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A B S T R A C T   

Background: The negative health impacts of traffic-related air pollution (TRAP) have been investigated for many 
decades, however, less attention has been paid to the effect of TRAP on children’s academic performance. Un-
derstanding the TRAP-academic performance relationship will assist in identifying mechanisms for improving 
students’ learning and aid policy makers in developing guidance for protecting children in school environments. 
Methods: This systematic review assessed the relationship between TRAP and academic performance. Web of 
Science, PubMed, CINAHL, Medline, PsycINFO, SPORTDiscus, Scopus and ERIC databases were searched for 
relevant, peer reviewed, articles published in English. Articles assessing exposure to TRAP pollutants (through 
direct measurement, local air quality monitoring, modelling, or road proximity/density proxy measures) and 
academic performance (using standardised tests) in children and adolescents were included. Risk of bias was 
assessed within and between studies. 
Results: Of 3519 search results, 10 relevant articles were included. Nine studies reported that increased exposure 
to some TRAP was associated with poorer student academic performance. Study methodologies were highly 
heterogeneous and no consistent patterns of association between specific pollutants, age groups, learning do-
mains, exposure windows, and exposure locations were established. There was a serious risk of bias within in-
dividual studies and confidence in the body of evidence was low. 
Conclusions: This review found evidence suggestive of a negative association between TRAP and academic per-
formance. However, the quality of this evidence was low. The existing body of literature is small, lacks the in-
clusion of high-quality exposure measures, and presents limitations in reporting. Future research should focus on 
using valid and reliable exposure measures, individual-level data, consistent controlling for confounders and 
longitudinal study designs.   

1. Introduction and Background 

When assessing the effects of environmental exposures on children 

and adolescents, academic performance is an important outcome. Aca-
demic performance is interlinked with health and wellbeing and predicts 
adulthood thriving, civic engagement, income, and occupational status 
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(Caro et al., 2015; Dee 2004; Degoy and Berra 2018; Milligan et al., 
2004; Tabbodi et al., 2015; Tomasik et al., 2019). It is also a form of 
human capital, which means the unequal distribution of health risks 
affecting academic performance can contribute to existing patterns of 
social inequity (Pastor et al., 2004). 

Exposure to air pollution threatens the health of children and ado-
lescents. It is estimated that 93% of the world’s children are continu-
ously exposed to toxic air (World Health Organization, 2018). The 
physiology, behaviour and rapid development of children and adoles-
cents makes them more susceptible than adults to the effects of air 
pollution (Bennett et al., 2007; Ginsberg et al., 2005; Saadeh and 
Klaunig 2014; Silbereis et al., 2016; Sly and Flack 2008). Respiratory, 
cardiovascular and cognitive health have all been found to be negatively 
impacted (Calderón-Garcidueñaset al. 2008; Chen et al., 2015; Delgado- 
Saboritet al. 2019; Freireet al. 2010; Iannuzziet al. 2010; Matus et al., 
2019; Millman et al., 2008; Pereraet al. 2006; Salvi 2007; Suades-Gon-
zalez et al., 2015; Suglia et al., 2008; Sunyeret al. 2015; Tabaku et al., 
2011). However, a relationship between air pollution and academic 
performance is yet to be firmly established. 

This review focuses on traffic-related air pollution (TRAP), one of the 
biggest contributors to urban air pollution. TRAP includes vehicle 
emissions, re-suspended road dust and particles from degraded tyres and 
brake linings (World Health Organization Regional Office for Europe, 
2005). These pollutants include particulate matter (PM) of varying 
aerodynamic diameters (ultra-fine PM: <0.1 µm [UFP], fine PM: 
0.1–2.5 µm [PM2.5], coarse PM: 2.5–10 µm [PM2.5-10], and inhalable PM: 
<10 µm [PM10]), nitrogen dioxide, carbon monoxide, black carbon, 
lead, volatile organic compounds, polycyclic aromatic hydrocarbons 
and ground level ozone (Health Effects Institute [HEI], 2010; World 
Health Organization Regional Office for Europe, 2005). Exposure 
assessment methods include personal/on site/local air quality moni-
toring, various modelling techniques, and road proximity/density proxy 
measures (Goldizen et al., 2016; HEI, 2010). 

Previous longitudinal research has found a link between exposure to 
TRAP, specifically, and cognitive function in children – a factor closely 
related to academic performance (Kinget al. 2005; Sunyer et al., 2015). 
Furthermore, evidence suggests that low socioeconomic status (SES) and 
ethnic minority children experience higher risk of TRAP exposure at 
school (Chakraborty 2009; Korenstein and Piazza 2002; Wu and Bat-
terman 2006). Therefore, it is important to know if TRAP is associated 
with academic performance in order to identify risk factors contributing 
to racial and SES related gaps in academic performance (Bali and 
Alvarez 2003; Sirin 2005). The United States Environmental Protection 
Agency (USEPA) provides extensive recommendations on how to protect 
children from TRAP exposure at school (USEPA, 2015). Finding an as-
sociation between TRAP and academic performance would increase the 
motivation to convert these recommendations into official policy. 

This systematic review (SR) synthesised the evidence examining the 
relationship between TRAP and academic performance in children and 
adolescents. The research question that guided the study was: Do chil-
dren and adolescents exposed to higher levels of TRAP pollutants show 
poorer academic performance than those exposed to lower levels of 
TRAP pollutants? 

2. Methods 

2.1. Protocol 

This SR was registered in the International Prospective Register of 
Systematic Reviews (PROSPERO), registration number: 
CRD42020176294. The protocol was written according to the Preferred 
Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 
statement (Moher et al., 2009). Risk of bias in individual studies and 
confidence in the body of evidence were assessed per the Office of 
Health Assessment and Translation (OHAT) guidelines (Rooney et al., 
2014). 

Table 1 
Inclusion/ Exclusion Criteria for Articles.  

Study Aspect Inclusion Criteria Exclusion Criteria 

Participants: 
Human children 
and adolescents 

Life stage at exposure: pre- 
birth up to childhood/ 
adolescence 
Life stage at outcome 
assessment: childhood/ 
adolescence. 
Geographic setting: 
worldwide. 
No restrictions on sex 

Adulthood at outcome 
assessment e.g. university 
students 

Exposure: Traffic- 
related air 
pollution (TRAP) 

Exposure to TRAP pollutants 
including particulate matter 
(PM) of varying 
aerodynamic diameters 
(UFP, PM2.5, PM2.5-10, 
PM10), nitrogen oxides, 
carbon monoxide, black 
carbon, lead, volatile organic 
compounds, polycyclic 
aromatic hydrocarbons and 
ground level ozone. Direct 
measurement, local air 
quality monitoring, 
modelled estimates or road 
proximity/density as a proxy 
measure 

Studies exclusively testing 
exposure to pollution from a 
non-traffic source e.g. 
proximity to an industrial 
site, studies exclusively 
measuring hazardous air 
pollutants (HAPs), which 
include many non-TRAP 
pollutants 

Comparators: Unit increase in pollutants or 
comparison of higher and 
lower exposed groups 

Not applicable 

Outcome: 
Academic 
performance 

Any measure of academic 
performance based on 
standardised tests, test or 
exam results, university 
preparatory exams, semester 
grades/grade point average 

Behavioural tests and other 
tests of cognitive function 

Publication type: Original Data 
English Language 
Peer reviewed 

Abstract only 
Conference presentations/ 
posters  

Table 2 
Search Strategy.  

Component Free search terms MeSH terms 

Population: 
Child/ 
adolescent 

child* OR adolescent* child OR adolescents 

Exposure: TRAP TRAP OR traffic OR “traffic 
related air pollution” OR “air 
pollut*” OR vehicle* OR 
emission* OR exhaust OR 
“nitrogen dioxide*” OR 
“nitrogen oxide*” OR “carbon 
monoxide” OR “black carbon” 
OR diesel OR ozone OR 
particle* OR particulate* OR 
“volatile organic compounds” 
OR “polycyclic aromatic 
hydrocarbons” OR “air quality” 
OR “air toxic*” OR “major 
road*” OR highway* OR 
freeway* OR motorway* 

Traffic-Related Pollution OR 
Particulate Matter OR 
Vehicle Emissions OR 
Nitrogen Dioxide OR 
Nitrogen Oxides OR Ozone 
OR Carbon Monoxide OR 
Volatile Organic Compounds 
OR Polycyclic Aromatic 
Hydrocarbons 

Outcome: 
Academic 
performance 

“academic performance” OR 
academic OR “school 
performance” OR “academic 
achievement” OR “educational 
achievement” OR “education* 
outcome*” OR attainment OR 
“test score*” OR “standard* 
test*” OR “semester grade*” 
OR “grade point average*” 

Academic performance  
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2.2. Eligibility Criteria 

Eligible study designs were cross-sectional, ecological, prospective 
cohort, retrospective cohort, panel and case control studies. Table 1 
summarises inclusion and exclusion criteria in the form of a PECO 
statement (participants, exposures, comparators, outcomes). 

2.3. Search Strategy 

The databases Web of Science, PubMed, CINAHL, Medline, Psy-
cINFO, SPORTDiscus, Scopus and ERIC were searched from inception to 
June 13, 2020 for relevant, English-language, peer-reviewed articles. 
Reference lists of found articles were manually checked for further 
relevant sources. 

The search terms combined three core components: population, 
exposure and outcome (Table 2) which were applied in appropriate 
formats for all databases. 

2.4. Selection 

Articles were uploaded into Covidence systematic review manage-
ment database (www.covidence.org) which automatically removes du-
plicates and facilitates traceable screening and selection of articles. 
Article selection was conducted per the PRISMA statement (Fig. 1). Two 
independent reviewers screened titles, abstracts and full texts for eligi-
bility. Conflicts were discussed and mediated by a third reviewer before 
reaching final inclusion decisions. 

2.5. Data extraction 

A data collection form was developed to extract study characteristics, 
methods of exposure and outcome assessment, additional independent 
variables included in analyses, results, and funding/ conflicts of interest. 
One reviewer extracted data and a second reviewer verified the 
extraction. The main outcome under assessment was academic perfor-
mance, measured by standardised tests. Effect estimates in the form of a 
Beta (β) coefficient, Pearson’s correlation r, risk ratio or odds ratio were 
extracted along with 95% confidence intervals (CI) or p-values where 
provided. For studies reporting multiple findings, e.g. separate analyses 
for different pollutants/academic domains/age groups, outcome data 

were extracted for each analysis. 

2.6. Data analysis 

2.6.1. Risk of bias 
Risk of bias (RoB) in individual studies was assessed using an 

adapted version of the OHAT tool (Rooneyet al. 2014). Bias was assessed 
along seven domains relevant to the articles in this SR. According to the 
OHAT method, key confounders and co-exposures were pre-determined 
(Table 3). Each study was required to adjust for SES or ethnicity plus at 
least one other identified confounder or co-exposure which was 
important in relation to the primary TRAP exposure and the outcome. 
Studies were not penalized if other confounding variables or co- 
exposures were not adjusted. Two reviewers independently assessed 
risk of bias in individual studies. Conflicts were discussed before making 

Fig. 1. PRISMA Flow Chart.  

Table 3 
Justifications for selected confounders and co-exposures.  

Variable Justification  

Confounders 
SES or Ethnicity Low SES and ethnic minority groups experience higher exposure 

to air pollution and both factors are independently associated 
with academic performance (Bali and Alvarez 2003; Sirin 
2005). 

Geographic 
location 

TRAP levels are higher in urban areas but rural schools may 
have access to fewer resources which may differentially impact 
academic performance (Sullivan et al., 2013). 

Temperature Ambient air temperature is associated with changes in air 
quality (particularly ozone levels) and impacts on academic 
performance (Jacob and Winner 2009; Wargocki et al., 2019). 

Green space Higher levels of green space are typically associated with lower 
TRAP levels, and exposure to green space is thought to improve 
academic performance (Browning and Rigolon 2019)  
Co-exposures 

Green space It is possible for green space and high TRAP levels to co-exist. 
Non-TRAP 

pollution 
Ambient pollutants from industrial sources may also affect 
academic performance (Mohai et al., 2011). 

Pollen Pollen exposure is independently associated with poorer 
academic performance (Bensnes 2016; Marcotte 2015). 

Noise Traffic-noise is independently associated with academic 
performance (Haines and Stansfeld 2003; Shield and Dockrell 
2003)  
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final allocations. Where necessary, a third reviewer was consulted. 
Confidence in the body of evidence across all included studies was 

assessed per the OHAT guidelines, which involves consideration of the 
strengths and weaknesses of groups of studies with similar features 
(Rooneyet al. 2014). An overall data assessment visualisation table was 
developed specifically for this systematic review to assess potential 
publication bias (Table S11). 

2.6.2. Data synthesis 
A formal meta-analysis was ruled out due to a high degree of het-

erogeneity in terms of study design, exposure definition, outcome defi-
nition, and outcome data. Findings are presented as a systematic search 

with narrative synthesis. 

2.6.3. Missing data 
Authors were contacted when detailed numerical outcome data was 

missing. 

3. Results 

3.1. Study selection and characteristics 

Fig. 1 displays the study selection process. Out of 3519 titles iden-
tified through database searching, 10 articles met the inclusion criteria. 

Table 4 
Study Characteristics of the Articles.  

Citation Original sample Study period Geographic context Grade level or age Individual/Aggregate 

Cross Sectional (n ¼ 9)  
Berman et al 2018 158 schools 2013–2014 Baltimore, USA 3rd-8th 

NR 
Aggregate 

Clark-Reyna et al 2016 1904 children 2005–2012 El Paso, USA 4th and 5th 
8–13 years 

Individual 

Donovan et al 2020 21,107 children 2013–2014 Portland, USA 3rd-8th 
NR 

Individual 

Gaffron & Niemeier 2015 553 schools 2008–2011 Sacramento, USA All students Aggregate 
Grineski et al 2016 1904 children 2005–2012 El Paso, USA 4th and 5th 

8–13 years 
Individual 

Kweon et al 2018 3660 schools 2005–2007 Michigan, USA 3rd-8th 
NR 

Aggregate 

Mizen et al 2020 18,241 children 2009–2015 Cardiff, Wales NR 
15–16 years (mean 15.71) 

Individual 

Retrospective cohort (n ¼ 2)  
Shier et al 2019 9400 & 9550 children 1998–2004 USA 3rd & 5th 

mean age 111 months & 134.7 months 
Individual 

Stingone et al 2016 57,025 children 1996–2008 New York City, USA 3rd 
NR 

Individual & Aggregate 

Longitudinal (n ¼ 1)  
Marcotte 2017 1450 children 2010–2014 USA Kindergarten, 1st & 2nd, 

mean age in elementary school 81 months 
Individual 

Note: NR = not reported. 

Table 5 
Methods Used to Assign Exposure to Traffic-Related Air Pollutants and Standardised Academic Performance Tests.   

Exposure Outcome 

Citation Location Timing Measure Modelling Spatial resolution Outcome Assessment 

Berman et al 
2018 

School Time of testing Total length of all roads/ major 
roads and highways only around 
schools 

Density 100/ 200/ 300 m 
buffers 

Proficiency in Math and 
Reading tests 

Clark-Reyna et 
al 2016 

Home Estimates assume 
cumulative 

Estimated diesel PM health risk 
from on-road mobile sources 
(hazard quotient) 

USEPA’s NATA 2005 Census block GPA 

Donovan et al 
2020 

School & 
Home 

Time of testing Total length of all class 1 and 2 
roads around schools and homes 

Density 100/ 200/ 500 m 
buffers 

Math and Reading test scores 

Gaffron & 
Niemeier 
2015 

School Estimates assume 
cumulative 

Estimated load of traffic-associated 
PM2.5 around school 

Novel method combining 
traffic density and 
emissions 

150 m buffer of 
school land use 
parcel 

School API score 

Grineski et al 
2016 

School Estimates assume 
cumulative 

Estimated diesel PM health risk 
from on-road mobile sources 
(hazard quotient) 

USEPA’s NATA 2005 Census block GPA 

Kweon et al 
2018 

School Time of testing Straight line distance to nearest 
limited access highway 

Proximity Distance in 
kilometres 

Failure to meet proficiency in 
Math and ELA tests 

Mizen et al 
2020 

School & 
Home 

School-term prior 
to examination 

Estimated ambient concentration of 
Ozone/ Nitrogen Dioxide/ PM2.5 

Atmospheric Dispersion 
Modelling 

20 m Capped Points Plus score 
based on combined GCSE 
results 

Shier et al 
2019 

Home Year prior to 
testing & 
cumulative 

Estimated ambient concentrations 
of PM2.5, PM10 and ozone 

Spatial interpolation of 
monitor data 

Census tract Math/Reading test scores 

Stingone et al 
2016 

Home Pre-natal Estimated ambient concentration of 
Diesel PM 

USEPA’s NATA 1996 Census tract Math and ELA test scores and 
failure to meet proficiency 
standards 

Marcotte 2017 School & 
Home 

Time of testing & 
cumulative 

Air Quality Index score for PM2.5 & 
Ozone 

USEPA Air Quality Index County Math and Reading test scores  
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Study characteristics are summarised in Table 4, exposure and outcome 
assessments are summarised in Table 5. Papers were recent, with the 
earliest published in 2015. There were seven cross-sectional designs, 
two retrospective cohort studies and one longitudinal study. Original 
sample sizes for the studies using aggregate, school-level, outcome data 
ranged from 158 to 3660 schools. For studies using data at the individual 
child level, original sample sizes ranged from 1450–57,025 children. In 
cases where specific grades were selected for the study population, these 
were predominantly elementary grades. One study focussed only on 
high school students. Study populations were limited in geographic 
location to high income countries, primarily the USA (n = 9), with one 
study in Wales, UK. 

There was a wide variation in the method, spatial resolution, timing 
and location of exposure assessments between studies. Methods used 
included the use of road proximity/density around schools/homes as a 
proxy measure; daily Air Quality Index scores assigned using the USEPA 
monitoring data; and other various modelled estimates. 

All studies included some variation of standardised tests as outcome 
measures. Six studies focussed on Mathematics and Reading/English 
language domains specifically, while the others used more generalised 
outcomes combining multiple domains. Studies were split between 
using individual level (n = 6), aggregate level (n = 3) or a mix (n = 1) of 
outcome data. 

3.2. Risk of bias in individual studies 

Fig. 2 displays RoB ratings allocated to each of the seven bias do-
mains in individual studies. A summary of each RoB assessment is 
available in Supplementary Tables S1-S10. 

The overall RoB in individual studies was graded to be serious. The 
most common source of bias was the use of poor quality exposure as-
sessments of TRAP. No studies used direct readings from personal, on- 
site, or local air quality monitors. Excluding one paper (Mizenet al. 
2020), studies using road proximity/density proxy measures and 
modelled estimates did not support these with statistical comparison of 

modelled estimates of monitored data, or land-use regression [LUR] 
modelled data. Furthermore, three studies (Clark-Reyna et al., 2016; 
Grineski et al., 2016; Stingone et al., 2016) employed modelled esti-
mates from the USEPA’s National Scale Air Toxics Assessment (NATA) 
despite the USEPA explicitly stating on their website that these estimates 
should not be used as a freestanding capture of exposure or to compare 
exposures between neighbourhoods (USEPA, 2011). 

Eight studies controlled for SES plus at least one other confounder/ 
co-exposure relevant to the study. The studies which adjusted for 
more relevant confounders/co-exposures available within the study 
were graded lower risk of confounding bias. Two studies did not control 
for any confounding factors in their analysis of the TRAP-academic 
performance relationship and were graded with a definitely-high RoB 
rating (Bermanet al. 2018; Gaffron and Niemeier 2015). Other common 
sources of bias were low quality or unreported details in the statistical 
analysis and a lack of information regarding the representativeness of 
study samples and missing data. 

3.3. Publication bias 

According to OHAT (2015), when the majority of early studies in a 
body of evidence reject the null hypothesis, this presents a risk of pub-
lication bias. These guidelines imply that, as the field grows, more null 
results are likely to be presented. Therefore, potential publication bias 
was identified within this small and emerging body of evidence as only 
one study found no evidence for an association between TRAP and ac-
ademic performance. Furthermore, an assessment of the frequencies of 
negative (decline), positive (improved) and null associations per expo-
sure metric reveals a limited number of analysis per each different type 
of exposure and academic performance outcome in multiple cases 
(Table S11). 

3.4. The relationship between TRAP and academic performance 

All relevant associations between measures of TRAP and academic 

Fig. 2. Summary of Risk of Bias Assessments.  
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Table 6 
Effect Estimations for Associations between TRAP and academic performance reported in articles.  

Citation Outcome measure TRAP measure Type of 
Estimate 

Association & effect estimate 95% CI/ p 
value 

Berman et al. 
2018 

Grades 3–5/6–8 
reading/math 
proficiency 

Density of all roads/ major roads and 
highways only. 100/ 200/ 300 m buffers 

β Null in unadjusted models (NR). Excluded from final 
analysis. 

NR 

Clark-Reyna 
et al., 2016 

GPA Modelled, total diesel PM risk β Negative − 0.023 p = 0.008  

GPA Modelled, on-road mobile diesel PM risk β Negative − 0.018 p = 0.022 
Donovan 

et al., 2020 
Math scores Road density at 100 m around home β Negative − 0.155 p = 0.050  

Math scores Road density at 100 m around school β Null NR NR  
Reading scores Road density at 100 m around home β Negative − 0.656 p = 0.002  
Reading scores Road density at 100 m around school β Null NR NR  
Math/reading 
scores 

Road density at 200/500 m around home/ 
school 

β All Null NR NR 

Gaffron & 
Niemeier 
2015 

School API score Modelled load of traffic associated PM2.5 
in land use parcel for all schools 

r Negative − 0.209 p = 0.000 

Grineski et al., 
2016 

GPA Modelled, total diesel PM risk β Negative − 0.128 p = 0.005  

GPA Modelled on-road mobile diesel PM risk β Negative − 0.093 p = 0.012 
Kweon et al. 

2018 
Failing to meet 
Math standards 

Distance to nearest highway β Negative − 0.03 p < 0.10  

Failing to meet 
English standards 

Distance to nearest highway β Negative − 0.06 p < 0.001 

Mizen et al., 
2020 

CPS scores Short term NO2 exposure (single pollutant 
model) 

β Negative − 0.044 (-0.079, 
− 0.008)  

CPS scores Short term NO2 exposure (adjusted for 
PM2.5 & pollen) 

β NR figure suggests Negative NR  

CPS scores Short term PM2.5 exposure (single- 
pollutant model) 

β Positive 0.074 (0.002, 0.146)  

CPS scores Short term PM2.5 exposure (adjusted for 
NO2 & pollen) 

β NR figure suggests null NR  

CPS scores Short term Ozone exposure (single- 
pollutant model) 

β Null 0.004 (-0.017, 
0.024) 

Shier et al., 
2019 

3rd grade math 
scores 

Annual measures of ozone in cross 
sectional regressions 

β Negative − 0.03, − 5.23, − 2.92 p < 0.05, p <
0.01, p < 0.01  

3rd grade math 
scores 

Annual measure of ozone in child fixed 
effects model 

β Negative − 0.90 p < 0.01  

3rd grade math 
scores 

All measures of cumulative exposure to 
ozone 

β Negative − 1.00, − 1.03, − 2.45 p < 0.01, p <
0.05, p < 0.05  

3rd grade math 
scores 

Exposure to ozone on the day of testing β Null 0.00 NR  

3rd grade math 
scores 

Maximum value of ozone in the week 
before testing 

β Null 0.14 NR  

3rd grade reading 
scores 

All annual measures of ozone in cross 
sectional regressions 

β Null − 0.02, − 1.05, − 0.87 NR  

3rd grade reading 
scores 

Annual measure of ozone in child fixed 
effects model 

β Null − 0.24 NR  

3rd grade reading 
scores 

Cumulative exposure to ozone: Indicator 
for whether 2- years above standard 

β Negative − 2.14 p < 0.05  

3rd grade reading 
scores 

Other cumulative measures of exposure to 
ozone 

β Null − 0.03, 0.32 NR  

3rd grade reading 
scores 

Exposure to ozone on the day of testing β Null 0.01 NR  

3rd grade reading 
scores 

Maximum value of ozone in the week 
before testing 

β Null 0.05 NR  

5th grade math 
scores 

All annual measures of ozone in cross 
sectional regressions 

β Null 0.02, − 0.21, − 0.40 NR  

5th grade math 
scores 

Annual measure of ozone in child fixed 
effects model 

β Null 0.35 NR  

5th grade math 
scores 

All measures of cumulative exposure to 
ozone 

β Null − 0.49, − 0.21, − 1.88 NR  

5th grade reading 
scores 

All annual measures of ozone in cross 
sectional regressions 

β Null − 0.00, − 0.23, − 0.45 NR  

5th grade reading 
scores 

Annual measure of ozone in child fixed 
effects model 

β Null − 0.21 NR  

5th grade reading 
scores 

Cumulative exposure to ozone: Indicator 
for whether 2-years above standard 

β Negative − 1.99 p < 0.05  

5th grade reading 
scores 

Other cumulative measures of exposure to 
ozone 

β Null − 0.15, 0.57 NR  

3rd grade math 
scores 

Maximum annual value of PM2.5 in cross 
sectional regressions 

β Negative − 0.03 p < 0.05  

3rd grade math 
scores 

Other annual measures of PM2.5 in cross 
sectional regressions 

β Null − 0.05, − 0.16 NR 

(continued on next page) 
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performance extracted in this SR are summarised in Table 6. Analyses 
containing full study samples were extracted while stratified analyses, 
presented by some authors to explore potential mechanisms or compare 
sub-groups, were not extracted. Only fully adjusted models were 
extracted if multiple models existed with different covariates included, 
excepting Mizenet al. (2020), who reported models controlling for 
multiple pollutants alongside single pollutant models. Most studies did 
not control for other pollutants due to collinearity, therefore, both 

single- and multi-pollutant models were extracted from Mizen et al 
(2020) to allow accurate comparison. A total of 138 analyses were 
extracted. The most analyses extracted from a single paper were 72 
(Shier et al., 2019), and the least was two (Clark-Reyna et al. 2016; 
Grineski et al. 2016). Out of the 10 studies reviewed, 9 found some 
significant association between TRAP and academic performance. 
However, out of 138 extracted associations there were 38 negative as-
sociations, three positive (specifically between measures of PM2.5 

Table 6 (continued ) 

Citation Outcome measure TRAP measure Type of 
Estimate 

Association & effect estimate 95% CI/ p 
value  

3rd grade math 
scores 

Annual measure of PM2.5 in child fixed 
effects model 

β Negative − 0.25 p < 0.01  

3rd grade math 
scores 

Cumulative exposure to PM2.5: Number of 
years above standard 

β Negative − 0.26 p < 0.05  

3rd grade math 
scores 

Other measure of cumulative exposure to 
PM2.5 

β Null − 0.05, − 0.52 NR  

3rd grade reading 
scores 

Maximum annual value of PM2.5 in cross 
sectional regressions 

β Negative − 0.03 p < 0.05  

3rd grade reading 
scores 

Other annual values of PM2.5 in cross 
sectional regressions 

β Null 0.00, − 0.26 NR  

3rd grade reading 
scores 

Annual measure of PM2.5 in child fixed 
effects model 

β Null 0.13 NR  

3rd grade reading 
scores 

Cumulative exposure to PM2.5: Number of 
years above standard and indicator for 
whether 2- years above standard 

β Negative − 0.44, − 1.25 p < 0.01, p <
0.01  

3rd grade reading 
scores 

Other cumulative measure of exposure to 
PM2.5 

β Null − 0.43 NR  

5th grade math 
scores 

All annual measures of PM2.5 in cross 
sectional regressions 

β Negative − 0.06, − 0.16, − 1.10 p < 0.01, p <
0.01, p < 0.01  

5th grade math 
scores 

Annual measure of PM2.5 in child fixed 
effects model 

β Null − 0.09 NR  

5th grade math 
scores 

Cumulative exposure to PM2.5: Number of 
years above standard and indicator for 
whether 2- years above standard 

β Negative − 0.36, − 1.37 p < 0.01, p <
0.05  

5th grade math 
scores 

Other measure of cumulative exposure to 
PM2.5 

β Null − 0.39 NR  

5th grade reading 
scores 

Maximum annual value of PM2.5 in cross 
sectional regressions 

β Negative − 0.04 p < 0.05  

5th grade reading 
scores 

Other annual values of PM2.5 in cross 
sectional regressions 

β Null − 0.08, − 0.57 NR  

5th grade reading 
scores 

Annual measure of PM2.5 in child fixed 
effects model 

β Positive 0.18 p < 0.05  

5th grade reading 
scores 

Cumulative exposure to PM2.5: Number of 
years above standard and indicator for 
whether 2- years above standard 

β Negative − 0.40, − 1.94 p < 0.01, p <
0.01  

5th grade reading 
scores 

Other measure of cumulative exposure to 
PM2.5 

β Null − 1.33 NR  

3rd grade reading 
scores 

Annual percentage of days above standard 
for PM10 

β Positive 0.18 p < 0.05  

3rd/5th grade 
reading/math 
scores 

All other annual PM10 measures β Null ranging from 0.43 to − 0.34 NR 

Stingone et al., 
2016 

Math scores High exposure to diesel PM only β NR figure suggests null NR  

ELA scores High exposure to diesel PM only β NR figure suggests null NR  
Failing to meet 
math standards 

High exposure to diesel PM only RR Null 1.03 (0.99, 1.06)  

Failing to meet ELA 
standards 

High exposure to diesel PM only RR Negative 1.03 (Positive association between exposure 
and failing to meet standards represents a negative 
association between TRAP and academic performance) 

(1.00, 1.05) 

Marcotte, 
2017 

Reading scores Exposure to PM2.5 at time of testing β Negative − 0.020 p < 0.05  

Reading scores Exposure to PM2.5 2 weeks before testing β Null 0.008 NR  
Reading scores Lifetime exposure to PM2.5 β Null 0.050 NR  
Reading scores Exposure to Ozone at time of testing β Null 0.006 NR  
Reading scores Exposure to Ozone 2 weeks before testing β Null 0.01 NR  
Reading scores Lifetime exposure to Ozone β Null − 0.044 NR  
Math scores Exposure to PM2.5 at time of testing β Null 0.001 NR  
Math scores Exposure to PM2.5 2 weeks before testing β Null − 0.001 NR  
Math scores Lifetime exposure to PM2.5 β Null 0.064 NR  
Math scores Exposure to Ozone at time of testing β Null 0.007 NR  
Math scores Exposure to Ozone 2 weeks before testing β Null − 0.027 NR  
Math scores Lifetime exposure to Ozone β Null − 0.073 NR 

β = Beta coefficient; NR = Not reported; r = Pearson’s correlation r; RR = Risk Ratio 
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exposure and academic performance in all three cases), and 97 null 
associations. 

The study designs were highly heterogeneous, making it impossible 
to identify consistent patterns of association for specific combinations of 
individual pollutants, age groups, learning domains, exposure windows, 
and exposure locations. Across the papers, exposure was assessed at both 
homes and schools. PM2.5, PM10, nitrogen dioxide, and ozone were the 
TRAP most included in single-pollutant analyses. Individual learning 
domains assessed were literacy and numeracy. Finally, effect sizes for 
significant associations were small in most papers. 

3.5. Confidence in the body of evidence 

Overall confidence in the body of evidence was low. The evidence 
profile is reported in Supplementary Table S12. The studies were all 
observational which, per the OHAT tool, automatically grades a low 
initial confidence in the body of evidence (Rooney et al. 2014). Factors 
lowering confidence in the body of evidence included the serious RoB 
within individual studies, imprecision of effects due to wide confidence 
intervals (CI) or a lack of reporting of CI, and the potential for publi-
cation bias. Nine papers either explicitly stated an absence of conflict of 
interest (COI) or reported funding sources which did not raise concerns 
over COI, and declared the independence of the viewpoints presented. 
One paper failed to report on sources of funding or potential COI 
(Marcotte, 2017). 

4. Discussion 

4.1. Summary of evidence 

Of the 10 articles identified, 9 found some evidence that children and 
adolescents exposed to higher levels of TRAP pollutants show poorer 
academic performance than those exposed to lower levels of TRAP 
pollutants. This is consistent with other research finding evidence for 
associations between academic performance and indoor air quality or 
non-traffic sources of ambient pollution (Mohai et al. 2011; Stafford 
2015). Therefore, TRAP may be another environmental factor affecting 
school children from which they should be protected. However, the 
majority of analyses extracted in this review found null associations. 
Furthermore, the study designs were highly heterogeneous, making it 
impossible to conduct any meta-analyses or to identify consistent pat-
terns of association between individual pollutants, age groups, learning 
domains, exposure windows, and exposure locations. Finally, the size 
and emergent nature of the body of evidence raised concerns for po-
tential publication bias (OHAT, 2015). The predominance of null asso-
ciations, followed by associations with declines in academic 
performance, indicates that it is not only papers with significant findings 
in one direction which are being published in this field. However, some 
exposure metrics are used in single studies only and these findings need 
to be replicated in other settings to strengthen the validity of these 
methods. 

Important foundations have been laid for future research. In partic-
ular, the suggestion in some papers that low SES and ethnic minority 
groups experience a higher risk of exposure and possibly more adverse 
effects should be further investigated (Gaffron and Niemeier 2015; 
Kweon et al., 2018). These findings are in accordance with other studies 
exploring racial gaps in exposure to harmful pollutants at school, 
highlighting the issue of environmental injustice in school-based expo-
sures (Chakraborty, 2009; Korenstein & Piazza, 2002; Wu & Batterman, 
2006). Policy makers should be aware that failing to protect children 
from TRAP at school could also exacerbate social inequalities. 

4.2. Limitations and recommendations for future research 

The current body of literature on TRAP and academic performance is 
small with vast room for improvement and further exploration. All 

studies reviewed were observational. Although it is possible to make 
causal inferences from observational studies where there is plausibly 
exogenous variation in exposure, the studies in this SR do not present 
robust strategies for identifying causality. Rather they rely on the in-
clusion of many control variables in the analysis. Experimental studies 
would contribute greatly to the body of evidence, however, allocating 
children to different levels of TRAP exposure is impracticable. One 
alternative is exploring interventions, for example a study by Austin et al 
(2019) found a positive association between the retrofitting of school 
buses to reduce toxic exposures and student health and academic per-
formance (Austin et al., 2019). Such observational research could also 
be adapted into studies with random allocation to intervention or con-
trol groups. 

It should be noted that throughout the COVID-19 pandemic, short- 
term reductions in air pollution and disruptions to education practices 
and school attendance have been observed (He et al., 2020; Menut et al. 
2020; Radha et al., 2020). Therefore, the pandemic represents an 
additional challenge to the identification of plausibly exogenous varia-
tion missing from the current body of observational research. This 
strengthens the case for focussing on intervention studies, at least in the 
short term. 

The majority of studies in this review were cross-sectional (n = 7) 
and, therefore, unable to estimate changes in the strength or direction of 
the TRAP-academic performance relationship over time. Although five 
studies assumed that their TRAP measures represented cumulative 
exposure, longitudinal research with repeated measures would be more 
appropriate. Such methodology has been used to find a negative asso-
ciation between TRAP exposure at school and cognitive development in 
children from the ages of 7–10 years (Sunyer et al., 2015) 

The overall risk of bias in individual studies was graded to be serious. 
In particular, the exposure assessments selected by most studies were 
proxy measures which were subject to exposure misclassification and 
were limited in their accuracy in terms of estimated concentrations of 
TRAP. While the validity of the exposure metrics used is of concern, it 
should be noted that such proxy measures are likely to underestimate 
effects and bias results towards the null. Nevertheless, future studies 
must use valid and reliable exposure metrics and avoid using the USE-
PA’s NATA modelled estimates. Personal/ on-site monitors measuring 
individual pollutants would provide the most accurate assessment of 
TRAP exposure. However, these methods are more resource intensive 
and would not be feasible when measuring large samples. Such trade- 
offs in research design mean that different studies with different 
strengths are needed to create a strong body of research. Therefore, 
personal/ on site monitoring is not the only acceptable option. Other 
systematic reviews exploring associations between health outcomes and 
TRAP exposure report heterogeneity in exposure assessments used 
(Clark et al. 2020; Khreis et al. 2017; Lau et al., 2018). However, the 
quality of the exposure assessments identified in these reviews is higher 
than those found in this investigation with a greater application of LUR 
modelling along with air quality monitoring data and the assessment of 
specific pollutants. Assessing the effect of individual pollutants is 
important because the composition of TRAP may vary within and be-
tween different geographic areas. Multi-country research using 
harmonised methodologies to compare concentrations PM of varying 
aerodynamic diameter and assessing the ratios between PM composi-
tions and NO2, report significant variations between different areas in 
Europe (Eeftens et al. 2012). Research based in China has also found that 
the concentrations and associated health effects of PM and ozone vary 
between regions (Xie et al. 2019). In addition, the potential confounding 
or co-exposure role of indoor (home and school) air pollution exposure 
has not been examined in this review and these factors may contribute to 
residual confounding effects and the inconsistent results observed be-
tween the papers in this review. 

Future research should also make use of individual level outcome 
data, ensure consistency across studies in the use of confounders 
controlled for in analyses, and report and justify methods of sampling 
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and statistical analysis. 
To expand the scope of the present body of evidence, mechanisms 

and interactions of the TRAP-academic performance relationship can be 
explored. The predominant mechanisms of the TRAP-academic perfor-
mance relationship proposed in the literature are displayed in Fig. 3. 
Firstly, a direct impact of TRAP on academic performance due to 
impaired cognitive function is proposed. UFP and PM2.5 reaches brain 
regions associated with learning and memory directly via the olfactory 
bulb and indirectly by penetrating the lungs and entering the blood-
stream, causing neuro-inflammation (Allenet al. 2017; Calderón- 
Garcidueñas et al. 2007; Elder et al. 2006; Jayaraj et al., 2017; Sunyer, 
2008). Further cognitive impairments include white matter damage, 
disruption to the dopamine and glutamine neurotransmitter systems, 
changes in synaptic plasticity and the presence of amyloid plaques 
resembling those occurring in Alzheimer’s disease (Allen et al. 2017; 
Calderón-Garcidueñas et al. 2007; Calderón-Garcidueñas et al. 2008). 
Psychological distress, headaches, disturbed sleep due to asthma exac-
erbation and adverse respiratory symptoms are also proposed to impair 
cognitive function indirectly (Basch 2011; Chen, 2019). Alternatively, 
an indirect pathway between TRAP and academic-performance is pre-
sented based on the increase in school absences due to ill-health asso-
ciated with TRAP exposure (Currie et al., 2009; Pastor et al., 2004). 
Relationships between asthma exacerbation, school absence and aca-
demic performance have been particularly explored, although this 
pathway has not been firmly established (Goldizen et al., 2016; Moonie 
et al., 2008; Sullivan et al., 2018). 

It is likely that both pathways influence the relationship between 
TRAP and academic performance, with the importance of each 
depending on the context of exposure. The current body of evidence 
includes a mix of home vs. school and short vs. long term exposure as-
sessments. It could be hypothesised that school exposures represent 
more acute effects of TRAP, with health impairments such as asthma 
exacerbation and headaches playing a more important role. Meanwhile, 
home exposures may represent more chronic effects, including cognitive 
impairment. For example, previous literature argues that cumulative 
exposure to air pollution is the greatest threat to cognitive function 
(Allenet al. 2017; Zhang et al., 2018). As the body of evidence on TRAP 
and academic performance grows it will become possible to compare the 
effects of different exposure contexts. 

The relationship between TRAP, green space and academic perfor-
mance should also be further explored. Green space has been recom-
mended as an intervention to improve academic performance based on 
proposed restorative effects (Browning and Rigolon 2019). It has also 
been proposed as an intervention to reduce TRAP exposure by reducing 
space available for cars around schools (Rivas et al., 2018) based on the 
finding that schools with more greenness within and surrounding the 
site were found to have lower ambient levels of TRAP pollutants (Dad-
vand et al. 2015). Future research should explore whether green space 
shows a positive interaction with TRAP exposure, based on restorative 
effects, or merely acts as an effect modifier (He et al., 2020; Menut et al. 
2020; Radha et al., 2020). 

4.3. Strengths and limitations of the systematic review 

This is the first SR assessing the relationship between TRAP and 
academic performance in children and adolescents. The small number 
and high heterogeneity between included papers, precluded a formal 
meta-analysis. Extensive recommendations for future research are made 
to facilitate future development of this literature. 

Although the processes of assessing risk of bias in individual studies 
and rating confidence in the body of evidence are inherently subjective, 
the use of the OHAT framework involved extensive documentation and 
justification of decisions, maximising transparency and consistency 
(Rooney et al. 2014). The selection of search terms for a SR also involves 
a degree of subjectivity. However, an extensive combination of terms 
based on similar research and key words identified in relevant papers 
was used. Retrieval of evidence was partially incomplete as some papers 
did not report numerical effect estimates for all analyses (Donovan et al. 
2020; Stingone et al. 2016). Although authors were contacted, the data 
could not be retrieved. 

5. Conclusion 

In conclusion, this review found some evidence that children and 
adolescents exposed to higher levels of TRAP pollutants show poorer 
academic performance than those exposed to lower levels of TRAP 
pollutants. However, this evidence was judged to be weak because the 
existing body of literature is small, lacks the inclusion of high-quality 
exposure measures, and presents limitations in reporting. Further 
research is required to strengthen the body of evidence and to determine 
the precise mechanisms through which the TRAP-academic performance 
relationship may operate. 
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