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 13 

Highlights 14 

• Simultaneous inclusion of features derived from mixed time window sizes of sensor 15 

signal data significantly improved the sheep behaviour classification accuracy, in 16 

comparison to those from a single unique time window size. 17 

• Using features derived from time windows of different lengths provided key 18 

information needed to accurately identify different behaviours that involve multiple 19 

movements of unequal duration. 20 

• Using Random Forest and a mixed window size approach significantly improved the 21 

ability of identifying the walking behaviour, only accounted for 1% of the ground truth 22 

data.  23 
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Abstract:  24 

Inertial motion sensors located on the animal have been used to study the behaviour of 25 

ruminant livestock. The time window size of segmented signal data can significantly affect the 26 

classification accuracy of animal behaviours. To date, there have been no studies evaluating 27 

the impact of a mixture of time window size features on the accuracy of animal behaviour 28 

classification. In this study, data was collected from accelerometers attached to the neck of 29 

17 Merino sheep over a period of two days. We also recorded a ground truth dataset of 30 

behaviour recordings (grazing, ruminating, walking, and standing) over the same time period, 31 

We then investigated the ability of three machine learning approaches, Random Forest (RF), 32 

Support Vector Machine (SVM) and linear discriminant analysis (LDA), to accurately classify 33 

sheep behaviour. Our results clearly show that simultaneous inclusion of features derived from 34 

time windows of mixed sizes, ranging from 2-15 seconds, significantly improved the behaviour 35 

classification accuracy, in comparison to those determined from a single unique time window 36 

size. Of the three ML methods applied here, the Random Forest approach yielded the best 37 

results.   Together our results show that including features obtained from mixed window sizes 38 

improved the classification accuracy of sheep behaviours.    39 

Keywords: Mixture of time window sizes; Features ranking; Classification algorithm; Machine 40 

learning; Sheep behaviour; Accelerometer; 41 

 42 

1. Introduction 43 

 44 

Animal behaviour can be used to provide a mechanism for the early detection and 45 

quantitative assessment of animal health status (Martiskainen et al., 2009). Grazing and 46 

ruminating are two important behaviours for ruminants and continuous monitoring of animal 47 

eating behaviour provides vital information about ruminant health, productivity and welfare 48 

(Mansbridge et al., 2018). Traditional methods of animal monitoring are based on direct 49 
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observation by human operators or assessment of video recording, both are labour-intensive, 50 

time-consuming, and prone to human error (Alvarenga et al., 2016). The rapid development 51 

of sensor technologies provides great opportunities for remotely monitoring animals in a range 52 

of applications (Brown et al., 2013; Schmoelzl et al., 2016). Sensor devices, especially those 53 

using an accelerometer that measures inertial acceleration  associated with movement 54 

(usually on three different axes), can give a good insight into individual animal behaviour 55 

patterns (Fogarty et al., 2020).    56 

To date, several studies have used sensors to study the behaviour of ruminant animals, 57 

especially in cattle. Greenwood et al. (2017) investigated the possibility of predicting pasture 58 

intake based on behaviour classification. They developed a simple algorithm to predict pasture 59 

intake of individual cattle. Rahman et al. (2018) compared tcattle behaviour classification using 60 

the information from sensors located on different parts of the body (collar, halter and ear) and 61 

found that different sensor placement can still achieve good classification accuracy providing 62 

that the feature variation between the training and testing animals is very small. For sheep 63 

behaviour classification, Guo et al. (2018) compared grazing behaviour of sheep on pasture 64 

with different sward surface heights using an inertial measurement unit sensor. They found 65 

that a high accuracy (> 95%) of identifying grazing behaviour from non-grazing behaviour 66 

could be achieved for all epochs (5s, 10s and 15s) with 10s being the best, regardless of 67 

sward surface heights. There are also commercially available monitoring systems that may be 68 

used to capture feeding behaviours for dairy cattle, such as Lely (Bar and Solomon, 2010) and 69 

MooMonitors (Verdon et al., 2018). However, these automatic systems cannot be directly 70 

applied to other species such as sheep as there are likely differences in accelerometer signal 71 

patterns between species. Further,  the sensor may be impractical or unsafe for deployment 72 

on sheep due to limitations involving sensor size, shape, weight or method of attachment 73 

(Mansbridge et al., 2018) 74 

Recently machine learning algorithms have become very popular and offer great potential 75 

in animal behaviour classification, largely because of their abilities in dealing with high 76 

dimension datasets (such as sensor data) and provide high prediction accuracy for complex 77 
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phenotypes. For example, Dutta et al. (2015) applied six supervised machine learning 78 

methods, binary tree, LDA, naive Bayes, k nearest neighbour (kNN) and adaptive neuro fuzzy 79 

inference system (ANFIS), to classify five major cattle behaviours (Grazing, Ruminating, 80 

Resting, Walking and other behaviour). They achieved a high accuracy (96%) of classification 81 

by using the bagging ensemble classification with tree learner. For sheep behaviour 82 

classification, Mansbridge et al. (2018) found that RF performed the best when compared with 83 

SVM, kNN and adaptive boosting (AdaBoost) for sheep data collected by 84 

accelerometer/gyroscope sensor attached to the ear and collar. Guo et al. (2018) also reported 85 

that the LDA classifier was the best performer compared to binary tree, naive Bayes, kNN and 86 

ANFIS on classifying grazing activities.   87 

Window size for signal segmentation is one of the crucial factors influencing on activity 88 

recognition. Banos et al. (2014) evaluated the impact of different window sizes (0.25 s – 7 s) 89 

on human activity classification with accelerometer data and found that the interval 1-2 s was 90 

the best trade-off between speed and accuracy of recognition. In sheep, Walton et al. (2018) 91 

investigated the effects of sensor position (ear and collar), sampling frequency (8, 16 and 32 92 

Hz) of triaxial accelerometer and gyroscope sensor, and window size (3, 5 and 7 s) on 93 

behaviour classification, and concluded that the combination of 16Hz with 7 s window would 94 

produce the benefits of energy efficient and reasonable classification accuracy (91-93%) in a 95 

real-time sheep monitoring system. Smith et al. (2016) built a separate classifier for each of 96 

five cattle behaviours (grazing, walking, ruminating, resting and “other”) using a “one vs all” 97 

ensemble on 24 Holstein-Friesian dairy cows. Of nine window sizes evaluated (1.5, 2.5, 5, 7.5, 98 

10, 15, 20, 25, 30 s), they found that “the grazing, resting and rumination behaviours produced 99 

their highest mean F-score for the longest window of the study (30 s)”.  100 

Since there is no consensus about which time window size for signal segmentation and 101 

machine learning methods should be used, one obvious question is whether the features 102 

derived from a mixture of different time window sizes can be used to improve classification 103 

accuracy of livestock grazing behaviour. In this study, we aimed to: (1) Determine if animal 104 

behaviour classification could be improved by the simultaneous inclusion of features 105 
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calculated fromtime windows of different sizes; (2) Compare the performance of three machine 106 

learning methods, RF, SVM and LDA in behaviour classification; (3) Investigate if new features 107 

from cumulative effects can improve the classification performance. 108 

 109 

2. Materials and methods 110 

 111 

2.1. Experiment design and data collection 112 

 113 

Data collection was conducted on animals enrolled in a grazing trial, according to the 114 

Australian Code for the Use and Care of Animals in Research and Teaching, and approved 115 

protocols were approved by the CSIRO Armidale Animal Ethics Committee (Animal Research 116 

Authority 18-13). A total of 20 Merino ewes, habituated to human presence, were kept in a 117 

square mixed sward pasture paddock of 70 m x 70 m. A subgroup of 17 animals was randomly 118 

chosen for device deployment and behavioural annotation. Devices were attached around the 119 

neck of the animals with an elasticated strap (Fig 1) for a period of 48 hours. The sensor 120 

datasets were collected from Actigraph wGT3X-BT fitted with collars around the neck of 121 

Merino ewes, each containing a triaxial microelectromechanical systems (MEMS) 122 

accelerometer. The accelerometer sampled at a frequency of 30 Hz. The X-axis aligned 123 

approximately with the vertical or dorsoventral direction, the Y-axis with the craniocaudal 124 

direction, and the Z axis with the transverse or mediolateral direction (see Fig. 1 for illustration).   125 
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 126 

Fig. 1. Location of sensor and its orientation on sheep. 127 

Annotation of behaviours was performed by direct observation of animals within the 128 

paddock environment. Trained operators were equipped with tablet devices with a custom-129 

designed annotation application (CSIRO AnnoLOG v 1.0.23, (Little, 2018)) installed on a 130 

Samsung Galaxy Tab A 7.0” (Samsung, Seoul, Korea). The application allowed users to 131 

record time stamped behaviours during the recording period (Fig. 2a), and the output of the 132 

behaviour log was presented in tabular form (see Fig. 2b). Four behaviours (Grazing, 133 

Ruminating, Walking and Standing) were recorded. Recording time differed between 134 

animalsand included approximately 30 minutes of annotated behaviour information for each 135 

sheep.  136 

 137 

X axis 

Y axis 

Z axis 
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 138 

Fig. 2. a) Operator interface of the annotation tool CSIRO AnnoLOG v. 1.0.23. b) Tabular 139 

output of annotated behaviours for animal ID1. 140 

 141 

2.2 Consolidation of sensor and ground truth datasets 142 

We aligned the raw sensor data and the behaviour observations together via the time 143 

stamps (i.e. windows, every 1/30 second). A total of 1,052,475 data points was obtained.  Fig. 144 

3 demonstrates the distribution of four different behaviour classes from 17 Merino sheep. Note 145 

that Walking has a small representation. 146 
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 147 

Figure 3. Unbalanced Behaviour Dataset. 148 

 149 

2.3 Feature extraction from sensor data 150 

In this study, five commonly used time window sizes, 1s, 2s, 5s, 10s and 15s, were applied 151 

for signal segmentation (Banous et al., 2014; Smith et al., 2016; Walton et al., 2018). For each 152 

time window, six basic statistical features, minimum, maximum, mean, standard deviation, 153 

skewness and kurtosis, were computed for each of three axes (X, Y and Z) acceleration data.   154 

 155 

Instead of applying the features from five different time window sizes in isolation, we 156 

developed a new method that enabled us to conduct the classification analysis with all features 157 

from different time windows together in the same dataset (see Table 1). In brief, a time window 158 

of 1s was used as the basis. A total number of 28,425 intervals (bins) were generated with the 159 

1s window. Using the average of acceleration magnitude values for X-axis (ai) at 1s as an 160 

example, the corresponding average values for all 1s intervals were denoted as 𝑎𝑎1,𝑎𝑎2, … 𝑎𝑎28425. 161 

When using 2s time window, a total number of intervals will be 14,213 with the average values 162 
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being 𝑏𝑏1,𝑏𝑏2, …𝑏𝑏14213. To combine the features of average values from 1s and 2s windows 163 

together in the same dataset, individual average values of 2s window were used twice to meet 164 

1s window requirement (see the second column in Table 1). By doing so, the average value 165 

from a 2s window remained unchanged for the 1st and 2nd 1s bins. The same concept applies 166 

to the average values derived for the time window sizes of 5s, 10s and 15s (See Table 1) as 167 

well as other statistical features (i.e. minimum, maximum, standard deviation, skewness and 168 

kurtosis values for X-axis acceleration magnitude measurement). 169 

 170 

Table 1 Illustration of deriving average features from mixed time window sizes. 171 

 time window 

Number of bins 1s 2s 5s 10s 15s 

1 𝑎𝑎1 𝑏𝑏1 𝑐𝑐1 𝑑𝑑1 𝑒𝑒1 

2 𝑎𝑎2 𝑏𝑏1 𝑐𝑐1 𝑑𝑑1 𝑒𝑒1 

3 𝑎𝑎3 𝑏𝑏2 𝑐𝑐1 𝑑𝑑1 𝑒𝑒1 

4 𝑎𝑎4 𝑏𝑏2 𝑐𝑐1 𝑑𝑑1 𝑒𝑒1 

5 𝑎𝑎5 𝑏𝑏3 𝑐𝑐1 𝑑𝑑1 𝑒𝑒1 

6 𝑎𝑎6 𝑏𝑏3 𝑐𝑐2 𝑑𝑑1 𝑒𝑒1 

… … … … … … 

… … … … … … 

            28423 𝑎𝑎28423 𝑏𝑏14212 𝑐𝑐5685 𝑑𝑑2843 𝑒𝑒1895 

            28424 𝑎𝑎28424 𝑏𝑏14212 𝑐𝑐5685 𝑑𝑑2843 𝑒𝑒1895 

            28425 𝑎𝑎28425 𝑏𝑏14213 𝑐𝑐5685 𝑑𝑑2843 𝑒𝑒1895 

a, b, c, d and e are the average values of acceleration magnitude values from X axis. 172 

 173 

Apart from six basic statistics features, we also explored new features of cumulative effects 174 

of raw data 𝑋𝑋𝑡𝑡, 𝑌𝑌𝑡𝑡 and 𝑍𝑍𝑡𝑡. Table 2 illustrates how the cumulative effects are derived for the 175 

corresponding features named Xsum, Xvelocity, Xsummean, Xsum2, Xdis and Xsum2mean, 176 
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using the time series data from X-axis acceleration magnitude measurements. The same 177 

methods were also applied for the computation of the features for the Y and Z axes 178 

acceleration magnitude measurements. In addition, the squared acceleration magnitude (acc) 179 

(Rahman et al. 2018) that considers the joint effects of X, Y and Z measurements were also 180 

included in this study. As the Y-axis detected the motion from front to back and the Z-axis 181 

detected the motion from the side to side, the interaction between Y and Z axis measurements 182 

were further examined using the features named dyz and interyz. For each window size and 183 

each statistics feature, there were 24 different metrics (including X, Y and Z axis data). A total 184 

of 720 features were generated. 185 

 186 

Table 2: Illustration of calculation of additional features of cumulative effects of X-axis 187 

Acceleration magnitude measurement.  T: the total number of intervals for a given time 188 

window;  t: a particular interval. 189 

Time X Xsum Xvelocity Xsummean Xsum2 Xdis 

1 𝑥𝑥1 𝑥𝑥1 𝑥𝑥1/30 𝑥𝑥1/1 𝑥𝑥1 𝑥𝑥1/30 

2 𝑥𝑥2 𝑥𝑥1 + 𝑥𝑥2 (𝑥𝑥1 + 𝑥𝑥2)/30 (𝑥𝑥1 + 𝑥𝑥2)/2 2𝑥𝑥1 + 𝑥𝑥2 (2𝑥𝑥1 + 𝑥𝑥2)/30 

… … … … … … … 

… … … … … … … 

T 𝑥𝑥𝑇𝑇 (∑ 𝑥𝑥𝑡𝑡𝑇𝑇
𝑡𝑡=1 ) (∑ 𝑥𝑥𝑡𝑡𝑇𝑇

𝑡𝑡=1 )/30 (∑ 𝑥𝑥𝑡𝑡𝑇𝑇
𝑡𝑡=1 )/T 𝑇𝑇𝑥𝑥1 + (𝑇𝑇 − 1)𝑥𝑥2 + ⋯

+ 𝑥𝑥𝑇𝑇 

(𝑇𝑇𝑥𝑥1 + (𝑇𝑇 − 1)𝑥𝑥2

+ ⋯+ 𝑥𝑥𝑇𝑇)/30 

 190 

Table Cont’d 191 

Time X Xsum2mean acc dyz interyz 

1 𝑥𝑥1 𝑥𝑥1/1 
�𝑥𝑥12 + 𝑦𝑦12 + 𝑧𝑧12 �𝑦𝑦12 + 𝑧𝑧12 

𝑦𝑦1𝑧𝑧1 

2 𝑥𝑥2 (2𝑥𝑥1 + 𝑥𝑥2)/2 
�𝑥𝑥22 + 𝑦𝑦22 + 𝑧𝑧22 �𝑦𝑦22 + 𝑧𝑧22 

𝑦𝑦2𝑧𝑧2 



11 
 

… … … … … … 

… … … … … … 

T 𝑥𝑥𝑇𝑇 (𝑇𝑇𝑥𝑥1 + (𝑇𝑇 − 1)𝑥𝑥2 + ⋯

+ 𝑥𝑥𝑇𝑇)/𝑇𝑇 
�𝑥𝑥𝑇𝑇2 + 𝑦𝑦𝑇𝑇2 + 𝑧𝑧𝑇𝑇2 �𝑦𝑦𝑇𝑇2 + 𝑧𝑧𝑇𝑇2 

𝑦𝑦𝑇𝑇𝑧𝑧𝑇𝑇 

 192 

2.4 Machine learning (ML) algorithms for classification  193 

 194 

2.4.1 RF 195 

 196 

RF is a tree-based ensemble method that builds a large collection of decision trees using 197 

training datasets, and validates predictions using testing datasets (Breiman, 2001). The library 198 

ranger in R (Wright and Ziegler, 2017) was applied for determining hyperparameters in RF. 199 

The final parameters were: mtry = 27, Ntree = 12 and default values for all other data. 200 

 201 

2.4.2 SVM 202 

SVM constructs a linear partition of the high-dimensional space into two subspaces for 203 

classification or regression (James et al., 2013). Intuitively, as the larger margins tend to 204 

provide lower classification errors, a good separation is obtained by a hyperplane that has the 205 

largest distance to the nearest training data. In this study, both linear and radial kernel 206 

functions were applied. The caret function in R (Kuhn, 2008) was applied. The final parameters 207 

for the analysis were: the average cost and sigma being 115 and 0.0014 for a radial function, 208 

and the average cost of 1 for a linear function. 209 

 210 

2.4.3 LDA 211 

 212 

LDA is a discriminant analysis that can separate a dataset into two or more classes. LDA 213 

assumes that the data within each class are drawn from a multivariate Gaussian distribution 214 
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with a class-specific mean vector and a covariance matrix that is common to all classes 215 

(James et al., 2013). In this study, we used the LDA classifier as a benchmark to compare the 216 

classification performance of RF and SVM. 217 

 218 

For all three methods, a five-fold stratified cross-validation scheme was applied. That is, 219 

the dataset from 17 sheep was randomly partitioned into 5 subsets. Each subset was in turn 220 

used as a test dataset while the other 4 subsets were used as the training dataset. .  221 

 222 

2.5 Performance of the classification 223 

 224 

Similar to the approach previously used for cattle behaviour classification (Rahman et al., 225 

2018), we chose four metrics, namely overall accuracy, precision, recall (also called sensitivity) 226 

and F1-score, to assess the classification performance of individual ML algorithms. For each 227 

target behaviour (e.g. Grazing, Ruminating, Walking, or Standing), a binary classifier was 228 

defined as the target behaviour (e.g. Grazing class) against a combined class of all remaining 229 

behaviour classes (Non-Grazing class).  The calculation of four metrics can be found in 230 

Rahman et al. (2018).  231 

 232 

 233 

3. Results  234 

 235 

3.1 Behaviour classification performance using individual unique time window sizes 236 

 237 

Table 3 presents the effects of different window sizes on the classification performance of 238 

three ML methods, RF, SVM (with linear kernel), SVM (with radial kernel) and LDA classifiers, 239 

when ignoring cumulative effects, squared acceleration magnitude and interaction effects 240 

between Y and Z axes. When the window size increased from 2s, 5s, 10s to 15s, the 241 
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classification performance of ML classifiers for grazing behaviour showed a continued 242 

improvement except in SVM (radial kernel). The 15 second window size gave the best 243 

classification performance.  Among all methods, RF showed the highest F1-score (0.876 – 244 

0.889). However, when considering ruminating, increasing the window size resulted in a 245 

reduction in performance in both RF and SVM (radial kernel) with 2s being the best window 246 

size. SVM (linear kernel) and LDA had no ability or a weak power to identify the ruminating 247 

behaviour (Table 3). In all cases, none of the ML methods had the ability to recognize walking 248 

behaviour regardless of the time window applied, except a very weak power identified by RF 249 

(0.173) at 2s window.   250 

 251 

Table 3. Effects of individual time window sizes on the behaviour recognition performance 252 

F1-score, when using RF, SVM and LDA. NA – not available. 253 

  F1 score 

Method Behaviour 2 sec 5 sec 10 sec 15 sec 

RF Grazing 0.876 0.879 0.886 0.889 

 Ruminating 0.655 0.582 0.545 0.550 

 Walking 0.173 NA NA NA 

 Standing 0.794 0.782 0.783 0.781 

SVM (linear 

kernel) 

Grazing 0.832 0.850 0.864 0.875 

 Ruminating NA NA NA NA 

 Walking NA NA NA NA 

 Standing 0.706 0.721 0.731 0.741 

SVM (radial 

kernel) 

Grazing 0.839 0.844 0.842 0.846 

 Ruminating 0.286 0.289 0.254 0.224 

 Walking NA NA NA NA 
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 Standing 0.720 0.719 0.705 0.692 

LDA Grazing 0.823 0.838 0.851 0.863 

 Ruminating 0.129 0.057 NA NA 

 Walking NA NA NA NA 

 Standing 0.697 0.709 0.719 0.724 

 254 

When comparing the overall accuracies of behaviour classification for each of the three 255 

ML methods (Fig. 4), the RF performed best of all classifiers regardless of time window size. 256 

However, the window size did impact on the performance of SVM and LDA classifiers. The 257 

smaller window size (≤ 5s), SVM (radial kernel) performed better than SVM (linear kernel) and 258 

LDA. For both SVM (linear kernel) and LDA, increasing the window size improved the 259 

accuracy value, with 15s giving the highest value (Fig. 4).  In general, SVM (linear kernel) 260 

produced higher accuracy than LDA, and it outperformed SVM (radial kernel) when the 261 

window size was ≥10s. 262 

263 
Fig. 4. The change of overall accuracy for individual ML methods with different time window 264 

sizes.  265 
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 266 

3.2 Classification of behaviours using mixed time window sizes 267 

Fig. 5 illustrates the composition of different behaviours in the newly formed mixed time 268 

window dataset. Grazing behaviour accounted for the largest percentage (47.0%) of the data 269 

and the walking behaviour had the least representation at 1% of data.  270 

 271 

Fig. 5. The percentage distribution of four behaviours in the mixed time window data. 272 

 273 

3.2.1 RF 274 

Of the 720 features examined with the mixed window size dataset, the top 36 features 275 

(with the highest Gini index values) identified by the RF are shown in Fig. 6. Among the top 276 

36 features, the features derived from different window sizes (1s, 2s, 5s, 10s and 15s) all 277 

contributed to the classification accuracy of different behaviours. One other noteworthy 278 
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observation was that the features derived from using the cumulative effects (i.e. with “sum” in 279 

the labels) were also among the top contributing features.  280 

 281 

 282 

Fig. 6. The list of top 36 features selected by RF. 283 

Next, we compared the behaviour classification performance of different subsets  of the 284 

top features from RF with that of 720 features. The top 3 features produced an overall accuracy 285 

of 0.946 (Fig. 7(a)). The accuracy value increased to 0.986 with the top 9 features and to 286 

almost 1 (0.999) with the top 27 features. Similar trends were observed irrespective of the 287 

performance metric used (See Figs 7b, 7c and 7d). For all four behaviour classes, the RF 288 

identified the individual behaviour classes with high precision (>0.970), sensitivity (Recall > 289 

0.950) and F1-score (>0.970) when either the top 9 or 27 features were applied (Fig. 7). Even 290 
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with the top three features, the results show that for the most difficult behaviour to classify – 291 

walking, there was 0.910 (precision), 0.780 (sensitivity) or 0.850 (F1-score) achieved.  292 

 293 

Fig. 7. The overall accuracy, precision, recall and F1 score values from using the different 294 

number of top ranked features chosen from RF for behaviour classification. 295 

 296 

3.2.2 SVM  297 

The SVM classifier was evaluated with both linear and radial kernels. The overall accuracy 298 

of SVM (linear kernel) was largely dependent on the number of features applied for 299 

classification (Fig. 8a). While the lowest accuracy was 0.741 with three top features, the 300 

highest accuracy (0.933) was achieved with all the 720 features.  301 
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 302 

Fig. 8. The over accuracy, precision, recall and F1 score values from the different number of 303 

top ranked features chosen from SVM with a linear kernel function and the mixed time 304 

window sizes. 305 

When investigating the classification performance of SVM (linear kernel) for individual 306 

behaviour classes Fig. 8), increasing the number of features slightly improved the 307 

classification performance for grazing and standing behaviours(Figs. 8b-8d) . However, for 308 

walking and ruminating, the change in the number of features had a significant impact on the 309 

classification performance (Fig. 8d). For example, SVM (linear kernel) had no or little power 310 

to correctly classify the walking behaviour until the number of features reached more than 144 311 

(Fig. 8d, F1 score = 0.210).  312 

 313 
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 314 

Fig. 8. The overall accuracy, precision, recall and F1 score values from the different number 315 

of top ranked features chosen from SVM with a linear kernel function and the mixed time 316 

window sizes. 317 

 318 

When comparing SVM (radial kernel) with SVM (linear kernel), the overall accuracy was 319 

significantly improved by 8.40% with top three features,  and by 17.70% with 27 features (Fig. 320 

9a vs Fig. 8a). SVM (radial kernel) performed well in classification of all individual behaviours 321 

when the number of features was more than 27. This can be demonstrated by high precision 322 

(> 0.900), reasonable sensitivity (> 0.750) and medium to high F1 score (> 0.850) in Fig 9. 323 

The most noticeable results are for the walking behaviour.   324 

 325 



20 
 

 326 

 327 

Fig. 9. The overall accuracy, precision, recall and F1 score values from the different number 328 

of top ranked features chosen from SVM with a radial kernel function and the mixed time 329 

window sizes 330 

 331 

3.2.3 LDA  332 

Fig. 10 presents the classification results from the LDA classifier. The overall accuracy 333 

from the LDA classifier followed a similar trend as the SVM classifier with linear kernel (Figure 334 

10(a) vs Figure 8(a)). However, the SVM (linear kernel) still gave 2.750% (with 3 features) - 335 

7.010% (with 720 features) better accuracy values than the LDA classifier. When comparing 336 

the classification performance for individual behaviour, again, LDA had a very similar 337 

performance to the SVM with linear kernel for the grazing, ruminating, and standing 338 
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behaviours. For the walking behaviour, although the LDA classifier had an overall low 339 

precision (<0.300), low recall (<0.500) and low F1 score (<0.375), surprisingly, it did show 340 

some ability to recognise the walking behaviour when the number of features were less than 341 

72. This was a stark contrast to the SVM classifier with linear kernel for the walking behaviour. 342 

 343 

Fig. 10. The overall accuracy, precision, recall and F1 score values from the different 344 

number of top ranked features chosen from LDA with the mixed time window sizes. 345 

 346 

4. Discussion 347 

 348 

Accurate classification of animal behaviour from sensor derived data is influenced by a 349 

number of factors, including experimental design, sensor placement position, data sample rate, 350 

signal segmentation window size, feature selection and different machine learning methods 351 

applied (Banos et al., 2014; Rahman et al., 2018; Walton et al., 2018;  Mansbridge et al., 2018; 352 
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Fogarty et al., 2020). Among them, window size, feature selection and analytical methods play 353 

critical roles. 354 

 355 

4.1. Window size 356 

 357 

To our knowledge, this is the first study that evaluated the classification of animal 358 

behaviour using features derived from a mixed window size approach.  It is a common practice 359 

to spend extensive amount of time to evaluate a range of time window sizes  in order to identify 360 

an optimal size that produces reasonable classification accuracy from sensor datasets. In this 361 

study, developing a new combined window size approach enabled us not only to minimise 362 

subjective selection of window sizes, but also to systematically and simultaneously consider 363 

the features from multiple window sizes together to capture the irregular duration of animal 364 

behaviours, that occur both within and across behaviours. 365 

Most importantly, we have demonstrated that using mixed window sizes in combination 366 

with the ML method RF, significantly improved the classification accuracies for all behaviour 367 

classes, especially for walking and ruminating. The overall accuracy, precision, recall and F1 368 

score for individual behaviour, when mixed window sizes were applied, were in strong contrast 369 

to those when individual time window size was applied. This is largely due to the features 370 

derived from different window sizes being inter-related. The correlations between these 371 

features of different window sizes provide additional information for ML methods to correctly 372 

identify individual animal behaviours. The biological basis for this can be explained by the 373 

need to classify specific short duration movements as a component of a longer movement. 374 

For instance, grazing might involve the lowering of the head and several biting events. Only 375 

classifying the lowering of the head would likely lead to inaccurate classification as would the 376 

classification of biting-like behaviours alone. The combination of the two is however likely to 377 

be much more informative. In contrast, when analysing the datasets with the features from 378 

one window size only, many feature correlations were not accounted for, especially in the 379 
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cases where mixed behaviours occurred in a given time window (i.e. unequal length of animal 380 

behaviour), errors were expected to arise. 381 

4.2. Feature selection 382 

To date an optimum number of features that can be used for classifying animal behaviours 383 

has varied greatly between studies, depending on the nature of sensor and behaviour data 384 

and analytical methods applied. For example, by analyzing the data collected by collar 385 

mounted motion sensors, Guo et al. (2018) found that the top 5 features, mean of 386 

accelerometer Z-axis, entropy of accelerometer Y-axis, entropy of accelerometer Z-axis, mean 387 

of gyroscope X-axis and mean of gyroscope Y-axis, can be used in classifying the grazing 388 

versus non-grazing activities in sheep. Mansbridge et al. (2018) identified 39 being the 389 

optimum number of features that can be used successfully in the classification of eating 390 

behaviors in sheep with a high accuracy (91% for ear and 92% for collar data). These features 391 

ranged from dominant frequency, zero crossings, signal area, spectral entropy, to basic 392 

statistics such as mean, min, max, standard deviation, and kurtosis.   393 

In this study for each axis acceleration magnitude measurements, apart from the common 394 

features derived from 6 basic statistics and the squared acceleration magnitude (acc), we also 395 

evaluated the effects of new features of cumulative effects of measurements for a given time 396 

window size on classification performance. The reasons for using these features include: 1) 397 

to properly evaluate the efficiency of the new approach - a mixed time window sizes, it is 398 

crucial to compare the new method with conventional methods using commonly used features. 399 

2) using new features from the accumulative effects was to examine if they could better 400 

capture actual change of motion movements for mixed behaviours. When applying the RF 401 

with the mixed window sizes, of 720 features, we found 9 top ranking features that contributed 402 

the most in the classification accuracy were all related to basic statistics (e.g. SD_X_10, 403 

max_Y_15 Max_Y_2, sd_X, mean_Y, max_Y, min_X_15, mean_Y_10 and max_Y_5, see 404 

Figure 6) of X and Y-axis  measurements. The X and Y-axis in this study aligned with upward 405 

and downward, and front to back movements of the neck, respectively hence kinetically related 406 

to grazing and ruminating behaviors. Among the 27 top ranking features, there were also 9 407 
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features derived from the average of the accumulative effects of Y axis (Ysummean, Fig. 6) 408 

for different window sizes. This indicates that the average cumulative values of Y axis from 409 

mixed window sizes may have better-reflected changes of acceleration, therefore contribute 410 

to additional improvement in the accuracy of behaviour classification.  411 

Feature selection can also be impacted by where signal information sensor placement 412 

position is one of the key factors that impact classification accuracy of sheep behaviour 413 

(Barwick et al., 2018).   414 

 415 

 416 

4.3. Machine learning methods 417 

 418 

Different machine learning methods could yield different outcomes when dealing with 419 

unbalance behaviour classes. Among three machine learning algorithms (RF, SVM and LDA) 420 

evaluated, the RF classifier performed the best with over 99% accuracy, followed by the SVM 421 

(radial kernel), the SVM (linear kernel) and LDA classifiers. RF has been known to produce 422 

good classification accuracies in sheep behaviour (Alvarenga et al., 2016), especially 423 

classification of grazing and rumination behaviour (Walton et al., 2018; Mansbridge et al., 424 

2018). This is mainly due to its great ability in handling non-linearly correlated data and 425 

robustness to noise (Mansbridge et al., 2018). SVM (radial kernel) performed better than the 426 

SVM (linear kernel) and LDA classifiers, also because its radial kernel function can non-427 

linearly separate the sensor signals associated with irregular length of individual behaviours. 428 

There are other machine learning methods that can also be applied to provide good 429 

classification accuracy of sheep behaviour, depending on the sources of signal information of 430 

sensor placement (e.g. ear, collar, or leg, Barwick et al., 2018), and trade-off between energy 431 

consumption and classification accuracy  (Le Roux  et al, 2018). Future work needs to be 432 

carried out with ensemble classifiers in which several different classifiers are trained 433 
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simultaneously and their classification decisions can be combined at the end (D’Este et al., 434 

2014; Dutta et al., 2015). 435 

All the results presented in this study were obtained using a five-fold stratified cross-436 

validation scheme based on time, rather than the cross-validation based on individual sheep. 437 

The initial analysis using a five-fold cross-validation approach based on subsets of sheep 438 

produced much worse results than that of a stratified cross-validation approach (see 439 

supplementary results I). The primary reason was due to the small number of animals used in 440 

this study and the big variation between individual sheep behaviours in feature space. 441 

Therefore, it is difficult to obtain the consistent results in test datasets when different subsets 442 

of sheep were used as training datasets.   To minimize the impact of individuality on classification 443 

accuracy of animal behaviours in future sensor application, it will be crucial to: 1) obtain results from 444 

larger numbers of animals; and 2) explore and validate results using a number of repeated k-fold CV 445 

to improve the prediction on both population and individual results 446 

Limitations of the study that may have influenced the results, include thesmall number of 447 

animals and limited paddock space (70 m x 70 m) used during the experiment. However, the 448 

study aimed to serve as a proof of concept that incorporation of features calculated across 449 

time windows of different lengths has the potential to improve classification accuracy. We 450 

believe this principle has been demonstrated and the broader applicability of the approach 451 

can be tested in future trials involving larger numbers of animals.  452 

 453 

4. Conclusions 454 

 455 

This study demonstrated that the sheep behaviours of grazing, ruminating, walking, and 456 

standing can be differentiated with a high accuracy using ML algorithm RF and a mixed 457 

window size approach. One clear benefit of applying the RF, mixed window approach was the 458 

ability to accurately classify  walking behaviour, that only accounted for 1% of the ground truth 459 

data, when conventional approaches failed. One possible explanation for this outcome is that 460 
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behaviour classification requires the information contained in features derived from time 461 

windows of different length to provide the context needed for accurate identification. 462 
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Appendix A. Supplementary material 547 

  548 

Fig. 1s. The list of 36 of the most important features selected by RF based on the leaving 549 

one animal out cross-validation scheme. 550 

  551 
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 552 

 553 

Fig. 2s. The over accuracy values from the different number of top ranked features chosen 554 

from Random Forest (RF) when using the mixed time window approach and leaving one 555 

animal out cross-validation scheme. 556 


