the complete and partial scalar approaches when there was 

no support for complete scalar invariance. Although it was not predicted a priori, the surprisingly poor 

performance of the partial scalar solution in relation to the complete scalar solution was consistent 

with negative reviews of the stepwise approach used to make adjustments in the partial scalar model.  

Latent Mean Bias When There is Support for Scalar Invariance (Hypothesis 2) 

Although this was not a major focus of the present investigation, it is relevant to evaluate the 

alignment solution in relation to the complete scalar solution when there was support for scalar 

invariance (in Table 8, rows with percentage of non-invariance = 0%). Importantly, for both the 

alignment and complete scalar solutions, there was almost no bias in estimation of the latent means. 

Also, the variation in the bias estimates was nearly the same for the two sets of solutions. Indeed, the 

mean square errors (MSEs) that take into account both systematic bias and variation are also very 

small and identical (to three decimal places) for the complete scalar and alignment solutions. Again, 

the SDs of the bias in estimates (and MSEs) are smaller when the sample size is larger.  

It is also interesting to compare these SDs of bias with those based on solutions where scalar 

invariance does not hold. These SDs are clearly smaller when there is complete scalar invariance, but 

the sizes of these differences vary substantially for complete scalar and alignment solutions. In 

particular, variation in alignment solutions is only modestly smaller, whereas the variation in the 

complete scalar solutions is substantially smaller. These results are also consistent with the a priori 

hypothesis that even when the scalar solution is viable, alignment is still appropriate. In summary, 

there is clear support for Hypothesis 2. At least in terms of the conditions in our simulation, nothing is 

lost by applying alignment, even when there is support for complete scalar invariance. 

Cross-Validation Support for the Results (Hypothesis 3) 

Consistent with a priori Hypothesis 3, there is good cross-validation support for the results in 

support of Hypothesis 1. Indeed, the cross-validation indices in relation to bias in the latent means in 

Table 9 are nearly identical to those in Table 7. Although this finding is tangential to the main focus 

of the present investigation, the reason why the cross-validation indices are so good is that both the 

alignment and, in particular, the partial invariance approaches, were designed to optimize the 
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goodness of fit of solutions in relation to factor loadings and intercepts, not the latent means. Hence, 

the inevitable deterioration due to capitalization on chance in cross-validation is not large for the bias 

in estimation of latent means.  

Discussion and Implications: Study 2 

Building on the original Asparouhov and Muthén (2014) simulation study, the results of 

Study 2 provide important new support for alignment and thus for AwC, which was the major focus 

of our study. Whilst, in support of alignment, Asparouhov and Muthén presented results based on a 

few indicative parameter estimates from just one group, we have provided a more comprehensive 

evaluation of results across all parameter estimates and all groups. More importantly, we expanded 

the simulation study to include partial scalar invariance estimates. This is particularly important 

because the stepwise strategy continues to be used widely with partial scalar invariance, even though 

this has been criticized severely by statisticians and quantitative psychologists alike. Indeed, even the 

important caveats offered by Byrne, Shavelson, and Muthén (1989) when they first introduced the 

partial invariance strategy, have tended to be ignored in subsequent research. Critically, consistent 

with a priori predictions in relation to latent means, the results of Study 2 support the a priori 

hypotheses that alignment outperforms both the complete and partial scalar approaches when the fit of 

the complete scalar model is unacceptable, and performs no worse than the complete scalar solution 

even when there is complete scalar invariance.  

Overall Discussion, Limitations and Directions for Future Research 

Study 1 is apparently the first large-scale application of the CFA-MIAL model, and one of the 

largest applications of the CFA-MI approach, with so many factors, items, and estimated parameters. 

Indeed, most CFA-MI demonstrations focus on a small number of groups (e.g., Byrne, et al., 1989; 

Reise, Widaman & Pugh, 1993), whilst the relatively few studies based on a large number of groups 

often consider a single factor based on a relatively small number of items (e.g., Zercher et al., 2015). 

In Study 1 we could have considered a single factor or each of the eight factors in isolation. However, 

the initial focus was to follow up the Marsh and Nagengast (2013) study, where the focus was on the 

fit of the multidimensional factor structure across all eight factors. Obviously this was only possible 

through considering all eight factors within the same models. Indeed, even if there were good support 
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for the fit of each factor considered separately, there is no guarantee that a model with all the factors 

in the same model would fit. Furthermore, because of the moderate to large correlations among the 

different factors, not even the estimated factor loadings and intercepts would have been the same in 

models of each factor considered separately. Although models of each factor considered separately 

might provide supplemental information, this information and more is already available through the 

alignment model of all eight factors. In summary, the scale of data in Study 1 provided a realistically 

complex demonstration of the CFA-MIAL model in relation to actual practice. 

Introduction of AwC and Parallels With Exploratory Structural Equation Models (ESEM) 

A critical feature of Study 1 was the introduction of the AwC extension, which transforms 

alignment into a confirmatory tool rather than being largely exploratory. The AwC extension greatly 

enhances the usefulness and flexibility of alignment to address substantively important issues in 

further CFA and SEM analyses that would not otherwise be possible with alignment. It is also 

interesting to explore some of the similarities between the development of alignment and ESEM. In 

both cases, development came about because of the typically overly restrictive assumptions of the 

traditional CFA model; requiring cross-loadings to be zero (ESEM); the scalar invariance constraints 

in CFA-MI models (alignment). In both cases, the apparently inherent limitations of ESEM and 

alignment were mostly overcome by the introduction of EwC and AwC, transforming exploratory 

tools to confirmatory, and greatly expanding the range of models that could be considered. Indeed, 

because the EwC approach has been widely applied, some of the novel applications of the EwC 

extension to ESEM (Marsh, Morin et al., 2014) are likely to be valuable to the application of AwC, as 

well as to future developments of Mplus to facilitate these applications. 

The juxtaposition of the ESEM and alignment also identifies potentially serious limitations of 

alignment as currently specified, in that it begins with an implicit assumption that the configural CFA-

MI model is able to fit the data. However, as presently operationalized, the CFA-MIAL model is 

limited to independent cluster factor structures in which indicators are not allowed to cross-load on 

multiple factors. However, this factor structure, which underpins most CFA studies, is overly 

restrictive in many applications (Marsh, Lüdtke, et al., 2013), leading to a growing body of research 

suggesting that the cross-loadings in ESEM often provide a more appropriate, better-fitting solution. 
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The introduction of AwC allows limited scope in testing and perhaps, relaxing this requirement of no 

cross-loadings—but is limited in that substantial cross-loadings would call into question the alignment 

structure that is the basis of AwC. Similarly, although multigroup tests of invariance are possible with 

ESEM, they suffer the same limitations with CFA-MI models as have been highlighted in the present 

investigation. We also note that tests of longitudinal measurement invariance over multiple occasions 

is not possible with alignment in its current form, but is possible with ESEM. Recognizing the 

potential synergy between the ESEM and alignment, Asparouhov and Muthén (2014) mooted the 

combination of ESEM and alignment into a single model as a useful development in future versions 

of Mplus. This development would also enable applied researchers to use both the AwC and the EwC 

transformations in the same analysis. 

Comparison of Alignment and Partial Invariance Approximations to Scalar Invariance 

An obvious limitation of Study 1 is that it left unanswered the question of how alignment 

would compare with the traditional stepwise approach used to achieve partial invariance. This could 

not be easily addressed with real data in which the true population parameters are unknown. Thus, we 

undertook a simulation study (Study 2) to evaluate the extent of bias in estimation of latent means 

based on alignment, compared with complete and partial invariance models under a variety of 

different conditions. In relation to the degree of non-invariance associated with our design in Study 2, 

the fit of the configural model was obviously better than that typically found in practice. However, 

even for the condition where the number of large non-invariant parameters is small, the fit of the 

metric and scalar models is somewhat poorer than that observed in Study 1, suggesting that the extent 

of non-invariance in the simulated data is greater than that in Study 1. 

The Study 2 results are unambiguous, in that alignment consistently outperformed partial 

invariance in particular, as well as the complete scalar invariance models. Of course, as is always the 

case with simulation studies, the generalizability of these conclusions is limited by the design of the 

study (see discussion of limitations below). However, our simulation study should have been ideally 

suited to the partial invariance strategy, in that there were only a few large non-invariant parameter 

estimates, in combination with many small ones. Nevertheless, given the scathing reviews of stepwise 

procedures generally (see earlier discussion of problems with stepwise approaches), perhaps it is not 
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surprising that stepwise approaches perform so poorly. From this perspective, it is somewhat 

surprising that applied SEM/CFA researchers have persevered so long with a procedure that is so 

dubious. Indeed, such issues were recognized by Byrne, Shavelson, and Muthén (1989) when they 

first introduced the partial invariance more than 25 years ago, and the failure to resolve these long-

standing issues was a primary motivation for Asparouhov and Muthén (2014) introducing alignment 

as a viable alternative to partial invariance. The results of the present investigation, the first empirical 

test of this implicit assumption, provide clear support for alignment and further call into question the 

traditional partial invariance approach. 

We also note that the partial invariance model does not have to be driven purely by a stepwise 

empirical approach, even though this is the typical approach (Schmitt & Kuljanin, 2008). Indeed, 

defenses of the procedure, starting with the original Shavelson et al. (1989) demonstration, note the 

need to evaluate the selection of parameters to be freed in relation to theory and substantive 

knowledge. However, this tends to be done in a strictly post-hoc manner to justify the results of the 

stepwise empirical selection process (Schmitt & Kuljanin, 2008). A more appropriate use of theory 

and substantive knowledge might be to develop truly a priori models that could then be empirically 

tested in relation to goodness of fit and evaluation of parameter estimates (MacCallum, et al., 1992). 

Here we have pitted the alignment and partial invariance approaches against each other, 

treating them as antithetical. However, this perspective might be too simplistic, and we speculate that 

a synergistic combination of both approaches could be advantageous. Modification indices are the 

critical feature of the typical partial invariance model. Although modification indices and expected 

change parameters are not currently available with the alignment model, they are readily available for 

the equivalent AwC model. However, indices based on the final AwC model are fundamentally 

different from the modification indices used in the partial invariance model, particularly in relation to 

identifying parameters that cause the most stress to scalar invariance. Thus, the modification indices 

that these are based on in the final and “best” AwC model can, and should, be added as a single step 

rather than one at a time in the potentially many steps of the forward stepwise approach. In this sense, 

the adjustments identified by the AwC model are more like the “all possible combinations” approach 

to stepwise selection, which has important advantages over (in particular) the forward stepwise 
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strategy typically used, and also backward elimination and bidirectional elimination (a combination of 

forward and backward approaches). Thus, a potential synergy between alignment and partial 

invariance models could be to use the modification indices based on the AwC model to identify 

parameters to be freed in the partial invariance model. 

How to Evaluate the Appropriateness of the Alignment and AwC Models 

Limitations in the AwC model. For demonstrations based on new statistical procedures, 

typically there are potentially important limitations and a need for further research. Particularly in 

relation to the limitations identified by Asparouhov and Muthén (2014), the introduction of the AwC 

extension of the CFA-MIAL model is an important development, greatly expanding the range of 

models that can be considered with alignment, as illustrated in Study 1. There are, nevertheless, limits 

to the generalizability of results based on the AwC transformation of the original alignment solution 

to new models. In particular, there is an implicit assumption that the alignment factor structure 

continues to be appropriate when it is incorporated into new models that take advantage of the 

flexibility of AwC. However, we suggest that there is a hierarchy of models in relation to how 

reasonable this assumption is likely to be. At the top of the hierarchy, this assumption is entirely 

reasonable for the basic AwC model, which does not introduce new constraints or additional 

variables, as it is merely an equivalent transformation of the alignment model. The assumption is 

likely to be more reasonable when the new models are nested under the original model (e.g., more 

constraints are added) than when new variables are added. When new variables are added, the 

assumption is likely to be more reasonable when new variables are merely correlated with the 

alignment factors, or alignment factors are used to predict new variables, than in MIMIC models that 

impose additional invariance assumptions. For example, if the fit of the MIMIC alignment model in 

Study 1 had been much worse than that in the basic alignment model (or, equivalently, the configural 

model), then the results would have to be interpreted with caution. However, this concern is not 

specific to the alignment model, but also applies to MIMIC models in conjunction with the scalar 

CFA-MI models and single-group models. Indeed, under these circumstances it might be more 

appropriate to forgo the MIMIC model altogether and resort to an appropriate multiple group model. 

In Study 1 we demonstrated how this was possible in relation to gender differences, comparing 
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models with gender added to the AwC model as a MIMIC variable, and gender treated as a multiple 

group variable (i.e., creating separate male and female groups for each country). 

Focus on latent means. Our focus was primarily on estimation of latent means, rather than 

on factor loadings, intercepts, and factor variance/covariance estimates. This focus is justified, in that 

the main purpose of tests of scalar invariance is to provide a justification for the evaluation of latent 

means. This also has some interesting implications in relation to the results. In particular, the stepwise 

strategy in the partial invariance model is designed to maximize goodness of fit in relation to 

adjustments to the factor loadings and intercepts in the complete scalar model, rather than latent 

means. From this perspective, it is not surprising that the results based on latent means cross-validated 

so well, in that the adjustments did not capitalize on chance in relation to latent means. Nevertheless, 

in other applications of alignment it might be important to evaluate the extent of bias in the estimation 

of other parameter estimates.  

How large is a large non-invariant parameter? An ongoing, unresolved issue with 

alignment is how to evaluate the appropriateness of the solution when true population parameters are 

unknown. In particular, because the fit of the alignment model is necessarily the same as the 

configural model, its appropriateness cannot be evaluated by goodness of fit. We note, however, that 

this limitation also exists with the partial invariance model, in which a sufficient number of invariance 

constraints are freed so that its fit does not differ substantially from that of the configural model. 

Hence, the partial invariance model cannot be evaluated in relation to goodness of fit. On the basis of 

preliminary results, Asparouhov and Muthén (2014) suggested that alignment studies should be 

interpreted cautiously if more than 20% of the parameter estimates are non-invariant. However, this 

suggestion is, perhaps, overly simplistic. As shown here, alignment works well even when all of the 

parameters are non-invariant, as long as the deviations are small. Asparouhov and Muthén implicitly 

recognized this in that they focused on deviations that were statistically significant, and used a 

conservative criterion of p < .001. Nevertheless, because this criterion is highly sample-size 

dependent, guidelines based upon it are unlikely to be generalizable. Hence, what is needed is a more 

absolute index of what constitutes “large” that is relatively independent of sample size and practically 

useful.  
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The alignment solution routinely provides additional insights into the quality of alignment 

solutions in terms of the largest deviations in relation to individual indicators and groups. Although 

this information is clearly useful from a diagnostic perspective, it is based largely on tests of statistical 

significance that are highly dependent on sample size and thus, idiosyncratic to a particular data set. 

However, as illustrated here, these tests are easily supplemented with measures of practical 

significance by transforming the differences into a standardized effect size metric (Cohen's D) that is 

more comparable in relation to external comparisons with different studies, as well as internal 

comparisons within the same study. We also note that presenting these Cohen’s D statistics in terms 

of box plots provides a useful summary of the distribution of values across different groups and items, 

particularly since the CFA-MIAL loss function is minimized when there are a few large non-invariant 

parameters and many approximately invariant parameters. Because our study is apparently the first 

application of standardized effect sizes (ESs) to evaluate the results from the alignment model, it is 

premature to provide guidelines about what constitutes large, medium and small ESs, but such 

intuitions should evolve with further application. 

We also note that output from the alignment program currently does not include modification 

indices (which are highly influenced by sample size) or related measures of expected parameter 

change (raw and standardized), which provide a more practical, “absolute” index (that is sample size 

independent) of how much a fixed or constrained parameter would change if freed. However, with the 

basic AwC model these additional indices are readily available and likely to be useful in evaluating 

the extent of non-invariance for different parameter estimates. Whittaker's (2012) simulation study 

suggested that expected change parameters were somewhat better at identifying misspecified 

parameter estimates, but recommended using them in combination with modification indices. 

However, the potential value of the expected change indices is to provide a generalizable index of 

what constitutes a “large” misspecification—Whittaker suggested standardized values greater than .2. 

Following Whittaker's suggestion, we evaluated the estimated parameters with the largest 

modification indices for the PISA data, along with standardized and unstandardized indices of 

expected change (see Appendix 7, Supplemental Materials). Although it is probably premature to 

propose cutoff values for alignment and AwC models that are based on Whittaker's results, which 
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emerged in a different context, it is interesting to note that less than 3% of the parameter estimates 

had completely standardized, expected parameter change values (STDYC_EPC in Appendix 7) 

greater than .2 in absolute value—far lower than the 20% cutoff suggested by Asparouhov and 

Muthén (2014). Consistently with suggestions by Whittaker, inspection of Appendix 7 indicates that 

modification and expected parameter change indices provide different perspectives, so that some 

combination of both might also provide a useful starting point for identifying parameters to free in 

partial invariance models that do not rely on apparently dubious, forward stepwise selection. 

Alternative Approaches to Measurement Invariance  

Recently there has been considerable development of alternative approaches to the evaluation 

of latent means in large-scale studies when there is a lack of support for scalar invariance. A number 

of studies have used multilevel modeling, treating the multiple groups as level 2 and the cases nested 

within each group as level 1 (see Jak, Oort & Dolan, 2013). However, implicit in the multilevel 

approach is the assumption that the groups are a random sample from a well-defined population in 

which the focus is on the population from which the groups have been sampled; group-specific values 

are assumed to represent random variation from this population value. In contrast, the MG-CFA 

approach treats groups as fixed effects, with inferences that focus on specific groups. Consistently 

with this distinction, alignment provides considerable information about the source of non-invariance 

that is generally not available with the multilevel approach. Muthén and Asparouhov (2013) also 

demonstrated that the multilevel approach is better suited to situations in which there is a very large 

number of indicators (e.g., items on an achievement test, as opposed to the relatively few items used 

to measure psychological constructs on most surveys). In addition to the multilevel approach, there 

are important developments in other evolving approaches, including Bayesian structural equation 

modeling (e.g., Zercher, et al., 2015), multilevel mixture modeling (Muthén & Muthén, 2011-2015). 

Also, perhaps, partial invariance models that do not rely on stepwise strategies will prove critical to 

the development of measurement invariance models.  

In summary, alignment augmented by AwC provides applied researchers with considerable 

flexibility to address substantively important issues when the traditional CFA scalar model does not 

fit the data. Both our review of the literature condemning stepwise selection strategies, and our 

http://journal.frontiersin.org/article/10.3389/fpsyg.2015.00733/full#B48
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empirical results, suggest that alignment is more appropriate than the typical practice of stepwise 

partial invariance. The introduction of AwC transforms alignment from being largely exploratory into 

a confirmatory tool, and substantially increases the range of situations in which it can be used. 

Although alignment and AwC provide a wealth of information to evaluate the quality of the alignment 

solution, an unresolved issue is how to evaluate whether the alignment solution is trustworthy in 

relation to evaluating latent means from multiple groups. This is, perhaps, not surprising, because 

essentially the same problem was identified by Byrne, et al (1989) when they first introduced partial 

invariant models and the problem has not been resolved in the subsequent 25 years, in terms of 

evaluating partial invariant models.   

We offer some tentative solutions to this issue as directions for further applied and simulation 

research. Despite their limitations we are confident that, given that these are new statistical tools, 

“best practice” will evolve with experience. Other potentially important directions for further research 

include synergistic combinations of the advantages of alignment with other approaches, such as 

ESEM (particularly in relation to cross-loadings, but also longitudinal invariance), partial invariance 

models (based on adjustments identified by alignment and AwC, rather than stepwise strategies), 

multilevel modeling, mixture models, and Bayesian structural equation models.   

Footnotes 

1. We also note that the standard errors for all parameter estimates were very similar in the 

MAL and AwC solutions, but not exactly identical. This is necessarily the case, in that some 

parameters in the MAL solution are freely estimated, while they are fixed in the AwC solution (e.g., 

one factor loading for each factor; see Appendix 1 in the Supplemental Materials for further 

discussion). 

2. In the AwC extension of the MIMIC model, the parameter estimates from the alignment 

solution based on 30 groups were used as starting values. For model identification, the first loading 

and intercept for each factor was fixed to its estimated values from the alignment solution, and latent 

factor variance (residual variance) and means were freely estimated in each group (see Appendices for 

more detail). 
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Table 1 

Information on the Eight Motivational Constructs in This Study 

Motivational 

constructs 

Number  

of Items 

Median 

reliability 

α over 

countries 

Median factor 

loadings (total 

sample)  

Parameter invariance status (percentage 

of invariant parameters based on the 

alignment method)a  

Difference of alignment and scalar model 

standardized to Cohen’s Db (Mean[SD])b 

    Loadings  Intercepts Loadings Intercepts Mean 

Enjoyment 5 .92 .844 82.7%  49.3% .004(.037) .003(.069) -.002(.017) 

Instrumental 

motivation 

5 .92 .833 

77.3% 

 

61.3% 

-.001(.039) .027(.046) -.020(.011) 

Future-oriented 

motivation 

4 .92 .887 

62.5% 

 

55.8% 

.045(.069) -.089(.078) .057(.036) 

Self-efficacy 8 .83 .630 85.4%  47.9% .003(.038) .020(.087) -.017(.017) 

Self-concept 6 .92 .843 58.9%  58.9% -.003(.043) .029(.058) -.026(.010) 

General value 5 .75 .615 90.0%  50.7% -.005(.029) -.010(.101) .001(.020) 

Personal value 5 .80 .715 72.7%  52.7% .007(.039) .006(.080) -.002(.021) 

Extracurricular 6 .78 .642 81.1%  62.2% .013(.057) -.190(.115) .140(.050) 

Note. a Total number of approximate measurement invariance groups across indicators divided by total number of groups across 

indicators. b Cohen’s D is computed by the differences of unstandardized loadings/intercepts between alignment and scalar models, 

divided by pooled standard deviation. 
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Table 2 

Model Fit Statistics for Multiple-Group and MIMIC Models Based on 30 Countries  

Models Description χ2 df Params CFI TLI RMSEA 

Total group (TG) models 

TG1CFA Total group CFA 32752 874 160 .963 .960 .012 

TG2CFA Total group CFA with covariates 40598 982 193 .955 .950 .013 

TG2SEM Total group MIMIC 40598 982 193 .955 .950 .013 

Multiple-group (MG) models (30 groups) 

MG1 Configural 183577 26220 4800 .952 .948 .027 

MG2 IN = FL 205325 27264 3756 .946 .943 .041 

MG3 IN = FL, INT 334112 28308 2712 .906 .906 .036 

MG4AL
 Alignment 183577 26220 4800 .952 .948 .027 

MG4AwC
 Alignment with AwC 183577 26220 4800 .952 .948 .027 

MG5AwC Align, IN = Uniq 279428 27496 3524 .923 .920 .033 

MG6AwC Align, IN = FV 190730 26452 4568 .950 .946 .027 

MG7AwC Align, IN = FV, CV 199820 27264 3756 .947 .945 .028 

MG8AwC Align, IN = FV, CV, Uniq 295985 28539 2481 .918 .919 .034 

Multiple-group MIMIC (gender, SES & ACH as covariates) 

MG-MIMIC1 Configural 225544 29460 5790 .942 .937 .028 

MG-MIMIC2 IN = FL 247807 30504 4746 .936 .932 .029 

MG-MIMIC3 IN = FL,INT 378195 31548 3702 .898 .895 .036 

MG-MIMIC4AwC Alignment 225544 29460 5790 .942 .937 .028 

Multiple-group (MG) models (60 groups: 30 Countries x 2 Gender) 

MCG1 Configural 337910 52440 9600 .950 .946 .036 

MCG2 IN = FL 380127 54564 7476 .943 .941 .038 

MCG3 IN = FL,INT 626837 56688 5352 .901 .901 .049 

MCG4AwC Alignment 337910 52440 9600 .950 .946 .036 

Note. AwC alignment-within-CFA approach (AwC); CFI = comparative fit index; TLI = Tucker–Lewis Index; Params = number of free parameters; ACH = 

Science achievement; RMSEA = root mean squared error of approximation; For multiple group invariance models, IN = the sets of parameters constrained to 

be invariant across the multiple groups: FL = factor loadings; INT = item intercepts; FV = factor variance; CV = factor variance–covariances.  
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Table 3 

Latent Correlations Among the Eight Motivational Constructs and the Three Covariates, Based on the Total Group CFA 

 

1 2 3 4 5 6 7 8 9 10 

Enjoyment (1) − 

      

   

Instrumental motivation (2) .590 − 

     

   

Future-oriented motivation (3) .661 .713 − 

    

   

Self-efficacy (4) .486 .370 .375 − 

   

   

Self-concept (5) .611 .572 .558 .551 − 

  

   

General value (6) .518 .437 .386 .491 .399 − 

 

   

Personal value (7) .705 .674 .666 .522 .560 .785 −    

Extracurricular activities (8) .639 .464 .569 .452 .497 .411 .592 −   

Gender (9) .068 .024 .074 .060 .136 .056 .053 .094 −  

SES (10) .025 .019 (-.011) .241 .083 .114 .058 -.030 (.004) − 

Science achievement (11) .198 .081 .095 .372 .153 .262 .149 (.012) (.012) .449 

Note. The correlation matrix is based on Model MG6AwC. All correlation coefficients are statistically significant (p < .001), except for those in parentheses. 
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Table 4 

Parameter Invariance Status of Factor Loadings and Intercepts Across Groups for Self-Concept and General Value Scales 

Items Descriptions Measurement 

invariance status 

across countries1 

Difference of alignment and scalar 

model standardized to Cohen’s D2 

(Mean[SD]) 

  Loadings Intercepts Loadings Intercepts 

Self-concept     

ST37Q01     Learning advanced science topics would be easy for me. 19 10 -.029(.060) .003(.106) 

ST37Q02 I can usually give good answers to test questions on science 

topics. 

6 10 

.013(.060) .036(.052) 

ST37Q03 I learn science topics quickly. 30 24 .011(.015) .043(.029) 

ST37Q04 Science topics are easy for me. 16 19 -.015(.022) .020(.039) 

ST37Q05 When I am being taught science I can understand the concepts 

very well. 

9 18 

.005(.033) .039(.052) 

ST37Q06 I can easily understand new ideas in science. 26 25 -.003(.030) .033(.027) 

General value     

ST18Q01 Advances in science usually improve people’s living conditions. 26 22 -.008(.027) -.02(.068) 

ST18Q02 Science is important for helping us to understand the natural 

world. 

25 21 

.013(.033) -.00(.107) 

ST18Q04 Advances in science usually help improve the economy. 28 12 .001(.018) -.00(.111) 

ST18Q06 Science is valuable to society. 28 10 -.001(.024) -.00(.074) 

ST18Q09 Advances in science usually bring social benefit. 29 11 -.030(.025) -.01(.136) 

Note. 1Number of approximate measurement invariance groups for each indicator divided by total number of groups (e.g., 30). 2 

Cohen’s D is computed by the differences of unstandardized loadings/intercepts between alignment and scalar models, divided by 

pooled standard deviation. 
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Table 5 

Latent Mean Differences in Self-Concept and General Value of Science Across (30 Countries x 2 Gender) Groups 

 Self-concept   General value  

 SS VC  SS VC 

Gender .040(.002) 0.05%  .006(.001) 0.06% 

Countries 2.404(.079) 28.7%  1.366(.075) 13.1% 

Interaction .135(.017) 1.61%  .116(.017) 1.11% 

Note. SS = sums of squares; VC = variance components. Latent mean differences in self-concept and general value were decomposed to assess the 

main effects of differences due to the 30 countries, the two gender groups, and their interaction. 
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Table 6. 

Non-invariance Pattern Based on 20% Large Non-invariance 

Parameter Group 1 Group 2 Group 3 Mean across 15 

groups 

SD across 15 

groups 

Y1 loading 1.00 1.05 .95 1.00 .04 

Y2 loading 1.00 1.10 .90 1.00 .08 

Y3 loading 1.40 .90 1.10 1.13 .21 

Y4 loading 1.00 .95 .30 .75 .33 

Y5 loading 1.00 .50 1.05 .85 .26 

Y1 intercept .00 -.50 -.05 -.18 .23 

Y2 intercept .00 .05 .50 .18 .23 

Y3 intercept .00 -.10 .10 .00 .08 

Y4 intercept .00 .10 -.05 .02 .06 

Y5 intercept .50 -.05 .05 .17 .25 

Factor mean .00 .30 1.00 .43 .43 

Factor variance 1.00 1.50 1.20 1.17 .21 

Note. Large non-invariant parameters are shaded and bolded.   
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Table 7 

Model Fit Statistics for Invariance Models  

Models N 

% large 

noninvariance χ2 df Params CFI TLI RMSEA 

configural 100 10% 77 75 225 .998 .999 .020 

metric 100 10% 298 131 169 .942 .933 .112 

scalar 100 
10% 

542 187 113 .876 .900 .138 

partial 100 10% 200 170 130 .990 .991 .041 

configural 100 20% 77 75 225 .998 .999 .020 

metric 100 20% 386 131 169 .905 .891 .139 

scalar 100 20% 672 187 113 .819 .855 .161 

partial 100 20% 191 161 139 .989 .990 .043 

configural 1000 10% 76 75 225 1.000 1.000 .006 

metric 1000 10% 1770 131 169 .943 .934 .112 

scalar 1000 10% 3734 187 113 .876 .900 .138 

partial 1000 10% 425 164 136 .991 .992 .040 

configural 1000 20% 75 75 225 1.000 1.000 .005 

metric 1000 20% 2635 131 169 .907 .893 .138 

scalar 1000 20% 4995 187 113 .821 .856 .160 

partial 1000 20% 400 155 145 .991 .991 .040 

continual 100 0% 77 75 225 .998 .998 .019 

scalar 100 0% 192 187 113 .996 .998 .017 

continual 1000 0% 75 75 225 1.000 1.000 .005 

scalar 1000 0% 187 187 113 1.000 1.000 .004 
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Table 8 

Average Bias, SD of Bias, and MSE for the FIXED Alignment Estimates Using Maximum Likelihood 

Models N 
%  large 

Non-invariance 
Average bias  SD of bias  Average MSE 

ES_ 

within 

ES_ 

total 

                   

Small N and Small Non-Invariance 

Align 100 10% -.010 .030 -.007 .011  .164 .329 .133 .142  .027 .109 .018 .020 -.009(.148) -.008 

Scalar 100 10% -.067 -.039 .007 .049  .195 .351 .188 .192  .042 .125 .035 .039 -.060(.149) -.056 

Partial 100 10% .126 .057 -.015 -.107  .179 .363 .133 .149  .048 .135 .018 .034 .114(.162) .106 

Small N and Large Non-Invariance 

Align 100 20% -.047 -.114 .047 .006  .170 .308 .148 .167  .031 .108 .024 .028 -.043(.153) -.040 

Scalar 100 20% -.119 -.283 .084 .041  .189 .322 .244 .226  .050 .184 .066 .053 -.107(.171) -.100 

Partial 100 20% .134 -.085 .035 -.145  .219 .358 .162 .214  .066 .136 .027 .067 .121(.198) .112 

Large N and Small Non-Invariance 

Align 1000 10% .039 .008 -.004 -.033  .059 .109 .045 .051  .005 .012 .002 .004 .035(.054) .033 

Scalar 1000 10% -.077 -.066 .014 .054  .106 .187 .167 .161  .017 .039 .028 .029 -.069(.096) -.064 

Partial 1000 10% .158 .084 -.025 -.134  .067 .165 .071 .073  .029 .034 .006 .023 .143(.060) .133 

Large N and Large Non-Invariance 

Align 1000 20% .000 -.091 .034 -.033  .072 .136 .063 .083  .005 .027 .005 .008 .000(.065) .000 

Scalar 1000 20% -.129 -.305 .090 .047  .111 .218 .226 .196  .029 .140 .059 .041 -.117(.100) -.108 

Partial 1000 20% .225 -.010 .004 -.200  .157 .133 .069 .168  .075 .018 .005 .068 .203(.142) .189 

Small N and No Large Non-Invariance 

Aligna 100 0% .016 .024 .007 .020  .156 .249 .134 .148  .027 .063 .018 .024 -.007(.141) -.007 

Scalara 100 0% .008 .031 .009 .001  .165 .250 .086 .111  .027 .063 .007 .012 .005(.149) .004 

Small N and No Large Non-Invariance 

Align 1000 0% .002 .003 .001 .003  .052 .078 .043 .048  .003 .006 .002 .002 -.005(.047) -.005 

Scalar 1000 0% .001 .004 .001 .000  .052 .078 .028 .035  .003 .006 .001 .001 .000(.047) .000 

Note. Align = Alignment. MSE = mean square error. 

 a in complete invariance models all factor loadings are set as 1, and all intercepts are set as 0.  
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Table 9.  

Average Bias, SD of Bias and MSE for the Alignment Based on Cross-Validation Data 

Models N 

Percentage  

of large 

non-invariance 

Average bias SD of bias Average MSE 

Align 100 10% -.010 .167 .028 

Scalar 100 10% -.067 .197 .043 

Partial 100 10% .126 .179 .048 

Align 100 20% -.047 .173 .032 

Scalar 100 20% -.119 .192 .051 

Partial 100 20% .134 .220 .066 

Align 1000 10% .039 .060 .005 

Scalar 1000 10% -.077 .107 .017 

Partial 1000 10% .158 .066 .029 

Align 1000 20% -.001 .072 .005 

Scalar 1000 20% -.129 .111 .029 

Partial 1000 20% .225 .157 .075 

Note. Align = Alignment 
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Alignment (r= .966)        Alignment (r= .966) 
 

 

Figure 1. Factor means of self-concept and general value of science for 30 and 60 groups: alignment method and scalar model.  
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Effects of SES on self-concept        Effects of SES on general value  

 

Figure 2. The effects of science achievement and SES on general value and self-concept based on 30 groups MIMIC model with alignment. 
Note. Circles indicate statistical significant (p < .001), whereas triangle indicates coefficients are not significant at the .001 level of confidence. The bar 

indicates +1/-1 standard error. 
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Gender effect sizes        Gender difference sizes 

 

Figure 3. Patterns of gender differences: general value and self-concept based on two different models. 
Note. Large circles indicate statistically significant coefficients (p < .001), whereas small circles  (☼)indicate coefficients are not significant at p <  .001. The 

bars indicates +1/-1 standard error.  
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Figure 4. Patterns of gender differences: general value and self-concept, based on two different models.
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Appendix 1:  

 

Quality of PISA Scales 
 

Much effort went into the development of internationally agreed-upon and comparable scales in the 

PISA data collections. The PISA assessment framework and items were developed through 

discussions between international groups of substantive and psychometric experts, followed by 

rigorous translation, verification, and national adaptions, which were implemented to balance the 

comparability and ecological validity of measures. Lastly, these measures were piloted and field 

tested, necessary changes were made, and the surveys were conducted with standardized 

administration procedures. In an evaluation of earlier PISA scales, where this development was 

described in more detail, Marsh, Hau, et al. (2006) concluded that the PISA scales were the strongest 

measure of educational psychology's most useful constructs and demonstrated good support for their 

psychometric properties, for metric – but not scalar – invariance across 25 countries, and cross-

cultural validity in relation to consistent support for convergent and discriminant validity across 25 

countries. They argued that the scales were useful for a broad range of educational psychology 

research: as a set of outcome measures; as a powerful set of intervening variables that facilitates the 

attainment of many long-term, desirable educational outcomes, and as a basis for mapping other 

educational psychology constructs in relation to their convergence and divergence with the PISA 

constructs. Similar to results by Marsh, Hau, et al. (2006) as well as Nagengast and Marsh (2013), the 

PISA results based on the present investigation show good support for the configural model and even 

the metric model. We also note that in cross-cultural research (as in other areas also) there are few if 

any published large-scale studies (i.e., many groups, factors, and items) that support scalar invariance 

(see earlier discussion). 
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Appendix 2:  

 

Guidelines for Configuring the Alignment-With-CFA (AwC) Approach 

 

The AwC  (Alignment-with-CFA) approach can be amended for greater precision. Its 

model is estimated according to the following steps: 

 

(1) Testing measurement invariance in relation to factor loadings and item 

intercepts is a precondition for comparing latent factor means across multiple groups. If the 

scalar model provides good model fit and support for item intercept invariance, alignment 

or AwC models should not be pursued, and the more parsimonious scalar model can be used 

for latent mean comparisons. 

(2) If item intercept invariance (or even factor loadings) is not supported, and the 

scalar model provides poor model fit, an alignment analysis should be employed for latent 

mean comparisons. 

(3) If there is a need to conduct an additional analysis that cannot be easily 

implemented within the alignment framework, but can be estimated with CFA models, 

then all parameter estimates from the alignment solution should be used as starting 

values to estimate the AwC model. 

(4) Since a total of 2m
 
constraints need to be added for the AwC model to be 

identified, selected parameter estimates are fixed to the values obtained from the alignment 

solution: 

 

(i) The m factor variances and m factor means are freely estimated. Then, for 

purposes of identification, a referent indicator (e.g., the first indicator) is selected 

for each factor, and the factor loading and intercept of this indicator are fixed to 

its estimated values from the alignment solution (i.e., these values are not allowed 

to be freely estimated). 

(ii) All other parameter estimates are free in AwC, the same as in the alignment 

solution. 

(iii) The AwC solution will have the same degrees of freedom, the same chi-square, 

and goodness of fit statistics as the configural CFA model. However, the AwC 

solution will have the same parameter estimates as the alignment solution. 

Standard errors will also be highly similar, but might be slightly inflated, 

suggesting that caution still needs to be exerted in the interpretation of marginally 

non-significant results. In this sense, the AwC model is equivalent to the 

alignment solution. Importantly, the researcher has more flexibility in terms of 

how to constrain or further modify the AwC model (as it is a true CFA model) 

than with the alignment model upon which it is based.
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Appendix 3:  

 

Annotated Mplus Input and Output for the Alignment and Alignment-Within-CFA 

(AwC) Approaches  

 

TITLE: The alignment model with 30 

groups (Model MG4AL see Table 2); 

 

 

DATA: FILE = “PISA06_data.dat”; 

VARIABLE: 

NAMES = SCHOOLID STIDSTD 

COUNTRY OECD W_FSTUWT 

ST16Q01 ST16Q02 ST16Q03 ST16Q04       

ST37Q06 Gender SES PV1SCIE; 

MISSING=.; 

USEVARIABLES ARE ST16Q01-

ST19Q06 Gender SES PV1SCIE 

CONTSCHL; 

CLUSTER = CONTSCHL; 
! cluster by school; 

 

WEIGHT = W_FSTUWT; 
! W_FSTUWT is the student-

level weighting variable in 

the PISA database. 

 

classes = c(30);  

knownclass = c(COUNTRY=36 40 56 124 

203 208 246 250 276 300 348 352 372 380 

392 410 442 484 528 554 578 616 620 703 

724 752 756 792 826 840); 

! Define the 30 multiple 

groups (countries) 

 

DEFINE:     CONTSCHL = 

(country*10000) + SCHOOLID; 
! Define group to be a 

unique combination of 

country (country ID code 

multiplied by 1000) and 

school ID; 

 

ANALYSIS:   TYPE=MIXTURE 

COMPLEX; 
!Complex: Analysis takes 

nesting of students with 

schools into account; 

             ESTIMATOR = ML; 

             PROCESSORS = 6; 

TITLE: Model MG-MIMICAwC (see 

Figure 2) 30 groups MIMIC model with 

the alignment model; 

 

DATA: FILE = “PISA06_data.dat”; 

VARIABLE: 

NAMES = SCHOOLID STIDSTD 

COUNTRY OECD W_FSTUWT 

ST16Q01 ST16Q02 ST16Q03 ST16Q04       

ST37Q06 Gender SES PV1SCIE; 

MISSING=.; 

USEVARIABLES ARE ST16Q01-

ST19Q06 Gender SES PV1SCIE 

CONTSCHL; 

CLUSTER = CONTSCHL; 
! cluster by school; 

 

WEIGHT = W_FSTUWT; 
! W_FSTUWT is the student-

level weighting variable in 

the PISA database. 

 

 

GROUPING = country (36 40 56 124 203 

208 246 250 276 300 348 352 372 380 392 

410 442 484 528 554 578 616 620 703 724 

752 756 792 826 840); 

! Define the 30 multiple 

groups (countries) 

 

DEFINE:     CONTSCHL = 

(country*10000) + SCHOOLID; 
! Define group to be a 

unique combination of 

country (country ID code 

multiplied by 1000) and 

school ID; 

 

ANALYSIS:   TYPE= COMPLEX;   
!Complex: Analysis takes 

nesting of students with 

schools into account; 

 

          ESTIMATOR = MLR; 

          PROCESSORS = 6; 
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MODEL:  

 

joyscie  BY ST16Q01 ST16Q02 ST16Q03 

ST16Q04 ST16Q05; 

instscie BY ST35Q01 ST35Q02 ST35Q03 

ST35Q04 ST35Q05; 

scifut    BY ST29Q01 ST29Q02 ST29Q03 

ST29Q04; 

scieeff  BY ST17Q01 ST17Q02 ST17Q03 

ST17Q04 

            ST17Q05 ST17Q06 ST17Q07 

ST17Q08; 

scscie   BY ST37Q01 ST37Q02 ST37Q03 

ST37Q04 ST37Q05 ST37Q06; 

genscie  BY ST18Q01 ST18Q02 

ST18Q04 ST18Q06 ST18Q09; 

perscie  BY ST18Q03 ST18Q05 ST18Q07 

ST18Q08 ST18Q10; 

sciact   BY ST19Q01 ST19Q02 ST19Q03 

ST19Q04 ST19Q05 ST19Q06; 

 

output: 

tech1 tech8 align SVALUES; 
! SVALUES: ask for starting 

values for subsequent AwC 

model. 

 

 
<<< Here an example of 

starting values for the USA 

group in the output of the 

alignment model above. >> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     %C#30% 

 

     joyscie BY st16q01*0.73192; 

     joyscie BY st16q02*0.71737; 

MODEL:  

 

joyscie  BY ST16Q01 ST16Q02 ST16Q03 

ST16Q04 ST16Q05; 

instscie BY ST35Q01 ST35Q02 ST35Q03 

ST35Q04 ST35Q05; 

scifut    BY ST29Q01 ST29Q02 ST29Q03 

ST29Q04; 

scieeff  BY ST17Q01 ST17Q02 ST17Q03 

ST17Q04 

            ST17Q05 ST17Q06 ST17Q07 

ST17Q08; 

scscie   BY ST37Q01 ST37Q02 ST37Q03 

ST37Q04 ST37Q05 ST37Q06; 

genscie  BY ST18Q01 ST18Q02 

ST18Q04 ST18Q06 ST18Q09; 

perscie  BY ST18Q03 ST18Q05 ST18Q07 

ST18Q08 ST18Q10; 

sciact   BY ST19Q01 ST19Q02 ST19Q03 

ST19Q04 ST19Q05 ST19Q06; 

 
! It is easy to incorporate 

 covariates in AwC model. 

(e.g., add  

scscie-sciact on Gender SES 

PV1SCIE 

for the MIMIC model (MG-

MIMIC4AwC) 

 
! for all parameters, the 

exact values from an 

alignment model including 

all the eight constructs (44 

items) as starts values 

(using *) 

 
! For identification 

purposes, the first item per 

factor is constrained to its 

estimated values from the 

alignment solution, and 

factor variances and means 

are free  

<<< Model specifications are 

shown for the USA groups. All 

other groups are defined in a 

similar manner>> 

Model 840: 

  joyscie BY st16q01@0.73192; 

  joyscie BY st16q02*0.71737; 
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     joyscie BY st16q03*0.68005; 

     joyscie BY st16q04*0.73858; 

     joyscie BY st16q05*0.78418; 

     ….. 

     ….. 

     sciact BY st19q01*0.44008; 

     sciact BY st19q02*0.46243; 

     sciact BY st19q03*0.53099; 

     sciact BY st19q04*0.32932; 

     sciact BY st19q05*0.54562; 

     sciact BY st19q06*0.18266; 

     instscie WITH joyscie*0.47751; 

     ….. 

     ….. 

     sciact WITH scscie*0.47891; 

     sciact WITH genscie*0.43133; 

     sciact WITH perscie*0.51505; 

 

     [ st16q01*2.63270 ]; 

     [ st16q02*2.41076 ]; 

     [ st16q03*2.33300 ]; 

     [ st16q04*2.72070 ]; 

     [ st16q05*2.70186 ]; 

     ….. 

     ….. 

     [ st19q01*1.62389 ]; 

     [ st19q02*1.12605 ]; 

     [ st19q03*1.29471 ]; 

     [ st19q04*1.06963 ]; 

     [ st19q05*1.33893 ]; 

     [ st19q06*1.02782 ]; 

     [ joyscie*0.04410 ]; 

     [ instscie*0.24782 ]; 

     [ scifut*0.32264 ]; 

     [ scieeff*0.09824 ]; 

     [ scscie*0.19773 ]; 

     [ genscie*0.20793 ]; 

     [ perscie*0.25161 ]; 

     [ sciact*0.75671 ]; 

 

     st16q01*0.17500; 

     st16q02*0.19479; 

     st16q03*0.22249; 

     st16q04*0.16762; 

     st16q05*0.16281; 

     ….. 

     ….. 

     st19q01*0.44733; 

     st19q02*0.19859; 

     st19q03*0.25967; 

  joyscie BY st16q03*0.68005; 

  joyscie BY st16q04*0.73858; 

  joyscie BY st16q05*0.78418; 

     ….. 

     ….. 

     sciact BY st19q01@0.44008; 

     sciact BY st19q02*0.46243; 

     sciact BY st19q03*0.53099; 

     sciact BY st19q04*0.32932; 

     sciact BY st19q05*0.54562; 

     sciact BY st19q06*0.18266; 

     instscie WITH joyscie*0.47751; 

     ….. 

     ….. 

     sciact WITH scscie*0.47891; 

     sciact WITH genscie*0.43133; 

     sciact WITH perscie*0.51505; 

 

  [ st16q01@2.63270 ]; 

  [ st16q02*2.41076 ]; 

  [ st16q03*2.33300 ]; 

  [ st16q04*2.72070 ]; 

  [ st16q05*2.70186 ]; 

     ….. 

     ….. 

  [ st19q01@1.62389 ]; 

  [ st19q02*1.12605 ]; 

  [ st19q03*1.29471 ]; 

  [ st19q04*1.06963 ]; 

  [ st19q05*1.33893 ]; 

  [ st19q06*1.02782 ]; 

  [ joyscie*0.04410 ]; 

  [ instscie*0.24782 ]; 

  [ scifut*0.32264 ]; 

  [ scieeff*0.09824 ]; 

  [ scscie*0.19773 ]; 

  [ genscie*0.20793 ]; 

  [ perscie*0.25161 ]; 

  [ sciact*0.75671 ]; 

 

  st16q01*0.17500; 

  st16q02*0.19479; 

  st16q03*0.22249; 

  st16q04*0.16762; 

  st16q05*0.16281; 

     ….. 

     ….. 

     st19q01*0.44733; 

     st19q02*0.19859; 
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     st19q03*0.25967; 

     st19q04*0.24697; 

     st19q05*0.31817; 

     st19q06*0.23871; 

 

  joyscie*0.93175; 

  instscie*0.70558; 

  scifut*0.86945; 

  scieeff*1.01327; 

  scscie*0.96378; 

  genscie*1.08514; 

  perscie*0.78113; 

  sciact*1.18903; 

 
<<Mplus output>> 

MODEL RESULTS:  
!unstandardized results for 

the alignment model above. 

 
JOYSCIE  BY 

ST16Q01     0.732      0.008     90.750     0.000 

ST16Q02     0.717      0.009     79.000     0.000 

ST16Q03     0.680      0.008     80.764     0.000 

ST16Q04     0.739      0.008     94.243     0.000 

ST16Q05     0.784      0.008    102.351    0.000 

     ….. 

     ….. 
SCIACT   BY 

ST19Q01     0.440      0.016     26.978     0.000 

ST19Q02     0.462      0.015     31.327     0.000 

ST19Q03     0.531      0.024     22.318     0.000 

ST19Q04     0.329      0.010     32.620     0.000 

ST19Q05     0.546      0.019     28.814     0.000 

ST19Q06     0.183      0.012     14.648     0.000 

 

INSTSCIE WITH 

JOYSCIE     0.478      0.017     28.129     0.000 

     ….. 

     ….. 
SCIACT   WITH 

JOYSCIE     0.654      0.026     24.893     0.000 

INSTSCIE   0.389      0.021     18.376     0.000 

SCIFUT       0.545      0.023     23.308     0.000 

SCIEEFF     0.474      0.026     18.443     0.000 

SCSCIE       0.479      0.025     19.093     0.000 

GENSCIE    0.431      0.024     17.732     0.000 

PERSCIE     0.515      0.023     22.134     0.000 

 

Means 

JOYSCIE      0.044      0.027      1.646     0.100 

INSTSCIE     0.248      0.023     10.804   0.000 

SCIFUT         0.323      0.022     14.655   0.000 

SCIEEFF       0.098      0.037      2.652    0.008 

SCSCIE         0.198      0.039      5.054    0.000 

st19q04*0.24697; 

  st19q05*0.31817; 

  st19q06*0.23871; 

 

  joyscie*0.93175; 

  instscie*0.70558; 

  scifut*0.86945; 

  scieeff*1.01327; 

  scscie*0.96378; 

  genscie*1.08514; 

  perscie*0.78113; 

  sciact*1.18903; 

 
<<Mplus output>> 

MODEL RESULTS:  
!unstandardized results for 

the AwC model above. 

 

JOYSCIE  BY 

ST16Q01    0.732      0.000    999.00     999.00 

ST16Q02    0.717      0.008     84.657      0.000 

ST16Q03    0.680      0.009     75.183      0.000 

ST16Q04    0.739      0.009     83.899      0.000 

ST16Q05    0.784      0.008     95.966      0.000 

     ….. 

     ….. 
SCIACT   BY 

ST19Q01    0.440      0.000    999.00     999.00    

ST19Q02    0.462      0.013     34.882      0.000 

ST19Q03    0.531      0.019     27.514      0.000 

ST19Q04    0.329      0.014     24.028      0.000 

ST19Q05    0.546      0.015     36.337      0.000 

ST19Q06    0.183      0.014     12.637      0.000 

 

INSTSCIE WITH 

JOYSCIE    0.478      0.017     27.613      0.000 

     ….. 

     ….. 
SCIACT   WITH 

JOYSCIE    0.654      0.024     27.053      0.000 

INSTSCIE   0.389      0.020     19.881     0.000 

SCIFUT      0.545      0.021     26.262      0.000 

SCIEEFF    0.474      0.026     18.162      0.000 

SCSCIE      0.479      0.022     21.776      0.000 

GENSCI      0.431      0.025     17.379      0.000 

PERSCIE    0.515      0.026     19.866      0.000 

 

 Means 

JOYSCIE     0.044      0.023      1.941      0.052 

INSTSCIE   0.248      0.017     14.483     0.000 

SCIFUT      0.323      0.014     23.811      0.000 

SCIEEFF     0.098      0.030      3.285      0.001 
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SCSCIE       0.198      0.025      7.926      0.000 

GENSCIE    0.208      0.036      5.854      0.000 

PERSCIE     0.252      0.028      8.836      0.000 

SCIACT      0.757      0.036     20.759      0.000 

 

Intercepts 

ST16Q01     2.633      0.000    999.00    999.00     

ST16Q02   2.411      0.009    254.053      0.000 

ST16Q03    2.333      0.015    153.671     0.000 

ST16Q04    2.721      0.013    205.973     0.000 

ST16Q05    2.702      0.016    172.449     0.000 

     ….. 

     ….. 
ST19Q01     1.624      0.017     96.907     0.000 

ST19Q02     1.126      0.013     85.931     0.000 

ST19Q03     1.295      0.016     78.744     0.000 

ST19Q04    1.070      0.009    115.829     0.000 

ST19Q05     1.339      0.018     72.948     0.000 

ST19Q06     1.028      0.013     78.160     0.000 

 

Variances 

JOYSCIE     0.932      0.025     36.572     0.000 

INSTSCIE   0.706      0.023     31.103     0.000 

SCIFUT       0.869      0.021     41.597     0.000 

SCIEEFF     1.013      0.040     25.155     0.000 

SCSCIE       0.964      0.038     25.124     0.000 

GENSCIE    1.085      0.054     20.231     0.000 

PERSCIE     0.781      0.031     25.446     0.000 

SCIACT       1.189      0.085     13.936     0.000 

 

 Residual Variances 

ST16Q01    0.175      0.006     27.283      0.000 

ST16Q02    0.195      0.006     33.802      0.000 

ST16Q03    0.222      0.007     33.757      0.000 

ST16Q04    0.168      0.006     25.923      0.000 

ST16Q05    0.163      0.008     21.616      0.000 

     ….. 

     ….. 
ST19Q01    0.447      0.013     33.577      0.000 

ST19Q02    0.199      0.010     19.488      0.000 

ST19Q03    0.260      0.011     23.291      0.000 

ST19Q04    0.247      0.013     19.398      0.000 

ST19Q05    0.318      0.011     27.897      0.000 

ST19Q06    0.239      0.022     10.982      0.000 

 
 

 

 

 

 

 

 

GENSCIE      0.208      0.044      4.710    0.000 

PERSCIE       0.252      0.028      8.883    0.000 

SCIACT         0.757      0.043     17.650   0.000 

 

Intercepts 

ST16Q01    2.633      0.015    172.239     0.000 

ST16Q02    2.411      0.016    153.681     0.000 

ST16Q03   2.333      0.009    252.438      0.000 

ST16Q04   2.721      0.009    293.153      0.000 

ST16Q05   2.702      0.010    281.415      0.000 

     ….. 

     ….. 
ST19Q01    1.624      0.000    999.00     999.00   

ST19Q02    1.126      0.015     77.440      0.000 

ST19Q03    1.295      0.019     69.870      0.000 

ST19Q04    1.070      0.012     88.178      0.000 

ST19Q05    1.339      0.018     74.436      0.000 

ST19Q06    1.028      0.014     73.530      0.000 

 

 Variances 

JOYSCIE    0.932      0.025     37.180      0.000 

INSTSCIE  0.706      0.024     29.056      0.000 

SCIFUT      0.869      0.019     46.779      0.000 

SCIEEFF    1.013      0.055     18.373      0.000 

SCSCIE      0.964      0.024     40.116      0.000 

GENSCIE   1.085      0.059     18.468      0.000 

PERSCIE    0.781      0.046     16.931      0.000 

SCIACT      1.189      0.065     18.232      0.000 

 

Residual Variances 

ST16Q01    0.175      0.006     27.283      0.000 

 ST16Q02   0.195      0.006     33.802      0.000 

ST16Q03    0.222      0.007     33.757      0.000 

ST16Q04    0.168      0.006     25.923      0.000 

ST16Q05    0.163      0.008     21.616      0.000 

     ….. 

     ….. 
ST19Q01    0.447      0.013     33.577      0.000 

ST19Q02    0.199      0.010     19.488      0.000 

ST19Q03    0.260      0.011     23.291      0.000 

ST19Q04    0.247      0.013     19.398      0.000 

ST19Q05    0.318      0.011     27.897      0.000 

ST19Q06    0.239      0.022     10.982      0.000 
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Appendix 4:  

 

Correlations Among the Eight Motivational Constructs in PISA 2006 

 

Not surprisingly, all 28 correlations among the eight motivational constructs were 

positive (Mean[M] r = .547) and, due in part to the large sample size, all were statistically 

significant. The largest correlation was between general value and personal value of science (r 

= .785). Correlations among enjoyment, instrumental motivation and future-oriented motivation 

in science were substantial (r = .590 to .713), and they were all highly correlated with personal 

value (r = .666 to .705). Correlations of self-concept in science with other motivational 

constructs were moderate (r = .399 to .611) and slightly larger than those for self-efficacy in 

science (r = .370 to .518). Correlations involving general value were comparatively smaller (r 

= .386 to .511), except for the aforementioned substantial correlations with personal value. 

Finally, engagement in extracurricular activities in science was highly correlated with enjoyment 

(r = .639) and personal value (r = .592), but less correlated with the other motivation constructs 

(r = .452 to .569).  

With respect to correlations relating the motivational constructs to the three covariates, 

correlations of gender to the eight motivational variables were statistically significant but small 

(r = .024 to .094), and favored boys. This pattern of correlations was similar with those of SES to 

motivational constructs (r = -.030 to .114). However, science achievement was more highly 

correlated with motivational constructs (r = .081 to .372), with the exception that correlation 

between achievement and extracurricular activities was non-significant (r = .012). The strongest 

relations emerged with science self-efficacy (r = .372) and general value of science (r = .262). 

Students who had higher science achievement values tended to report that they would be able to 

solve a range of scientific problems and ascribe a higher societal value to science. Correlations of 

achievement to self-concept and general value were somewhat smaller (rs = .153 and .149 

respectively). 
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Appendix 5: 

 

Annotated Input Files Used in Study 2 (Simulated Data) 
 

Title: Population Model - Input for 

the Data Generation (20% large non-

invariance) 

! In all input files, statements preceded by ! 

are annotations.  

! The Monte Carlo facility is used to 

generate the data.  

MONTECARLO: 

NGROUPS = 15; ! This statement indicates 

the number of groups. 

NOBSERVATIONS = 15(100); ! This 

statement indicates the sample size in 

each group. 

NREPS = 500; ! 500 replications are 

requested. 

SEED = 4533; ! set seed 

REPSAVE = ALL; !saver all of the data 

sets generated in a Monte Carlo simulation 

study  

SAVE = cfa-G15-N100-20-*.dat; ! This 

statement identifies the data set to be 

created.  

! The following section defines the 

population model based on the parameters 

described in Table S2 

! and Figure 2. The * symbol precedes 

specific parameter values.  

! Factor loadings are noted with BY, 

regressions with ON, correlations with, 

means and 

! intercepts are noted between brackets []; 

variances and residuals are noted without 

brackets.  

ANALYSIS: ESTIMATOR = ML; 

Model population: !Group 1 

f by y1*1.00 y2*1.00 y3*1.40 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.50]; 

y1-y5*1; 

f*1;  [f*0]; 

 

 

Title: Population Model - Input for 

the Data Generation (10% large non-

invariance) 

MONTECARLO: 

 

NGROUPS = 15; ! This statement indicates 

the number of groups. 

NOBSERVATIONS = 15(100); ! This 

statement indicates the sample size in 

each group. 

NREPS = 500; ! 500 replications are 

requested. 

SEED = 4533; ! set seed 

REPSAVE = ALL; !saver all of the data 

sets generated in a Monte Carlo simulation 

study  

SAVE = cfa-G15-N100-10-*.dat; ! This 

statement identifies the data set to be 

created.  

 

 

! The following section defines the 

population model based on the parameters 

described in Table S2 

! and Figure 2. The * symbol precedes 

specific parameter values.  

! Factor loadings are noted with BY, 

regressions with ON, correlations with, 

means and 

! intercepts are noted between brackets []; 

variances and residuals are noted without 

brackets.  

ANALYSIS: ESTIMATOR = ML; 

 

Model population: !Group 1 

f by y1*1.00 y2*1.00 y3*1.00 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.50]; 

y1-y5*1; 

f*1;  [f*0]; 

ODEL POPULATION-g2: 
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f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.50; 

[y1*-.50 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

MODEL POPULATION-g3: 

f by y1*0.95 y2*0.90 y3*1.10 y4*0.30 

y5*1.05; 

[y1*-.05 y2*0.50 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 

f*1.2; [f*1]; 

MODEL POPULATION-g4: 

f by y1*1.00 y2*1.00 y3*1.40 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.50]; 

y1-y5*1; 

f*1;  [f*0]; 

MODEL POPULATION-g5: 

f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.50; 

[y1*-.50 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

MODEL POPULATION-g6: 

f by y1*0.95 y2*0.90 y3*1.10 y4*0.30 

y5*1.05; 

[y1*-.05 y2*0.50 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 

f*1.2; [f*1]; 

MODEL POPULATION-g7: 

f by y1*1.00 y2*1.00 y3*1.40 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.50]; 

y1-y5*1; 

f*1;  [f*0]; 

MODEL POPULATION-g8: 

f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.50; 

[y1*-.50 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

 

 

MODEL POPULATION-g2: 

f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.50; 

[y1*0.05 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

MODEL POPULATION-g3: 

f by y1*0.95 y2*0.90 y3*1.10 y4*1.05 

y5*1.05; 

[y1*-.05 y2*0.50 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 

f*1.2; [f*1]; 

MODEL POPULATION-g4: 

f by y1*1.00 y2*1.00 y3*1.40 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.00]; 

y1-y5*1; 

f*1;  [f*0]; 

MODEL POPULATION-g5: 

f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.95; 

[y1*-.50 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

MODEL POPULATION-g6: 

f by y1*0.95 y2*0.90 y3*1.10 y4*0.30 

y5*1.05; 

[y1*-.05 y2*-.05 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 

f*1.2; [f*1]; 

MODEL POPULATION-g7: 

f by y1*1.00 y2*1.00 y3*1.00 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.50]; 

y1-y5*1; 

f*1;  [f*0]; 

MODEL POPULATION-g8: 

f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.50; 

[y1*0.05 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

 

 

MODEL POPULATION-g9: 

f by y1*0.95 y2*0.90 y3*1.10 y4*0.30 

y5*1.05; 

[y1*-.05 y2*0.50 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 
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f*1.2; [f*1]; 

MODEL POPULATION-g10: 

f by y1*1.00 y2*1.00 y3*1.40 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.50]; 

y1-y5*1; 

f*1;  [f*0]; 

MODEL POPULATION-g11: 

f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.50; 

[y1*-.50 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

MODEL POPULATION-g12: 

f by y1*0.95 y2*0.90 y3*1.10 y4*0.30 

y5*1.05; 

[y1*-.05 y2*0.50 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 

f*1.2; [f*1]; 

MODEL POPULATION-g13: 

f by y1*1.00 y2*1.00 y3*1.40 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.50]; 

y1-y5*1; 

f*1;  [f*0]; 

MODEL POPULATION-g14: 

f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.50; 

[y1*-.50 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

MODEL POPULATION-g15: 

f by y1*0.95 y2*0.90 y3*1.10 y4*0.30 

y5*1.05; 

[y1*-.05 y2*0.50 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 

f*1.2; [f*1]; 

 

OUTPUT: tech9; 

MODEL POPULATION-g9: 

f by y1*0.95 y2*0.90 y3*1.10 y4*1.05 

y5*1.05; 

[y1*-.05 y2*0.50 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 

f*1.2; [f*1]; 

MODEL POPULATION-g10: 

f by y1*1.00 y2*1.00 y3*1.40 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.00]; 

y1-y5*1; 

f*1;  [f*0]; 

MODEL POPULATION-g11: 

f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.95; 

[y1*-.50 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

MODEL POPULATION-g12: 

f by y1*0.95 y2*0.90 y3*1.10 y4*0.30 

y5*1.05; 

[y1*-.05 y2*-.05 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 

f*1.2; [f*1]; 

MODEL POPULATION-g13: 

f by y1*1.00 y2*1.00 y3*1.00 y4*1.00 

y5*1.00; 

[y1*0.00 y2*0.00 y3*0.00 y4*0.00 y5*0.50]; 

y1-y5*1; 

f*1;  [f*0]; 

MODEL POPULATION-g14: 

f by y1*1.05 y2*1.10 y3*0.90 y4*0.95 

y5*0.50; 

[y1*0.05 y2*0.05 y3*-.10 y4*0.10 y5*-.05]; 

y1-y5*1; 

f*1.5; [f*.3]; 

MODEL POPULATION-g15: 

f by y1*0.95 y2*0.90 y3*1.10 y4*1.05 

y5*1.05; 

[y1*-.05 y2*0.50 y3*0.10 y4*-.05 y5*0.05]; 

y1-y5*1; 

f*1.2; [f*1]; 

 

OUTPUT: tech9;
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TITLE: Alignment Model  

! The following statement is used to identify the data file.  

 DATA: FILE = cfa-G15-N100-20-22.dat ; Here, the data file is labeled cfa-G15-N100-20-

199.dat, which is the 199th replication for 100 of sample size with 20% large non-

invariance 

 

 VARIABLE: NAMES = y1-y5 GROUP; 

USEVARIABLES = y1-y5; 

Classes = c(15); ! number of groups 

knownclass = c(GROUP = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15); 

 

ANALYSIS: 

TYPE = MIXTURE; 

ESTIMATOR = MLR; 

alignment = fixed;  

ALGORITHM = INTEGRATION; 

PROCESSORS = 2; 

 

MODEL: %OVERALL% 

F by Y1-Y5; 

! Specific sections of output are requested. 

OUTPUT: SVALUES align; 

 

 

Title: ICM-CFA (Configural, metric, and scalar invariance model) 

! The following statement is used to identify the data file.  

DATA: FILE = cfa-G15-N100-20-199.dat ; Here, the data file is labeled cfa-G15-N100-20-

199.dat, which is the 199th replication for 100 of sample size with 20% large non-

invariance 

 

 VARIABLE: NAMES = y1-y5 GROUP; 

USEVARIABLES = y1-y5; 

GROUPING = GROUP (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15); 

 

ANALYSIS:  

ESTIMATOR = ML; !Maximum Likelihood (ML) estimation is used. 

Model = configural metric, and scalar;  

MODEL: 

f by y1* y2 y3 y4 y5; ! freely estimate the first factor loading 

[y1 y2 y3 y4 y5]; 

f@1; [f@0];!  For identification purposes, factor variance and latent mean are fixed to be 1 and 

0 in the first group. 

! Specific sections of output are requested. 

Output: sampstat standardized SVALUES stdyx tech4; 
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Title: ICM-CFA (Partial invariance model) 

! The following statement is used to identify the data file.  

DATA: FILE = cfa-G15-N100-20-199.dat ; Here, the data file is labeled cfa-G15-N100-20-

199.dat, which is the 199th replication for 100 of sample size with 20% large non-

invariance 

VARIABLE: NAMES = y1-y5 GROUP; 

USEVARIABLES = y1-y5; 

GROUPING = GROUP (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15); 

ANALYSIS:  

ESTIMATOR = ML; 

MODEL: 

f by y1* y2 y3 y4 y5; 

[y1 y2 y3 y4 y5]; 

y1-y5*1; 

f@1; 

[f@0]; 

MODEL 1: 

 [Y5]; [Y1]; ! freely estimate intercept Y1 

and Y5 according to the strategy of partial 

invariance described in the main text 

f@1; [f@0]; For identification purposes, 

factor variance and latent mean are fixed to 

be 1 and 0 in the first group.  

MODEL 2: 

f; [f];! Freely estimate factor variance and 

latent mean from Group 2 to Group 15 

MODEL 3: 

F BY Y4; 

f; [f]; 

MODEL 4: 

[Y2]; 

[Y4]; 

[Y3]; 

F BY Y2; 

f; [f]; 

MODEL 5: 

F BY Y5; 

[Y1]; 

F BY Y3; 

f; [f]; 

MODEL 6: 

F BY Y4;  

f; [f]; 

MODEL 7: 

[Y2]; 

[Y4]; 

f; [f]; 

MODEL 8: 

F BY Y5; 

f; [f]; 

MODEL 9: 

F BY Y4; 

f; [f]; 

MODEL 10: 

[Y2]; 

[Y4]; 

f; [f]; 

MODEL 11: 

F BY Y5; 

F BY Y3; 

f; [f]; 

MODEL 12: 

F BY Y4; 

f; [f]; 

MODEL 13: 

[Y2]; 

[Y4]; 

[Y3]; 

F BY Y3; 

f; [f]; 

MODEL 14: 

f; [f]; 

MODEL 15: 

F BY Y4; 

f; [f]; 

OUTPUT: MODINDICES(5) tech9 

SVALUES; 
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The previous population model is used to generate Validation data, except for changing the 

seed. 

Title: Cross-validation Alignment Model 

DATA: FILE = cfa-G15-N100-20-V199.dat ; Here, the data file is labeled cfa-G15-N100-20-

V199.dat, which is the 199th replication of the validation data for 100 of sample size with 

20% large non-invariance 

VARIABLE: NAMES = y1-y5 GROUP; 

USEVARIABLES = y1-y5; 

GROUPING = GROUP (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15); 

ANALYSIS: ESTIMATOR = ML; 

! The previous Alignment model is re-expressed using CFA based on validation data.  

! The model section uses the exact values of the non-standardized loadings, intercepts, residual 

! variances, and factor variances estimated from the previous model (using @).  

!Only latent mean are freely estimated.  

!But for identification purposes, latent mean are fixed to be 0 in the first group.

MODEL: 

f by y1* y2-y5; 

f@1; 

MODEL 1: 

F BY Y1@1.135; 

F BY Y2@0.941; 

F BY Y3@1.398; 

F BY Y4@0.908; 

F BY Y5@1.092; 

[F@0]; 

[Y1@0.124]; 

[Y2@0.183]; 

[Y3@0.113]; 

[Y4@0.1]; 

[Y5@0.598]; 

F@1; 

Y1@0.914; 

Y2@1.249; 

Y3@0.916; 

Y4@1.171; 

Y5@0.988; 

 

MODEL 2: 

F BY Y1@1.108; 

F BY Y2@1.111; 

F BY Y3@1.086; 

F BY Y4@0.993; 

F BY Y5@0.66; 

[F]; ! freely estimate latent mean 

[Y1@-0.353]; 

[Y2@0.442]; 

[Y3@0.044]; 

[Y4@0.355]; 

[Y5@0.098]; 

F@0.925; 

Y1@0.997; 

Y2@1.106; 

Y3@0.895; 

Y4@0.966; 

Y5@1.17; 

……….. 

……….. 

………… 

MODEL 15: 

  F BY Y1@1.192; 

  F BY Y2@1.073; 

  F BY Y3@1.104; 

  F BY Y4@0.498; 

  F BY Y5@1.032; 

  [F]; ! freely estimate latent mean 

  [Y1@-0.199]; 

  [Y2@0.463]; 

  [Y3@0.196]; 

  [Y4@-0.148]; 

  [Y5@0.048]; 

  F@0.632; 

  Y1@0.716; 

  Y2@0.82; 

  Y3@1.251; 

  Y4@0.915; 

  Y5@1.223; 

 

mailto:Y5@1.223
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Title: Cross-validation Scalar Model 

DATA: FILE = cfa-G15-N100-20-V199.dat ; Here, the data file is labeled cfa-G15-N100-20-

V199.dat, which is the 199th replication of the validation data for 100 of sample size with 

20% large non-invariance 

 

VARIABLE: NAMES = y1-y5 GROUP; 

USEVARIABLES = y1-y5; 

GROUPING = GROUP (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15); 

ANALYSIS:  

ESTIMATOR = ML; 

! The previous scalar model is re-expressed using CFA based on validation data.  

! The model section uses the exact values of the non-standardized loadings, intercepts, residual 

! variances, and factor variances estimated from the previous model (using @).  

!Only latent mean are freely estimated.  

!But for identification purposes, latent mean are fixed to be 0 in the first group. 

 

MODEL: 

f by y1* y2-y5; 

f@1; 

MODEL 1: 

F BY Y1@1.215; 

F BY Y2@1.22; 

F BY Y3@1.285; 

F BY Y4@0.684; 

F BY Y5@0.905; 

[F@0]; 

[Y1@0.013]; 

[Y2@0.396]; 

[Y3@0.232]; 

[Y4@0.049]; 

[Y5@0.385]; 

F@1; 

Y1@0.842; 

Y2@1.25; 

Y3@1.065; 

Y4@1.265; 

Y5@1.171; 

 

MODEL 2: 

[F]; ! freely estimate latent mean 

F@0.744; 

Y1@1.011; 

Y2@1.176; 

Y3@0.882; 

Y4@1.32; 

Y5@1.193; 

……….. 

……….. 

………… 

 

MODEL 14: 

[F]; ! freely estimate latent mean 

F@0.848; 

Y1@1.081; 

Y2@1.187; 

Y3@0.998; 

Y4@1.845; 

Y5@1.069; 

 

MODEL 15: 

[F]; ! freely estimate latent mean 

F@0.532; 

Y1@0.763; 

Y2@0.847; 

Y3@1.192; 

Y4@0.964; 

Y5@1.311; 

 

mailto:Y5@1.171
mailto:Y5@1.193
mailto:Y5@1.069
mailto:Y5@1.311
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Title: Cross-validation partial Model 

DATA: FILE = cfa-G15-N100-20-V199.dat ; Here, the data file is labeled cfa-G15-N100-20-

V199.dat, which is the 199th replication of the validation data for 100 of sample size with 

20% large non-invariance 

VARIABLE: NAMES = y1-y5 GROUP; 

USEVARIABLES = y1-y5; 

GROUPING = GROUP (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15); 

ANALYSIS: ESTIMATOR = ML; 

! The previous partial solution specific to the 199th replication is re-expressed using CFA based 

on validation data.  

! The model section uses the exact values of the non-standardized loadings, intercepts, residual 

! variances, and factor variances estimated from the previous model (using @).  

!Only latent mean are freely estimated.  

!But for identification purposes, latent mean are fixed to be 0 in the first group.  
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MODEL: 

f by y1* y2-y5; 

f@1; 

MODEL 1: 

F BY Y1@1.167; 

F BY Y2@1.12; 

F BY Y3@1.209; 

F BY Y4@1.024; 

F BY Y5@1.012; 

[F@0]; 

[Y1@-0.013]; 

[Y2@0.094]; 

[Y3@-0.212]; 

[Y4@0.013]; 

[Y5@0.479]; 

F@1; 

Y1@0.875; 

Y2@1.168; 

Y3@1.167; 

Y4@1.112; 

Y5@1.062; 

 

MODEL 2: 

F BY Y1@1.167; 

F BY Y2@1.12; 

F BY Y3@1.209; 

F BY Y4@1.024; 

F BY Y5@1.012; 

[F]; ! freely estimate latent mean 

[Y1@-0.509]; 

[Y2@0.094]; 

[Y3@-0.212]; 

[Y4@0.013]; 

[Y5@-0.064]; 

F@0.748; 

Y1@1.048; 

Y2@1.197; 

Y3@0.893; 

Y4@0.988; 

Y5@1.141; 

……… 

……… 

……… 

MODEL 15: 

F BY Y1@1.167; 

F BY Y2@1.12; 

F BY Y3@1.209; 

F BY Y4@0.32; 

F BY Y5@1.012; 

[F]; ! freely estimate latent mean 

mailto:Y5@1.062
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[Y1@-0.509]; 

[Y2@0.094]; 

[Y3@-0.212]; 

[Y4@0.013]; 

[Y5@-0.064]; 

F@0.619; 

Y1@0.745; 

Y2@0.791; 

Y3@1.234; 

Y4@0.958; 

Y5@1.25; 

 

OUTPUT: MODINDICES(5) SVALUES; 

  

mailto:Y5@1.25
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Appendix 6: 

 

Boxplots of Deviations Factor loading and Intercepts for Items from Selected PISA Scales Based on Alignment and scalar Models 

 

Self-Concept: Factor Loadings          General Value: Factor Loadings 

  
Self-Concept: Intercepts             General Value: Intercepts 
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Appendix 7:  

 

Largest Modification Indices (MI) and Expected Parameter Change (EPC) for the Basic AwC 
modV1 operator modV2 MI EPC Std_EPC StdYX_EPCGroup

[ST17Q04] 2928 0.312 0.312 0.356 484

[ST37Q01] 2887 0.244 0.244 0.33 484

JOYSCIE BY ST17Q04 1850 0.283 0.176 0.2 484

SCIFUT BY ST29Q04 1774 0.198 0.157 0.192 484

SCIACT BY ST19Q04 1740 0.137 0.173 0.194 484

[ST16Q01] 1674 -0.209 -0.209 -0.266 380

JOYSCIE BY ST37Q01 1659 0.214 0.132 0.179 484

PERSCIE BY ST17Q04 1640 0.282 0.176 0.2 484

[ST29Q02] 1609 -0.171 -0.171 -0.208 484

[ST16Q03] 1560 -0.242 -0.242 -0.277 724

SCIACT BY ST37Q01 1531 0.108 0.136 0.184 484

SCIACT BY ST17Q04 1505 0.134 0.169 0.193 484

PERSCIE BY ST37Q01 1475 0.212 0.133 0.18 484

JOYSCIE BY ST29Q04 1475 0.198 0.122 0.15 484

[ST16Q03] 1429 -0.177 -0.177 -0.248 484

[ST29Q04] 1401 0.169 0.169 0.207 484

[ST16Q05] 1396 0.193 0.193 0.222 724

PERSCIE BY ST29Q04 1388 0.201 0.126 0.154 484

[ST19Q06] 1383 0.207 0.207 0.336 724

SCIFUT BY ST37Q01 1383 0.185 0.147 0.199 484

[ST18Q01] 1364 0.193 0.193 0.311 724

SCIACT BY ST29Q04 1341 0.099 0.124 0.152 484

[ST19Q05] 1295 -0.255 -0.255 -0.342 826

JOYSCIE BY ST29Q02 1266 -0.17 -0.106 -0.128 484

INSTSCIE BY ST29Q04 1249 0.211 0.141 0.173 484

JOYSCIE BY ST19Q04 1232 0.246 0.152 0.171 484

SCIACT BY ST29Q02 1228 -0.088 -0.111 -0.134 484

PERSCIE BY ST29Q02 1222 -0.176 -0.11 -0.133 484

[ST19Q03] 1183 0.249 0.249 0.339 826

[ST19Q04] 1183 0.218 0.218 0.245 484

INSTSCIE BY ST37Q01 1175 0.208 0.139 0.188 484

[ST29Q02] 1151 0.145 0.145 0.145 124

INSTSCIE BY ST17Q04 1137 0.259 0.173 0.197 484

[ST18Q07] 1130 0.202 0.202 0.261 380

[ST18Q06] 1108 -0.196 -0.196 -0.283 724

SCIFUT BY ST17Q04 1105 0.209 0.166 0.189 484

SCIFUT BY ST19Q04 1079 0.219 0.174 0.195 484

SCIFUT BY ST29Q02 1054 -0.147 -0.117 -0.142 484

[ST17Q05] 1043 0.201 0.201 0.224 124

SCSCIE BY ST29Q04 1027 0.165 0.124 0.151 484

PERSCIE BY ST19Q04 992 0.232 0.145 0.163 484

INSTSCIE BY ST29Q02 970 -0.173 -0.116 -0.14 484

[ST18Q04] 964 0.349 0.349 0.519 410

[ST16Q03] 946 0.19 0.19 0.248 826

SCSCIE BY ST17Q04 932 0.203 0.153 0.174 484

[ST18Q02] 915 -0.385 -0.385 -0.513 410

[ST18Q03] 914 -0.186 -0.186 -0.249 380

[ST19Q05] 900 0.202 0.202 0.227 380

[ST16Q01] 860 0.109 0.109 0.175 484

SCSCIE BY ST29Q02 853 -0.14 -0.105 -0.127 484

[ST37Q02] 850 0.145 0.145 0.202 380

[ST19Q05] 810 -0.129 -0.129 -0.173 36

INSTSCIE BY ST19Q04 808 0.229 0.153 0.172 484

[ST16Q03] 791 0.144 0.144 0.191 380

[ST17Q01] 787 -0.195 -0.195 -0.225 724

GENSCIE BY ST17Q04 750 0.206 0.159 0.181 484

[ST17Q02] 743 -0.15 -0.15 -0.177 484

[ST19Q06] 740 0.487 0.487 0.504 300

[ST29Q02] 739 0.17 0.17 0.181 826

SCIACT BY ST16Q01 737 -0.123 -0.134 -0.17 380

[ST29Q03] 735 0.227 0.227 0.298 703

[ST16Q01] 728 0.179 0.179 0.204 756

[ST16Q02] 724 -0.158 -0.158 -0.202 826

GENSCIE BY ST29Q04 710 0.153 0.118 0.145 484

[ST18Q02] 684 0.188 0.188 0.28 756

[ST29Q03] 675 0.267 0.267 0.291 392

SCSCIE BY ST19Q04 674 0.182 0.137 0.153 484

JOYSCIE BY ST19Q06 673 -0.08 -0.079 -0.215 124

[ST16Q01] 667 -0.15 -0.15 -0.19 826

[ST37Q01] 665 -0.162 -0.162 -0.196 36

[ST19Q03] 656 0.135 0.135 0.188 36

[ST19Q01] 648 -0.15 -0.15 -0.199 724

SCIACT BY ST17Q02 645 -0.085 -0.107 -0.127 484

[ST29Q02] 639 0.13 0.13 0.129 724

GENSCIE BY ST29Q02 636 -0.135 -0.104 -0.126 484

[ST16Q05] 621 -0.106 -0.106 -0.153 484

[ST16Q03] 615 0.116 0.116 0.144 36

[ST37Q01] 610 0.142 0.142 0.166 724

[ST18Q09] 610 0.264 0.264 0.401 410

JOYSCIE BY ST17Q02 593 -0.155 -0.096 -0.113 484

[ST29Q04] 590 -0.121 -0.121 -0.124 124

SCIACT BY ST19Q06 579 0.313 0.413 0.428 300

SCIFUT BY ST17Q02 579 -0.146 -0.116 -0.137 484

PERSCIE BY ST19Q06 576 -0.078 -0.075 -0.205 124

JOYSCIE BY ST16Q03 555 -0.117 -0.073 -0.102 484

[ST17Q05] 554 -0.397 -0.397 -0.414 703

[ST18Q05] 553 0.274 0.274 0.366 410

[ST29Q03] 551 -0.1 -0.1 -0.113 36

[ST35Q02] 543 -0.149 -0.149 -0.167 826

SCIFUT BY ST29Q03 542 0.113 0.09 0.108 484

[ST19Q05] 536 0.402 0.402 0.417 352

[ST17Q04] 533 0.292 0.292 0.335 392

[ST18Q06] 528 0.108 0.108 0.165 124

[ST18Q05] 528 -0.112 -0.112 -0.159 484

[ST17Q01] 526 -0.296 -0.296 -0.376 578

[ST37Q05] 524 0.244 0.244 0.28 392

SCIACT BY ST19Q06 522 -0.062 -0.068 -0.186 124

[ST29Q03] 522 0.19 0.19 0.249 203

JOYSCIE BY ST18Q05 509 -0.125 -0.077 -0.11 484

GENSCIE BY ST37Q01 508 0.133 0.103 0.139 484

PERSCIE BY ST17Q02 507 -0.151 -0.094 -0.112 484

[ST29Q03] 507 -0.1 -0.1 -0.108 124

SCIFUT BY ST29Q01 505 -0.103 -0.082 -0.098 484

GENSCIE BY ST19Q06 502 -0.076 -0.073 -0.197 124

[ST29Q02] 501 0.075 0.075 0.079 36

[ST18Q07] 500 0.305 0.305 0.328 392

[ST37Q02] 495 -0.088 -0.088 -0.133 484

[ST17Q02] 491 0.196 0.196 0.226 756

[ST17Q08] 490 0.169 0.169 0.171 724

[ST29Q03] 485 0.103 0.103 0.124 484

[ST19Q02] 476 0.23 0.23 0.336 410

GENSCIE BY ST16Q03 464 -0.161 -0.139 -0.159 724

PERSCIE BY ST16Q03 457 -0.12 -0.075 -0.105 484

[ST17Q03] 454 0.361 0.361 0.368 250

SCIACT BY ST18Q05 454 -0.062 -0.078 -0.11 484

INSTSCIE BY ST29Q03 454 -0.126 -0.126 -0.143 36

SCIACT BY ST29Q03 452 0.058 0.074 0.089 484

[ST18Q06] 452 -0.326 -0.326 -0.369 40

[ST18Q02] 448 -0.234 -0.234 -0.311 392

[ST17Q07] 442 0.169 0.169 0.165 724

PERSCIE BY ST18Q03 441 0.115 0.072 0.104 484

[ST17Q08] 440 -0.138 -0.138 -0.152 36

[ST17Q04] 436 0.341 0.341 0.379 348

[ST18Q04] 434 -0.114 -0.114 -0.149 484

INSTSCIE BY ST29Q04 434 -0.119 -0.114 -0.118 124

SCSCIE BY ST18Q02 433 0.238 0.226 0.301 410

PERSCIE BY ST29Q03 431 0.115 0.072 0.087 484

[ST37Q01] 429 -0.172 -0.172 -0.228 392

[ST16Q01] 428 -0.23 -0.23 -0.256 372

[ST18Q09] 426 -0.288 -0.288 -0.382 208

JOYSCIE BY ST19Q06 424 -0.074 -0.074 -0.22 36

[ST17Q06] 421 -0.117 -0.117 -0.134 484

[ST37Q04] 421 0.094 0.094 0.114 724

SCSCIE BY ST19Q06 421 -0.059 -0.064 -0.175 124

SCIACT BY ST19Q06 419 0.186 0.208 0.266 616

PERSCIE BY ST16Q01 419 -0.161 -0.111 -0.141 380

SCIACT BY ST19Q06 417 0.121 0.124 0.202 724

[ST18Q09] 415 -0.337 -0.337 -0.381 352

INSTSCIE BY ST29Q02 415 0.1 0.096 0.096 124

[ST19Q03] 414 0.102 0.102 0.138 124

[ST17Q06] 413 0.256 0.256 0.311 616

SCIACT BY ST19Q06 411 0.247 0.267 0.359 348

SCIFUT BY ST18Q05 409 -0.106 -0.084 -0.119 484

[ST29Q03] 408 -0.11 -0.11 -0.134 826

INSTSCIE BY ST17Q02 408 -0.149 -0.1 -0.118 484

[ST18Q02] 408 -0.227 -0.227 -0.342 528

[ST17Q08] 405 0.272 0.272 0.311 578

SCIACT BY ST19Q06 404 -0.093 -0.099 -0.267 56

[ST16Q04] 401 0.239 0.239 0.25 410

PERSCIE BY ST18Q05 400 -0.109 -0.068 -0.097 484  
Note. Modification Indices (MI) and Expected Parameter Change (EPC) are not available in the 

alignment approach, but can be obtained for the basic alignment-within-CFA (AwC) model. The 63 

(out of 44 items x 30 groups = 1,320 factor loadings and 1,320 intercepts) StdYX_EPC values greater 

than .2 (in absolute value) are highlighted in yellow. ModV1 and modV2 = specific items associated 

with MI. Parameters refer to factor loadings (indicated by “BY”) as an operator or as item intercepts 

(indicated by variable names in brackets). Group refers to the 30 different OECD countries.  
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