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Abstract 

 

Rugby union requires players to perform high-intensity locomotor and contact efforts, 

interspersed with low-intensity activity. Locomotor efforts include accelerations, 

running and sprinting, while collision efforts include ruck, tackle scrum and maul 

events. Recent research has quantified the demands of Rugby Union using player-worn 

microtechnology that contains global positioning systems (GPS) and tri-axial 

microsensors including accelerometers, magnetometers and gyroscopes. 

 

To date, research has extensively reported the locomotor demands of Rugby Union 

match-play using GPS, documenting total distance covered, high-speed distance, 

accelerations and running efforts. However, there is a lack of research on the contact 

events of match-play. A number of authors have investigated the contact demands of 

Rugby Union using microtechnology and applying non-specific algorithms to 

determine the number of collision events in Rugby Union. However, two major 

limitations exist in this approach. Firstly, while these algorithms have been validated 

for other collision sports (i.e. Rugby League), the unique collision events of Rugby 

Union mean they are unsuitable for this sport. Secondly, the developed algorithms do 

not delineate among contact events (i.e. ruck, scrum and maul), resulting in an 

underestimation of the contact demands of Rugby Union and all collision events being 

considered equally demanding. Therefore, the total physical demands of Rugby Union 

match-play are being under reported. 

 

Based on the identified gaps in the literature, the purpose of this thesis was to 1) conduct 

a systematic review of the use of microsensors to quantify sport-specific movements 



   x 

and determine if such devices are potentially capable of detecting collision events in 

Rugby Union (Study 1), 2) develop a valid algorithm to detect scrum events in training 

and match-play (Study 2); and 3) develop an algorithm to determine ruck and one-on-

one tackle events in Rugby Union (Study 3). This program of research was 

subsequently brought together by the final study (Study 4), which applied the newly 

developed algorithms with existing methods to uniquely quantify the locomotor and 

contact demands from both winning and losing teams in 12 elite matches. Results of 

this research provides a novel insight into the contact demands of elite Rugby Union 

and additionally provide validated methods to delineate each collision type. Results of 

this research provide a detailed overview of total physical demands of Rugby Union 

and provide insight into the different locomotor and collision profiles of winning and 

losing teams. 

 

This research demonstrates a unique application of microsensors and specific 

algorithms to quantify the collision demands of elite Rugby Union training and match-

play. For the first time, the total locomotor and contact demands of elite Rugby Union 

match-play, including those of winning and losing teams have been documented. 

Performance staff can use this information to more effectively monitor the training 

loads of players and design sport-specific conditioning programs to prepare players for 

the most demanding passages of match-play. 

 



   1 

 

Table of Contents 

Declaration ii	

Published Works by the Author Incorporated into the Thesis iii	

Acknowledgments vii	

Abstract ix	

Chapter 1: General Introduction and Review of Current Literature 5	

1.1 Overview of Rugby Union 5	

1.2 Match Demands in Elite Rugby Union 7	

1.3 Review of Microsensors 23	

Chapter 2: Statement of the Problem 28	

Chapter 3: General Aims and Hypotheses 31	

Chapter 4: The Use of Wearable Microsensors to Quantify Sport-Specific 

Movements: A Systematic Review 34	

4.1 Introduction 35	

4.2 Methods 39	

4.2.1 Literature Search Strategy 39	

4.2.2 Selection Criteria 41	

4.3 Results 42	

4.4 Discussion 68	

4.4.1 The Use of Microsensors to Detect Movements in Individual Sports 68	

4.4.2 The Use of Microsensors to Detect Movements in Team Sports 71	

4.4.3 The Use of Microsensors to Detect Movements in Water Sports 74	



   2 

4.4.4 The Use of Microsensors to Detect Movements in Snow Sports 76	

4.4.5 Directions for Future Research 77	

4.4.6 Conclusion 78	

Chapter 5 – General Methodology for Experimental Studies 80	

5.1 Participant Recruitment 80	

5.2 Data Collection 82	

5.2.1 Video-Based Methods 82	

5.2.2 Wearable Microtechnology Procedures 83	

5.3 Data Analysis 85	

5.4 Statistical Analysis 87	

Chapter 6 - Validity of a microsensor-based algorithm for detecting scrum 

events in Rugby Union 89	

6.1 Introduction 90	

6.2 Methods 92	

6.2.1 Subjects 92	

6.2.2 Phase 1 – Algorithm Development 92	

6.2.3 Phase 2 – Algorithm Validation 96	

6.2.4 Statistical Analysis 96	

6.3 Results 97	

6.4 Discussion 101	

6.5 Practical Applications 105	

6.6 Conclusion 105	



   3 

Chapter 7 - Automatic detection of one-on-one tackles and ruck events using 

microtechnology in Rugby Union 107	

7.1 Introduction 108	

7.2 Methods 111	

7.3 Results 117	

7.4 Discussion 119	

7.5 Conclusion 123	

7.6 Practical Applications 123	

Chapter 8 – Microtechnology-based Locomotor and Collision Profiles of 

Winning and Losing Elite Rugby Union Teams 125	

8.1 Introduction 126	

8.2 Methods 129	

8.3 Results 131	

8.4 Discussion 138	

8.5 Conclusion 142	

8.6 Practical Applications 142	

Chapter 9 – General Discussion and Conclusions 144	

9.1 Overview 144	

9.2 Summary of Findings 146	

9.3 Points of Difference 147	

9.4 Strengths 149	



   4 

9.5 Limitations 149	

9.6 Future Directions 150	

9.7 Practical Applications 151	

9.8 Conclusion 153	

References 154	

Appendices 170	

Appendix A – Ethics Approval ID 2014 135Q 171	

Appendix B – Participant Information Letter 173	

Appendix C – Participant Consent Form 175	

Appendix D – Proof of publication (Study 1) – Systematic review: The use of 

wearable microsensors to quantify sport-specific movements 176	

Appendix E – Proof of publication (Study 2) – Validity of a microsensor-based 

algorithm for detecting scrum events in Rugby Union 177	

Appendix F – Proof of publication (Study 3) – Automatic detection of one-on-one 

tackles and ruck events using microtechnology in Rugby Union 178	

 



   5 

Chapter 1: General Introduction and Review of Current Literature 

 

1.1 Overview of Rugby Union 

Rugby Union is a team sport that is alleged to have been founded in 1823 by William 

Webb Ellis, a student of Rugby School in Warwickshire England, who supposedly 

picked up the ball during a game of football (soccer) and ran with it (1). For the first 

five decades, the sport was played predominantly by schools and universities, but in 

1873, the first Rugby Union international took place between England and Scotland. 

Although this first international match involved 20 players per team, the formation of 

the World Rugby governing body in 1886 led to the creation of specific rules and laws 

that included the number of players permitted on the field at one time being reduced to 

15 per side (1,2). Since its origins, the popularity of Rugby Union has grown 

significantly, with the governing body estimating that more than 8.5 million people 

across 121 countries participate in the sport (2). While Rugby Union has been contested 

domestically and internationally for many decades, it was not until 1987 that the 

inaugural World Cup was hosted by New Zealand and Australia, with New Zealand 

winning the competition (1,2). In 1995, the sport of Rugby Union became professional, 

which subsequently led to the introduction of other prestigious competitions, both 

internationally and domestically (3). With this significant change, media coverage also 

increased, particularly at the elite level, with Rugby Union attracting large spectator 

and television audiences, with an estimated 120 million people watching the 2015 

Rugby World Cup final (4).  

 

A game of Rugby Union is contested by two teams, each with 15 players and 8 

substitutes, who compete over two 40–minute halves separated by a 15-minute rest 
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interval. Unlike other codes of football, which may add a period of stoppage time to the 

length of each half (or quarter), Rugby Union makes no allowances for stoppages, 

except in the event of an injury (2,3). Generally, the ball is in play for an average of 

35% of total match time (i.e. between 30 and 40 minutes) (3,5), with the ball being out 

of play for the remaining match time due to various scenarios, such as scoring, 

infringements (e.g. penalties for illegal manoeuvres etc.) and the ball being out of the 

field of play. As outlined by the sport’s governing body, each player within a team is 

allocated a specific number, which corresponds with their playing position on the rugby 

field. Specifically, players can be identified as; 1) loose-head prop; 2) hooker; 3) tight-

head prop; 4) left lock; 5) right lock; 6) blind-side flanker; 7) open-side flanker; 8) 

number eight; 9) scrum-half; 10) outside half; 11) left wing; 12) inside centre; 13) 

outside centre; 14) right wing; and 15) full back. 

 

These 15 playing positions are subsequently grouped into ‘forwards’ (players 1 to 8) 

and ‘backs’ (players 9 to 15), before being further sub-divided into smaller specialist 

groups. The specialist groups formed by different teams often share some similarities, 

but generally the specific naming and assignment of player to each sub-group can be 

quite varied. While each player has a specific role within a team, all players are required 

on-field throughout the course of a game. Since the turn of the professional era, there 

has been an increased focus on developing the physical qualities of players to better 

prepare the athletes for the overall demands of the game (3). However, to achieve this 

goal, it is necessary to have a clear understanding of physiological demands associated 

with Rugby Union match-play, both on average and under ‘worst-case’ conditions (6). 

The following section provides an overview of the literature that has assessed the 
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physical demands associated with elite Rugby Union match-play to provide some 

context regarding the physicality of the sport. 

 

1.2 Match Demands in Elite Rugby Union 

 

Rugby Union players are required to perform high-intensity locomotor activities, such 

as running, sprinting and accelerations, while also engaging in high-intensity collision 

events over an 80-minute period (3,7,8). Of these collision-based events, all players are 

likely to engage in rucks, tackles, and mauls during typical match-play scenarios, while 

forwards are also required to perform in scrums (3,7). Although both mauls and scrums 

are integral to the identity of Rugby Union match-play, rucks and tackles occur far more 

frequently than the other collision types.  

 

Tackles occur when the ball carrier is impeded by one or more defenders (Figure 1.1) 

and while different tackles may share some similarities, the specific technique used by 

the tackler(s) will often vary. In general, most defenders seek to wrap their arms around 

the attacker’s waist; allowing their arms to slide down around the attacker’s legs to 

prevent them from gaining ground. By preventing the attacker’s legs from moving, the 

defender brings the ball carrier to the ground, which ultimately leads to a second type 

of contact event, known as a ruck, being formed.  
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Figure 1.1 – A completed tackle  
(Image taken from: https://laws.worldrugby.org/?highlight=Tackle&law=14) 

 

Ruck events occur following tackles that result in the attacking player going to ground 

(Figure 1.2). These contests require at least one player from either team to be involved 

in an intense physical competition for the ball whilst on their feet, with the objective of 

the attacking player to retain possession and prevent the defender from stealing the ball. 

 

 

Figure 1.2 – A formed ruck 
(Image taken from: https://laws.worldrugby.org/?highlight=ruck&law=15) 

 

However, some tackle events involve techniques where the defender wraps their arms 

around the upper body of the attacker, either preventing the attacker from passing or 

attempting to hold the attacker upright without allowing them to gain ground.  
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Tackles that do not result in the ball-carrier being taken to ground, but rather have them 

being held up by the defending players, ultimately transition to a maul. Like the 

aforementioned collision-based events, these events can take place anywhere on the 

field and consist of the ball carrier and at least one player from each team who are 

bound together and on their feet. For a collision-based event to be classified as a maul 

and the attacking team to retain possession, the physical contest between the two teams 

must involve the ball being advanced in the direction of the attacking team (Figure 1.3). 

If the defensive team advances, and the ball is unplayable then the game is restarted 

with a scrum and a change in possession. During this contest, the defending team 

attempts to steal the ball from the attacking team or prevent the ball from advancing in 

favour of the attacking players (i.e. to stop the maul). A maul can appear as a reasonably 

static effort, but requires players to exert high forces to overpower their opposition. If 

the ball is deemed unplayable by the referee, then a minor infringement has occurred.  

 

 

Figure 1.3 – A maul 
(Image taken from: https://laws.worldrugby.org/?highlight=maul&law=16) 
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Following such minor infringements (e.g. knock-ons, players being offside, ball 

unplayable from maul) or match stoppages due to major infringements (penalties being 

awarded following an illegal manoeuvre or action (e.g. dangerous play) the game is 

frequently restarted with a scrum. Scrums represent the fourth type of contact-based 

event and require all forwards from both teams to engage in a physical battle. A scrum 

occurs when the eight forwards from one team bind to form three rows, each comprising 

three, two and three players respectively, before interlocking with the opposition 

players (Figure 1.4). While in this interlocked position, the two opposing teams exert 

very high isometric forces to compete for possession of the ball, with the objective 

being to push the other team backwards off the ball.   

 

 

Figure 1.4 – A scrum formation 
(Image taken from: https://laws.worldrugby.org/?highlight=scrum&law=19) 
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These four contact incidents combined with higher intensity locomotor actions are 

classified as high-intensity events, which are interspersed throughout a game with lower 

intensity activity (jogging and walking) and rest (9,10). 

 

A substantial amount of research has provided significant foundational knowledge of 

the physiology of Rugby Union players, describing the physical characteristics, 

capacities and time motion analysis of match-play (3,10-12). Duthie and colleagues (3) 

evaluated the match demands of elite Rugby Union using video-based analysis to 

quantify work to rest periods and identify the distinct movement patterns of players. 

The researchers concluded that players spend 85% of the playing time during a match 

performing low-intensity aerobic activities, while considerably less time is spent 

performing high-intensity activities (3,7). Forwards were found to spend more time 

involved in contact situations than backs, suggesting that these players were more likely 

to be required to perform repeated high-intensity locomotor efforts and short 

acceleration bouts. Backs were found to perform more high speed running and also 

covered greater distances. Although this research provided initial insight into the match 

demands of elite Rugby Union, the use of video technology to quantify these demands 

is known to be very subjective, time consuming and potentially erroneous (12). The 

significant improvements in technology, specifically microtechnology, over the last 

decade has allowed practitioners and researchers to more accurately quantify the 

demands of Rugby Union (7,13,14). Specifically, the use of wearable microtechnology 

has reduced the need for video-based analyses at the elite level, thereby providing 

greater objectivity around the analysis of match demands. 
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Commercially available microtechnology devices containing global positioning system 

receivers (GPS) and microsensors (accelerometers, gyroscopes and magnetometers) are 

frequently worn by participants in a specifically designed harness and commonly used 

to quantify the physical demands of various team sports including Rugby Union (7,15). 

Recent research has examined the demands of elite level Rugby Union match-play, 

predominantly using global positioning systems and video tracking to provide greater 

insight into the demands of the sport (13,16,17). Specifically, via the use of such 

technology, it has been possible to objectively evaluate total distance covered, high-

intensity running distances and the number of accelerations performed by each player; 

ultimately allowing practitioners to understand the variation that exists between 

different playing positions on the field (6,13,18). Quantifying the demands of elite level 

Rugby Union is of benefit to practitioners, as it allows training methods to be improved, 

which will help to facilitate better athlete preparation for match-play. Having an 

improved understanding of the physical demands of the game not only allows coaches 

and sports scientists to ensure that their athletes are appropriately prepared for 

competition, but also allows them to develop improved injury prevention strategies and 

better monitoring techniques for players who are returning from injury.  

 

Early application of wearable GPS technology allowed quantification of basic demands 

of elite Rugby Union (Table 1.1). Some research has found players can cover distances 

of approximately 7,000m each game (7), and highlighted that Backs cover over 1,000m 

more distance than Forwards during a typical game (7). Total distance is a metric that 

reflects a player’s or sub-group’s movements throughout the entire game, including 

stoppage periods. In contrast, the relative measure of distance per minute (m.min-1) 

provides an indication of the movement speed and/or intensity over a specific period; 
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whether that be a game or training session. Relative distances covered by Forwards 

have generally been reported to be between 64.6 m.min-1 and 71.6 m.min-1 over the 

course of a match, compared with Backs who have been shown to cover between 71.9 

and 81.0 m.min-1 (7,13,19). Despite this difference, it should be noted that these data 

represent the average demands across all high-intensity ball-in-play bouts, as well as 

out of play activities; hence, the data will include recovery activities such as jogging, 

walking and standing. Although such analyses are useful for providing information 

about the total demands of rugby union match play, separate analysis of the ball-in-play 

demands may provide further insight into the players’ workloads during active periods 

of competition. 

 

With respect to comparing the activities of players from different positional groups, 

data collected for Backs have indicated that these players not only cover greater 

distances, but also perform greater absolute and relative locomotive activity at higher 

speeds (striding, running and sprinting) than Forwards. Furthermore, Backs also 

performed more efforts at higher speeds and executed more intense accelerations than 

forwards (7,8,10,12,13,20). 

 

Table 1.1 illustrates the consistencies and points of differences amongst the existing 

literature that has quantified the total match demands of elite Rugby Union. Generally, 

the description of the total locomotor demands of Rugby Union has been consistent for 

both the forwards and backs positional groups. However, studies often differed with 

respect to the way in which they represented locomotor activity at higher speeds. 

Specifically, some of the research presented in Table 1.1 measured distances at higher 

speed thresholds using either an absolute speed threshold (7,8) or a relative speed 
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threshold (10,12,18) method, with the outcomes presented as a distance using a 

percentage of an individual’s maximum velocity. Another limitation of the research in 

Table 1.1 is that it has primarily only considered the locomotor demands of the sport. 

Those studies that have reported collision data have used various methods, with some 

using subjective and potentially erroneous video-based analyses (10,12,20), while 

others have applied non-validated algorithms to microtechnology data (7,8).  

 



   

Table 1.1 Summary of studies concerned with match demands of senior men’s Rugby Union.  

 

Study 
Standard and 

Number of 
Players 

Tournament 
Level 

Technology 
Used Main Findings 

Austin et al. 

(20) 

20 Elite Domestic Video tracking 

(Software not 

reported) 

The mean (±SD) total distances covered by the front row forwards, back-row 

forwards, inside backs and outside backs during each match of a 7-game period 

were 4,662 ± 659 m, 5,262 ± 131 m, 6,095 ± 213 m, and 4,774 ± 1,017 m, 

respectively. All positions covered most of the total distance at slower running 

speeds, with Forwards completing greater distances at these speeds than Backs. Of 

the player groups, Backs, specifically inside backs, performed the greatest sprinting 

distance. 

High-intensity activity was considered to include locomotor activities, such as 

striding and sprinting and contact activities such as tackling, static holds and 

scrummaging (scrums, rucks and mauls). Although the findings were in accordance 

with other research and showed that Forwards produced more efforts than Backs, 

the difference between Forwards and Backs was markedly lower than other studies. 

15 



   

Study 
Standard and 

Number of 
Players 

Tournament 
Level 

Technology 
Used Main Findings 

Cahill et al. 

(12) 

120 Elite Domestic SPI-Pro 

(GPSports, 

Canberra, 

Australia) 

Forwards covered a median distance of 5,850 m, with the relative distance reported 

as 64.6 m.min-1. Median maximum speed was 26.3 km.hr-1 with forwards covering 

the majority of distance below 50% of their predetermined individual maximum 

running velocity (Vmax). Forwards tended to cover only around 37 m at speeds 

above 80% of their Vmax. 

Backs covered a median of 6,545 m at a relative distance of 71.1 m.min-1 with 86% 

of the total distance being covered at speeds below 50% of an individual’s Vmax. 

Backs covered a slightly greater distance (50 m) at speeds above 80% of Vmax. 

The wearable devices contained accelerometers, but collisions were not reported. 

Coughlan et 

al. (8) 

2 International International SPI-Pro 

(GPSports, 

Canberra, 

Australia) and 

The Back covered a greater distance (7,002 m) than the Forward (6,427 m). 

Individuals performed nearly 75% of the total distance at lower velocity speed 

bands. The Back covered a greater percentage of the distance at speeds above 18 

km.hr-1. 

16 



   

Study 
Standard and 

Number of 
Players 

Tournament 
Level 

Technology 
Used Main Findings 

   Sportscode video 

tracking 

(Warriewood, 

NSW, Australia) 

The total number of accelerometer-detected impacts for the Forward was 838, 

compared with 573 for the Back. Scrum and tackle events were manually coded 

using video technology and matched alongside accelerometer data to calculate 

impact load using accelerations. The Back was involved in more tackle events 

(n=12) than the Forward (n=10), although the Forward was also involved in scrums 

(n=5). No validation of accelerometer-detected collisions with respect to the actual 

(video-based) contact events was provided. 

Cunniffe et al. 

(7) 

3 Elite Domestic SPI-Pro 

(GPSports, 

Canberra, 

Australia) 

Only 2 of the players involved completed a full match (1 Forward and 1 Back). The 

Back covered 7,227 m with a relative distance of 71.9 m.min-1, covered 524 m of 

sprinting (above 20 km.hr-1), and completed 34 efforts above this threshold. 

Majority of total distance (4,758 m) was covered at ≤12 km.hr-1 or slower. The Back 

attained a maximum velocity of 28.7 km.hr-1. 

 

17 



   

Study 
Standard and 

Number of 
Players 

Tournament 
Level 

Technology 
Used Main Findings 

    The Forward completed 6,680 m with a relative distance of 66.7 m.min-1. Similar 

to the Back, most of total distance was covered at speeds ≤12 km.hr-1 (4,285 m).  

Sprinting distance was lower than the Back, with only 313 m covered at speeds 

above 20 km.hr-1. The Forward attained a maximum velocity of 26.3 km.hr-1. 

Using an accelerometer, 1,274 and 728 collisions were recorded for the Forward 

and Back, respectively. However, impacts related to foot strike were not 

differentiated from collision-based events and the methods were not validated 

against video footage. 

Lacome et al. 

(10)  

30 International International Amisco Video 

tracking 

(Marlborough, 

MA, USA) 

Backs covered 7,944 ± 659 m during match-play, compared with Forwards who 

cover 7,006 ± 356 m. Forwards covered more distance at slower speeds than Backs, 

while Backs covered a greater distance at velocities above their maximal aerobic 

speed.  
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Study 
Standard and 

Number of 
Players 

Tournament 
Level 

Technology 
Used Main Findings 

    Scrums, rucks, mauls and standing tackles were all classed as ‘static activities’. 

Forwards were involved in more static activities than Backs, although the specific 

nature of the activities and frequency of their occurrences were not reported. 

Reardon et 

al. (18) 

36 Elite Domestic Optimeye S5 

(Catapult sports, 

Melbourne, 

Australia) Video 

tracking 

(Software not 

reported) 

Across 20 games, Forwards covered an average of 5,639 ± 762 m per game, while 

Backs covered an average of 6,172 ± 767 m. Relative distances were also lower 

for Forwards compared with Backs, with these groups recording 72 ± 10 m.min-1 

and 81 ± 10 m.min-1, respectively. Backs covered greater distances at higher 

speeds than Forwards, irrespective of whether a relative or absolute threshold was 

applied. In absolute terms, Backs covered 698 ± 198 m at speeds greater than 5 

m.s-1, compared with Forwards who covered 269 ± 172 m. Similarly, Backs 

covered greater distances (570 ± 171 m) at slow to moderate speeds (≤60% of 

Vmax) than Forwards (355 ± 99 m). The mean (±SD) total distances covered by 

the front row  forwards, back-row forwards, inside backs and outside backs during 
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Note: Vmax = Maximum velocity

Study 
Standard and 

Number of 
Players 

Tournament 
Level 

Technology 
Used Main Findings 

    each match of a 7-game period were 4,662 ± 659 m, 5,262 ± 131 m, 6,095 ± 213 

m, and 4,774 ± 1,017 m, respectively. All positions covered most of the total 

distance at slower running speeds, with Forwards completing greater distances at 

these speeds than Backs. Of the player groups, Backs, specifically inside backs, 

performed the greatest sprinting distance. 
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More recently, novel research has focused on the ball-in-play demands of Rugby Union. 

Although total ball-in-play time during international Rugby Union has been shown to 

be approximately 46% of total match time, single ball-in-play bouts can potentially last 

for more than 160 seconds (17). These extended activity cycles usually involve high 

locomotor or high contact demands (sometimes both), which rapidly increase fatigue 

and ultimately represent the most demanding passages of play (or “worst-case 

scenarios”) for players (6). Such “worst-case scenarios” can require forwards to cover 

up to 156.6 m.min-1 (38.3 m.min-1 at high speeds), while backs can cover up to 177.4 

m.min-1 (69.9 m.min-1 at high speeds) (21). However, average ball-in-play demands 

require Forwards and Backs to cover 106.0 m.min-1 and 108.6 m.min-1, respectively. Of 

these relative distances, Forwards and Backs respectively complete 8.9 m.min-1 and 19.0 

m.min-1 at higher speeds (>5m.s-1); with a single hard acceleration required nearly once 

every minute. Although this research provides sports scientists, coaches, conditioners 

and physiotherapists with much-required insight into the match-play demands of elite 

Rugby Union, it only describes the locomotor demands that are placed on the athletes.  

 

During both training and match-play situations, the fatigue resulting from the running-

based demands of Rugby Union are compounded by the exertion involved with 

imparting or enduring the forces associated with physical collisions. Specifically, 

research shows that Forwards are required to perform at least one collision-based effort 

during every minute of play, while Backs generally perform one collision-based effort 

for every two minutes of ball-in-play time (6). The contact demands of Rugby Union 

have also been alluded to by research, but these studies have generally grouped all 

collisions under one category; describing them as either ‘static activities’, ‘static 

exertions’ or ‘impacts’ (10,12,22,23).  In a separate study, the number of ‘impacts’ 
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experienced by each player was recorded using the accelerometers encased within the 

microtechnology devices routinely worn by players during match-play (6). While this 

novel approach had the potential to provide an improved understanding of the collision-

based demands experienced by Rugby Union players, the researchers relied upon 

impact detection methods that were not validated for this sport. As such, the results 

presented by the authors tended to over-estimate the number of impact-based events 

experienced by each player, possibly due to the wide range of contact and non-contact 

situations that lead to large accelerations during Rugby Union match-play. For example, 

according to Coughlan and associates (8), players may experience large accelerations 

(e.g. up to 10g) during aspects of match-play that are not related to tackling (8), such 

as when the feet make contact with the ground during running and/or when the athletes 

rapidly change direction. As such, it seems reasonable to suggest that algorithms that 

seek to identify collisions based on accelerations alone may be limited in their capacity 

to discriminate tackle-related accelerations from the accelerations resulting from other 

forms of player activities (8).  

 

Collectively, this body of literature highlights the shortcomings of previous attempts to 

quantify collision-based events in elite Rugby Union. Given that the success of a team 

is not only dependent on their capacity to perform the intense locomotor demands, but 

also to endure the repeated physical contacts associated with the sport (24), there is a 

clear need for better methods to quantify collisions and their influence on a player’s 

performance and injury risk. Future studies should seek to explore the potential for 

combining accelerations with other microsensor data (e.g. gyroscopic data) to improve 

the validity and reliability of collision-detecting algorithms in Rugby Union. 

Furthermore, there is currently a lack of research that has distinguished between tackles, 
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rucks, scrums and mauls; the four different types of contact events that characterise 

Rugby Union. The development of algorithms that can discriminate one collision type 

from another would allow the physical demands of Rugby Union match-play and 

training to be better evaluated in the future. 

 

1.3 Review of Microsensors 

Commercially available microtechnology devices commonly contain one or multiple 

microsensors, including accelerometers, gyroscopes and magnetometers. These are 

frequently referred to as microsensors, microelectromechanical sensors (MEMS) or 

inertial measurement units (IMUs). Such devices are frequently added to wearable 

technology devices that have extensive applications and may include detecting 

variations in activities and movements in laboratory, clinical and high-performance 

sporting environments.  

 

Wearable technology devices containing accelerometers have been used in a number of 

ways in the general health setting, including the detection of static orientations during 

standing, sitting, and lying down, as well as the quantification of dynamic movements, 

such as walking and jogging (25,26). Such devices can assess movements by using 

specifically designed algorithms that recognise a combination of accelerometer-based 

outcomes and device orientation. Using these algorithms, it was possible to calculate 

the speed of low-intensity locomotor movements that were performed at ≤ 4.8 m.s-1 

when devices were placed on the hip and thigh of participants (25). These algorithms 

have been integrated into commercially available wearable devices that can be used to 

detect the number of steps an individual completes (i.e. activity monitoring) or to log 

any disruptions in a person’s sleep patterns (26,27). Furthermore, these devices provide 
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information that can be used to monitor changes in the intensity of locomotor behaviour, 

while also facilitating more detailed gait analyses (26,28-30).  

 

Despite their widespread use in specific disciplines, the application of wearable 

microsensors in sport has been somewhat varied. For example, these sensors have been 

used to assess the patterns of running gait in a group of 10 elite national runners (31). 

In this study, runners were stratified into low-speed (10-12 km.hr-1), medium-speed 

(13-15 km.hr-1), and high-speed (16-19 km.hr-1) runner groups to evaluate the validity 

of microsensor-based measures of stride, step and stance durations with respect to an 

infrared motion analysis system (31). The results indicated that the temporal measures 

derived from the microsensor were, on average, 0.0008 seconds different to the 

optoelectronic motion analysis system; suggesting that a single sensor can be used to 

validly quantify stride, step and stance durations. From a practical perspective, this 

finding indicated that practitioners can accurately quantify the temporal aspect of 

running gait outside of the laboratory in more ecologically valid environments (31). 

Other studies have used wearable microsensors to evaluate movement intensity in team 

sports, particularly those that are performed indoors where other locomotor 

measurement systems, such as GPS, are not viable. For example, the demands of 

basketball training have been quantified using accelerometers, with the magnitude of 

the accelerations used to establish differences in the intensity of various drills and 

games (32). Further to this, Boyd and associates (33) explored the use of triaxial 

accelerometers to measure activity in team sports, creating an arbitrary unit called 

‘Player Load’. The ‘Player Load’ (Equation 1.1) is determined by calculating the square 

root of the sum of the squared instantaneous change in the three acceleration vectors 

(i.e. ax, ay, az) divided by 100 (33). To date, research has used ‘Player Load’ to gain 
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further information about the physical demands of sports, such as Australian Rules 

football (34), netball (35-37) and junior soccer (38). The ‘Player Load’ measure has 

been found to be highly reliable when using data from Catapult S5 devices (Catapult 

Sports, Melbourne, Australia), however, the data that are input into this algorithm are 

known to be heavily filtered within the manufacturer’s software (39). Therefore, it is 

recommended that such an accelerometer-derived outcome that are based on arbitrary 

units may be best suited to evaluating workload changes in individual athletes (39). 

 

Player	Load = 	,(a!" − a!#")
$ + (a%" − a%#")$ + (a&" − a&#")$

100  

Equation 1.1 
 

 

With the increasing need to quantify workload demands, most commercially available 

wearable devices include GPS hardware and at least one other type of microsensor. 

Generally, the wearable devices used in sport include a range of sensors (i.e. 

accelerometers, gyroscopes, magnetometers, GPS), such that participants only need to 

wear a single device, often positioned between the shoulder blades in a purpose-built 

harness, to evaluate a wide variety of performance-based outcomes (7,40,41). Recently, 

research has demonstrated the capacity for such devices to detect and classify a number 

of sport-specific movements in Rugby Union (42), Rugby League (41) and cricket (40); 

highlighting the potential for these devices to extend upon the more traditional 

appraisals of movement demands. For example, such devices have been used in cricket 

to develop validated methods to quantify fast bowling events in both training and 

match-play situations (40,43). The results of this research demonstrated that fast 

bowling could be automatically detected and monitored with high sensitivity in both 
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training (99.0%) and match-play (99.5%), thereby improving the monitoring of 

workload in cricketers. 

 

Similarly, Rugby League tackle events have been successfully quantified using a 

specifically designed microsensor-based algorithm that was validated against 

manually-coded events from training sessions and a trial match (41,44). The 

algorithm’s detection of tackle events used data from the wearable unit’s gyroscope to 

determine that the athlete was not in a vertical position and data from the accelerometers 

to detect an instantaneous spike in the ‘Player Load’ measure. In addition to allowing 

the overall number of tackles to be determined, the presented algorithm also recorded 

high correlations with respect to differentiating tackles of mild (r=0.89), moderate 

(r=0.97) and heavy (r=0.99) intensity, based on the recorded accelerations (41).  

 

Researchers in Rugby Union have used microsensor-based algorithms to quantify 

players’ running-based workloads (11,45,46) and/or to attempt to delineate these 

locomotor demands from the collision-based demands (6,9). However, due to various 

limitations, the methods used to identify collisions in Rugby Union have been 

inadequate to discriminate one collision type from another (9,42). A separate study 

attempted to use a microsensor-based algorithm developed specifically for Rugby 

League to evaluate tackle events during Rugby Union match-play (42). The results of 

this study showed that tackle events could be identified via peaks in the accelerometer 

data; however, other collision-based (i.e. rucks, mauls, scrums) and non-contact events 

(e.g. jumping, running, falling) produced similar acceleration profiles. To improve the 

predictive capacity of the algorithm, tackles were detected by analysing the acceleration 

signal characteristics during the tackle events and applying a minimum cut-off for the 
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g-force detected during the collision. Although the final algorithm was capable of 

detecting tackle events, the researchers suggested that using other microsensor data, 

such as those from gyroscopes and magnetometers, may have improved the algorithm’s 

accuracy (42). 

 

In a research setting, it is evident that wearable microsensors have enhanced the 

capacity to monitor movements in healthy populations, clinical sub-populations and 

sporting groups (13,47). Investigations have demonstrated the possibilities to use this 

technology to detect specific movements to further understand the physical demands of 

sport; providing practical insight into how athletes should be trained and monitored. 

Initial research highlights the potential capabilities for wearable microsensors to detect 

sport-specific movements using purpose-built algorithms that are based on particular 

data signals and patterns. However, to date, estimates of the physical demands of Rugby 

Union have been limited to non-contact skills, such as running, while the influence of 

collisions on a player’s physical workload have been largely disregarded. Given the 

widespread use of wearable microtechnologies in elite sports, such as Rugby Union, 

there is potential for these devices to be used to quantify the collision-based demands 

of the game, in much the same way as it is possible to quantify the non-contact demands 

of the sport.  
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Chapter 2: Statement of the Problem 

 

To date, research has generally reported exclusively on the locomotor demands of 

Rugby Union, providing an in-depth analysis of the distances covered by athletes, the 

relative intensities, high-speed activity and accelerations (3,6,17). Although an 

assessment of the running demands of Rugby Union match-play provides important 

insight into the physical demands of the sport, the physicality of collision-based events, 

such as tackles, rucks, scrums and mauls are overlooked. Traditionally, many 

researchers have monitored collisions subjectively using labour-intensive methods, 

such as video-based analysis, or with commercially available microtechnology devices. 

However, such research has neglected to differentiate types of collisions in Rugby 

Union. By developing an improved understanding of both the locomotor and contact-

based demands of Rugby Union match-play, it would be possible to gain important 

insight into the specific physiological demands placed on these athletes and highlight 

any variations between different positional groups. Such information would better 

inform the coaches, sport scientists, physiotherapists and strength and conditioning 

coaches who are working with these players to ensure they are receiving the most 

appropriate physical preparation for competition and injury prevention.  

 

It is clear that rucks, tackles, mauls and scrums are integral components of Rugby Union 

and are associated with the final outcome of a match along with injury rates (48). 

Tactically, there is a significant emphasis placed on teams winning the physical contests 

that characterise Rugby Union, and conditioning athletes for these physical collisions 

is considered imperative for overall team performance. However, collision-based 

activities are responsible for the greatest loss of playing time, with tackles contributing 
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the greatest amount to the high number of injury occurrences (48).  Due to the fatiguing 

nature of collisions, it is important to find a balance between the minimum number of 

skill involvements required to improve a specific skill (e.g. a tackle) and the maximum 

number of skill involvements that can be tolerated before injury risk is unnecessarily 

increased (41,49). 

 

Commercially available microtechnology devices are becoming an increasingly 

popular way to determine the physiological demands of team sports. Many devices 

contain GPS tracking, allowing researchers and sport scientists to determine the 

running-based demands of the game (13). However, these devices also contain tri-axial 

microsensors (i.e. accelerometers, magnetometers and gyroscopes), which potentially 

provide an opportunity to evaluate other characteristics of a player’s workload. 

Accelerometers are devices that measure acceleration and, hence, can be used to 

measure overall activity and various aspects of a player’s motion. Magnetometers 

measure the direction, strength and relative change of magnetic fields and provide 

information about direction of travel, while gyroscopes measure angular velocity. 

Collectively, these devices facilitate real-time detailed movement analysis and 

potentially provide additional insight into player workload without the need for labour-

intensive video coding. For example, some sporting microtechnology companies have 

attempted to describe the “workload” exerted by an athlete by quantifying the sum of 

the individual tri-axial accelerometer vectors. Such measures of player workload are 

marketed under different names by different manufacturers, with the term ‘Player Load’ 

used by Catapult Sports (Melbourne, Victoria,), ‘Body Load’ used by GPSports 

Systems (Canberra, Australian Capital Territory, Australia), and ‘Dynamic Stress 

Load’ used by STATSports (Newry, Northern Ireland) (33,50,51). This growing body 
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of literature seems to demonstrate the capabilities of microtechnology to automatically 

detect sport-specific movements in a variety of individual and team sports. 

Nevertheless, the field would likely benefit from a systematic review that synthesises 

the available evidence and provides clarity on the extent to which wearable microsensor 

data are being used to support the sports science discipline. 

 

Specifically designed algorithms that utilise microtechnology data have been used to 

automatically detect tackle events during match-play and training in contact-based 

sports, such as Rugby League (41). However, more recent research has demonstrated 

that such algorithms are highly specific to the sport for which they have been developed 

and, hence, have relatively poor transferability to other contact sports (52-54). To date, 

few studies have investigated the collision demands of Rugby Union and there are 

currently no validated algorithms that use commercially available microtechnology 

devices to quantify the contact demands of this sport. In a single study that sought to 

quantify the number of tackles performed by Rugby Union players using 

microtechnology data (42), it was shown that tackles were distinguished by a peak in 

the acceleration data recorded by the player-worn sensor. However, despite these 

encouraging findings, the researchers reported similar acceleration peaks for other 

contact and non-contact events experienced by the players during match-play and 

concluded that the algorithm’s performance may have been improved if data from the 

gyroscope and/or magnetometer had been used (42,50,51). By making better use of the 

various data sources provided by modern-day wearable microsensors, it may be feasible 

to develop collision-detection algorithms that are specific to Rugby Union and provide 

both valid and reliable outcomes.   
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Chapter 3: General Aims and Hypotheses 

 

Although research has detailed the locomotor demands of elite Rugby Union, there is 

an absence of research accurately quantifying the collision-based demands of this sport. 

Within the existing literature, there are studies that have attempted to use microsensor 

data to quantify the frequency of tackle events in Rugby Union; however, the resulting 

algorithms grossly over-estimated the number of collisions and were not capable of 

discriminating the four types of collisions that are common to the sport. A limitation of 

not being able to discriminate between collision types is that it is assumed all events 

pose an equal physiological demand on players. Furthermore, during match-play, some 

collision types (e.g. scrums) are only experienced by players who are part of a specific 

sub-group (i.e. forwards), while others apply more universally to the athletes. Given 

these points, it was deemed to be beneficial to develop a specific algorithm for the 

collisions involving only a subset of players (i.e. scrums) and a separate algorithm to 

evaluate the collisions experienced by all players in Rugby Union (e.g. tackles, rucks) 

(52). Based on the work completed in other sports (Rugby League, cricket, swimming), 

it is evident that microsensors and microsensor-based algorithms could be used to 

automatically detect and discriminate collision types in Rugby Union. 

 

The proposed program of research provides a unique opportunity to investigate 

potentially new applications for the data derived from player-worn microsensors and to 

further explore any likely limitations of using this technology to detect sport-specific 

events in Rugby Union. The four inter-related studies outlined in this thesis (Figure 3.1) 

broadly aimed to: 
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(i)  Synthesise the available evidence to better understand the ways in which 

microsensor-based data have been applied to algorithms to detect sport-

specific movements (Study 1). 

(ii)  Develop and validate an algorithm for automatically detecting scrum events 

in Rugby Union match-play and training using player-worn microsensor data 

(Study 2).  

(iii)  Develop and validate an algorithm for automatically detecting ruck events 

and one-on-one tackles in Rugby Union match-play using player-worn 

microsensor data (Study 3).  

(iv)  Describe the differences between winning and losing teams in elite Rugby 

Union with respect to the locomotor and collision-based demands of match-

play using microsensor data and the algorithms developed in Studies 2 and 3 

(Study 4). 

 

 

Figure 3.1: Summary of the program of research 

Study 1
•The use of wearable microsensors to quantify sport-specific 
movements: A systematic review

Study 2
•Validity of a microsensor-based algorithm for detecting 
scrum events in Rugby Union

Study 3
•Automatic detection of one-on-one tackles and ruck events 
using microtechnology in Rugby Union

Study 4
•Microtechnology-based locomotor and collision profiles of 
winning and losing elite Rugby Union teams
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It was hypothesised that wearable microsensor data will have been used in previous 

literature to develop and validate movement prediction algorithms and to quantify and 

monitor movement in a wide variety of individual and team-based sports (Aim 1). 

Given this point, it was further hypothesised that it would be possible to develop and 

validate (Aims 2 and 3) collision-detecting algorithms that could be successfully 

applied to monitoring workloads in elite Rugby Union (Aim 4). By creating more robust 

and validated player and game profiles, the findings of this research will significantly 

advance the methods used by coaches, sports scientists and sports medicine 

practitioners to monitor player loads and injury risk. In turn, these improved methods 

will benefit the athletes, by facilitating the provision of more targeted and 

individualised training programs that will not only improve their performance, but also 

enhance their overall welfare. Although this research focuses on these attributes in an 

elite playing population, the results will also be of benefit to athletes playing at the 

developmental levels of the game.  



   34 

Chapter 4: The Use of Wearable Microsensors to Quantify Sport-Specific 

Movements: A Systematic Review 

 
This study has been published following peer-review in Sports Medicine and the full 

reference details of the manuscript are: 

 

Chambers R, Gabbett TJ, Cole MH, Beard A. The use of wearable microsensors to 

quantify sport-specific movements. Sports Medicine. 2015 Jul 1;45(7):1065-81. 

 

Given the rapidly growing use of wearable microsensors in the applied sports science 

field, there is an obvious need to synthesise the existing literature to better understand 

the current applications for microsensors in applied sports and to identify potential 

future applications for this equipment. For these reasons, a systematic review was 

considered necessary to establish the extent to which wearable microsensors have been 

used to quantify sporting movements, to highlight their potential pitfalls, and to 

determine their potential utility for other applications, such as collision detection in 

Rugby Union. The outcomes of this review are presented in this section and provide a 

summary of the literature that ultimately helps to identify those areas that require further 

attention to move this field of research forward.  
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4.1 Introduction 

The use of global positioning system (GPS) devices has become an integral part of 

sporting performance analysis, allowing coaches and support staff to understand the 

physical demands on team sport athletes. Commercially available microtechnology 

units have been used extensively to describe the physical movement demands of Rugby 

Union (7), Rugby League (55), Australian Rules football (34,56) and several other team 

sports (13). Such studies have described the distance, intensity and frequency of various 

match-play demands; this information is subsequently used to assist in the physical 

preparation of athletes and the prevention of negative consequences that might be 

associated with excessive or inappropriate training loads (57). Most commercially 

available microtechnology units contain microsensors that include the use of 

accelerometers, gyroscopes and magnetometers with some commercially available 

inertial measurement units (IMUs), such as microelectromechanical sensors (MEMS) 

containing one or a combination of these sensors. Most commercially available GPS 

devices now contain IMUs, which are housed in a small case then worn in a small 

purpose-built pocket or strapped to the athlete during training and competition. These 

devices, commonly referred to as wearable sensors, facilitate real-time detailed 

movement analysis and provide an alternative to labour-intensive video coding 

(7,13,24). As previously noted, many researchers have used GPS to quantify the 

physical demands of sport (13) with some also using accelerometers to identify activity 

profiles (32,33,36,37), although few have used this technology to identify sport-specific 

movements.  Recent research has utilised this technology to assess running gait (31) 

and other continuous movements, but such movements are not sport-specific. 
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Several studies have described the use of accelerometers to detect the physical activities 

and movement patterns of the general population (58). Other types of accelerometers, 

such as actigraph technology have been used to detect movement and sleep patterns of 

the general population, by assessing the displacement of the accelerometer to determine 

stages of sleep and daily activity (59). Given that sensors can have a sample rate of up 

to 500 Hz (32,33,36,37,51) and can measure occurrence and magnitude of movement 

in three dimensions (anterior-posterior, medial-lateral and vertical) (33), such IMUs 

have been applied in elite sporting populations to further understand movement 

demands, particularly in indoor sports, where GPS signal is unavailable.   

 

Some sporting microtechnology companies have attempted to describe the “workload” 

exerted by the athlete by quantifying the sum of the individual tri-axial accelerometer 

vectors.  Various “workload” terminologies exist in these commercially available 

software programs, including ‘Player Load’ (Catapult Sports, Melbourne, Victoria,) 

and ‘Body Load’ (GPSports Systems, Canberra, Australian Capital Territory, 

Australia). The ‘Player Load’ that is calculated using the Catapult Sports equipment is 

an arbitrary unit defined as an ‘instantaneous rate of change of acceleration divided by 

a scaling factor’ (see Equation 1.1, p.25) utilising the highly responsive accelerometers 

within the three planes of movement to quantify movement intensity (33). Similarly, 

the ‘Body Load’ measure, as implemented by GPSports Systems is described as an 

‘arbitrary measure of the total external mechanical stress as a result of accelerations, 

decelerations, changes of direction and impacts’ (51) and is calculated from the square 

root of the sum of the squared instantaneous rate of change in acceleration in the 

vertical, anterior-posterior and medial-lateral vectors. Athlete demands can be 

quantified by the aforementioned workload terminologies by applying formulas to 
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inertial data (33), providing a different perspective to that of other technologies such as 

GPS (13). 

 

Physical activity has been measured by MinimaxX units (Catapult Sports, Melbourne, 

Victoria, Australia) using ‘Player Load’ to describe the physical demands of sports such 

as Australian Rules football (33,34), Basketball (32), and Netball (36,37). Boyd et al. 

(33) found that the accelerometers offered good reliability in quantifying the low and 

high intensity components of Australian Rules football activity and that the technology 

could be confidently applied to assess changes over multiple time periods or to assess 

differences between players. Boyd et al. (33) also found strong relationships between 

MinimaxX devices (r=0.996-0.999) for high intensity activity, although it was 

acknowledged that current practice fails to account for skill-based and contact-based 

activities (passing, jumping, kicking, marking, tackling and blocking).  These findings 

indicate that the overall physical activity of Australian Rules football players may be 

underestimated, highlighting the potential for these devices to quantify additional 

movements other than locomotion. 

 

Similarly, Rugby League researchers have quantified the relationship between 

measures of internal (heart rate and perceived exertion) and external (high-speed 

distance, ‘Body Load’ and impacts) loads associated with training (51). The authors 

found that the internal and external load measurements provided useful methods of 

quantifying various training modalities, with impacts and ‘Body Load’ contributing the 

highest loadings for skill sessions.  However, it was also stated that further investigation 

was required to examine the derived measures of ‘Body Load’ and impacts using 
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GPSports microsensors, as training demands may be underestimated using current 

methods. 

 

Microsensors have the capability to automatically detect various movements and 

intensities (47). Bonomi and colleagues found that activities ranging from lying, sitting, 

standing, dynamic standing, cycling, walking and running could be detected using 

algorithms and decision trees (47). Using data from a tri-axial accelerometer, activities 

were categorised by the dominance in intensity of accelerations occurring along a 

particular axis. For example, accelerations that were predominantly medial-laterally 

directed were primarily used to categorise lying, sitting and standing. Intensity was also 

categorised by quantifying the speed of movement and the resultant accelerometer 

traces that were produced. 

 

Accelerometers have also been used to assess movements such as jumping, with 

research (60) demonstrating the validity of this technology against a Myotest force 

platform (Myotest SA, Sion, Valais, Switzerland). The accuracy of the accelerometers 

was measured against the force platform with participants wearing a microsensor on 

their hip and measuring vertical force and power as well as leg stiffness and the 

reactivity index. Results of a five hop protocol, countermovement jump and squat jump 

demonstrated a high degree of reliability for the accelerometer system in comparison to 

the force platform (coefficient of variation <10%) (60).  

 

Specific skill-based activities and movements can distinguish the physical demands of 

one sport from another.  Currently there are relatively few studies that have assessed 

the reliability and validity of inertial sensor technology for detecting and assessing 
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sport-specific skills.  To date, current research (13) has demonstrated that it is feasible 

to use microsensors to quantify work rate patterns and metabolic differences between 

athletes. However, this research has been heavily dependent on the use of wearable GPS 

devices to evaluate the locomotor demands associated with specific contact and non-

contact sports (see Cummins et al. (13) for a review). Given that a large number of 

sports include physically-demanding activities that involve few locomotor demands 

(e.g. volleyball jumping, Rugby Union tackling, and soccer goalkeeping), it is likely 

that research that has focussed solely on characterising the locomotor demands of team 

sport has underestimated the ‘true’ physical demands of the sport (13). As such, sport 

scientists now employ wearable sensors to identify sport-specific movements and 

activities in an effort to better evaluate the demands of a sport and to assist with physical 

preparation, injury prevention, and technical analysis of these activities. The aim of this 

review was to provide an overview of the use of microsensor technology, such as 

accelerometers, gyroscopes and magnetometers to detect non-locomotor activities that 

are specific to a particular sport. 

 

4.2 Methods 

4.2.1 Literature Search Strategy 

This review investigates the use of microsensors to identify sport-specific movements. 

Articles for this review were systematically identified through the search of electronic 

academic databases that included Academic Search Complete, CINAHL, PsycINFO, 

PubMed, SPORTDiscus and Web of Science. These databases were searched using the 

combinations of the following key words: (i) ‘accelerometer’; ‘inertial’; ‘sensor’; 

‘measurement unit’; ‘IMU’; ‘microsensor’; ‘gyroscope’; ‘wearable’; (ii) ‘event’; 

‘movement’; ‘detection’; ‘specific’; ‘analysis’; (iii) ‘sport’; ‘athletes’; ‘game’; ‘match’. 
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Terms were connected with ‘OR’ within each of the three combination groups and these 

three search categories were combined using ‘AND’. The search was restricted to full-

length articles written in English, published after 2008 and articles included were 

limited to those where search terms were included in the title or abstract. 
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Figure 4.1 Flowchart of the selection process for inclusion of articles in the 

systematic review  

 

4.2.2 Selection Criteria 

The process used for selecting articles is outlined in Figure 4.1 Duplicate articles were 

eliminated from the initial search results and the titles and abstracts of remaining 

articles were then independently reviewed by three assessors (RC, TJG and MHC) for 

relevance to the review. For the purpose of the review, articles included were required 

to have used wearable sensors to detect and assess a skill or movement that was specific 

to a sport (e.g. throwing, tackling, tennis strokes). As such, articles that attempted to 

categorise activity (e.g. running intensities) of athletes using microsensors or that solely 

attached microsensors to equipment were excluded. Other criteria for exclusion from 

Academic 
Search 

Complete
N=246

CINAHL

N=5

PsycINFO

N=11

PubMed

N=42

SPORTDiscus

N=65

Web of 
Science

N=2,016

Potentially relevant articles
N=2,395

Titles and abstracts of articles 
screened
N=1,658

Full text of articles screened
N=47

Articles included in review
N=28

• Individual  sports n=8

• Team sports n=7
• Water sports n=8
• Snow sports n=5

Excluded
N=737

• Duplicates n=441
• Conference abstracts n=293

• Review Articles n=3

Excluded
N=1,611

• Outside of scope of study
• Microsensor located on equipment

• Articles aimed at non-sport specific movements

Excluded
N=19

• Outside of scope of study n=4
• Microsensor located on equipment n=1

• Articles aimed at non-sport specific movements n=2
• Pilot article of potential future research n=3
• Articles aimed at biomechanical analysis of a movement n=4
• Review/non-peer reviewed articles n=5

Other 

potentially 

relevant 

articles

N=10
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this research consisted of review articles, abstracts and studies that used accelerometers 

to assess movements that are generic to many activities (e.g. running gait). Any 

disagreements between the three independent reviewers were discussed and resolved.  

Once articles were selected, the complete manuscript was assessed for inclusion using 

the same criteria. The references of the selected articles were then scanned to detect any 

potentially relevant articles not identified by the original search.  

 

4.3 Results 

A total of 2,395 studies were initially retrieved from the six databases, of which 441 

were duplicates, 293 were conference abstracts and three were review articles, leaving 

1,658 unique research articles. After screening the titles and abstracts of these papers, 

1,611 were excluded and 47 remained for full-text review. After full-text review, a 

further 19 were removed (Figure 4.1).  Therefore, 28 articles remained for inclusion in 

this review. Eight articles addressed the use of microsensors in individual sports (61-

68) including tennis (n=2), track and field (n=2), golf (n=2) trampolining (n=1) and 

weightlifting (n=1) (Table 4.1). Seven articles addressed the use of microsensors in 

team sports (40-42,53,54,69,70), which incorporated baseball (n=2), Australian Rules 

football (n=2), Rugby League (n=1), Rugby Union (n=1) and cricket (n=1) (Table 4.2). 

Eight used microsensors in water sports (71-78), reporting on detection of various 

technical elements of swimming (Table 4.3) and five used microsensors in snow sports 

(79-83) involving ski jumping (n=2), alpine skiing (n=1), snowboarding (n=1) and 

cross country skiing (n=1) (Table 4.4). The manufacturer of microsensors differed 

between studies although ‘MinimaxX’ device was the most common (n=7) followed by 

the ‘Physilog inertial measurement unit’ (BioAGM, La Tour de Peilz, Vaud, 

Switzerland) (n=5). Studies used microsensors either to detect sport-specific 
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movements (n=19), analyse sport-specific movement (n=8) or detect and analyse 

movement (n=1). Sampling frequencies of the devices used ranged from 30 Hz to 500 

Hz, although some articles did not report the type or sampling frequency of the sensors 

used (65,69,78). Articles varied with respect to the number and type of sensors used, 

although the selection of the equipment for each study was specific to the research 

question being addressed and the movement being analysed. 



   

Table 4.1 Summary of results from studies investigating sport-specific movements using wearable sensors within individual sports. 

Study 
Sport and sport-

specific movement Sample Microsensor used Method Findings 
Adelsberger 

and Tröster 

(61) 

Weightlifting, 

“thruster” 

movement 

Sixteen athletes 

participated (four female 

and twelve male), 

experience levels were 

assigned and ranged 

from beginner to expert 

ETHOS IMU (Zurich, 

Zurich, Switzerland) 

Each athlete equipped with three 

sensor devices: left ankle, lower 

back and left wrist. Athletes 

performed three sets of “thruster” 

movements, first two sets at a 

freely chosen weight, the final set 

consisted of three repetitions of 

maximum weight. Final set used 

to provide some data for 

exhaustion detection.  

Algorithm designed to classify 

“thruster” movements. System 

found to have an accuracy of 94% 

when differentiating experts and 

beginners based on 2 IMUs (ankle 

excluded) and individual instances 

defined with above 93% accuracy.  

Ahmadi et al. 

(62) 

Tennis, serve Four right handed, male 

tennis players (one 

amateur, two sub-elite 

and one elite) 

ADXRS300 Inertial 

Sensor (Kionix, 

Brisbane, Queensland, 

Australia) 

Players performed 30 successful 

slow motion serves in a 

controlled environment wearing 

microsensors located on chest, 

Significant correlation between 

inertial sensor and marker-based 

data for serve trends. Only slow-

motion serves were used as 
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upper arm and hand to identify 

rotation and flexion. Also wore 

marker-based technology 

(Vicon).  

microtechnology used could not 

provide feedback on power serves. 

Connaghan et 

al. (63)  

Tennis, 

classification of 

strokes 

Eight tennis players 

(three advanced players, 

three intermediate and 

two novice) 

TennisSense, Wireless 

IMU - based on 

Tyndall’s 25mm Mote 

Platform (Cork, 

Munster, Ireland) 

Single sensor place on player’s 

dominant forearm during a game 

in order to register spike in 

accelerometer data due to ball 

impact. Stroke classified as 

serves, backhands or forehands. 

Accelerometer data above 3g 

were classed as tennis stroke 

events, below 3g were classified 

as non-stroke events. Stroke 

recognition was trained on 7 

Wireless IMU was able to 

recognise tennis stroke 

performance with 90% accuracy 

when using information from all 3 

sensors (accelerometers, 

gyroscopes & magnetometers). 

Accuracy rate was 10% higher 

than that of accelerometer, which 

contributed highest single sensor 

classification.  
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players and then tested on an 

unseen player. 

Ganter et al. 

(64) 

Track and field, 

discus throw 

One male sports student 

(former decathlete) 

MTx (Xsens, 

Enschede, Twents, 

Netherlands) 

Athlete performed three discus 

throws (indoors; 1kg discus) 

whilst wearing suit comprising 

17 inertial sensor units and two 

transmission units. All throws 

filmed in high speed. All data 

from inertial sensors were 

exported for further processing 

using MATLAB. 

Body angles and velocities of 22 

joints analysed, with movement 

broken down into 6 critical phases. 

Demonstrated capability of 

kinematic analysis using full body 

inertial measurement system 

emphasising potential of approach 

when analysing other complex 

movements.  

Ghasemzadeh 

et al. (65) 

Golf, golf swing Three male subjects, one 

female 

Microtechnology not 

reported 

Five sensors used, three located 

on each subject (right wrist, left 

arm and lower back) other two 

located on golf club (club head 

and grip). Subjects performed 10 

Body sensor networks 

demonstrated application to a 

quantitative feedback model. 

Results provided good reliability 

of model with respect to angle of 
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golf swings, addressing the ball 

with varying degrees of wrist 

rotation. Each trial divided into 

four segments (take-away, 

backswing, downswing, follow-

through) and processed using 

five-point average moving filter 

to remove effect of noise. 50% of 

trials were used to build 

quantitative model, 50% were 

used to evaluate model. 

wrist rotation when sensors 

sampled above 30 Hz. The overall 

value of absolute mean error was 

reported as 9.2, 7.7, 6.6 and 6.5 

degrees for take away, back swing, 

down swing and follow through 

respectively which introduces an 

average error of less than 10 

degrees for all segments. 

 

Helten et al. 

(66) 

Trampoline, jump 

classification 

Four female non-

professional athletes 

with intermediate skills 

MTx (Xsens, 

Enschede, Twents, 

Netherlands) 

Seven inertial microsensors worn 

on trunk, forearms, upper legs 

and lower legs. Athletes 

performed eight predefined 

routines and 2 self-selected 

Microsensors provided automatic 

segmentation and classification of 

jumps. Used (1) inclination of a 

limb, (2) the enclosed angle 

between limbs and (3) the angular 
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routines with each routine 

performed two to three times.  

velocity of sensors. Algorithms 

developed to assist in the 

automatic segmentation of 

movements. 

Lai et al. (68) Golf, golf swing 10 golfers (six beginners 

and 4 skilled low 

handicap golfers) 

MTx (Xsens, 

Enschede, Twents, 

Netherlands) 

Four inertial sensors were 

attached to the swing lead hand, 

swing lead arm, pelvis and upper 

back of each subject. Players 

performed 10 successful drives 

towards a net. A successful trial 

was recorded when the ball hit 

the net, a miss trial was recorded 

otherwise. Trials were 

segmented into back swing, 

down swing and follow-through 

during pre-processing phase. 

Results showed that inertial data of 

low-handicapped golfers achieved 

higher mean peak acceleration 

energy and also achieved higher 

accuracy than that of the 

beginners. In all 10 trials, the 

professional group showed less 

variation in peak acceleration. 

Inertial sensor data can be 

successfully used to differentiate 

swing patterns between low-

handicap golfers and beginners.  
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Lee et al. (67) Race walking, 

walking technique 

Seven race walkers (five 

male and two female) 

MTx (Xsens, Enschede, 

Twents, Netherlands) 

Single inertial sensor placed 

directly on skin over sacral 

vertebra. Each athlete performed 

four trials of three walking 

styles: (a) walking legally at 

submaximal pace; (b) walking 

illegally at submaximal pace and 

(c) walking legally at maximal 

pace. Analysis of high-speed 

camera footage was performed.  

High-speed footage compared 

with the sensor-captured data on 

the same steps. 300 total gait 

events were tested (i.e. 50 heel 

strikes and 50 toe offs) and 

repeated three times.  The inertial 

sensor was 91% accurate. Seven 

incorrectly identified steps 

occurred with a time change less 

than human eye detection.  

IMU – Inertial measurement unit  

MEMS – Microelectromechanical sensors
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Table 4.2 Summary of results from studies investigating sport-specific movements using wearable sensors within team sports. 

Study 
Sport and sport 

specific movement Sample Microsensor used Method Findings 
Ghasemzadeh 

and Jafari (69) 

Baseball, baseball 

bat swing 

Three male subjects, no 

previous swing training 

Microtechnology not 

reported 

Three sensor nodes placed on 

subjects’ chest, right wrist and 

hip and asked to execute 20 

baseball swings with varying 

timing and sequences of 

identified key events (hip 

rotation, shoulder rotation and 

arm extension). Raw sensor 

readings passed through five-

point moving average filter to 

reduce effect of high frequency. 

Twenty-two good swing trials 

were used to train system, thirty-

eight trials (22 good trials, 16 

Inertial node data was shown to 

have the capability to provide 

feedback on coordination of 

segmented areas. Inertial 

coordination data correlated 

positively with that of video data.  
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improper trials) were used for 

validation. Data contributed to 

designing and validation of an 

algorithm for analysing the 

baseball swing technique. 

Gabbett et al. 

(41)  

Rugby League, 

tackle 

Thirty male professional 

Rugby League players 

MinimaxX S4 

(Catapult Sports, 

Melbourne, Victoria, 

Australia) 

Units worn in a small vest on the 

upper back of participants. 

Collision events from 21 training 

appearances and one trial match 

filmed and coded. To detect 

collision unit was required to be 

in non-vertical position and 

require a spike in player load. 

Collisions were classified as 

mild, moderate and heavy. 

MinimaxX units found to 

provide a valid method of 

quantifying collision load. 

Strong correlation between video 

coded data and unit automated 

detection of mild (r=0.89), 

moderate (r=0.97) and heavy 

(r=0.99) contacts.  
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Gastin et al. (53) Australian Rules 

football, tackle 

Twenty professional 

male Australian Rules 

football players (four 

defenders, five forwards 

and eleven midfielders)  

MinimaxX S4 

(Catapult Sports, 

Melbourne, Victoria, 

Australia) 

MinimaxX units worn in playing 

jersey located on upper back. 

Data relating to tackle events 

from 4 AFL matches in 2011 

season. Tackles made by a player 

or when tackled by an opponent 

were coded from video footage. 

Tackles were classified as low, 

medium or high intensity based 

on criteria that considered an 

observed speed and impact. 

Total of 352 tackles recorded 

comprising 173 made and 179 

against. Majority of tackles were 

medium intensity (61%) only 6% 

were high intensity. Significant 

difference found between the 

three tackle intensities for peak 

velocity and all accelerometer 

variables. Suggests ecological 

validity of tri-axial 

accelerometers to assess impact 

forces in tackles. 

Gastin et al. (54) Australian Rules 

football, tackle 

Twenty elite male 

Australian Rules 

football players 

MinimaxX S4 

(Catapult Sports, 

Melbourne, Victoria, 

Australia) 

Cross-validation approach used 

to evaluate the effectiveness of 

MinimaxX in detection of tackle 

and collision impact events. Unit 

78% of tackles were correctly 

detected. Tackles against were 

more accurately detected (90%) 

than tackles made (66%). 77 
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worn in pocket located in playing 

jersey. Unit worn in four AFL 

games during 2011 season. 

Tackles made by a player or 

when tackled by an opponent 

were automatically detected 

using commercially available 

software and coded from video 

footage. Instances were then 

matched with MinimaxX data to 

determine if a “tackle” event had 

occurred. Allowed assessment of 

true positive, true negative, false 

positive and false negative tackle 

events. 

tackles were not detected; 

majority of these (74%) were 

classified as low intensity. 

 

MinimaxX versus observed play 

event showed detection of 1578 

events in the four matches. Of the 

1510 events (68 not captured on 

video) only 18% were verified as 

tackles, the other 82% were 

incorrectly identified. Fifty-

seven percent of these were from 

contested ball situations. Of the 

1510 events, 385 (25%) detected 

events where no contact was 

evident.  
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Koda et al. (70) Baseball, throwing Five male volunteers 

(two of whom were 

former professional 

baseball players) 

ADXL193 (Analog 

Devices, Norwood, 

USA), ADXL320 

(Analog Devices, 

Norwood, 

Massachusetts, USA) 

(both accelerometers); 

Murata ENC03M 

(Nagaokakyo, Kyoto, 

Japan), Microstone 

MG3-01Ab (Nagano, 

Nagano, Japan) (both 

gyroscopes) 

Two sensors mounted on 

subjects (forearm and upper arm) 

who were asked to perform 

pitching motion several times 

each. All trials analysed using 

Vicon systems. 

Body mounted sensor indicate 

use to analyse motion of arm 

swing, flexion/extension of 

elbow and hanging of arm during 

pitching motion. Data used to 

estimate trajectories of throws 

and show agreement from 

position measured from Vicon, 

although it was suggested that 

body acceleration had possibility 

to cause error. 

Kelly et al. (42) Rugby Union, 

collision 

Seven elite Rugby 

Union players game data 

used for testing models. 

SPI Pro (GPSports 

Systems, Canberra, 

Device worn in purpose-built 

harness located between 

shoulder blades. Indicators 

Automatically detected 

collisions were compared to 

manually labelled collisions and 
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Four players assisted 

creation of classifiers of 

tackle and non-tackle 

during training. 

Australian Capital 

Territory, Australia) 

drawn from changes in temporal 

pattern and individual 

acceleration planes spanning 

from before to after the collision. 

Other features included impact 

peaks in accelerometry signals. 

Artificial learning models used. 

Analysed 4 models to detect 

contact: learning grid, support 

vector machine (static window), 

support vector machine (impact 

region) and hidden conditional 

random field. Models were 

selected to learn the relationship 

between source and target data.  

a set of performance measures 

classified using true and false 

positives and true and false 

negatives. Precision and recall 

analysis of results was also used. 

Learning grid method provided 

greatest number of true positives 

with strong precision and recall 

scores, with static window 

features providing low precision 

and recall scores.  
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McNamara et al. 

(40)   

Cricket, fast 

bowling 

Twelve highly-skilled 

bowlers, ten 

professionals (two 

international, eight first 

class) and two in first 

grade competition. 

MinimaxX S4 

(Catapult Sports, 

Melbourne, Victoria, 

Australia) 

Participants were asked to 

execute normal bowling training 

to a batter in a net situation, and 

then perform a series of non-

bowling events such as run 

throughs ending in a single 

bound and run through with a 

return throw whilst wearing a 

microtechnology unit in a small 

vest located on their upper back. 

Competition events were also 

recorded using five bowlers. The 

aim of the study was to develop 

an algorithm to automatically 

detect fast bowling events. 

Results from this study proved 

the unit used accurately detected 

fast bowling events using the 

algorithm. The unit provided 

very strong sensitivity for 

counting bowling events in 

training (99.0%) and competition 

(95.0%) using elite fast bowlers. 

The unit was also able to detect 

non-bowling events, although 

better performance was observed 

in training (98.1%) as opposed to 

competition (74.0%). 
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AFL – Australian Football League 

GPS – Global positioning system 

IMU – Inertial measurement unit  

MEMS – Microelectromechanical sensors
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Table 4.3 Summary of results from studies investigating sport-specific movements using wearable measurement sensors within water sports. 

Study 
Sport and sport 

specific movement Sample Microsensor used Method Findings 
Beanland et al. 

(71) 

Swimming, stroke 

count of butterfly 

and breaststroke 

Twenty-one high level 

participants (12 males 

and nine females)  

MinimaxX S4 (Catapult 

Sports, Melbourne, 

Victoria, Australia) 

Criterion validation study. 

Swimmers completed three 100 

metre efforts in outdoor pool 

wearing GPS device with 

integrated triaxial 

accelerometer located on the 

head to obtain mid-pool 

velocity and stroke count. 

Video footage of each effort 

was captured allowing velocity 

and stroke count to be obtained. 

Strong correlations between 

stroke count observed on video 

and data gathered from the unit 

(r>0.99 for butterfly; r>0.98 for 

breaststroke). Acceleration data 

provided clear pattern of 

undulatory and cyclical 

mechanics of breaststroke and 

butterfly body position. 

Dadashi et al. 

(72)  

Swimming, front 

crawl 

Eleven elite swimmers 

(six male, 5 female) and 

nineteen recreational 

Physilog IMU 

(BioAGM, La Tour-de-

Each swimmer equipped with a 

single inertial sensor located on 

sacrum. SpeedRT was attached 

Variability assessment showed 

the range of velocity between 
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swimmers (twelve male, 

seven female) 

Peilz, Vaud, 

Switzerland) 

to waist of swimmers just 

beneath lower end of the 

sensor. Swimmers completed 

consecutive twenty-five metre 

trials increasing in velocity 

from 70% to 100%. 

inertial sensor and SpeedRT was 

less than 3.9%.  

Dadashi et al. 

(73)  

Swimming, front 

crawl 

Seven well-trained 

national level swimmers 

(5 male and 2 female) 

Physilog IMU 

(BioAGM, La Tour-de-

Peilz, Vaud, 

Switzerland) 

Waterproof units placed on 

both forearms and sacrum of 

swimmer whilst performing 

three 300 m trials. Verbal 

instructions given during trial 

(e.g. glide more or less) in order 

to perform each trial under 

different co-ordination mode to 

test system in broad range of 

coordination. Swim speed was 

Adaptive change algorithm 

applied to inertial signals to 

detect phases of arm stroke using 

peak of angular velocity curve. 

Study validated algorithms 

providing automated feedback of 

stroke.  
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controlled using Aquapacer. 

All trials filmed underwater 

from 2 angles. 

Fulton et al. (74) Swimming, 

freestyle 

Twelve Paralympic 

swimmers (eight males 

and four females) 

MiniTraqua (version 5, 

Australian Institute of 

Sport, Canberra, 

Australian Capital 

Territory, Australia) 

Sensors worn on the thighs of 

participants. Swimmers 

performed a maximal-effort 

100m freestyle swim time-trial 

and a 100m kicking only time-

trial within 24 hours of each 

other. All trials were filmed 

underwater from one angle. 

Using an algorithm to detect 

swimming movements, strong 

correlations of 0.96 for 

swimming trials and 1.00 for 

kicking only trials were found 

between video and microsensor. 

Gyroscope traces of troughs 

allowed for semi-automated 

analysis of trials. Standard error 

of kick count validity was found 

to be higher in swimming trials 

(coefficient of variation 5.9%) 

60 



   

than in kicking only trials 

(coefficient of variation 0.6%).  

Fulton et al. (75) Swimming, 

freestyle 

Fourteen Paralympic 

swimmers (eight males 

and six females) 

Single inertial system 

containing triaxial 

accelerometer and 

gyroscope. 

Sensors were worn on the calf 

of the dominant leg to quantify 

kick-count and kick-rate. 

Swimmers performed 100m 

freestyle swimming and 100m 

kicking only time-trials.  

Small to moderate decreases in 

kick rate were associated with 

reductions of swimming speed. 

Sensor identified kick-rate 

differences and temporal pattern 

changes between the 2 trials. 

James et al. (76) Swimming, front 

crawl 

Female triathlete MEMS triaxial 

accelerometers, MEMS 

pitch, yaw and roll 

gyroscopes. 

Three accelerometers were 

placed on forearm, lower back 

and lower leg. Participant 

completed three; two lap trials 

at two race pace settings: 400m 

and 100m, respectively. 

Data analysed using MATLAB 

(Massachusetts, USA). Primarily 

used accelerometer data from 

medial-lateral axis for event 

identification of movements. 

Results reported distinct 

classification of hand entry, 

glide, catch and recovery phases 
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of front crawl from 

accelerometer trace. Spikes from 

the trace results made lap data 

identifiable allowing for 

potential future ability for 

automatic detection. 

Jensen et al. 

(77)  

Swimming, stroke 

classification and 

turn detection 

12 German 2nd league 

swimmers (five female, 

seven male) 

SHIMMER sensor 

platform (Dublin, 

Leinster, Ireland) 

Sensor node placed on the 

occiput of subject underneath 

swimming cap. Subjects were 

required to swim 200 metre 

medleys within 80% of their 

best time. Pattern recognition 

methods used for turning and 

swimming style detection. 

Demonstrated a high accuracy of 

turn events and swimming styles 

with a head worn kinematic 

sensor. Swimming style 

classification returned results of 

95%. Misclassifications were 

registered for the butterfly and 

breaststroke swimming styles. 

Turn detection had an overall 

classification rate of 99.8%; 
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algorithm detected a single 

misclassified turn. 

Stamm et al. 

(78) 

Swimming, push-

off 

Seven male swimmers Microtechnology not 

reported 

Sensor was taped to lower back 

of swimmers along with 

SP5000 tether. Each swimmer 

used their feet to push-off, and 

once in the glide position, 

remained in the same relative 

body position until out of 

breath or no longer moving 

forward. Twelve total 

repetitions were performed at 

three effort levels (slow, 

medium and fast).  

Raw acceleration data converted 

into gravitational units. Near 

perfect correlation (r=0.94) 

between tether and sensor 

derived velocity.  Single inertial 

sensor offered a valid 

measurement method of push-off 

velocity. 

GPS – Global positioning system 

IMU – Inertial measurement unit  

MEMS – Microelectromechanical sensor 
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Table 4.4 Summary of results from studies investigating sport-specific movements using wearable sensors within snow sports. 

Study 
Sport and sport 

specific movement Sample Microsensor used Method Findings 
Chardonnens et 

al. (79) 

Alpine skiing, 

comparison of 

cross-over and 

cross-under turns. 

Six alpine skiers (three 

professional instructors, 

three experienced skiers) 

Physilog IMU 

(BioAGM, La Tour-de-

Peilz, Vaud, 

Switzerland) 

Each skier wore four wireless 

inertial modules located on 

middle length of thighs and 

behind ski boots.  Each skier 

performed two cross-over and 

two cross-under techniques in a 

regular slope in their own skis. 

Each run was recorded by video 

camera and synchronised.  

Wearable system presented 

knee angle measurements and 

robust detection of events 

based on 3D acceleration and 

3D angular velocity.  System 

showed high sensitivity 

regarding timing periods and 

allowed identification of 

parameters for intra-turn and 

the whole run. 

Chardonnens et 

al. (80) 

Ski jumping, 

identify temporal 

patterns of in-run, 

take-off, early 

Thirteen young ski 

jumpers from national ski 

junior team (five athletes 

Physilog inertial 

measurement unit 

(BioAGM, La Tour-de-

Each skier wore four IMU 

devices attached to thigh and 

shank of both legs.  Indoor 

validation of different jumping 

Could identify temporal 

patterns of ski jumping phases 

using an inertial-based system. 

Relative system precision was 
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flight, stable flight 

and landing phases. 

used for indoor validation 

of jumping techniques) 

Peilz, Vaud, 

Switzerland) 

techniques was required. 

Athletes performed simulated 

jumps using 5 m ramp and a 

wheeled board. Forty jumps 

were recorded and analysed by 

Vicon motion capture system. 

 

For outdoor validation, thirteen 

athletes performed a maximum 

of three jumps on a HS-77 

jumping hill. Video camera 

captured all athletes and was 

analysed using Dartfish. 

calculated at 7% for indoors 

and less than 9% for outdoor 

conditions. System 

automatically and precisely 

detected durations of three 

movements within a ski jump. 

System proved to be robust 

enough to accommodate 

differences in jumping 

durations between indoor and 

outdoor conditions.  

Chardonnens et 

al. (81) 

Ski jumping, 

Coordination of 

lower limbs and 

Thirty-three male athletes 

of different performance 

level (twenty junior, nine 

Physilog inertial 

measurement unit 

(BioAGM, La Tour-de-

Five IMUs were worn by 

athletes located on thigh, and 

shank-thigh segments 

Demonstrated the ability of 

IMU to assess inter-segment 

coordination of the shank-thigh 
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jump length 

performance 

Continental Cup, four 

World-Cup) from Swiss 

national ski jumping team 

Peilz, Vaud, 

Switzerland) 

bilaterally and sacrum. 

Between one and three jumps 

were recorded for each athlete 

on HS-117 jumping hill.  Data 

collected from total of 87 

jumps. 

and thigh-sacrum pairs during 

the take-off and extension in ski 

jumping using the CRP. IMU 

data of CRP showed significant 

relationship of athletes 

attaining longer jumps with 

those who had more symmetric 

movement of the thighs and 

sacrum.  

Harding et al. 

(82)  

Snowboarding, 

aerial acrobatics 

Ten athletes MinimaxX S4 (Catapult 

Sports, Melbourne, 

Victoria, Australia) 

Sensor was situated 

approximately 5 cm to the left 

of spine. Athletes wore unit 

during training of 80 m half-

pipe runs. Video footage of 

training was analysed using 

Dartfish software. Data of 216 

Mathematically-derived 

algorithms used to 

automatically detect air-time 

and air-angle to measure 

rotational magnitude of 

acrobatic manoeuvres (180, 
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acrobatic manoeuvres was 

collected. 

360, 540, 720 or 900 degrees of 

rotation).   

Marsland et al. 

(83)  

Cross country 

skiing, movement 

patterns and 

techniques 

Two groups of 

participants: international 

group (three male, one 

female) and Australian 

group (three male, one 

female) 

MinimaxX S4 (Catapult 

Sports, Melbourne, 

Victoria, Australia) 

Participants wore single micro-

sensor unit and were filmed 

using a stationary camera from 

side-on performing classified 

ski techniques. Skiers 

performed sessions lasting 

three to four minutes per athlete 

and instructed to ski at 

“moderate intensity slightly 

faster than their normal easy 

distance skiing pace.” 

The microsensor was found to 

be useful in identifying cyclical 

movement patterns of major ski 

techniques. A combination of 

inertial data enabled skiing 

actions such as kicking to be 

clearly identified. 

CRP – Continuous relative phase 

IMU – Inertial measurement unit  

MEMS – Microelectromechanical sensor
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4.4 Discussion 

The aim of this systematic review was to investigate published literature on 

microsensors and their ability to quantify and detect sport-specific movements. From 

the 28 studies identified, it was apparent that single or multiple sensors (i.e. combining 

accelerometers, gyroscopes and magnetometers) have the capacity to identify sport-

specific movements in a variety of individual and team sports and can even be 

effectively utilised in the water or snow. The use of microsensors to detect sport-

specific movements offers an exciting and innovative approach to performance analysis 

by improving practitioners’ understanding of the physical and technical demands of 

sporting activities. Furthermore, accelerometers, gyroscopes and magnetometers have 

very high sensitivity allowing detection and analysis of movements that may not be 

easily identified by a coach. 

 

4.4.1 The Use of Microsensors to Detect Movements in Individual Sports 

Microsensors have had varied uses for detection of specific movements within 

individual sports. The use of IMUs in tennis has shown that these sensors are capable 

of detecting specific strokes during training and competition (62,63). Connaghan et al. 

(63) used TennisSense devices (based on Tyndall’s 25mm Mote platform, Cork, 

Munster, Ireland) containing accelerometers, gyroscopes and magnetometers, placed 

on the arm to detect different strokes (serve, forehand and backhand) and non-stroke 

events. Accelerometer magnitude was used to determine a stroke event, while the 

addition of gyroscopes and magnetometers improved stroke detection to within 90% 

accuracy (the use of gyroscopes and magnetometers alone resulted in 88% accuracy of 

stroke detection).  Although Connaghan et al. (63) discussed the use of accelerometer 

magnitude to identify strokes, no information was provided on the role the 
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magnetometers and gyroscopes played within the stroke detection model. Ahmadi and 

colleagues (62) found a significant correlation between gyroscope sensors and markers 

positioned on the arm, hand and chest for detecting serving trends in tennis, 

accelerometers were located within the device used but it was not revealed as to why 

these sensors did not contribute to the research. However, as only slow motion serves 

(not game speed) were performed, it is unclear whether inertial sensors could accurately 

detect power serves.  Ghasemzadeh et al. (65) provided a similar analysis by detecting 

wrist-rotation errors in golf using microsensors, although the specific nature of the 

devices used was not reported. Using five microsensors (three located on the participant 

and two on the club) that were sampling at 30 Hz, Ghasemzadeh et al. (65) created a 

model to provide feedback based on inertial detection of the different phases of the golf 

swing. Half the trials performed by the four subjects were used to create the model; the 

other half was used to test how well the model could detect the movement (i.e. the 

sensitivity of the model). The model could successfully determine wrist angle during 

the golf swing and provide feedback on the length of back swing, swing plane and club 

head speed, although the low sampling frequency of the microsensors may have 

impaired the detection accuracy of high-frequency events, such as ball impact. A 

limitation of this study, however, was that the playing ability of the participating 

subjects was unclear, and the framework used to identify the “correct” technique was 

also not reported. 

 

Adelsberger and Tröster (61)  conducted the only research in weightlifting using IMUs 

to detect completed ‘thruster’ movements and exhaustion, using three microsensors 

placed on the ankle, lower back and wrist (although the ankle data was subsequently 

deemed irrelevant and excluded). Using 75% of the data from the completed ‘thruster’ 
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movements, Adelsberger and Tröster (61)  created an algorithm within a support vector 

machine to automatically detect successful ‘thruster’ movements. The remaining 25% 

of the trials were then used to test the algorithm’s accuracy for detecting successful 

‘thruster’ movements.  The reliability of the detection algorithm was reported to be 

greater than 93%, which demonstrated the suitability of microsensors for detecting and 

assessing weightlifting movements, although the unused sensor at the ankle could have 

been relocated to another limb, potentially providing greater detection accuracy of 

movements. 

 

Similarly, Lee et al. (67) used IMUs containing accelerometers, gyroscopes and 

magnetometers to detect legal and illegal movements in seven race walkers, positioning 

a single device on the lower back of participants. Compared to high-speed camera 

footage, the IMU devices were able to detect illegal walking technique in 91% of the 

gait cycle data collected, providing support for the use of microsensors to assist coaches 

and judges with providing feedback on performance. Nevertheless, despite the high 

detection accuracy demonstrated for race walkers, the speed of the walkers was not 

reported by the authors. As such, it is difficult to confirm the suitability of these devices 

during competition scenarios.   

 

Helten et al. (66) advanced the use of sport-specific movement detection by using a 

series of seven MTx IMU devices (Xsens, Enschede, Twents, Netherlands), which 

incorporate accelerometers, gyroscopes and magnetometers to classify different 

trampoline jumps.  Movements were automatically divided into segments based on the 

inclination of a limb, enclosed angles between limbs and the angular velocities of the 

sensors during the routines. Similarly, Ganter et al. (64) assessed a former decathlete 
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performing a discus throw using a suit that was fitted with 17 IMU devices. Synthesis 

of the data from the 17 independent devices allowed the authors to calculate kinematic 

variables, such as joint angles and velocities for 22 joints during the performance and 

detect phases of the throw solely using IMUs. Ganter et al. (64) suggested that IMUs 

can easily provide feedback for athletes that video-based systems cannot (e.g. 

determining the velocity of the throwing arm during the discus throw would be labour-

intensive when using video-based systems). Collectively, these studies suggest that 

IMU devices, which incorporate accelerometers, gyroscopes and magnetometers, can 

be used for the detection of movements and error, as well as the provision of feedback 

in individual sports. 

 

4.4.2 The Use of Microsensors to Detect Movements in Team Sports 

Accelerometers, gyroscopes and magnetometers have been used in team sports to detect 

sport-specific movements and to provide feedback on performance. Ghasemzadeh and 

Jafari (69)  evaluated the baseball swing using three sensor nodes placed on the chest, 

wrist, and hip, but the specific sensor type(s) used was not reported in their article.  

Nevertheless, the authors initially used twenty-two trials to develop and refine a signal 

processing model and a further thirty-eight trials were used to validate the accuracy of 

the model. Data was passed through a five-point filtering system to reduce high 

frequency noise and used to discriminate between ‘a swing with proper sequence and 

timing of motions’ and ‘a bad swing with improper sequencing of key events’. 

Although the researchers suggested that this novel method could be used to train a 

player in baseball, it should be noted that the three participants used had ‘no previous 

swing training’ and no elite athletes were used. The demands of baseball were further 

examined by Koda et al. (70) who investigated the throwing motion using two 
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accelerometer and gyroscopic sensors mounted on the upper and lower arm.  Five 

participants, who included two former professionals, performed several throwing 

motions.  Although the main objective of this research was to analyse the biomechanics 

of the baseball throw (trajectories of acceleration and angular velocity) this could only 

be done once the accelerometer and gyroscopic sensors had detected the throw. 

Therefore, the authors primarily discuss the biomechanical analysis of the throw rather 

than the reliability of throw detection. 

 

Researchers have also used one MinimaxX S4 device containing an accelerometer, 

magnetometer and gyroscope in cricket to detect fast-bowling events (40). Highly 

skilled fast bowlers performed bowling and non-bowling events during training and 

competition to validate an algorithm capable of differentiating between bowling and 

non-bowling events. The algorithm demonstrated 99.0% sensitivity and 98.1% 

specificity with respect to correctly identifying bowling events during training, but the 

performance of the algorithm during competition was somewhat reduced (99.5% 

sensitivity, 74.0% specificity). McNamara et al. (40) suggested that the low specificity 

during competition could be due to players bowling the ball back to a bowler even when 

they were not the designated bowler. 

 

Collision sports such as Rugby League (41), Rugby Union (42) and Australian Rules 

football (53,54) have used commercially available microsensors to automatically detect 

the non-running demands of their respective sports. Gabbett et al. (41) used MinimaxX 

S4 devices to automatically detect collisions in elite Rugby League. To achieve this 

goal, the authors developed an algorithm that relied on gyroscopic data to recognise 

when the unit was in a non-vertical position and accelerometer data to identify a spike 
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in ‘Player Load’. Collision data were then classified as mild, moderate or heavy 

depending on the magnitude of the spike in ‘Player Load’. All collision events recorded 

by the MinimaxX S4 device were compared against video notational analysis.  Of the 

237 events recorded, significant correlations were found between video and 

automatically-detected events for mild (r=0.89), moderate (r=0.97) and heavy (0.99) 

collisions. Researchers in Rugby Union (42) used an SPI Pro device (GPSports 

Systems, Canberra, Australian Capital Territory, Australia) to detect collisions.  These 

researchers used a training set of physical ‘contacts’ and applied a mathematical 

learning grid (learning grids were established to classify specific accelerometer data 

signals of tackle and non-tackle events to create algorithms) and static window features 

(static window was determined as 128 frames either side of peak detection of collision 

using accelerometry data). The SPI Pro device used in this research (42) only contains 

accelerometers, demonstrating that a single inertial sensor is sufficient to detect 

collisions in Rugby Union, although it is possible that had gyroscopes and 

magnetometers been used, the authors may have found greater specificity for collision 

detection (e.g. tackles, scrums, rucks and mauls). 

 

 Using MinimaxX S4 units, Gastin et al. (53) used the formula proposed by Gabbett et 

al. (41) to quantify tackle demands in Australian Rules football. Three hundred and 

fifty-two tackles were recorded, comprising 173 tackles made and 179 tackles against. 

Of these recorded tackles, most were classified as medium intensity tackles (61%) 

while 33% were low intensity tackles and 6% were high intensity collisions. In a 

subsequent investigation, Gastin et al. (54) scrutinised the effectiveness of MinimaxX 

S4 devices when analysing ‘observed tackles versus the MinimaxX device’ and 

‘MinimaxX device versus observed play events’ during four Australian Rules football 
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matches. Observed tackles were detected with 78% accuracy by the MinimaxX device, 

accurately recording 66% of tackles made and 90% of tackles against. However, when 

the 1,578 “tackle events” recorded by the MinimaxX S4 device was compared against 

the observed play events, only 18% were correctly identified as tackles, while 82% 

were incorrectly identified. Movements such as ruck contests, smothering, and shoulder 

bumps comprised 57% of the incorrectly identified movements, whereas the remaining 

25% involved no evident contact or collision. A possible reason for this high percentage 

of incorrectly identified events in this study was that the algorithm that was used to 

identify the collision events was specifically produced for Rugby League (41). 

Compared to Australian Rules football, the collisions associated with Rugby League 

tackles are likely to be different to those experienced in Australian Rules football due 

to opposing teams ‘facing off’ rather than playing ‘man-on-man’.  

 

As such, while the ability to distinguish non-contact events from contact events is of 

great significance in a wide variety of sports, it seems that it may be important for 

researchers to develop algorithms that are specific to each sport. Given the contrasting 

results (41,54), clearly further research is required to validate the ability of IMUs to 

distinguish tackles in collision sports from other contact events such as the ruck, maul 

and scrum in Rugby Union. 

 

4.4.3 The Use of Microsensors to Detect Movements in Water Sports 

Eight of the twenty-eight studies focused on the use of microsensors to detect 

movements in swimming. A single accelerometer placed on the head of the swimmer, 

has been shown to provide reliable accuracy of stroke and turn detection (71). Detection 

of turns demonstrated a classification rate of 99.8%, whereas detection of all four main 
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swimming strokes (butterfly, backstroke, breaststroke and freestyle) returned 

classification results of 95%, although some misclassification was acknowledged 

between breaststroke and butterfly styles due to similar head movements and 

positioning of the unit. Beanland et al. (71) applied accelerometer trace data gathered 

by MinimaxX S4 devices located on the head of swimmers to determine valid 

automated stroke detection of butterfly (r=1.00) and breaststroke (r=0.99). 

Quantification of freestyle swimming has also been carried out by Dadashi et al. 

(72,73), Fulton et al. (74,75), and James et al. (76). Fulton et al. (74) used gyroscope 

data obtained from sensors located on each thigh and shank of Paralympic swimmers 

to detect a valid and reliable form of kick count and kick rate, enabling quantification 

of the demands of freestyle. Data collected from gyroscope traces located on the shanks 

were strongly correlated with under water video of swimming trials (74).  James et al. 

(76) also applied IMUs to understand the demands of freestyle by positioning units on 

the forearm, trunk and leg. Accelerometer data from the arm provided detection of hand 

entry, glide, and the catch and recovery phases of freestyle swimming.  

 

Dadashi et al. (72)  found that accelerometers encased in Physilog IMUs were accurate 

for measurement of swimmers’ speed when compared with a commercially available 

tether. Stamm et al. (78) demonstrated similar capabilities of microsensors for detecting 

the velocity of push-offs, by positioning a single IMU on the participants’ lumbar spine, 

although the specific sensor was not reported. Research conducted by Dadashi et al. 

(72) and Stamm et al. (78) reported valid and reliable methods of velocity 

measurements derived from data collected using microsensors when located on lumbar 

spine. These findings demonstrate that microsensors provide novel methods of 
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measuring stroke and kick detection, allowing practitioners to quantify stroke and kick 

rate, and velocity of push-offs in swimming. 

 

4.4.4 The Use of Microsensors to Detect Movements in Snow Sports 

Snow sports accounted for 18% (5 of 28 articles) of the research included within this 

systematic review. Chardonnens et al. (79) applied Physilog IMUs to detect crossover 

and cross-under turn events in Alpine skiing, providing feedback on acceleration and 

angular velocity of the detected incidents. Accelerometers and gyroscopes, encased 

within Physilog IMUs, were applied in ski jumping and were able to detect temporal 

patterns of jumps from kinematic signals (80). The microsensors were able to 

automatically-detect temporal phases and durations of ski jump sequences of both 

indoor training sessions and outdoor conditions. Physilog IMUs have also been used to 

characterise lower-limb coordination during ski jumps (81), by determining the 

relationship between the position of the shank-thigh and thigh-sacrum segments during 

take-off. The biomechanical analysis of raw data detected from the IMUs placed on the 

sacrum and the thigh demonstrated that the movements of these segments during take-

off were significantly correlated with the length of the jump (81). 

 

Aerial acrobatics of snowboarders were evaluated using accelerometer and gyroscopic 

data obtained from a  MinimaxX S4 device (82). Mathematically-derived algorithms 

derived from these data were able to detect the amount of air-time using gyroscopic 

data, which determined the magnitude of rotation for the participants. However, it was 

reported that acrobatics that involved rotations greater than 720 degrees were often 

incorrectly classified when compared to video analysis. The authors suggested that 

wearable sensors provided a novel method for coaches and judges to objectively 
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evaluate a snowboarder’s acrobatics when the skill that is being assessed involved 

rotations of 540 degrees or below. These findings are important, as snowboarders are 

assessed on their performance of these skills in competition, yet they are difficult to 

assess with the naked eye. Nevertheless, it is important to note that the research 

conducted by Harding et al. (82) predominantly used data from one axis that only 

provided detail on flat spins and rotations and not acrobatic activities that included 

inversion movements. Given that the authors used a MinimaxX S4 device, which 

contains a three-dimensional accelerometer, gyroscope and magnetometer, it is 

reasonable to suggest that the data they collected could also be used to provide feedback 

in other sports that involve rotations, inversions and/or acrobatics (e.g. skateboarding, 

surfing). 

 

Marsland et al. (83) applied a MinimaxX S4 device containing a three-dimensional 

accelerometer, gyroscope and magnetometer to identify cross-country skiing 

movement patterns. Cyclical ski patterns and kicking and skating actions on each side 

of the body were clearly identified by single sensors. Collectively, these results suggest 

that microsensors, coupled with sophisticated algorithms, can be used to detect 

movements in snow sports. 

 

4.4.5 Directions for Future Research 

The reviewed research demonstrates the ability of microsensors to accurately detect 

sport-specific movements in a wide range of environments. The specific aim of the 

research (e.g. to identify correct or incorrect technique or further understand the 

demands of a sport), will dictate the potential number of sensors used and their 

application for practitioners. The majority of team sports use single sensors to quantify 
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the running demands placed on athletes during training and competition. As such, 

further research is required to determine whether movement patterns can be accurately 

detected during competitive games using a single sensor or whether multiple sensors 

would be required.  This is particularly important in collision sports, given the 

conflicting results (41,54) reported in this systematic review. Multiple sensors also 

provide a unique approach to biomechanical performance analysis of movements as 

demonstrated by research conducted within individual sports by not only detecting 

movements but detecting errors. 

 

To date, researchers have collected data from participants ranging from recreational to 

elite. It would be advantageous to understand the demands of elite sports in greater 

detail, as well as the biomechanical differences between sub-elite and elite populations 

for sport-specific movements.  Furthermore, it would also be beneficial for authors of 

future research to use a common language for microsensors, by defining the 

manufacturer and the sensors used (e.g. accelerometer, gyroscope and magnetometer) 

and the sampling frequency, as much of the research uses various terminologies to 

describe microtechnology and may not reveal the type or sampling frequency of the 

microsensor employed.  

 

4.4.6 Conclusion 

This paper provides a comprehensive review of the ability of microsensors to detect 

sport-specific movements. The presented results demonstrate that commercially 

available microsensors have potential to detect sport-specific movements and are 

capable of quantifying sporting demands that other monitoring technologies may not 

detect. Furthermore, multiple sensor models have the ability to provide researchers with 
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a tool to understand specific movements in greater detail and provide coaches or judges 

with feedback on correct and incorrect techniques. 
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Chapter 5 – General Methodology for Experimental Studies 

The results of the systematic review (Chapter 4) provided evidence of the widespread 

use of wearable microsensors to automatically identify and/or detect sports-specific 

movements. As previously outlined, a team’s capacity to contest and win the physical 

collisions that characterise Rugby Union match-play are fundamental to their success 

in competition. However, in the absence of validated and automated methods for 

monitoring such collision-based events, sport scientists rely on largely subjective and 

time-consuming video-based methods of analysis. To address this need and make a 

clear and significant contribution to this field of science, the remaining three studies of 

this dissertation sought to; i) develop and validate microsensor-based algorithms to 

quantify collisions in Rugby Union (Studies 2 and 3); and ii) apply these methods to 

better understand the differences in workload demands between winning and losing 

teams (Study 4). Although many of the methods used for these studies were specific to 

addressing their individual aims, some methodological attributes were consistent. The 

methods that were common across the three experimental studies are outlined in this 

section, with the more specific methodological aspects explained in the individual 

studies. 

 
5.1 Participant Recruitment 

For the purposes of Study 2 (Chapter 6), 30 elite Welsh Rugby Union players who 

played as Forwards were recruited to devise a scrum-detecting algorithm based on 

microsensor data. For Study 3 (Chapter 7), similar player-worn microtechnology data 

were collected from 12 elite Rugby Union players and used to develop and validate an 

algorithm to detect one-on-one tackles and ruck events. To address the aims of Study 4 

(Chapter 8), data were collected from 185 players from four Welsh Rugby Union teams 
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who participated in the elite ‘Pro12’ competition during the 2016/17 season (Blues, 

Dragons, Ospreys and Scarlets). Due to the league structure, teams were required to 

play one-another twice (once home and once away); the four teams selected therefore 

play a combined 12 matches over the same season, each team participating 6 times. For 

each match a team of 23 injury-free players, comprising 15 starting players and 8 

substitutes, were selected for either side. Although each of the experimental studies 

addressed a unique series of research questions, it should be noted that some 

participants featured in multiple studies.  

 

To be eligible for inclusion in this research, participants in Studies 2 and 3 were 

required to have been selected by the Welsh Rugby Union coaching team to be involved 

with the elite international squad between June 2014 and June 2016. Furthermore, 

included subjects were required to be able to perform tackle and ruck movements with 

a high degree of technical proficiency as determined by national coaches for squad 

inclusion, with specific players in the ‘Forwards’ positional sub-group also needing to 

exhibit a competent scrum technique. For inclusion in Study 4, starting players were 

required to have played more than 60 minutes of total match duration, while substitutes 

were required to have played more than 5 minutes. Participants who did not meet these 

criteria were removed from the analysis. Using the specified teams allowed comparison 

of metrics between winning and losing teams. Lastly, for all 3 experimental studies, 

only those data files collected from players who were healthy and injury-free as 

determined by team physiotherapists at the time of measurement were included in this 

research to limit any potential bias in the match-play and/or training datasets.  
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The experimental procedures underpinning this program of research were reviewed and 

approved (#2014-135Q) by the Australian Catholic University’s Human Research 

Ethics Committee prior to the study’s commencement (Appendix A). The approved 

procedures required that all participants be provided with an information sheet that 

outlined the purpose, expected risks and benefits of the research program prior to their 

involvement (Appendix B). Interested participants were subsequently required to 

complete and sign a consent form to indicate their permission for their data to be 

included in the presented research studies (Appendix C). It should be acknowledged 

that no participants requested to be removed from the research and no injuries were 

reported as a result of this research. 

 

5.2 Data Collection 

5.2.1 Video-Based Methods 

To facilitate activity coding and assist with the validation of the microsensor-based 

collision detecting algorithms, all training sessions and competitive matches were 

video-recorded. Specifically, those training sessions that focused more on skills were 

recorded using two high-definition Sony FDR-AX100 cameras, while team sessions 

that included more tactical content and required a full training pitch necessitated a third 

Sony FDR-AX100 camera. To maximise player visibility throughout the training 

sessions, cameras were generally positioned to ensure that they monitored the players’ 

activities from an elevated vantage point. However, for periods of training that involved 

scrums, cameras were placed at ground level with one being situated behind the players 

and another being positioned lateral to the point of contact. Following each session, 

video footage from each camera was transferred to an Apple MacBook Pro and cropped 

to exclude dead time (time that involved no instruction from coaches and was not 
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deemed to be rugby-related) and the pre- and post-training periods. Files were then 

stored to a secured storage server in a “.mp4” file format. 

 

For the competitive matches, all video data were obtained using a live feed from the 

host broadcasting company at each match and venue. Due to each match being 

televised, multiple feeds were available from a variety of different angles. Despite this, 

most of the footage used for this research was taken from the standard television view, 

which is generally taken from an elevated position along the sideline of the pitch. All 

match footage was obtained in a high-definition format and similarly stored on a secure 

server in an “.mp4” format following the removal of dead time and pre- and post-match 

periods. 

 

5.2.2 Wearable Microtechnology Procedures 

For Studies 2 and 3, participants were required to wear a vest that held a Catapult 

Optimeye S5 device (Catapult Sports, Melbourne, Australia) between their scapulae for 

all training sessions and matches during the international periods within a typical season 

(Figure 5.1). Similarly, the participants involved in Study 4 were required to wear the 

same devices, but only during each of the 12 selected matches. 
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Figure 5.1 – Catapult Optimeye S5 device 

 

The Catapult Optimeye S5 device is a commercially available device that contains GPS 

and other microsensor types (Figure 5.2). The device records global positioning data at 

a sampling rate of 10 Hz and locomotor-based outcomes derived from these units (e.g. 

speed, distance, position and accelerations) are reported to have acceptable reliability 

(84,85). The microsensors embedded within the Catapult Optimeye S5 device include 

tri-axial accelerometers, magnetometers and gyroscopes, which record data at a 

sampling rate of 100 Hz. Tri-axial accelerometers are highly-sensitive equipment that 

are capable of measuring accelerations in the vertical, anterior-posterior and lateral 

directions. Magnetometers use magnetic fields to provide information about the 

orientation of the unit, which assists with determining the direction of a movement, 

while gyroscopes measure the rate of angular change (i.e. angular velocity) of the unit.   

Importantly, the data derived from these different types of microsensors have been 

shown to be both valid and reliable for assessing sporting performances (39,86-88).  

 

Prior to all activities, each player was assigned a device that had a unique identification 

number, which assisted with post-activity analyses. For training sessions, all devices 
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were turned on while outdoors and were left untouched for a minimum of 5 minutes to 

allow satellite connectivity for global position systems. After this period, the units were 

inserted into the harness and applied to the athletes. For match-play, devices were 

turned on a minimum of 30 minutes before kick-off, while outdoors on the stadium’s 

pitch to ensure good satellite connectivity. These devices were then taken back into the 

changing areas and inserted into the purpose-built player harnesses. Players then 

applied the harness immediately after warm-up, before the commencement of the 

match. All devices were on for the whole activity duration and turned off when returned 

by the participant. 

 

The data from the players’ wearable devices were collected via Catapult’s Openfield 

software (versions 1.15 to 1.17), which allowed specific items of interest to be marked 

(i.e. coded) on the data files in real-time. Specifically, the items of interest during 

training sessions included the drill name, the drill duration, and details regarding the 

players involved in each of the drills. During match-play situations, the timing of player 

substitutions was coded in real-time to assist with post-match analyses.  

 

5.3 Data Analysis 

Following the completion of each training session or competitive match, tri-axial 

microsensor data were exported and further analysed in Microsoft Excel (Microsoft 

Corporation, USA). For the training sessions, video data were synchronised with 

microtechnology data by manually identifying specific points in the data (e.g. 40-metre 

straight line run during the warm-up) using QuickTime version 10.5 (Apple, USA) and 

Openfield. To synchronise data collected during match-play, a point that could be 

readily identified in both the microtechnology and video data and video for matches 
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was established by having a point whereby the data started as did the video, for 

example, the ball being dropped for kick off. Once a synchronisation point was 

established, the data were extracted by using a unique video time stamp for each tackle, 

ruck and scrum event. Video timings of all movements during matches and training 

were then cross-referenced with corresponding microsensor data. Each event’s data and 

video footage were extracted in a 20-second window (i.e. including 10 seconds before 

and after the point of contact) for tackles and ruck events and a 30-second window for 

scrum events (i.e. including 15 seconds before and after the point of contact). 

 

For study 4, the microtechnology devices containing the GPS, accelerometer, 

magnetometer and gyroscope data, were connected to a PC using a USB-B cable and 

downloaded in a file format defined by the manufacturer (.raw) for each player. Files 

were then cropped to isolate the significant portions of the data files, processed and 

analysed using a specifically designed software package (Openfield, version 1.17.0). 

Specifically, data collected during competitive matches were cropped to establish the 

relevant data, for example each half of the matches was identified (identify the start and 

end), while training sessions were cropped to allow monitoring of player activities 

between the warm-up and the last instruction given by the coaches. Data outside of 

these periods were not used, as they contained non-rugby movements or were not 

captured by video cameras to verify the existence of rugby-specific movements. 

 

Once the specific time periods were identified, GPS and microsensor data were 

analysed, these data were exported into Excel as “.csv” files for further analysis. The 

first export included summary data for all players for the entire activity duration (whole 

match or training) or session) of set periods (i.e. first and second half or drill). A second 
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export only included GPS data at 1-minute intervals; this was performed for matches 

only and only included first half and second half data. Finally, an individual export 

containing microsensor data (sampled and exported at 100hz) was performed for 

training and match-play activities. 

 

5.4 Statistical Analysis 

Given their highly specific aims, there were few similarities between the three 

experimental studies with respect to the statistical methods used. Nevertheless, a brief 

explanation of the methods used for each study are provided here, with further detail 

about the specific statistical approaches provided in the chapters pertaining to each 

study. To facilitate the development and validation of the scrum-detection algorithm 

(Study 2, Chapter 6), a random-forest classifier method was used. Specifically, this 

approach included a preliminary event identifier method to identify scrum events using 

the microsensor data.  

 

The algorithm developed to detect ruck and tackle events (Study 3, Chapter 7) using 

the player-worn microsensor data was similarly devised using a random forest method 

(89). However, unlike the scrum-detection algorithm, which sought to detect events 

that were preceded by a reasonably uniform set of player movements, the accurate 

detection of tackles and rucks required the use of a sliding-window method to 

systematically analyse the data in 2-second time intervals.   

 

For the final study (Study 4, Chapter 8), which sought to provide detailed insight into 

both the running-based and collision-based physical demands of elite Rugby Union 

match-play, traditional GPS-based outcomes were considered in tandem with outcomes 
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derived from the microsensor-based algorithms. To determine the potential role of 

running-based and collision-based workloads on match performance, magnitude-based 

inference methods were used to contrast these attributes between winning and losing 

teams (90,91). 
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Chapter 6 - Validity of a microsensor-based algorithm for detecting scrum 

events in Rugby Union 

This study has been published following peer-review in the International Journal of 

Sports Physiology and Performance and the full reference details are: 

 

Chambers RM, Gabbett TJ, Cole MH. Validity of a microsensor-based algorithm for 

detecting scrum events in Rugby Union. International Journal of Sports Physiology 

and Performance. 2019 Feb 1;14(2):176-82.  

 

Although Rugby Union is characterised by high running demands, it also requires 

players to endure many collision-based events during a typical period of training or 

match-play. To date, a small number of studies have sought to better understand the 

physical toll that is placed on players as a result of these collisions, but none have been 

able to delineate one collision type from another. Given that each collision type is 

highly specific in nature, it seems unreasonable to assume that all collisions are 

associated with the same physical workload and subsequent injury risk. This 

emphasises the importance of developing methods to efficiently delineate one collision 

type from another. The results presented in Study 1 (Chapter 4) indicated that wearable 

microsensor data can be used to discriminate one movement type from another; hence, 

Study 2 of this thesis sought to develop a scrum-detection algorithm that used the 

accelerations and angular orientations from player-worn microsensors.  

 

This chapter outlines the rationale and procedures involved in developing the scrum-

detection algorithm, presents the results of the algorithm’s validation and discusses the 

application and possible limitations of this method.  
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6.1 Introduction 

Commercially available microtechnology devices containing global positioning 

systems (GPS) and microsensors (accelerometers, gyroscopes and magnetometers) are 

commonly used to quantify the physical demands of Rugby Union (7). During match-

play and training, players are divided into subgroups of forwards and backs and are 

required to perform repeated bouts of high-intensity locomotor activity (sprinting, 

running, accelerations) separated by low-intensity activity (standing, walking, jogging) 

(3,7,8,10,11,20). In addition to the locomotor demands of match-play, players are 

frequently involved in high-intensity physical contacts and collisions such as mauls, 

tackles and rucks, with forwards also required to compete in scrums (12,22). Scrums 

are used to restart play after a minor infringement and involve all eight forwards from 

each team, forming three interconnected rows of players. While facing each other, the 

players forming the front row for each team lock heads and shoulders with the 

opposition forwards and attempt to produce a greater force than their opponents to gain 

possession of the ball (92).  

 

Despite researchers accurately quantifying the locomotor demands of elite Rugby 

Union, contact events such as scrums, rucks, mauls and tackles are usually combined 

and defined as ‘impacts’ when using microtechnology (7,8,12). Similarly, research 

evaluating contact events via video-based time-motion analysis has typically 

categorised these incidents as ‘high-intensity efforts’(20) or ‘static exertions’ (3,11,22). 

Success in Rugby Union frequently depends on the players’ ability to tolerate contact 

events (24). However, research summarising the physical contribution of contact events 

(scrums, tackles, rucks and mauls) during match-play, either provide a count of the total 

number of contact events, a rating of the force involved (7), or the total time attributable 
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to collisions (22). To date, no research has differentiated between scrums, rucks, mauls 

and tackles, which inadvertently implies that each form of contact poses an equal 

physiological stress to the players (52). Classification of each contact would contribute 

to an improved understanding of the unique stresses associated with each of these 

collision types. In turn, this would potentially assist to improve player preparation and 

help to reduce the risk of injury and/or re-injury during training and competition. 

 

Microsensors have been used to quantify the demands of sport-specific movements in 

team sports, snow sports, individual sports and water sports (52). Validated algorithms 

have been applied to microsensor data to automate the collection of sport-specific 

movements, such as cricket fast bowling (40),  baseball pitching (93), and Rugby 

League tackling (41,44,52).  To date, researchers have only used microsensors to 

quantify the tackle in Rugby Union (42), whilst scrums, rucks and mauls have been 

neglected (52). Researchers have highlighted the injury risk associated with scrums 

(94),  predominantly in match-play (48). Currently there is no other valid method of 

quantifying scrum workload during training or match-play apart from using video-

based time motion analysis, which is a labour-intensive process (52). Many researchers 

have highlighted the need to further investigate contact movements in Rugby Union, as 

they generally require the body to endure very high forces that are imparted over a 

relatively short time period. However, despite the relatively short duration of each 

contact event, the repeated collisions involved in a typical training or match-play 

scenario make a significant contribution to the players’ total workload. Of the contact 

movements performed during regular match-play, scrum events occur around 25 times 

per game, while depending on playing position, each player will complete 

approximately 30 rucks and tackles per match (9,46,95). 
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Given the need for more time-efficient and accurate methods of evaluating the 

incidence and physical demands of contact events in Rugby Union, this research sought 

to establish the validity of a microsensor-based algorithm for the automatic detection 

of scrum events during training and match-play. Based on the demonstrated capabilities 

of inertial devices to quantify other aspects of sports performance (52,96), it was 

hypothesised that scrum events could be accurately detected using wearable 

microsensors. 

 

6.2 Methods 

6.2.1 Subjects 

Thirty elite forwards (mean ± SD age; 28.3 ± 4.0 yrs), including players from all 

positions of the scrum (Front Row, n=16; Second Row, n=8; Back Row, n=6) were 

recruited to develop and validate the scrum-detection algorithm. At the time of testing, 

all participants were free of injury and had no known medical conditions that would 

compromise their participation or influence the recorded outcomes. All participants 

received a clear explanation of the study’s requirements and provided written consent 

prior to their involvement. The Institution’s Human Research Ethics Committee 

approved all experimental procedures (Approval #2014-135Q).  

 

6.2.2 Phase 1 – Algorithm Development 

To facilitate the initial development and training of the scrum detection algorithm, data 

were collected for the 30 participants using a Catapult S5 Optimeye device (Melbourne, 

Victoria, Australia) positioned between the players’ shoulder blades in a purpose-built 

vest. Each device contained an array of inertial sensors (i.e. tri-axial accelerometer, 
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gyroscope, magnetometer), which captured data at 100 Hz during a series of 

competitive matches (n=46) and training sessions (n=51). A total of 97 data files (Front 

Row, n=49 files; Second Row, n=25 files; Back Row, n=23 files) that captured 1057 

scrum events were required to develop and optimize the final scrum-detecting 

algorithm. Timestamps of the scrum instances were manually identified using video 

data, which were coded alongside Opta Sports events when available (i.e. during match-

play).  

 

The development of an algorithm to detect scrum events involved two separate, but 

inter-related processes. Firstly, given the unique posture adopted by players while 

performing scrums, orientation of the device was estimated using a proprietary sensor 

fusion algorithm that included accelerometer and gyroscope data (Catapult; Melbourne, 

Victoria, Australia) within a match-play or training session. According to research, 

accelerations and the orientations determined from microsensor data using fusion-based 

methods have excellent reliability and concurrent validity (97-99). While the wearable 

sensors provided an array of measures, the following criteria were shown to have the 

ability to identify all scrum instances in the training set and, hence, were the two 

orientation measures consistently used in the scrum detection algorithm:  

i. The orientation of the device was below 25 degrees compared to the horizontal 

plane for at least 4 s. When this criterion was met, the algorithm established this 

time period as a potential event window. 

ii. The event was recorded only if the orientation of the device went below the 

horizontal plane during the event window. 
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For data to be considered to potentially represent a true scrum event during training or 

match-play, both of these orientation criteria were required to be met. This was 

typically met by participants in preparation for the scrum so that even if a scrum 

collapsed it would enter the second step of the algorithm and be classified as one scrum 

event. These two initial criteria were intended to remove other non-relevant contact 

instances. All possible scrum instances within the time-series data were then classified 

as true and false scrum instances based on video analysis conducted by Opta Sports 

(http://www.optasports.com) statistics. The windows of the classified events were then 

created for the inertial data and window mid-points were then extracted to become the 

event timestamp. This first step of the algorithm development aimed to efficiently 

transform the data from a time series into a classification problem using the orientation 

criteria. The second step extracted features of the accelerometer and gyroscope signals 

from each event. These calculations included summary statistics using different time 

windows around the event timestamp and formed the 33 variables for the machine-

learning process. Variable selection was then performed using the R statistical software 

package’s Variable Selection Using Random Forests (VSURF) function (100). Based 

on a 10-fold cross-validation mean classification accuracy, 11 signal features were 

eventually selected from the accelerometers and gyroscopes and included in the final 

version of the random forest classifier (89). R statistical software package 

(http://www.r-project.org/) was used throughout the development of the algorithm. 

 

A scrum confidence scoring was attached to the algorithm based upon the number of 

trees in the random forest agreeing that a scrum event had taken place. If only the 

minimum orientation measures were met, then the algorithm would return a confidence 

of 0%. In contrast, when a larger number of trees in the random forest reported detecting 
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a scrum event based on the 11 signal features (Table 6.1), the algorithm returned a 

higher confidence rating (maximum 100%). 

 

Table 6.1 List of scrum algorithm signal features 

Feature Name Feature Description 

Horizontal Position 5 
To detect how long the estimated orientation of the device 

is below 5 degrees (i.e. forward flexion) 

Horizontal Position 15 

To detect how long the estimated orientation of the device 

is below 15 degrees (i.e. forward flexion) 

Horizontal Position 25 

To detect how long the estimated orientation of the device 

is below 25 degrees (i.e. forward flexion), which 

corresponds with scrum activity 

Raw Player Load Q75 75th percentile of raw player load during the scrum activity 

Rotation Median Median of smoothed total rotation during the scrum activity 

Smooth Player Load 75 
75th percentile of smoothed player load during the scrum 

activity 

Raw Player Load Q90 90th percentile of raw player load during the scrum activity 

Raw Player Load Median Median of raw player load during scrum activity 

Inertial Side Q10 
To detect how long the estimated orientation of the device 

is below 5 degrees (i.e. forward flexion) 

Raw Player Load Pre 30 

Normalised cumulative PlayerLoad 30 sec prior to the start 

of the “scrum activity”. It is normalised by the length of 

the interval, i.e. 30sec or less if truncated. 

Raw Rotation Player Load Pre 30 

Normalised cumulative rotational PlayerLoad 30 sec prior 

to the start of “scrum activity”. Normalised by the length 

of the interval, i.e. 30sec or less if truncated. 
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6.2.3 Phase 2 – Algorithm Validation 

To validate the random-forest classifier-based algorithm, a testing set of 21 participants 

(Front Row, n=9; Second Row, n=5; Back Row, n=7) from the same cohort were 

monitored using Optimeye S5 devices across 11 international matches (143 full match 

files) and 9 training sessions (167 full training files). Training session scrums included 

events against opposition (8 vs. 8) or against a scrum machine (front 3 against machine, 

front 5 against machine and 8 against machine). A total of 261 scrum instances 

(international matches, n=169; training, n=92) were manually coded using video data 

and the timing of each scrum instance was noted according to video, time of day and 

time on the Catapult raw file. Video coded instances were compared to those detected 

by the algorithm. Scrum algorithm confidence scoring was set to the lowest possible 

setting, 0%, therefore incorporating all 4833 instances. Each instance was then matched 

with the relevant time stamp and false positives were thoroughly checked against video 

coded scrum events. 

 

6.2.4 Statistical Analysis 

True positive and negative results and false positive and negative results (Table 6.2) 

were determined to calculate algorithm accuracy, precision, specificity and sensitivity. 

Receiver Operating Characteristic (ROC) analyses were conducted to determine the 

sensitivity and specificity of the algorithm’s confidence in predicting scrum events. The 

predictive confidence value that yielded the best sensitivity and specificity was selected 

as the optimal cut-off score and represented the point that simultaneously maximised 

both on the ROC curve. All statistical analyses were conducted in the Statistical 

Package for the Social Sciences (SPSS v24). 
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Table 6.2 Criteria of algorithm results. 

 True False 

Positive Scrum event and scrum 
correctly detected 

No scrum event, scrum 
event incorrectly detected 

Negative No scrum event and no scrum 
event detected 

Scrum event and no scrum 
event detected 

 

6.3 Results 

To evaluate the performance of the scrum detection algorithm when only the two initial 

orientation criteria were applied without considering the results of the machine-learning 

model (i.e. the non-optimised algorithm), the sensitivities and specificities associated 

with an algorithm confidence of 0% were examined.  When data for all positions (i.e. 

front row, second row, back row) and all sessions (i.e. training, competitive matches) 

were considered, the non-optimised algorithm identified 3904 possible scrum instances. 

Of these instances, only 25 true negatives were recorded, yielding a sensitivity of 

99.5%, a specificity of 31.5% and a precision of 47% (Table 6.3).  Overall, algorithm 

performance was slightly better for match-play (sensitivity 99.8%, specificity 35.0%) 

than training (sensitivity 98.9%, specificity 28.1%). 

 

Using the 11 signal features identified during the model learning process, the 

algorithm’s predictive capacity was improved, and this was reflected in the higher 

predictive confidence values (i.e. the optimised algorithm). Table 6.3 demonstrates the 

algorithm confidence cut-offs that returned the best results for the entire dataset and for 

the three positional groups during the training and match-play sessions based upon 

receiver operating characteristic analysis (Figure 6.1). On the basis of these results, the 

predictive confidence threshold that yielded the best combination of sensitivities and 



 98 

specificities for the entire cohort was 50%, while the optimal cut-off for matches (37%) 

was somewhat lower than determined for the training data (54%) (Table 6.3). When the 

study cohort was subdivided into positional groups, it was shown that the optimal cut-

off for front row players was 27% for training and 51% for match-play, compared with 

91% and 49% for the second row. In contrast the predictive confidence values that 

provided the best sensitivities and specificities for back row players during training and 

match-play were 63% and 21%, respectively. 

 

Various training scenarios were observed during data collection, involving three, five 

and eight players against a scrum machine and opposed “eight verses eight” scrums. 

Importantly, the first two scenarios were only included in the validation phase. Scrums 

involving the front row only had the lowest sensitivity (50%) and specificity (97%); 

this improved when including both the front row and second row (i.e. for five player 

scrums), with both positions attaining sensitivity and specificity of 100%.  Eight-man 

scrums against a scrum machine had the highest sensitivity and specificity for all 

positions: respective sensitivity and specificity values; front row, 98% and 99%; second 

row, 100% and 100%; and back row, 100% and 100%. Opposed scrums in training 

involving 16 players (8 vs. 8) also demonstrated high sensitivity and specificity for all 

3 positions (front row, sensitivity 98% and specificity 99%; second row, sensitivity 

100% and specificity 100%; back row, sensitivity 99.5% and specificity 99.7%). 



 

Table 6.3 – Accuracy, Area Under the Curve (AUC), Optimal algorithm cut-off, sensitivity and specificity for each position during each scenario

 Accuracy (%) AUC (%) 
Optimal 
Cut-Off Sensitivity Specificity 

Scrum Identification      
Probability for All Data 91.0 95.8 50% 0.91 0.91 
      
Data Source      
Probability for Training Data Only 87.6 92.9 54% 0.89 0.87 
Probability for Match Data Only 93.6 98.2 37% 0.94 0.94 
      
Position      
Probability for Front Row Only 90.4 95.1 41% 0.91 0.90 
Probability for Second Row Only 94.4 97.1 83% 0.94 0.93 
Probability for Back Row Only 89.8 95.8 36% 0.91 0.91 
      
Position by Data Source      
Probability for Front Row in Training 83.8 88.6 27% 0.84 0.83 
Probability for Second Row in Training 91.4 95.3 91% 0.90 0.90 
Probability for Back Row in Training 90.6 96.1 63% 0.91 0.91 
Probability for Front Row in Matches 95.9 99.1 51% 0.96 0.96 
Probability for Second Row in Matches 98.1 99.7 49% 0.98 0.98 
Probability for Back Row in Matches 89.6 96.6 21% 0.90 0.92 
      
Position by Data Source (Limited)      
Probability for Front Row in Training 85.2 90.5 39% 0.86 0.86 
Probability for Second Row in Training 91.3 95.3 91% 0.90 0.90 
Probability for Back Row in Training 90.8 96.2 63% 0.91 0.91 

99 
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Figure 6.1 – Receiver Operating Characteristic (ROC) analyses for Front Row (A, B), 
Second Row (C, D) and Back Row (E, F) players during the training and competitive 
match scenarios, respectively. AUC: Area under curve; Sens: Sensitivity; Spec: 
Specificity. 
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6.4 Discussion 

This is the first study to investigate the use of microtechnology and associated 

algorithms to automatically detect scrum events in elite Rugby Union. Our results 

demonstrate that scrum events were best detected with high sensitivity and specificity 

when algorithm confidence level was at 50%, although algorithm performance was 

better during match-play than training. In training, scrums that involved a minimum of 

8 players (8 against a machine or contested scrums involving 16 players) returned 

higher accuracy than those scenarios that involved 3 or 5 players. This finding can be 

explained by the lack of the latter scenarios in the training phase of the algorithm. 

Accuracy was best for the front row, with detection of scrum events poorest in the back 

row. These findings provide a practical and valid method of quantifying scrum events 

in professional Rugby Union match-play and training sessions. 

 

False negatives during training were only recorded during 3-man scrums performed 

against a machine. This may have been due to the activity duration being insufficient 

to satisfy the algorithm’s minimum requirements, thus affecting the overall sensitivity 

and specificity for the front row players during training sessions. Other false negatives 

in training occurred when scrums collapsed (front row falls to floor) or were reset 

(incorrect positioning) affecting both the front row and back row. During match-play, 

all false negatives were attributable to players in the back row who did not maintain a 

horizontal position for an adequate period of time to satisfy the algorithm’s least 

common denominators before a scrum collapse. As shown in the results for these 

players, the tendency for back row players to change their trunk orientation prior to a 

scrum collapse significantly affected the algorithm’s sensitivities and specificities for 

this positional group. Although the results for the back-row players were negatively 
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affected by this phenomenon, they do suggest that the physical exertion exhibited by 

these individuals during a particular scrum event may be quite different to that of front 

and second row players, even if a scrum is completed or collapses. 

 

The comparisons of video-based notational analysis and the scrum algorithm 

demonstrated the best results with a 50% threshold cut off.  The overall outcome of the 

algorithm was better for match-play than training. Fewer scrum variations occur in 

match-play (i.e. each scrum is always contested by 16 players), whereas training 

activities may involve contested ‘8 vs. 8’ scrums, eight players against a scrum 

machine, or the front five (involving front row and second row) and front row positions 

only, which may account for the differences in algorithm performance in different 

scenarios. Further analysis of the different types of scrum-based technical drills utilized 

during training indicated that the algorithm performed worse for drills involving only 

three or five players. Although these results suggest that the algorithm’s performance 

may be improved by including such drills in the “learning” phase of the algorithm, it 

could be argued that scrums involving 5 or fewer players are aimed more at developing 

technique, rather than specifically preparing the athletes for the demands of match-play. 

As such, the specific differences between these training-based drills and actual scrum 

events may contribute to these incidents not being identified as a scrum using the 

specified algorithm criteria. 

 

We found that algorithm performance differed among positions during match-play and 

training. Optimal sensitivity and specificity for all positions occurred when the 

algorithm confidence rating was set at 37% for match-play and 54% for training (Table 

6.3. Due to the differences in algorithm performance among positions, setting 
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confidence thresholds of 51%, 49% and 21% during match-play and 27%, 91%, and 

63% during training for the front row, second row, and back row, will likely produce 

optimum results, although caution must be taken when extrapolating these results to 

other independent data sets. False positive events (threshold set to 50%) totalled 168 

and 1668 true negative events (predominantly scoring below 5% confidence) were 

present across the validation data set. Most events were off camera, although events 

scoring the highest confidence rating were from rare static maul events where players 

were not moving and positioned in a similar posture to that observed during a scrum. 

 

The results of the scrum algorithm are in agreement with a recent systematic review 

that evaluated the use of microsensors for the detection of sport-specific movements 

(52). This technology has been applied in cricket to count balls bowled (40) and 

bowling intensity (101), baseball throwing (93), tennis serves (102), and several 

individual (66-68), snow (80,81,83), and water-based sports (71-73). Microsensors and 

associated algorithms have been used to detect tackles in Rugby League (41) with 

accuracy improving with greater impact forces and longer duration of events (44). 

However, this technology has previously been shown to be less useful for detecting 

tackle events in Rugby Union (9) and Australian football match-play (54). A possible 

explanation for the poor performance of the algorithm in Australian football and Rugby 

Union match-play is that the tackle algorithm was trained on Rugby League players, to 

identify Rugby League tackles. The differences in tackles between Rugby League and 

that of Australian football and Rugby Union may explain the differences in accuracy 

and show the importance of the representativeness of the training data set for 

developing movement specific algorithms. Given the differences in findings among 

Rugby League, Rugby Union, and Australian football, and the present findings that 3- 
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and 5-man scrums were less accurate than 8-man scrums, we would recommend only 

using the scrum algorithm for detecting scrum events involving 15-a-side Rugby 

Union.  

 

Although this algorithm advances the ability of sport scientists to automatically detect 

scrum events in elite Rugby Union, there are some potential limitations to the research. 

The algorithm was designed using two elite level teams and tailored primarily for front 

row players due to their role within scrum events. This may account for the slight, but 

incremental decrease in algorithm performance for the second row and back row 

positions, respectively. Elite male players were used to train the algorithm; 

consequently, the algorithm may be less applicable for younger and smaller junior 

Rugby Union participants, or female players, due to possible difference in microsensor 

signals. Finally, at present, the scrum algorithm only detects the number of scrum 

events and does not account for the forces applied during these events. Despite these 

limitations, this study demonstrates the potential for microsensor technology in the 

detection of Rugby Union-specific collision events provided an adequate (i.e. specific 

and representative) training data set. While the demonstrated success of the presented 

algorithm suggests that practitioners will be better able to detect scrum events in 

training and match-play to monitor players’ total training loads, it is important to 

acknowledge that the scrum is one of many contact types experienced in Rugby Union. 

Hence, despite the algorithm success, a complete understanding of a player’s match 

demands and total training load would require the development of alternate, but 

complementary methods to identify rucks, tackles and mauls using microtechnology. 
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6.5 Practical Applications 

The majority of rugby union GPS analyses have focussed on the locomotor demands 

(i.e. low-speed activities, high-speed running, and sprinting) of the game (7,8,10,20). 

However, disregarding the physically demanding collision events that may result in 

very little locomotor activity, may severely underestimate the physical demands of 

match-play. The development and validation of a scrum algorithm to automatically 

detect scrum events during training and match-play improves the understanding of an 

important component of Rugby Union. Previously, this type of analysis would require 

time consuming video-based notational analysis. The automated detection of scrum 

events using data provided by the GPS units worn by players allows practitioners to 

more easily quantify the occurrence of scrum events during regular training and match-

play situations. By improving the efficiency of this process, it becomes far more viable 

for sports scientists to determine the physical load associated with these contact events, 

which should ultimately improve player preparation and reduce the risk of injury. 

Further research investigating the use of this technology to quantify the ruck, tackle and 

maul is warranted. 

 

6.6 Conclusion 

In conclusion, we investigated the use of microtechnology and associated algorithms to 

automatically detect scrum events in elite Rugby Union. Receiver Operating 

Characteristic analyses provided optimal random forest algorithm confidence 

thresholds to generate best sensitivity and specificity (typically >90%). Algorithm 

performance was better during match-play than training for front row and second row, 

although conversely, results revealed better performance for the back row during 

training than match-play. In training, scrums that involved a minimum of eight players 
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were readily detected, while scrums involving three players were less accurate. Scrums 

involving five players or more attained markedly better results than back row players 

in matches, however results between the three positions are closer in training due to the 

controlled environment. Overall detection was best for the second row, with decreased 

detection in the front row, with back row positions performing comparatively lower in 

training and match. These findings provide a practical and valid method of quantifying 

scrum events in professional Rugby Union match-play and training. 
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Chapter 7 - Automatic detection of one-on-one tackles and ruck events 

using microtechnology in Rugby Union 

 

This study has been accepted for publication following peer-review in the Journal of 

Science and Medicine in Sport.  Full reference details of the published manuscript are: 

 

Chambers RM, Gabbett TJ, Gupta R, Josman C, Bown R, Stridgeon P, Cole MH. 

Automatic detection of one-on-one tackles and ruck events using microtechnology in 

Rugby Union. Journal of Science and Medicine in Sport. 2019; 22(7):827-832. 

 

The results presented in Study 2 (Chapter 6) demonstrated that data derived from 

player-worn microtechnology can be used to accurately record the frequency of scrum 

events during elite Rugby Union training and match-play. However, scrum events only 

involve players assigned to the Forwards positional group and generally follow a strict 

structure during preparation and execution. In contrast, other collision-based events, 

such as tackles and rucks, are performed by all players on the pitch and impose 

different, but similarly important workloads and injury risks on players. 

 

To address this need, Study 3 (Chapter 7) of this thesis sought to develop and validate 

an algorithm that could use wearable microsensor data to automatically detect one-on-

one tackles and ruck events during elite Rugby Union training and match-play. The 

findings of this study were expected to build upon the findings of Study 2 by developing 

a tool that would further assist sport scientists to discriminate tackles and rucks from 

other collision-based events in Rugby Union. 
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7.1 Introduction 

Commercially available microtechnology devices containing global positioning systems (GPS) 

and microsensors (accelerometers, magnetometers and gyroscopes) are extensively used to 

quantify the activity demands of various sports, including Rugby Union (10,13,18,52,103). 

Rugby Union is a high-intensity sport involving demanding bouts of intense locomotor activity 

(running, sprinting and accelerations) and requires players to perform a range of high-intensity 

collisions (rucks, tackles, mauls and scrums) (10,18,103), interspersed with activities that have 

lower locomotor demands (standing, walking and jogging) (16,18,52). Physical demands of 

Rugby Union have frequently been reported using video-based time motion analysis and more 

recently with the use of microtechnology (9,22). Recent research using microtechnology 

predominantly focuses on positional match-play demands of Rugby Union reporting locomotor 

metrics, such as distance covered, high-speed running and accelerations assisting with athlete 

physical preparation and injury prevention (16,22,24).  

 

In combination with customised algorithms, microtechnology devices have demonstrated a 

capacity to detect sport-specific movements in individual sports such as snow and aqua sports 

(52), as well as team sports reporting fast bowling and intensity in cricket (40,101), and 

throwing in baseball (93). Furthermore, a small number of studies have focused on the non-

running demands of contact sports (42). Specifically, such studies have determined whether 

these microtechnology devices have the ability to detect tackles in Rugby League (41,44), 

Rugby Union (42) and Australian Rules football (53,54). Studies have shown that tackles 

performed in Rugby League can be reliably detected using wearable microsensors (mild 

collisions: r = 0.89; moderate collisions: r = 0.97; heavy collisions: r = 0.99) (41) with high 

sensitivity (97.6% ± 1.5) and specificity (87.6% ±1.2) (44). Attempts to apply the same 

algorithm for tackles in Australian Rules football and Rugby Union were unsuccessful due to 
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obvious variations between contact events in these sports. Specifically, when applied to these 

sports the Rugby League tackle algorithm had a tendency to over-estimate the number of tackle 

events, incorrectly classifying some rapid changes of direction and other contact events as 

tackles (9,53,54). 

 

Interestingly, recent research investigated whether existing algorithms developed for Rugby 

League can be adapted for Rugby Union (9). This study has shown that manipulation of g-force 

parameters within the algorithm was inadequate to provide an accurate tool for automatically 

recording collisions in Rugby Union; possibly due to the wide variety of tackle types (9). Other 

encouraging results in Rugby Union used an accelerometer-based tackle detection algorithm 

that was developed by incorporating a limited training set of ‘contacts’ (42). However, 

researchers concluded that the algorithm’s performance might be improved if accelerometer 

data were complemented with magnetometer and gyroscope data (42,52). 

 

Of the various types of contact events experienced during rugby match-play, rucks and tackles 

are reported to be the most frequent (24,103,104). On average, tackles and rucks are performed 

116 times by each team during a competitive match, with front-on one-on-one tackling the 

most frequently occurring tackle type (22,105,106). Competition success is usually dependent 

on a team’s ability to endure repeated collision events that characterise the sport (7,22,42). 

 

A Rugby Union tackle is similar to that of other collision-based sports when a defender 

successfully brings an opposing ball carrier to the ground (105,107). Other techniques include 

a standing tackle when an attacker is not brought to ground and can potentially become a maul 

(108). The ruck, as performed in Rugby Union, is a unique event that occurs when at least one 

player from either team competes in a physical contest for possession after a completed tackle 
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for the ball that is on the ground (106). Although these collision-based events may involve only 

a single player from each team, they often escalate involving numerous players from one or 

both teams (107). Forwards predominantly perform greater tackle and ruck events during 

competitive matches than backs, a player's involvement in these events is not restricted and, 

hence, any player may be exposed to these situations during training or match-play (109). 

 

As there is currently no validated algorithm capable of detecting tackles in Rugby Union, 

current practice involves manually counting and subjectively classifying tackle events using 

video footage. This process is time-consuming and labour-intensive and often prone to many 

inaccuracies (9,52). This early work can be further improved upon by seeking to develop 

methods that can differentiate tackles from other contact events in Rugby Union (e.g. rucks, 

scrums, mauls), as combining these events in a single category implies that each event places 

an equivalent physiological stress on the athletes’ bodies (52). In light of recent research 

shortcomings, there is an increasing requirement for automated algorithm detection to improve 

quantification of unique Rugby Union contact events, providing enhanced understanding of the 

physical demands (9,13,52). 

 

To address this, the study purpose was to use data derived from player-worn microtechnology 

to develop and validate an algorithm capable of identifying tackle and ruck events in Rugby 

Union match-play scenarios. It was hypothesised that using the accelerometer, magnetometer 

and gyroscope data provided, an algorithm could be developed to automate detection of tackles 

and rucks in Rugby Union. 
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7.2 Methods 

Twelve elite male Rugby Union players (mean ± SD age; 26.6 ± 3.3 yrs; forwards n=7, backs 

n=5) were recruited to develop and validate a tackle and ruck detection algorithm. At the time 

of testing, all participants were free of injury and had no known medical conditions that would 

compromise their participation or influence the recorded outcomes. All participants received a 

clear explanation of the study’s requirements and provided written informed consent prior to 

their involvement. The study’s experimental procedures were reviewed and approved by the 

Institution’s Human Research Ethics Committee (Approval #2014-135Q). 

 

Participants were required to wear a single Catapult S5 Optimeye device (Melbourne, Victoria, 

Australia) positioned between the shoulder blades in a purpose-built vest to assist initial 

algorithm development. Devices contained tri-axial accelerometers, gyroscopes and 

magnetometers that captured data at 100 Hz. A total of 40 (n=19 Forwards; n=21 Backs) data 

files were captured across a series of elite international Rugby Union matches (n=6) using the 

aforementioned cohort. Using television broadcast footage of each match, ruck and tackle 

events were also manually identified by a single assessor on two separate occasions that were 

separated by at least 10 weeks. Statistical comparison of the two assessments indicated 

excellent intra-rater reliability for the visual identification of tackles (ICC: 0.998; 95% CI: 

0.995 to 0.998) and rucks (ICC: 0.997; 95% CI: 0.995 to 0.998). Tackle criteria were set as 

one-on-one tackles completed by defenders, where an opposing attacking player was taken to 

ground as a result, using varied tackling techniques and varying points of impact. Due to one-

on-one tackling being the most common tackle type, any assisting tackle events were excluded 

(105). Assisted or double-tackle events were classified as when two or more players were 

required to take an attacking player to ground and this was determined using video data. Ruck 

events were selected based on the criteria that a player had taken part in a ruck and was involved 
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in a physical competition for possession with an opposing player in attack or defence. Events 

that did not require a competition with an opposing player were not included.  

 

A total of 250 tackle (n=125) and ruck (n=125) events were manually identified from the video 

using the defined criteria, only using tackles requiring one player from either team from the 

selected sub-group. Microtechnology and video data were then synchronised in order to 

construct 20-second video clips of each identified ruck/tackle instance (10-seconds before and 

after the frame of impact in each selected ruck/tackle instance). The corresponding 20-seconds 

of data from the microtechnology device was then extracted at 100 Hz. In addition to the 

ruck/tackle event data gathered from match-play, a further 29 microtechnology data files were 

collected from training sessions completed by the aforementioned cohort. These supplementary 

training files did not include any ruck, tackle or contact events, but rather were used within the 

investigation and categorised as ‘other movements’. Each of the ‘other movement’ files were 

at least 1-hour long, with 20 second windows across the files randomly extracted to assist 

algorithm differentiation between ‘contact’ and ‘non-contact’ events. An initial two-second 

sliding window was designed to develop a descriptive feature set for tackle and ruck 

movements (110). For individual movement identification in isolated windows (activity-

specific recordings) accelerometer and gyroscope data (X, Y, and Z axes) were utilised to 

effectively develop a descriptive feature set for the required movements (tackle, ruck and ‘other 

movement’) over each of the 50% overlap of sliding window (s*) regions (Figure 7.1). Features 

were extracted from within all of these regions for each of the relevant sensor outputs, with the 

feature set containing both temporal and spatial features of each contact type. 
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Figure 7.1 Schematic overview of methodology 

Synchronise video and microsensor sources and extract 
20-second windows of data corresponding with 250 
collision-based events (125 rucks, 125 tackles) for 

algorithm training. Add a further 29 data files containing 
other movements (non-contact), also exported at 100 Hz.

Identify key temporal and spatial features for the relevant 
variables:

• Maximum
• Minimum
• Mean
• Variance
• Kurtosis
• Skewness
• Spectral Bandwidth
• Spectral Centroid
• Magnitude

Identify initial ruck and tackle movements from match play 
for testing set data.

Export microsensor data (100 Hz) for 40 players (21 Backs, 
19 Forwards) collected over 6 matches.

Create 2-second sliding window (s*) for all files and 
calculate relevant variables and descriptive feature sets to 

characterise rucks, tackles and other movements.

Train and optimise random forest classification algorithm 
for ruck and tackle events using 166 data files from the 

original 250 training set data files.

Internal validation of random forest classification 
algorithm for rucks and tackles using the remaining 84 
data files from the original 250 training set data files.  

Use a further 177 unique data files exported at 100 Hz 
from match-play (testing set) to validate the algorithm 

against manually-coded video instances of rucks (n=979) 
and tackles (n=781).
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Once temporal and spatial features were identified, these signals were applied to a random 

forest classification model using 166 (two thirds) randomly selected files from the total 250 

tackle and ruck files to train the algorithm. Resultant magnitude of accelerometer data was 

identified using !"! + $! + %!, where ", $,	and % represent data from each of the individual 

accelerometer axes. These were then smoothed using a low-pass 4th order Butterworth filter 

with a 25 Hz cut-off frequency. Movement profiles were clustered using Gaussian Mixture 

Models (GMM)(111) over one-second windows and classified using Dynamic Time Warping 

(DTW)(112) methods. Random forest models were optimised using the original 166 files using 

the identified variables for detection (Figure 7.2). This process was repeated 10 times to 

achieve a 10-fold cross-validation, after which the means and standard deviations were 

calculated. The remaining 84 files from initial ruck and tackle events were subsequently used 

to validate the algorithm’s capability to detect both ruck and tackle events. 

 

Figure 7.2 Relative importance of each input variables derived from the player-worn Catapult 

S5 Optimeye device. The figure depicts the decrease in predictive accuracy for the algorithm 

when each of the predictor variables was excluded. Variables with a larger mean decrease in 

accuracy were of greater importance for event classification. 
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Following development and optimisation of the ruck and tackle classification algorithm, we 

sought to validate the algorithm using an additional 177 microtechnology data files with 

synchronised video data, collected from the same cohort during eight international matches. 

Video data recorded during these matches were initially manually coded by an experienced 

sports scientist who recorded all rucks (979 total) and tackles (781 total) completed in these 

matches and their timings for the video and microtechnology datasets. The 177 data files 

collected were processed in the R statistical software package (http://www.r-project.org/) using 

the developed tackle- and ruck-detecting algorithm.  

 

To effectively process continuous match-play data to identify the incidence of rucks and 

tackles, the algorithm sequentially processed the time-series of the three-dimensional 

accelerations and orientations from the microtechnology units within consecutive 2-second 

windows with a 0.5 second overlap for event identification.  For each 2-second window, the 

algorithm generated a series of decision trees from the random forest using recognised 

variables that collectively determined whether the data within the window represented; i) a 

tackle; ii) a ruck; or iii) another movement; providing a confidence score based on each 

outcome (sum of probabilities within each window equalled 100%). For example, within a 2-

second window, the proportion of decision trees agreeing that the data represented a ruck might 

have been 60%, while 25% might have indicated a tackle and 15% may have indicated another 

movement.  

 

The proportion of decision trees agreeing data within each 2-second window represented a 

tackle, a ruck, or another movement was exported to Excel, where these data were compared 

with visually identified events derived from synchronised video data. This process involved 
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determining the optimal proportion of decision trees that were required to be in agreement to 

maximise the likelihood of correctly identifying that a specific movement had occurred. To 

facilitate this, the criteria of true positives, true negatives, false positives and false negatives 

were determined, with the optimal cut-off considered to be the proportion of agreeing decision 

trees that generated the least number of false positives and false negatives. 

 

To evaluate the performance of the ruck and tackle algorithm, results were provided as a 

percentage of random forest decisions that agreed with video-based determination of ruck, 

tackle or other movement events. In the first instance, the movement that corresponded with 

the highest proportion of agreeing decision trees was recorded as the event that was occurring 

during each 2-second window. Using this approach resulted in a high number of false positives 

being recorded (e.g. a tackle or a ruck being recorded when one did not exist); hence the 

greatest number of agreeing decision trees was sought to maximise the algorithm's predictive 

capacity of the validation data set. 

 

Means and standard deviations were calculated for the entire cohort and each positional sub-

group (forwards, backs) using all ruck and tackle results. Normative distributions of the data 

were also derived to gain a better understanding of any outliers and overall spread of the results. 

Finally, the data were also evaluated to determine whether the performance of the algorithm 

was frequency dependent; that is, if algorithm performance was influenced by the number of 

rucks or tackles performed by a specific player. 
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7.3 Results 

For the entire cohort, the results of this process indicated that rucks were accurately 

predicted by the algorithm when an average of 79.4 ±9.2% of the decision trees agreed 

that a ruck event had occurred (Figure 7.3). Importantly, this value was not influenced 

by the players' sub-group, with the respective cut-offs for forwards and backs being 

79.8±9.8% and 79.1±8.5%. With respect to the algorithm's capacity to predict tackles, 

it was shown that events were correctly identified when an average of 81.0±9.3% of the 

decision trees agreed that a tackle had taken place. Sub-analysis of the positional groups 

indicated that the optimal cut-off for tackles experienced by forwards (77.7±12.2%) 

was significantly lower than the cut-off for tackles experienced by backs (85.3±7.2%). 

The proportion of agreeing decision trees required to optimise the algorithm’s ability 

to predict rucks (79.4±9.2%) and tackles (81.0±9.3%) was not influenced by the 

number of actual rucks and tackles performed by each of the players. 
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Figure 7.3 Study outcomes showing the; A) distribution of rucks completed by players 

and lowest returned average algorithm percentage; B) distribution of tackles 

completed by players and lowest returned average algorithm percentage; C) variation 

amongst the cohort, with respect to the number of rucks completed during match play 

(x-axis) and the corresponding optimal algorithm cut-off (y-axis); and D) variation 

amongst the cohort, with respect to the number of tackles completed during match play 

(x-axis) and the corresponding optimal algorithm cut-off (y-axis). Note: The optimal 

cut-off refers to the percentage of decisions trees within the random forest classification 

algorithm that produced the greatest level of agreement between the algorithm’s 

predictions and the video-based appraisal of the collision events. 
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7.4 Discussion 

This is the first study to investigate the use of microtechnology and associated 

algorithms to automatically detect ruck and tackle events in elite Rugby Union. Results 

demonstrate that ruck and tackle events can be correctly detected when applying a 

specifically designed algorithm to microtechnology data during international match-

play. The algorithm was developed and trained to return a number reflecting the 

algorithm's confidence that a time-series of data represented a ruck, tackle or ‘other’ 

event (e.g. a locomotor activity, such as running). To minimise the risk of over- or 

under-reporting the number of rucks and tackles, the optimum confidence cut-off was 

determined via validation of the algorithm's outcomes against traditional video coding 

techniques. Results showed that using an algorithm confidence cut-off of 80% for both 

rucks and tackles would provide practitioners with the best ability to characterise a large 

proportion of commonly occurring contact-related demands of Rugby Union during 

training and match-play. 

 

Overall, the results revealed similar optimal algorithm confidence cut-offs for rucks 

involving the whole cohort and the forwards (79.7%) and backs (79.1%), separately. 

Furthermore, optimal cut-offs for both groups had low standard deviations, which can 

likely be attributed to the homogeneity of the ruck movement, regardless of playing 

position. In contrast, the optimal cut-off for tackles completed by the backs (85.3%) 

was marginally higher than reported for the forwards (77.7%). Although tackle 

techniques are similar, there are likely to be a number of potential variations that occur 

due to differences in the speeds and points of contact made between the athletes 

involved in one-on-one tackles. This study focused on tackles that required the ball 

carrier to be taken to ground; however, there are other one-on-one tackle situations that 
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do not require the attacking player to go to ground, but still impede the ball carrier’s 

progress (108). Therefore, a limitation of this study was that only one-on-one tackles 

resulting in the ball carrier being taken to ground were validated. In contrast, the 

algorithm’s predictions of ruck events were possibly more consistent due to the body 

position required to best compete for possession after a completed tackle.  

 

To determine whether the predictive capability of the algorithm was influenced by the 

number of collision events that a specific player was involved in, the optimal algorithm 

cut-offs were analysed separately for players who completed few rucks/tackles and 

those who completed many. On the basis of this analysis, it was shown that the 

algorithm's predictive ability was not affected by the frequency of either collision event; 

returning similar optimal cut-offs for players who performed one tackle and/or ruck and 

those who completed many (up to 21 tackles and 31 rucks). These results demonstrated 

that the algorithm is capable of providing a consistent account of a player's contact 

events, irrespective of the number of contacts they perform during training or match-

play.   

 

Results of this study complement those of a recently published paper that describes the 

use of microtechnology data to quantify the number and timing of scrum events 

completed by Rugby Union players during training and match-play (113).  

Furthermore, this study adds to growing literature that has highlighted the 

overwhelming potential of the time-series data that is available from athlete-worn 

microtechnology (52). Application of these specifically designed algorithms have 

already been highlighted. However, it is important to recognise that many of the 

algorithms developed using microtechnology data are highly specific to the sports for 
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which they were developed, which likely influences their transferability to sports that 

share some similarities. For example, previously highlighted research in Rugby League, 

demonstrates the performance decrement of an tackle detection algorithm when applied 

to Rugby Union and Australian Rules football (9,41,53,54). The reduced performance 

of the Rugby League-specific algorithm in other codes of football is likely explained 

by the distinct variations that exist in the tackling techniques of the different sports (96). 

Furthermore, each of these sports involves unique collision events that may elicit 

similar patterns in the microtechnology data, but are considered quite different to 

tackles in the context of the game (e.g. hip and shoulder in Australian Rules football). 

Collectively, these data suggest that it is important to implement collision-detecting 

algorithms that have been developed and validated using data derived from athletes that 

are intended to be examined (52-54). 

 

During rugby training and match-play, coaches and analysts count tackles and rucks 

using labour-intensive and time-consuming video notational analysis. To date research 

highlights microtechnology’s limitations in Rugby Union and inability to detect and 

distinguish between collisions, as research identifies all contacts as ‘collisions’ or 

‘static exertions’ (52). This research has found a practical method to automate 

collection and differentiation of such events and builds on earlier work in this area 

(9,113,114). Collectively, these results provide practitioners with novel and time-

efficient means for discriminating between the different types of contact events in 

Rugby Union, which will ultimately facilitate better interpretation of an individual's 

physical load in training and match-play situations(52).  
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Although results of this study suggest that the presented algorithm may provide sports 

scientists with an efficient and objective means of understanding the contact demands 

of training and match-play in Rugby Union, there are a number of potential limitations 

that should be considered. First, this algorithm was developed and validated using data 

collected during match-play for one International Rugby Union team. Although it could 

be argued that tackles and rucks would not differ considerably between other elite level 

squads, at lower levels of competition subtle differences may exist, where techniques 

may vary. As such, future research is needed to determine the suitability of the 

presented algorithm for use in different Rugby Union populations. Second, although 

this algorithm has been shown to accurately detect ruck and tackle events, it is not 

capable of providing insight into the nature of the forces experienced by the players 

during such events. As such, the presented algorithm is limited by the assumption that 

all tackles and rucks involve equal force; emphasising the need for future developments 

that are capable of providing insight into the specific physical demands of each collision 

to further quantify total training and match loads. As previously stated, the algorithm 

was trained using one-on-one tackles, thereby disregarding the contact load required 

during tackle assists. Despite the advancements in detecting contact demands in Rugby 

Union there is still a possibility that there is an underestimation of a player’s contact 

demands.  
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7.5 Conclusion 

Current research has focused on the running demands of Rugby Union and more 

recently scrum demands. This study provides sport scientists with a valid method of 

quantifying the contact and collision demands of Rugby Union by counting ruck and 

tackle events. This research enhances the ability to improve preparation and injury 

prevention of Rugby Union players. Automated detection of ruck and tackle events 

provides a time-efficient alternative to traditional time-consuming and labour-intensive 

methods requiring video-based analyses. Furthermore, it complements existing 

research that has described microtechnology-based algorithms to quantify the running 

demands and scrum incidence in Rugby Union athletes. Further research investigating 

forces within these contact movements is advocated. 

 

7.6 Practical Applications 

• Results demonstrate the competencies of microtechnology, demonstrating the 

ability to detect ruck and tackle events in Rugby Union when applying a 

specifically designed algorithm. In addition with recent research, providing 

sport scientists the capability to detect and quantify the most frequent collisions 

in Rugby Union using microtechnology devices. 

• This current study provides practitioners with a time efficient and validated 

method to detect and monitor rucks and tackles events during match-play and 

training to assist with player preparation and injury prevention. This provides 

more objective results than previous labour-intensive methods that are 

potentially error prone. 
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• This research will provide sport scientists with a more in-depth understanding 

of a player’s demands by allowing different contact types, in this instance rucks 

and tackles, to be independently classified.  
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Chapter 8 – Microtechnology-based Locomotor and Collision Profiles of 

Winning and Losing Elite Rugby Union Teams 

 

This study has been submitted for publication following peer-review to the 

International Journal of Sports Physiology and Performance. Full reference details of 

the published manuscript are: 

 

Chambers RM, Gabbett TJ, Miller C, Bown R, Stridgeon P, Cole MH. 

Microtechnology-based locomotor and collision profiles of winning and losing elite 

Rugby Union teams. International Journal of Sports Physiology and Performance. 

2020; Submitted.  

 

Studies 2 and 3 of this thesis developed and validated the first Rugby Union-specific 

algorithms for automatically identifying scrums, one-on-one tackles and ruck events 

using player-worn microsensor data. By combining these novel outcomes with the 

measures of running-based workloads that are more traditionally reported, it is possible 

to gain a more complete understanding of the physical demands placed on elite Rugby 

Union players.  

 

To extend upon the findings of existing research, the final study of this thesis aimed to 

use wearable microsensor data collected from four elite Rugby Union teams to evaluate 

differences in running demands and collision events between positional playing groups 

(Forwards vs. Backs) and winning and losing teams. 
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8.1 Introduction 

Rugby Union is a team sport that requires players to perform repeated high-intensity 

locomotor efforts (running, sprinting and accelerations) and collisions (20,113). These 

events are interspersed with low-intensity aerobic activity (walking and jogging) or rest 

(6,18). The game is also characterised by distinct collisions that include scrums, rucks, 

tackles and mauls (113). The match demands of Rugby Union have been quantified 

using commercially available microtechnology devices containing global positioning 

systems (GPS), accelerometers, magnetometers and gyroscopes (13,52). These devices 

provide real-time and retrospective feedback of match-play and training distances, 

high-speed running, accelerations and collisions (52,113). Research has predominantly 

quantified locomotor activity profiles using GPS to describe whole match or per half 

demands (12,115). Contact demands have been represented in the literature by the total 

number of collisions or impacts using microsensor data (6,9) or manually-coded video 

data during match-play (12,22). However, such research has characterised collisions as 

‘static-exertions’, while the manual coding of video data is labour-intensive and a 

potentially more erroneous method (52). 

 

Although the contact demands of Rugby Union have previously been quantified using 

microtechnology-based algorithms (6,9), the validity of these methods was not assessed 

and/or their procedures were not specific to Rugby Union (e.g. they were designed for 

Rugby League). A previous systematic review highlighted that microsensors have been 

extensively used to detect sport-specific movements in individual and team sports, but 

emphasised that sport-specific algorithms should be used for the purpose they were 

developed (52). Therefore, finding that an algorithm developed to detect tackles in 

Rugby League was unsuitable for use in Rugby Union was unsurprising and suggests 
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that existing research that has used non-specific algorithms for impact detection may 

have inaccurately reported the contact demands (9,52). Furthermore, given Rugby 

Union is characterised by a number of different and often unique collision types (e.g. 

scrums, rucks, tackles, mauls), methods for evaluating the collision-based demands of 

this sport should seek to delineate these collision types to allow the physical costs of 

each event to be determined (52,113). 

 

Until recently, no specifically designed algorithms existed for use in Rugby Union; 

however, newly validated scrum, ruck and tackle algorithms have now made it possible 

to differentiate between the different contact events in Rugby Union (52,113,116). By 

incorporating such algorithms into day-to-day practice, sport scientists are now able to 

more accurately and efficiently quantify the demands of training and match-play. 

Quantification of these demands provides a more holistic appreciation of players’ 

activity profiles, which might ultimately assist physical preparation and prevention of 

injury for these athletes.  

 

To ensure players are adequately prepared for the most critical moments of play, it is 

important to identify the most demanding phases of competition. Rugby Union 

researchers have used microtechnology to document the locomotor and collision-based 

demands of each ball-in-play period of a match (from ball entering play until a stoppage 

in play) in order to identify the most demanding passages of play (also referred to as 

the ‘worst case scenario’) (6,17). However, the algorithms used in this research were 

not validated and were not capable of differentiating the different types of rugby-

specific collisions, which potentially limits the application of this research (52). A 

separate study analysed the running demands of match-play by separating the game 



 128 

data into a consecutive series of five-minute segments (115). Although this type of 

analysis provides insight into the intermittent demands of the sport, it reportedly 

underestimates actual relative demands in comparison to ball-in-play analysis, which 

may have important implications for athlete preparation (17). Furthermore, this type of 

analysis does not consider the game time or score (6). Dissecting data into 

predetermined epochs can account for score differences and would potentially highlight 

differences between winning and losing teams over the course of a match if both sets 

of data were available. Research involving athletes from soccer (117,118) and Rugby 

League (119,120) have investigated the differences in activity profiles between winning 

and losing teams. Studies in Rugby League highlighted that although losing teams 

generally have higher locomotor demands and more repeated high-intensity bouts, 

winning teams performed more collisions (119,120). Similarly, in soccer, losing teams 

were more likely to have greater total distance and high-intensity running demands 

(117,118). To date, no research has concurrently investigated locomotor and contact 

demands and match outcome in Rugby Union match-play. 

 

This research first sought to apply specifically designed algorithms to match-play data 

to develop a greater understanding of the contact demands of elite Rugby Union (113). 

Secondly, this study aimed to compare running-based and collision-based data for 

opposing teams to provide a unique perspective of the key differences between winning 

and losing teams. To establish the effects of score and match-time on these activity 

profiles, data were analysed as complete matches and in consecutive five-minute 

periods throughout the match. It was hypothesised that losing teams would perform 

higher locomotor demands than winning teams. Additionally, it was hypothesised that 

teams that won would perform more collision events than those who lost (24). Losing 
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teams were expected to perform more tackles, as percentage of possession is reported 

to have an effect on success (121). It was also anticipated that ruck events would be 

similar between winning and losing teams as these events happen regardless of team 

possession. 

8.2 Methods 

A total of 185 elite Rugby Union players (forwards n=107, backs n=78) were recruited 

from four elite-level Pro 12 Rugby Union teams. During competitive matches, players 

wore a single Catapult S5 Optimeye device (Catapult Sports, Melbourne, Victoria, 

Australia) positioned between the shoulder blades in a purpose-built vest. Devices 

contained GPS sampling at 10 Hz and tri-axial accelerometers, gyroscopes and 

magnetometers that captured data at 100 Hz. During a season, the four selected teams 

played one another twice (once home and once away); therefore, providing 12 matches 

for which data could be obtained for both teams. Over the 12 matches, 518 

microtechnology data files were analysed. Data were collected from the 2016/17 

season; matches were selected based on the availability of microtechnology data for 

both teams involved. Players were classified into positional sub-groups, which included 

forwards or backs. The study’s experimental procedures were reviewed and approved 

by the Australian Catholic University’s Human Research Ethics Committee (Approval 

#2014-135Q). 

 

In order to obtain locomotor and collision profiles, all raw data files were analysed post-

match using commercially available software (Openfield version 1.17.0 Build #30874, 

Catapult Sports, Melbourne, Victoria, Australia). Specifically, this software was used 

to calculate total match locomotor demands using GPS data and scrum incidence, using 

a validated scrum algorithm integrated within the software (113). To determine the 
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number of rucks and tackles performed, microsensor data (from accelerometers, 

magnetometers and gyroscopes) were exported at 100 Hz for each player data file. 

These player data files were imported into the R statistical software package 

(http://www.r-project.org/) and processed using a validated ruck and tackle algorithm, 

which quantified the number and timing of these events for each match (116). The 

locomotor demands and contact events were then separated into five-minute periods 

(113).  The outcomes of both algorithms were combined with several more traditional 

locomotor-based variables using Microsoft Excel (Microsoft Corporation, USA). 

Specifically, locomotor variables included total distances covered at low (0.5-2.8m·s−1), 

moderate (2.8-5.6m·s−1), high (5.6-7.5m·s−1) and sprinting speed (>7.5m·s−1) and 

accelerations (>2.79m·s−2) (122). Total distance and high-speed distance (HSD) were 

also quantified relative to game time (m.min-1). Collision-based variables included the 

frequency of rucks, tackles and scrums. Data from the four teams were collated and 

classified into winning and losing teams. Players were further dichotomised into players 

who contributed to whole games (i.e. players who started the match and played for a 

minimum of 60 minutes) (6), and substituted players (i.e. players who did not start on 

the field, but played at least 5 minutes). Of the available data, a total of 57 player files 

(11%) did not meet the criteria for inclusion (i.e. starting player not playing enough 

minutes, substitute not playing more than five minutes or playing longer than 60 

minutes) and, therefore, were removed. 

 

Primary analyses calculated means and standard deviations (SD) for forwards and 

backs, whole game and substituted players, and winning and losing teams. For single 

comparisons between means, the distribution of all data was verified as normal using a 

Shapiro-Wilk test and independent t tests were used throughout. To provide real world 
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applicability to findings, effect sizes were calculated using the standardised difference 

between winning and losing teams for each of the measured variables. Effect sizes were 

interpreted as: <0.20, trivial; 0.20-0.59, small; 0.60-1.19, moderate; 1.20-1.99, large; 

>2.00, very large (90,123,124). All data were reported as mean ± SD, difference in 

effect size with ±90% CI. All statistical analyses were conducted in the Statistical 

Package for the Social Sciences (SPSS v24). 

 

The secondary analyses involved only the data collected for starting players due to the 

varying introduction of substitutes throughout a match. Specifically, the mean 

locomotor (distance per minute, high-speed per minute and low-speed per minute) and 

contact (scrums per minute, tackles per minute and rucks per minute) data for the 

starting players were divided to represent consecutive 5-minute periods (115). Data 

collected during injury or stoppage time were not included in the analysis, as the 

contribution of these time periods to the overall match duration are highly variable. To 

ensure that the player workloads were not inadvertently biased by extended stoppage 

periods, only the data derived from the minimum game time of 80 minutes were used.  

 

8.3 Results 

Table 8.1 shows the results of the primary analyses and includes the physical demands 

of winning and losing teams in elite Rugby Union for starting players and substitutes. 

For starting players (>60 min), winning forwards covered less total distance than losing 

forwards (ES 0.38; small). This difference was primarily as a result of reduced distance 

at moderate (ES 0.38; small) and high speed (ES 0.43; small) with a trivial difference 

at low speed (ES 0.12). For starting backs these differences were trivial. Accordingly, 

relative locomotor variables (M.min-1; high speed M.min-1) were lower for starting 
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forwards (ES 0.37; small; ES 0.39; small, respectively) while this difference was trivial 

for starting backs (both ES < 0.2). Winning forwards also performed fewer tackles than 

losing forwards (ES 0.48; small).  

 

Substitutes performed fewer contacts and had lower locomotor activity than starting 

players for all reported variables. Total distance and distances covered at low, 

moderate, high and sprint speeds varied substantially due to total game time. A large 

proportion of these variables were found to have a trivial difference between the two 

groups. Total distance covered by substitute forwards and backs was found to have 

small differences, with losing teams completing greater work. Substitute forwards were 

found to have small differences for moderate speed running and sprint speed running 

respectively. Backs substitutes showed small differences in high speed and sprint speed 

distance although high speed per minute was trivial. Contact variables were again lower 

for substitutes in comparison to starters due to total game time. However, tackles 

performed by substitute backs and rucks by substitute forwards were found to have 

small differences between winning and losing teams. 



 

Table 8.1 Average locomotor and contact demands of winning and losing forwards and backs and effect. 

  Starting Players (>60 mins)  Substituted Players (<60 mins) 

Metric Position Winning Losing Effect Size ±90%, CI Inference 
Classification  Winning Losing Effect Size ±90%, CI Inference 

Distance (m) 
Forward 5449 

(±997) 
5814 

(±947) 0.38 (0.19 to 0.56) Small  1426 
(±808) 

1739 
(±859) 0.38 (0.13 to 0.63) Small 

Back 6347 
(±954) 

6470 
(±913) 0.13 (-0.05 to 0.32) Trivial  1727 

(±885) 
2165 

(±1101) 0.44 (0.19 to 0.69) Small 

Low Speed Distance (m) 
Forward 2556 

(±790) 
2657 

(±916) 0.12 (-0.07 to 0.3) Trivial  892 
(±408) 

969 
(±478) 0.17 (-0.08 to 0.42) Trivial 

Back 2920 
(±1004) 

2969 
(±1033) 0.05 (-0.14 to 0.23) Trivial  1073 

(±578) 
1151 

(±609) 0.13 (-0.12 to 0.38) Trivial 

Moderate Speed Distance (m) 
Forward 1390 

(±480) 
1582 

(±529) 0.38 (0.19 to 0.57) Small  470 
(±268) 

553 
(±309) 0.29 (0.04 to 0.54) Small 

Back 1575 
(±599) 

1600 
(±574) 0.04 (-0.14 to 0.23) Trivial  588 

(±393) 
590 

(±330) 0.01 (-0.24 to 0.26) Trivial 

High Speed Distance (m) 
Forward 102  

(±72) 
135  

(±82) 0.43 (0.24 to 0.61) Small  23.3 
(±29.2) 

25.0 
(±26.0) 0.06 (-0.19 to 0.31) Trivial 

Back 389  
(±143) 

412  
(±150) 0.16 (-0.03 to 0.34) Trivial  90.0 

(±62.0) 
111.0 

(±83.4) 0.29 (0.04 to 0.54) Small 

High Speed Efforts 
Forward 7.8  

(±5.3) 
10.4  

(±5.9) 0.46 (0.27 to 0.65) Small  1.9 
(±2.2) 

2.0 
(±2.1) 0.05 (-0.2 to 0.3) Trivial 

Back 29.2 
(±10.4) 

30.7 
(±11.7) 0.14 (-0.05 to 0.32) Trivial  6.3 

(±3.8) 
8.6 

(±5.7) 0.47 (0.22 to 0.72) Small 

Sprint Speed Distance (m) 
Forward 2.5 

 (±6.74) 
4.0 

(±11.28) 0.16 (-0.02 to 0.35) Trivial  0.75 
(±2.5) 

0.86 
(±3.9) 0.31 (0.06 to 0.56) Small 

Back 54.5 
(±54.72) 

59.3 
(±52.38) 0.09 (-0.1 to 0.27) Trivial  5.2 

(±9.5) 
11.4 

(±19.4) 0.41 (0.16 to 0.66) Small 

Sprint Efforts 
Forward 0.2  

(±0.39) 
0.6  

(2.38) 0.23 (0.05 to 0.42) Small  0.1 
(±0.1) 

0.1 
(±0.2) 0.71 (0.46 to 0.96) Moderate 

Back 3.0  
(±2.5) 

3.6  
(±2.7) 0.23 (0.04 to 0.42) Small  0.4 

(±0.7) 
0.6 

(±1.0) 0.23 (-0.02 to 0.48) Small 

M.min-1 
Forward 63.7  

(±8.5) 
66.6  

(±7.3) 0.37 (0.18 to 0.55) Small  68.2 
(±13.7) 

69.6 
(±16.4) 0.09 (-0.16 to 0.34) Trivial 

Back 71.8  
(±8.0) 

72.3  
(±7.2) 0.07 (-0.12 to 0.25) Trivial  75.1 

(±10.4) 
73.0 

(±12.5) 0.18 (-0.07 to 0.43) Trivial 

High speed distance m.min-1 
Forward 1.2 

 (±0.80) 
1.5 

 (±0.87) 0.39 (0.21 to 0.58) Small  1.2 
(±1.5) 

1.0 
(±1.0) 0.16 (-0.09 to 0.41) Trivial 

Back 4.4  
(±1.55) 

4.6  
(±1.59) 0.13 (-0.06 to 0.31) Trivial  4.1 

(±2.4) 
3.8 

(±2.7) 0.12 (-0.13 to 0.37) Trivial 
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  Starting Players (>60 mins)  Substituted Players (<60 mins) 

Metric Position Winning Losing Effect Size ±90%, CI Inference 
Classification  Winning Losing Effect Size ±90%, CI Inference 

Accelerations 
(m.s-2) 

Forward 35.8 
(±31.7) 

38.4 
(±35.8) 0.08 (-0.11 to 0.26) Trivial  9.9 

(±10.2) 
10.9 

(±12.5) 0.09 (-0.16 to 0.34) Trivial 

Back 45.8 
(±40.8) 

49.4 
(±44.1) 0.08 (-0.1 to 0.27) Trivial  14.6 

(±17.8) 
15.7 

(±16.4) 0.06 (-0.19 to 0.31) Trivial 

Tackles 
Forward 7.5  

(±3.7) 
9.7  

(±5.3) 0.48 (0.29 to 0.67) Small  2.7 
(±2.4) 

2.7 
(±2.2) 0 (-0.25 to 0.25) Trivial 

Back 4.6  
(±3.1) 

5.0  
(±3.7) 0.12 (-0.07 to 0.3) Trivial  1.8 

(±1.9) 
1.3 

(±1.3) 0.31 (0.06 to 0.56) Small 

Rucks 
Forward 13.3  

(±8.7) 
13.8  

(±6.6) 0.06 (-0.12 to 0.25) Trivial  3.8 
(±3.7) 

5.0 
(±3.9) 0.32 (0.07 to 0.57) Small 

Back 4.1  
(±3.6) 

3.4  
(±2.8) 0.22 (0.03 to 0.4) Small  1.1 

(±1.3) 
1.3 

(±1.4) 0.15 (-0.1 to 0.4) Trivial 

Scrums Forward 12.7 
(±4.3) 

13.3 
(±3.6) 0.15 (-0.04 to 0.34) Trivial  5.3 

(±2.6) 
4.7 

(±2.8) 0.22 (-0.8 to 0.52) Small 

Back - - - -  - - - - 
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The secondary analysis of the sixteen 5-minute intervals that compared starting 

forwards and backs from winning and losing teams identified the peak demands for 

each 5-minute period of match play and variability between each epoch. Specifically, 

the locomotor (m.min-1, low-speed distance m.min-1 and high-speed distance m.min-1) 

and contact (rucks.min-1, tackles.min-1 and scrums.min-1) demands were determined for 

each group to facilitate comparison (Figure 8.1). The peak demands across all intervals 

for losing forwards involved 93.0 m.min-1 with 58.2 m.min-1 at low speed and 4.6 

m.min-1 at high speed. Additionally, the contact demands for these athletes included 0.8 

tackles.min-1 and 1.3 rucks.min-1. In contrast, winning forwards had lower peak 

demands, performing 91.5 m.min-1 with 55.4 m.min-1 at low speed and 3.4 m.min-1 at 

high speed. Similarly, their contact demands were lower and included 0.6 tackles and 

1.1 rucks.min-1. Scrum demands throughout each match were understandably equal for 

both winning and losing teams, with a peak of 1.4 scrums per minute.  The highest 

demands of winning backs were 94.5 m.min-1, with players completing 56.9 m.min-1 at 

low speed and 7.3 m.min-1 at high speed. The contact demands for these athletes 

included 0.4 tackles.min-1 and 0.4 rucks.min-1. In contrast, peak demands for losing 

backs included distances of 92.9 m.min-1, with 59.5 m.min-1 at low speed and 8.8 m.min-

1 at high speed. Contact demands for losing backs were similar to winning backs and 

included 0.3 rucks.min-1. With respect to the locomotor demands, losing forwards and 

backs generally exhibited higher values for a greater proportion of the 5-minute match 

intervals. 

 

The secondary analysis of the sixteen 5-minute intervals that compared starting 

forwards and backs from winning and losing teams identified the peak and variability 

of demands for each of 5-minute period of match play. Specifically, the locomotor 
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(m.min-1, low speed distance m.min-1 and high-speed distance m.min-1) and contact 

(rucks.min-1, tackles.min-1 and scrums.min-1) demands were determined for each group 

to facilitate comparison (Figure 8.1). The peak demands across all intervals for losing 

forwards involved 93.0 m.min-1 with 58.2 m.min-1 at low speed and 4.6 m.min-1 at high 

speed. Additionally, the contact demands for these athletes included 0.8 tackles.min-1 

and 1.3 rucks.min-1. In contrast, winning forwards had lower peak demands, performing 

91.5 m.min-1 with 55.4 m.min-1 at low speed and 3.4 m.min-1 at high speed. Similarly, 

their contact demands were lower and included 0.6 tackles and 1.1 rucks.min-1. Scrum 

demands throughout each match were understandably equal for both winning and 

losing teams, with a peak of 1.4 scrums per minute.  The highest demands of winning 

backs was 94.5 m.min-1 with players completing 56.9 m.min-1 at low speed and 7.3 

m.min-1 at high speed. The peak contact demands for winning backs included 0.4 

tackles.min-1 and 0.4 rucks.min-1. In contrast, peak demands for losing backs included 

distances of 92.9 m.min-1, with 59.5 m.min-1 at low speed and 8.8 m.min-1 at high speed. 

Contact demands for losing backs were similar to winning backs and included 0.3 

rucks.min-1 and 0.4 tackles.min-1. With respect to the locomotor demands, losing 

forwards and backs generally exhibited higher values for a greater proportion of the 5-

minute match intervals. 
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WF – Winning Starting Forwards; LF – Losing Starting Forwards; WB – Winning 
Starting Backs; LB – Losing Starting Backs 
 
Figure 8.1 – The changes in physical demands across 80 minutes of match-play 

segmented into 5-minute intervals. A) M/min of playing groups, B) Low speed running 

demands of playing groups, C) High speed running demands of playing groups, D) 

Tackles per minute of playing groups, E) Rucks per minute of playing groups, F) 

Scrums per minute for forwards only. 
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8.4 Discussion 

This study is the first to use microtechnology and specifically designed validated 

algorithms to quantify the locomotor and contact demands of elite Rugby Union match-

play. In a first for the sport, validated scrum, tackle and ruck algorithms were applied 

to data distinguishing between contact events (52,113). Additionally, a novel aspect of 

this research was the comparison of the physical demands of winning and losing Rugby 

Union teams competing in the same domestic league.  

 

As hypothesised, there were differences between winning and losing teams with respect 

to the running-based demands of the game. The results showed losing teams perform 

greater locomotor activity than that of winning teams. These findings are in accordance 

with other research from Rugby League (120,125,126) and soccer (117,118), where 

losing teams performed greater locomotor activity than winning teams. Although trivial 

differences were observed for absolute locomotor variables for starting backs the 

reported relative data was higher than starting backs reported in other publications (6). 

 

Observed findings demonstrate that losing starting forwards are subjected to a greater 

locomotor workload particularly in moderate and high-speed running. Although these 

differences were found to be small, it is possibly due to less team possession and greater 

time spent defending. Given the differences occurring at moderate and high-speeds, 

Rugby League research has hypothesised that this is due to missed tackles or poor 

defence requiring higher intensity exertion from the defence to scramble (127). 

Furthermore, given that losing team forwards also perform more tackles (small), 

combined with increased locomotor demands may decrease the technical and tactical 

capabilities of losing starting forwards. Other observations of starting players included 
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winning backs completing more rucks (small), this may be advantageous in order to 

retain possession and improve speed of ball, or alternatively slow opposition speed of 

ball.  

 

Total distance and sprint distance for substitute forwards and backs were found to have 

small differences between both groups, with losing teams performing greater activity. 

Differences were acknowledged between substitute backs with losing substitute backs 

performing a greater number of high speed and sprint efforts (both small), while 

winning substitute backs performed more tackles (small). Although some differences 

can be attributed to total time played, it is evident that the locomotor and contact 

demands required of substitutes may also differ between sub-groups based on the 

tactical requirements of these players. For example, the demands placed on substituted 

players may be dependent on the score margin at the time they enter the match or by 

the specific role and/or strengths and weaknesses of the individual. Given the lack of 

differences in relative locomotor variables for substitute forwards and backs, these 

findings suggest that losing teams make substitutions earlier in the match particularly 

forwards, as mean losing substitute forwards distance is higher than winning substitute 

backs.  

 

The finding that match outcome was associated with very few variables supports the 

notion that match outcomes are multifactorial and depend on physical attributes, as well 

as technical and tactical effectiveness. For example, it has been documented that more 

successful teams kick more frequently (121), perform more line breaks and have better 

ball carrying abilities than less successful teams (128). Therefore, more dominant teams 
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may manipulate their possession, thereby forcing the opposition to run more and 

perform more contact events, in particular tackles of forwards. 

 

Winning the collision is frequently associated with a positive match outcome (24); yet, 

in this research, losing teams performed a greater total number of contacts than winning 

teams. Tackle events were higher for losing teams for both starting forwards and backs 

and substitute forwards, which is likely due to winning teams having greater possession 

requiring losing teams to tackle more. However, substituted backs from winning teams 

performed more tackles than from losing teams (small), such differences could require 

further investigation to account for these differences in activity profiles. 

 

Ruck events for starting forwards were only found to be different between winning or 

losing substitute backs, with the differences observed between substituted forwards 

from winning and losing sides found to be only trivial. Such results may be attributed 

to technical and physical limitations of losing teams. However, we did not consider 

forces measured by the microsensors which would influence tackle, ruck and scrum 

dominance. Future research quantifying the quality and/or intensity (forces) associated 

with each contact type may be warranted to better understand the stresses experienced 

by players and the overall influence of these factors on match outcome. 

 

Although there were very few differences in the total locomotor and contact demands 

of winning and losing forwards and backs, a player’s capability to prepare adequately 

for the peak match demands would likely have positive effects on their technical and 

tactical effectiveness. This is potentially reflected in the analysis of sixteen 5-minute 

intervals (Figure 8.1), which shows the fluctuations of match demands throughout the 
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80-minutes of match play. Of the reported variables, there were no observations that 

distinguished either winning or losing teams to have an advantage over the 16 epochs. 

However, it should be noted that the first interval had the highest combined locomotor 

and contact demands. There was another spike in demands shortly after half-time which 

could be due to the rest period of half-time and possible introduction of substitutes. 

Dividing the match into consecutive 5-minute periods provided insight into possible 

differences in the physical demands of winning and losing teams. The general lack of 

differences between locomotor and contact demands of winning and losing teams may 

be attributable, at least in part, to the limitations of this method, as some studies have 

suggested that it may underestimate peak locomotor demands by up to 25% (6,45). 

Further analyses investigating the rolling average demands or ball-in-play demands of 

winning and losing teams may be warranted (21).  

 

This research provides novel insight into the physical demands of elite Rugby Union 

and describes their association with differences in activity profiles between winning 

and losing teams. As this research only uses data from microtechnology, it would be 

beneficial to include subjective match performance indicators to further understand 

match demands and variables associated with success. Future research investigating 

peak ball-in-play periods (6), rolling average demands (21), and additional 

physiological measures, such as heart rate, would likely extend the findings of this 

research by providing further insight into the total match demands and the effect of 

intense match periods.  
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8.5 Conclusion 

This study is the first to quantify the locomotor and specific contact demands (rucks, 

tackles and scrums) of Rugby Union match-play using validated sport-specific 

microtechnology-based algorithms. Combining locomotor and contact demands 

provides a more complete and objective measure of the physical demands associated 

with elite Rugby Union. Losing forwards (starters and substitutes) do have higher 

activity profiles than those of winning forwards, although fewer differences were 

observed between backs. Given the difference in physical demands of losing forwards, 

it may prove beneficial to increase recovery protocols during the season. Although this 

research presents novel methods for objectively quantifying the locomotor demands 

and contact events of rucks, scrums, and one-on-one tackles, it does not identify other 

collision events, such as mauls, tackles involving more than 2 players, and attacking 

collisions, such as the ball carrier being tackled nor the effectiveness of these events. 

 

8.6 Practical Applications 

• The use of microtechnology to quantify match demands can provide 

practitioners with useful information to improve player preparation. Differences 

in demands may help with specific conditioning of starters and substitutes. 

• Application of these algorithms to quantify training methods is beneficial to 

ensure that teams adequately prepare for elite match-play. Exposing players to 

rugby-specific drills in training that elicit positional peak and average 

locomotor and contact demands could potentially benefit team preparation. 

• Although few physical variables were associated with match outcome, other 

technical and/or tactical aspects will influence whether a team wins or loses. 
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Therefore, it is recommended that future work consider physical activity 

profiles with other contextualised technical and tactical information. 

• Due to locomotor and contact demands being greater for losing team forwards, 

this might impact recovery between matches. Losing teams may benefit from 

increased exposure to recovery modalities in order to facilitate greater recovery 

between matches. 
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Chapter 9 – General Discussion and Conclusions 

 

9.1 Overview 

The aim of this program of research was to provide an overview of the current usage of 

microtechnology and to validate specifically designed algorithms to differentiate and 

quantify the contact and match-play demands of elite Rugby Union match-play using 

player-worn microtechnology. The research first identified existing methods to 

quantify sport-specific movements. The use of wearable technology was then explored, 

developing a reliable and valid measure to identify and monitor scrums, rucks and one-

on-one tackles in Rugby Union. To improve our understanding of the contact demands 

experienced in Rugby Union, observational data were also collected across both 

physical preparation and competition periods (Table 9.1). 

 
 
 
 



 

 

Table 9.1 Study outlines, aims, and experimental hypotheses 
	

Chapter in Thesis Study Outline Aims Experimental Hypotheses  
Chapter 4 Investigate the uses of microsensors to 

quantify sport-specific movements. 
Systematically review previous literature and 
their methods to examine the effectiveness of 
athlete-worn microsensors (accelerometers, 
gyroscopes and magnetometers) to detect 
sport specific movements in a wide variety of 
sports. 

Existing research would provide evidence for 
the use of microsensors to analyse sport-
specific movements in individual sports, team 
sports, snow sports and water sports. 

 
Chambers R, Gabbett TJ, Cole MH, Beard A. The use of wearable microsensors to quantify sport-specific movements. Sports Medicine. 2015 Jul 1;45(7):1065-81. 

Chapter 6 Create a specifically designed algorithm to 
detect scrum events in elite Rugby Union 
training and match-play. 

Design and validate scrum specific algorithm 
using events from training and match-play. 

Wearable microtechnology will be both 
sensitive and specific in the detection of 
scrum events during training and match-play. 

 
Chambers RM, Gabbett TJ, Cole MH. Validity of a microsensor-based algorithm for detecting scrum events in Rugby Union. International Journal of Sports Physiology and 
Performance. 2019 Feb 1;14(2):176-82. 
 
Chapter 7 Create a specifically designed algorithm to 

detect ruck and one-on-one tackle events in 
elite Rugby Union match-play. 

Design and validate an algorithm for one-on-
one tackle and ruck detection using events 
from match-play. 

Wearable microtechnology will be capable of 
detecting one-on-one tackle and ruck events 
during match-play using a specifically 
designed algorithm. 

 
Chambers RM, Gabbett TJ, Gupta R, Josman C, Bown R, Stridgeon P, Cole MH. Automatic detection of one-on-one tackles and ruck events using microtechnology in Rugby Union. 
Journal of Science and Medicine in Sport. 2019 Jan 6;22(7):827-832. 
 
Chapter 8 Profile the collision and locomotor demands 

of winning and losing match-play	demands	
of	 elite Rugby Union teams using 
microtechnology. 

Quantify locomotor and contact demands of 
rugby union using GPS and specifically 
designed algorithms and determine 
differences between winning and losing 
teams. 

Losing teams would perform more collision 
events and have higher locomotor demands 
than winning teams. 

Chambers RM, Gabbett TJ, Miller C, Bown R, Stridgeon P, Cole MH. Microtechnology-based locomotor and collision profiles of winning and losing elite Rugby Union teams. 
International Journal of Sports Physiology and Performance. 2020; Submitted January 2020. 
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9.2 Summary of Findings 

 
Table 9.1 summarises the study outlines, aims and hypotheses of each experimental 

chapter. Expanding on this summary: 

(i) Chapter 4 hypothesised that research would have extensively used microsensors to 

analyse sport-specific movements in individual sports, team sports, snow sports 

and water sports. Microsensors are becoming an increasingly more popular 

method to quantify and analyse sport-specific movements. Chapter 4 summarised 

findings from a range of individual and team sports and identified that although 

there was evidence of an existing Rugby Union tackle algorithm, there were no 

current applications of microsensors to identify other contact movements such as 

rucks, scrums and mauls.  

 

(ii) In Chapter 6 it was hypothesised that wearable microtechnology would be both 

sensitive and specific for the detection of scrum events during training and match-

play. Using player-worn microtechnology devices in elite Rugby Union match-

play and training, this study showed that a specifically designed algorithm could 

be created and validated. High sensitivities (91%) and specificities (91%) 

demonstrated the capabilities of microsensors for detecting scrum events when 

using this specifically designed algorithm. The experimental hypothesis was 

strongly supported by the results of this study. 

 

(iii) Chapter 7 hypothesised that wearable microtechnology would be capable of 

detecting one-on-one tackle and ruck events during match-play using a specifically 

designed algorithm. Specific microsensor signal patterns were identified by 

combining 100 Hz sensor data with video to create an algorithm training set of ruck 
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and tackle data. When the algorithm was applied to match-play data, rucks and 

one-on-one tackles were correctly identified by the specifically designed 

algorithm. Thus, the results of the experimental study strongly support the 

hypothesis. 

 

(iv) Chapter 8 hypothesised that losing Rugby Union teams would perform higher 

locomotor and contact demands than winning teams. Using microtechnology 

devices containing GPS and microsensors with the application of scrum, ruck and 

one-on-one tackle algorithms provided greater insight into the physical demands, 

than has previously been available for elite Rugby Union match-play. Additionally, 

using data from four teams, further analysis was carried out to determine differences 

between workload metrics for winning and losing teams. Results showed that 

starting forwards from losing teams performed a higher frequency of locomotor and 

contact demands, while substitute backs from winning teams performed more 

tackles. However, it is important to note that most variables returned a trivial 

difference between winning and losing starting and substitute forwards and backs. 

Therefore, the results of this study predominantly support the experimental 

hypotheses. 

 

9.3 Points of Difference 

The points of difference provided by this program of research are: 

(i) The systematic review in this thesis identified current applications of athlete-worn 

microsensors to detect and quantify sport-specific movements in individual sports, 

swimming, snow sports and team sports. Thus, the systematic review provided a 

summary of how athlete-worn devices are currently used to monitor non-locomotor 
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movements. Additionally, this review identified gaps in the current literature, 

particularly around the identification and discrimination of common contact and 

collision events in Rugby Union, such as rucks, mauls and scrums.  

 

(ii) The results from Studies 2 (chapter 6) and 3 (chapter 7) provide valid automated 

detection solutions for ruck, one-on-one tackle and scrum events. The developed 

algorithms provide practitioners with a means to better understand the non-

locomotor demands of elite Rugby Union training and match-play. Previous 

investigations required researchers to manually code and count collisions, which is 

both time consuming and labour intensive. Additionally, due to the physical 

difference in each contact type, such algorithms can improve understanding of 

player demands, as existing research did not delineate between contact events. 

Such algorithms can provide an improved understanding of athlete workload, 

benefitting player preparation and injury prevention efforts by understanding daily 

contact load more thoroughly. 

 

(iii)  Study 4 (chapter 8) profiled elite Rugby Union demands using the contact 

algorithms developed in Studies 2 and 3, in combination with locomotor 

measurements provided by the player-centred GPS data. Firstly, the research 

provides a novel overview of locomotor and non-locomotor demands by position 

(forwards and backs). Secondly, this research examined differences in locomotor 

and collision variables between winning and losing teams using effect sizes, 

providing ‘real world’ applicability for practitioners. Finally, analysis of the data 

in rolling 5-minute intervals across the match also indicated intense periods of 

match-play and potential “worst-case scenarios” when combining contact and 
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locomotor demands. Overall this investigation provides practitioners with an 

improved insight into the physical demands of elite Rugby Union, which may 

potentially have benefits for player preparation. 

 

9.4 Strengths 

The strengths of this program of research are summarised as: 

(i) Advancing current knowledge of the application of athlete-worn microtechnology, 

specifically microsensors, to quantify the demands of sport-specific movements 

across a variety of sports. 

(ii) Validation of innovative algorithms to detect specific contact events in Rugby 

Union. Algorithms applied to microsensor-based data can reliably differentiate 

between scrums, rucks and one-on-one tackles. 

(iii) Analysing the locomotor and contact demands of elite Rugby Union match-play 

using microtechnology. This research provides an in-depth analysis of the 

locomotor and contact demands of forwards and backs and the differences in 

microtechnology variables between winning and losing teams. In turn, this 

provides sport scientists, coaches and conditioners with a better understanding of 

the peak contact and locomotor demands of each sub-group during match-play. 

 

9.5 Limitations 

The sample of players used in the design of the contact-specific algorithms could be 

considered a limitation of the research due to the forces in men’s elite Rugby Union. 

Such algorithms may not be valid or reliable in other variations of the game such as 

junior or women’s rugby where the forces may not meet the criteria required by the 

algorithms. Similarly, the profiles of match-demands of elite men’s Rugby Union 
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detailed in Study 4 (Chapter 8) may also differ from amateur club or international levels 

and may not be applicable for other forms of Rugby Union. 

 

Although this research is the first to examine the contact demands of elite Rugby Union 

using microtechnology it could be considered a limitation that these algorithms only 

detect contact events and do not specifically consider the magnitude of force associated 

with each of these collisions. Furthermore, in their current form, the presented 

algorithms have no capacity to characterise the effectiveness of the movement (e.g. if 

the tackle was successful or not) without the use of complementary video-based 

methods.  

 

A critical limitation of this research is that although it presents novel methods for 

objectively quantifying the contact events of rucks, scrums, and one-on-one tackles, it 

does not identify other collision events, such as mauls, tackles involving more than 2 

players and attacking collisions such as the ball carrier being tackled. 

 

9.6 Future Directions 

The advancements in contact detection in elite Rugby Union using microsensors have 

presented an opportunity to explore physical demands in greater detail. Future research 

should:  

(i) Explore the forces of these contact events in order to examine the “load” for each 

contact event. This may require additional sensors or devices to be used and would 

improve understanding of each contact event. 

(ii) Explore the application of these contact events to identify acute and chronic loads 

for individuals and their impact on contact injury, fatigue, and performance. Many 
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sports have explored the effect of acute and chronic loading on athletes (49,129-

131), but only used subjective training loads or locomotor loads. As contact injuries 

in Rugby Union cause a large proportion of athlete time loss, it would be beneficial 

to investigate these possible applications. 

(iii)  Combine contact-specific algorithms with subjective match data and effectiveness 

of contact events and individual performance. As these algorithms only determine 

whether an action has been performed (e.g. a scrum has taken place) and not 

whether the outcome of the movements was successful or effective (e.g. if a tackle 

event was successful or not), including relevant qualitative data would complement 

the objective outcomes provided by microsensor technology. 

 

9.7 Practical Applications 

This thesis significantly advances our understanding of the contact demands in elite 

Rugby Union and has the potential to impact the monitoring of physical demands of 

elite Rugby Union players. Previous investigations have used microtechnology to 

quantify the locomotor demands of match-play; these specifically designed algorithms 

will complement existing research by also quantifying the contact demands on players.  

 

Previously, Rugby Union match-play and training contact loads has been difficult to 

objectively quantify due to the labour-intensive and time-consuming collection 

methods. Furthermore, such techniques may only quantify events that are effective and 

miss those that aren’t effective (i.e. a collapsed scrum or missed tackle) and may not 

give a real contact load. The use of microtechnology to quantify contact events is not 

only time effective and less erroneous but can provide a more realistic view of the total 

contact demands of a player in match or training.  
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Additional applications for the results presented in this thesis include the capacity for 

Sports Scientists to better quantify the training demands of players. Currently, match-

play contact events are coded and analysed by independent statistics companies (e.g. 

OptaSports), although no such service is available during training. Manual coding of 

training events is also labour intensive and time consuming. The use of 

microtechnology and these contact algorithms provides practitioners with an efficient 

and immediate system to more objectively quantify the contact demands of training.  

Furthermore, the appropriate application of these algorithms to training situations will 

ensure that player preparedness is optimal This can assist session design by 

understanding the contact load of particular drills to ensure they replicate match 

demands to prepare players for match-play. Longitudinal monitoring of scrum, ruck 

and tackle events can provide practitioners with an improved understanding of the acute 

and chronic contact loads of players. 

 

These algorithms provide a valid method of quantifying contact events in training to 

understand an individual’s contact loads. Study 4 (Chapter 8) presents the first attempt 

to practically quantify the locomotor and collision-based demands of elite Rugby Union 

match-play using wearable microtechnology and validated algorithms.   

 

Understanding the contact demands of Rugby Union match-play can provide a greater 

insight into the overall demands of each position as well as the most physically 

demanding passages of play. Understanding the demands of training and match-play 

should result in training sessions being more specific and applicable to the game. 
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9.8 Conclusion 

The results presented in this thesis make a significant contribution to the applied sports 

science discipline by presenting and validating two novel collision-detecting algorithms 

that have the capacity to automatically monitor contact demands in elite Rugby Union. 

Monitoring elite players using these validated algorithms provides insight into the 

demands of Rugby Union training and match-play, benefitting player preparation by 

improving training to replicate the demands of the game. Such monitoring strategies 

will help players returning from injury, thereby assisting rehabilitation and injury 

prevention efforts. Furthermore, these algorithms provide an objective and time 

efficient process to quantify ruck, scrum, and one-on-one tackle events.
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Appendix A – Ethics Approval ID 2014 135Q 

Dear Applicant, 
 
Principal Investigator:  Dr Timothy Gabbett 
Student Researcher:  Mr Ryan Chambers 
Ethics Register Number:  2014 135Q 
Project Title:   Validation of Contact and Collision in Rugby Union 

using Microtechnology 
Risk Level:  Low Risk 
Date Approved:  13/05/2014 
Ethics Clearance End Date:  31/12/2016 
 
This email is to advise that your application has been reviewed by the Australian 
Catholic University's Human Research Ethics Committee and confirmed as meeting the 
requirements of the National Statement on Ethical Conduct in Human Research subject 
to the following conditions: 
 
Written permissions required from appropriate personnel within selected rugby union 
clubs. 
 
This project has been awarded ethical clearance until 31/12/2016.  In order to comply 
with the National Statement on Ethical Conduct in Human Research, progress reports 
are to be submitted on an annual basis.  If an extension of time is required researchers 
must submit a progress report. 
 
Whilst the data collection of your project has received ethical clearance, the decision 
and authority to commence may be dependent on factors beyond the remit of the ethics 
review process. The Chief Investigator is responsible for ensuring that appropriate 
permission letters are obtained, if relevant, and a copy forwarded to ACU HREC before 
any data collection can occur at the specified organisation. Failure to provide 
permission letters to ACU HREC before data collection commences is in breach of the 
National Statement on Ethical Conduct in Human Research and the Australian Code 
for the Responsible Conduct of Research.  Further, this approval is only valid as long 
as approved procedures are followed. 
 
If you require a formal approval certificate, please respond via reply email and one will 
be issued. 
 
Decisions related to low risk ethical review are subject to ratification at the next 
available Committee meeting. You will be contacted should the Committee raises any 
additional questions or concerns. 
 
Researchers who fail to submit a progress report may have their ethical clearance 
revoked and/or the ethical clearances of other projects suspended.  When your project 
has been completed please complete and submit a progress/final report form and advise 
us by email at your earliest convenience.  The information researchers provide on the 
security of records, compliance with approval consent procedures and documentation 
and responses to special conditions is reported to the NHMRC on an annual basis.  In 
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accordance with NHMRC the ACU HREC may undertake annual audits of any projects 
considered to be of more than low risk. 
 
It is the Principal Investigators / Supervisors responsibility to ensure that: 

1. All serious and unexpected adverse events should be reported to the HREC with 
72 hours. 

2. Any changes to the protocol must be approved by the HREC by submitting a 
Modification Form prior to the research commencing or continuing.  

3. All research participants are to be provided with a Participant Information Letter 
and consent form, unless otherwise agreed by the Committee. 

 
For progress and/or final reports, please complete and submit a Progress / 
Final Report form: 
http://www.acu.edu.au/research/support_for_researchers/human_ethics/forms 
 
For modifications to your project, please complete and submit a Modification form: 
http://www.acu.edu.au/research/support_for_researchers/human_ethics/forms 
 
Researchers must immediately report to HREC any matter that might affect the ethical 
acceptability of the protocol e.g.: changes to protocols or unforeseen circumstances or 
adverse effects on participants. 
 
Please do not hesitate to contact the office if you have any queries. 
 
Kind regards, 
 
 
 
Kylie Pashley 
 
on behalf of  
 
ACU HREC Chair, Dr Nadia Crittenden 
 
Ethics Officer | Research Services 
Office of the Deputy Vice Chancellor (Research) 
Australian Catholic University
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Appendix B – Participant Information Letter 

PARTICIPANT INFORMATION LETTER 
 
PROJECT TITLE: Validation of Contact and Collision in Rugby Union 
using Microtechnology 
 
PRINCIPAL INVESTIGATOR: Tim Gabbett 
 
Dear Participant, 
 
You are invited to participate in the research project described below. 
 
What is the project about? 
The research project is investigating collision and contact within rugby union using 
microtechnology. 
 
Who is undertaking the project? 
This project is being conducted by Ryan Chambers and will form the basis for his PhD at 
Australian Catholic University under the supervision of Tim Gabbett. 
 
Are there any risks associated with participating in this project? 
There are no foreseeable risks with this project, as you are familiar with the microtechnology 
unit and you will not be asked to carry out any extra training or physical load based on this 
study. You will only be required to carry out your normal training demands. 
 
What will I be asked to do? 

• You will be required to wear a microtechnology (GPS) unit at every rugby session 
• You will only need to perform what is required of you in training and nothing else. 
• Consent for all sessions and games where you are wearing the unit will be required. 

We will use these files to assist in the analysis and development of an algorithm to 
detect contacts and collisions, but this will be de-identified.  You will only be 
categorised by position. 

• Consent to film all training sessions and games will also be required to assist in the 
validation of the contacts and collisions. 

 
How much time will the project take? 
All data collection will take place during training or matches. You will not be required to 
participate in any extra activities outside of training. 
 
The study is to be completed by 31/12/2016 
 
What are the benefits of the research project? 
This study will assist in the physical preparation and load monitoring of yourself by 
understanding in greater detail the demands of elite rugby union. 
 
Can I withdraw from the study? 
Participation in this study is completely voluntary. You are not under any obligation to 
participate. If you agree to participate, you can withdraw from the study at any time without 
adverse consequences. 
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Will anyone else know the results of the project? 
All data will be de-identified and be only referred to by position. 
 
Will I be able to find out the results of the project? 
Yes, upon validation of contact and collision in rugby union your personal data will be available 
to you. 
 
Who do I contact if I have questions about the project? 
Ryan Chambers 
e-mail: rchambers@wru.co.uk 
Mobile: 07584 488264 
 
What if I have a complaint or any concerns? 
The study has been approved by the Human Research Ethics Committee at Australian Catholic 
University (approval number 2014 135Q). If you have any complaints or concerns about the 
conduct of the project, you may write to the Chair of the Human Research Ethics Committee 
care of the Office of the Deputy Vice Chancellor (Research). 
 
Chair, HREC 
c/o Office of the Deputy Vice Chancellor (Research) 
Australian Catholic University 
Melbourne Campus 
Locked Bag 4115 
FITZROY, VIC, 3065 
Ph: 03 9953 3150 
Fax: 03 9953 3315 
Email: res.ethics@acu.edu.au  
 
Any complaint or concern will be treated in confidence and fully investigated. You will be 
informed of the outcome. 
 
I want to participate! How do I sign up? 
 
I ______________________________ understand the proposed study and risks involved and, 
understand my data collected will contribute to the validation of collision and contact in rugby 
union using microtechnology and therefore would like to participate in the study from  
 
____/______/_____ until the 31/12/16. 
 
 
Signed___________________________  Date________________________________ 
 
 
 
Yours sincerely, 
 
 
 
Ryan Chambers 
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Appendix C – Participant Consent Form 

 
 

CONSENT FORM 
Copy for Participant to Keep 

 
TITLE OF PROJECT:  Validation of Contact and Collision in Rugby Union using 

Microtechnology 
 
PRINCIPAL INVESTIGATOR: Tim Gabbett 
 
STUDENT RESEARCHER: Ryan Chambers 

 
 
I ................................................... (the participant) have read and understood the 
information provided in the Letter to Participants. Any questions I have asked have 
been answered to my satisfaction. I agree to participate in this study, which involves 
the validation of contact and collision using microtechnology in rugby union. I 
understand that I will be required to wear a microtechnology (GPS) unit at every rugby 
session. 
 
I understand that I can withdraw my consent at any time without comment or penalty 
or affect upon my future relationship with the researchers or the team. I agree that 
research data collected for the study may be published or may be provided to other 
researchers in a form that does not identify me in any way.   
 
 

NAME OF PARTICIPANT:    ........................................................................................  
 

SIGNATURE ........................................................ DATE ........................... 

 

SIGNATURE OF PRINCIPAL INVESTIGATOR (or SUPERVISOR): 

 

……………………………………………….    DATE ........................... 

 

(and, if applicable) 

 

SIGNATURE OF STUDENT RESEARCHER:  

 

……………………………………………….    DATE ........................... 
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Appendix D – Proof of publication (Study 1) – Systematic review: The use of 

wearable microsensors to quantify sport-specific movements 

 

 
 
 
 
 
 

SYSTEMATIC REVIEW

The Use of Wearable Microsensors to Quantify Sport-Specific
Movements

Ryan Chambers1,2
• Tim J. Gabbett2,3

• Michael H. Cole2
• Adam Beard4

! Springer International Publishing Switzerland 2015

Abstract
Background Microtechnology has allowed sport scien-

tists to understand the locomotor demands of various

sports. While wearable global positioning technology has
been used to quantify the locomotor demands of sporting

activities, microsensors (i.e. accelerometers, gyroscopes

and magnetometers) embedded within the units also have
the capability to detect sport-specific movements.

Objective The objective of this study was to determine

the extent to which microsensors (also referred to as iner-
tial measurement units and microelectromechanical sen-

sors) have been utilised in quantifying sport-specific

movements.
Methods A systematic review of the use of microsensors

and associated terms to evaluate sport-specific movements

was conducted; permutations of the terms used included
alternate names of the various technologies used, their

applications and different applied environments. Studies

for this review were published between 2008 and 2014 and
were identified through a systematic search of six elec-

tronic databases: Academic Search Complete, CINAHL,
PsycINFO, PubMed, SPORTDiscus, and Web of Science.

Articles were required to have used athlete-mounted sen-

sors to detect sport-specific movements (e.g. rugby union

tackle) rather than sensors mounted to equipment and
monitoring generic movement patterns.

Results A total of 2395 studies were initially retrieved

from the six databases and 737 results were removed as
they were duplicates, review articles or conference ab-

stracts. After screening titles and abstracts of the remaining

papers, the full text of 47 papers was reviewed, resulting in
the inclusion of 28 articles that met the set criteria around

the application of microsensors for detecting sport-specific

movements. Eight articles addressed the use of microsen-
sors within individual sports, team sports provided seven

results, water sports provided eight articles, and five arti-

cles addressed the use of microsensors in snow sports. All
articles provided evidence of the ability of microsensors to

detect sport-specific movements. Results demonstrated

varying purposes for the use of microsensors, encompass-
ing the detection of movement and movement frequency,

the identification of movement errors and the assessment of

forces during collisions.
Conclusion This systematic review has highlighted the

use of microsensors to detect sport-specific movements
across a wide range of individual and team sports. The

ability of microsensors to capture sport-specific move-

ments emphasises the capability of this technology to
provide further detail on athlete demands and perfor-

mance. However, there was mixed evidence on the ability

of microsensors to quantify some movements (e.g. tack-
ling within rugby union, rugby league and Australian

rules football). Given these contrasting results, further

research is required to validate the ability of wearable
microsensors containing accelerometers, gyroscopes and

magnetometers to detect tackles in collision sports, as

well as other contact events such as the ruck, maul and
scrum in rugby union.

& Tim J. Gabbett
tim_gabbett@yahoo.com.au

1 Welsh Rugby Union, Westgate Street, Cardiff, Wales

2 School of Exercise Science, Australian Catholic University,
1100 Nudgee Road, Brisbane, QLD 4014, Australia

3 School of Human Movement Studies, The University of
Queensland, Brisbane, QLD, Australia

4 University of Lausanne, Lausanne, Switzerland
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Appendix E – Proof of publication (Study 2) – Validity of a microsensor-based 

algorithm for detecting scrum events in Rugby Union 

 

 
 
 
 
 
 
 

Validity of a Microsensor-Based Algorithm for Detecting Scrum
Events in Rugby Union

Ryan M. Chambers, Tim J. Gabbett, and Michael H. Cole

Purpose: Commercially available microtechnology devices containing accelerometers, gyroscopes, magnetometers, and global
positioning technology have beenwidely used to quantify the demands of rugby union. This study investigated whether data derived
fromwearablemicrosensors can be used to develop an algorithm that automatically detects scrum events in rugby union training and
match play. Methods: Data were collected from 30 elite rugby players wearing a Catapult OptimEye S5 (Catapult Sports,
Melbourne, Australia) microtechnology device during a series of competitivematches (n = 46) and training sessions (n = 51). A total
of 97 files were required to “train” an algorithm to automatically detect scrum events using random forest machine learning.
A further 310 files from training (n = 167) and match-play (n = 143) sessions were used to validate the algorithm’s performance.
Results: Across all positions (front row, second row, and back row), the algorithm demonstrated good sensitivity (91%) and
specificity (91%) for training and match-play events when the confidence level of the random forest was set to 50%. Generally, the
algorithm had better accuracy for match-play events (93.6%) than for training events (87.6%). Conclusions: The scrum algorithm
was able to accurately detect scrum events for front-row, second-row, and back-row positions. However, for optimal results,
practitioners are advised to use the recommended confidence level for each position to limit false positives. Scrum algorithm
detection was better with scrums involving ≥5 players and is therefore unlikely to be suitable for scrums involving 3 players (eg,
rugby sevens). Additional contact- and collision-detection algorithms are required to fully quantify rugby union demands.

Keywords: microtechnology, team sport, machine learning, contact detection

Commercially available microtechnology devices containing
global positioning systems (GPSs) and microsensors (acceler-
ometers, gyroscopes, and magnetometers) are commonly used to
quantify the physical demands of rugby union.1 During match play
and training, players are divided into subgroups of forwards and
backs and are required to perform repeated bouts of high-intensity
locomotor activity (sprinting, running, and accelerations) separated
by low-intensity activity (standing, walking, and jogging).1–6 In
addition to the locomotor demands of match play, players are
frequently involved in high-intensity physical contact and collisions,
such as mauls, tackles, and rucks, with forwards also required to
compete in scrums.1–8 Scrums are used to restart play after a minor
infringement and involve all 8 forwards from each team forming 3
interconnected rows of players. While facing each other, the players
forming the front row for each team lock heads and shoulders with
the opposition forwards and attempt to produce a greater force than
their opponents to gain possession of the ball.9

Despite researchers accurately quantifying the locomotor de-
mands of elite rugby union, contact events such as scrums, rucks,
mauls, and tackles are usually combined and defined as “impacts”
when using microtechnology.1,4,7 Similarly, research evaluating
contact events by video-based time-motion analysis has typically
categorized these incidents as “high-intensity efforts”3 or “static
exertions.”5,6,8 Success in rugby union frequently depends on the
players’ ability to tolerate contact events.10 However, research
summarizing the physical contribution of contact events (scrums,

tackles, rucks, and mauls) during match play provides a count of
the total number of contact events, a rating of the force involved,1
or the total time attributable to collisions.8 To date, no research
has differentiated among scrums, rucks, mauls, and tackles, which
inadvertently implies that each form of contact poses an equal
physiologic stress to the players.11 Classification of each contact
type would contribute to an improved understanding of the unique
stresses associated with each, in turn potentially helping improve
player preparation and reduce the risk of injury and reinjury during
training and competition.

Microsensors have been used to quantify the demands of sport-
specific movements in team sports, snow sports, individual sports,
and water sports.11 Validated algorithms have been applied to
microsensor data to automate the collection of sport-specific move-
ments, such as fast bowling in cricket,12 pitching in baseball,13 and
tackling in rugby.11,14,15 To date, researchers have used micro-
sensors to quantify only tackling in rugby union,16 with scrums,
rucks, and mauls neglected.11 Researchers have highlighted the
injury risk associated with scrums,17 predominantly in match
play.18 Currently, no other valid method for quantifying scrum
workload during training or match play exists apart from using
video-based time-motion analysis, which is a labor-intensive pro-
cess.11 Many researchers have highlighted the need to further
investigate contact movements in rugby union because they gen-
erally require the body to endure very high forces that are imparted
over a relatively short time period. However, despite the relatively
short duration of each contact event, the repeated collisions
involved in a typical training or match-play scenario contribute
significantly to the players’ total workload. Of the contact move-
ments performed during regular match play, scrum events occur
approximately 25 times per game; in contrast, depending on
playing position, each player will complete approximately 30 rucks
and tackles per match.5,11,19–21

Chambers is with Welsh Rugby Union, Cardiff, United Kingdom. Chambers and
Cole are with the School of Exercise Science, Australian Catholic University,
Brisbane, QLD, Australia. Gabbett is with Gabbett Performance Solutions,
Brisbane, QLD, Australia, and the Inst for Resilient Regions, University of Southern
Queensland, Ipswich, QLD, Australia. Chambers (ryanchambers13@gmail.com) is
corresponding author.
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Appendix F – Proof of publication (Study 3) – Automatic detection of one-on-one 

tackles and ruck events using microtechnology in Rugby Union 
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designed ! algorithm ! based ! on ! microsensor ! data.
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validated ! using ! 8! additional ! international ! match-play ! datasets ! and ! video ! footage, ! with ! each ! ruck! and
tackle ! manually ! coded ! and ! verified ! if! the ! event ! was ! correctly ! identified ! by ! the ! algorithm.
Results: ! The! classification ! algorithm’s ! results ! indicated ! that ! all ! rucks ! and ! tackles ! were ! correctly ! identified
during ! match-play ! when ! 79.4 ! ± ! 9.2% ! and ! 81.0 ! ± ! 9.3% ! of ! the ! random ! forest ! decision ! trees ! agreed ! with ! the
video-based ! determination ! of! these ! events. ! Sub-group ! analyses ! of! backs ! and ! forwards ! yielded ! similar
optimal ! confidence ! percentages ! of! 79.7% ! and ! 79.1% ! respectively ! for ! rucks. ! Sub-analysis ! revealed ! backs
(85.3 ! ± ! 7.2%) ! produced ! a! higher ! algorithm ! cut-off ! for ! tackles ! than ! forwards ! (77.7 ! ± ! 12.2%).
Conclusions: ! The ! specifically-designed ! algorithm ! was! able ! to ! detect ! rucks ! and ! tackles ! for ! all ! positions
involved. ! For ! optimal ! results, ! it ! is ! recommended ! that ! practitioners ! use ! the ! recommended ! cut-off ! (80%)
to ! limit ! false ! positives ! for ! match-play ! and! training. ! Although ! this ! algorithm ! provides ! an ! improved ! insight
into ! the! number ! and ! type ! of ! collisions ! in ! which ! rugby ! players ! engage, ! this ! algorithm ! does ! not ! provide
impact ! forces ! of ! these ! events.
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Practical! implications

• Results! demonstrate! the! competencies! of! microtechnology,
demonstrating! the! ability! to! detect! ruck! and! tackle! events! in
rugby! union! when! applying! a! specifically! designed! algorithm.! In
collaboration! with! recent! research,! providing! sport! scientists! the
capability! to! detect! and! quantify! the! most! frequent! collisions! in
rugby! union! using! microtechnology! devices.

• This! current! study! provides! practitioners! with! a! time! efficient! and
validated! method! to! detect! and! monitor! rucks! and! tackles! events

∗ Corresponding! author! at:! Welsh! Rugby! Union,! Westgate! Street,! Cardiff,! UK.
E-mail! address:! ryanchambers13@gmail.com! (R.M.! Chambers).

during! match-play! and! training! to! assist! with! player! preparation
and! injury! prevention.! Providing! more! objective! results! than! pre-
vious! labour-intensive! methods! that! are! potentially! error! prone.

• This! research! will! provide! sport! scientists! with! a! more! in-depth
understanding! of! a! player’s! demands! by! allowing! different! con-
tact! types,! in! this! instance! rucks! and! tackles,! to! be! independently
classified.

1.! Introduction

Commercially-available! microtechnology! devices! containing
global! positioning! systems! (GPS)! and! microsensors! (accelerom-
eters,! magnetometers! and! gyroscopes)! are! extensively! used
to! quantify! the! activity! demands! of! various! sports,! including
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