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Abstract

Smaller manually-segmented amygdala volumes have been associated with poorer

motor and cognitive function in Huntington's disease (HD). Manual segmentation is

the gold standard in terms of accuracy; however, automated methods may be neces-

sary in large samples. Automated segmentation accuracy has not been determined

for the amygdala in HD. We aimed to determine which of three automated

approaches would most accurately segment amygdalae in HD: FreeSurfer, FIRST, and

ANTS nonlinear registration followed by FIRST segmentation. T1-weighted images

for the IMAGE-HD cohort including 35 presymptomatic HD (pre-HD), 36 symptom-

atic HD (symp-HD), and 34 healthy controls were segmented using FreeSurfer and

FIRST. For the third approach, images were nonlinearly registered to an MNI tem-

plate using ANTS, then segmented using FIRST. All automated methods over-

estimated amygdala volumes compared with manual segmentation. Dice overlap

scores, indicating segmentation accuracy, were not significantly different between

automated approaches. Manually segmented volumes were most statistically differ-

entiable between groups, followed by those segmented by FreeSurfer, then ANTS/

FIRST. FIRST-segmented volumes did not differ between groups. All automated

methods produced a bias where volume overestimation was more severe for smaller

amygdalae. This bias was subtle for FreeSurfer, but marked for FIRST, and moderate

for ANTS/FIRST. Further, FreeSurfer introduced a hemispheric bias not evident with

manual segmentation, producing larger right amygdalae by 8%. To assist choice of

segmentation approach, we provide sample size estimation graphs based on sample

size and other factors. If automated segmentation is employed in samples of the cur-

rent size, FreeSurfer may effectively distinguish amygdala volume between controls

and HD.
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1 | INTRODUCTION

Changes in emotion processing in Huntington's disease (HD) typically

manifest in difficulties in recognizing facial expressions, and are part

of a range of cognitive, psychiatric, and motor symptoms observed in

this disorder (Bates et al., 2015; Henley et al., 2012; Papoutsi,

Labuschagne, Tabrizi, & Stout, 2014; Paulsen, Ready, Hamilton,

Mega, & Cummings, 2001; Stout et al., 2011). The atrophy seen in HD

occurs in a spatiotemporally specific pattern (Fonteijn et al., 2012;

Rosas et al., 2008), with some atrophy detectable during the pres-

ymptomatic (e.g., Bates et al., 2015; Ross et al., 2014) phase of the

disease, that is, well before diagnosable signs and symptoms are pre-

sent (Aylward et al., 2004; Paulsen, 2010). Neuroimaging studies in

HD often focus on characterizing atrophy across stages of the condi-

tion, and clarifying relationships between regional atrophy and other

symptoms. The amygdala has recently received increased attention in

HD research because of its role in emotion processing deficits

(e.g., Kipps, Duggins, McCusker, & Calder, 2007; Mason et al., 2015).

In the amygdala, volumetric MRI studies are critical in clarifying how

atrophy relates to deficits in emotion processing, although changes

are subtle, relative to the marked atrophy seen in the striatum

(Aylward et al., 1994, 2004; Domínguez et al., 2013; Domínguez et al.,

2016; Fonteijn et al., 2012; Papoutsi et al., 2014; Poudel et al., 2014;

Tabrizi et al., 2009; Vonsattel et al., 1985). Even in healthy individuals,

the amygdala is somewhat challenging to segment on MRI due to its

heterogeneous intensity, and tissue boundaries that can appear indis-

tinct (Chupin et al., 2009; Entis, Doerga, Barrett, & Dickerson, 2012).

In terms of MRI segmentation accuracy in general, manual tracing is

regarded the “gold standard”; however, manual segmentation is most

often prohibitively time consuming and in the context of large cohort

MRI studies (which are common in HD research) is rarely feasible

(e.g., Hammers et al., 2003; Heckemann, Hajnal, Aljabar, Rueckert, &

Hammers, 2006). Therefore, automatic methods for segmentation are

essential.

FreeSurfer (Fischl et al., 2002) and FIRST (Patenaude, Smith, Ken-

nedy, & Jenkinson, 2007; Patenaude, Smith, Kennedy, & Jenkinson,

2011) are two commonly used, freely available segmentation tools

that label subcortical structures and output regional volumes.

Amygdala-specific segmentation tools have also been developed

(Collins & Pruessner, 2010; Hanson et al., 2012; Saygin et al., 2017)

though some are not publicly available (Collins & Pruessner, 2010;

Hanson et al., 2012). In HD, many volumetric studies have used

FreeSurfer or FIRST, which label multiple parcellated regions through-

out the brain. Thus, we have focused on these widely used tools. The

accuracy of FreeSurfer and FIRST has been previously compared with

reference to gold standard manual segmentation in normal and clinical

populations, and in different subcortical brain regions (Doring et al.,

2011; Merkel et al., 2015; Morey et al., 2009; Mulder et al., 2014;

Pardoe, Pell, Abbott, & Jackson, 2009; Perlaki et al., 2017;

Schoemaker et al., 2016). Results have been mixed, and vary based on

sample and brain region. With regards to the amygdala specifically,

Morey et al. (2009) found that FreeSurfer performed better on some

measures of accuracy in healthy adults and in a small sample (n = 9) of

individuals with major depressive disorder. Schoemaker et al. (2016)

found mixed results in preadolescent children, and suggested that seg-

mentations derived via both FreeSurfer and FIRST may require man-

ual corrections. These results, however, are not generalizable to HD,

which has a unique neuropathological basis. The atrophy in amygdala

and surrounding structures that occurs during the course of HD

(Ahveninen, Stout, Georgiou-Karistianis, Lorenzetti, & Glikmann-John-

ston, 2018), may influence the accuracy of amygdala segmentation. It

is thus imperative to determine which of these pipelines is most

appropriate for this clinical cohort.

Both FreeSurfer and FIRST pipelines implement registration and

segmentation routines, and utilize Bayesian approaches to fit models

that draw upon manually labeled training sets. There are many aspects

of the processing pipelines that differ between the two tools, including

the type of model used. Another point of difference is the registration

approach used, and we focused on this aspect in the current article.

FreeSurfer's subcortical pipeline performs initial affine registration to

the MNI 305 template (Evans, 1992), initial labeling, bias correction,

then nonlinear registration to the MNI 305 template, which deforms

the target image so it can match the template as closely as possible

(Fischl et al., 2002, 2004). FreeSurfer uses a model that incorporates

anisotropic nonstationary Markov Random Fields to fit labels based on

intensity as well as spatial location relative to neighboring structures. In

comparison, FIRST performs an affine-only registration to the MNI152

nonlinear 1 mm template (Fonov et al., 2011) using FLIRT, and trans-

forms the model to native space in order to capitalize on intensity infor-

mation in the noninterpolated image. The model employed in FIRST is a

Bayesian Appearance Model, which fits deformable shape meshes

based on conditional probability of shape and intensity information

(Patenaude et al., 2011). FIRST's use of linear transformations rather

than nonlinear warping restricts how closely structures in a training set

can be mapped onto those in a target image during the registration

step. However, this is overcome by the Bayesian framework allowing

shape meshes to deform beyond the shapes existing in the training set

in order to match the target more closely (Patenaude et al., 2011). Con-

sidering the abnormal amygdala size seen in HD (Ahveninen et al.,

2018), we were interested to determine whether segmentations per-

formed by FIRST may be improved by performing initial nonlinear

warping of the data to template space.

In the current article, we utilized the Australian-based IMAGE-HD

cohort (including 35 pre-HD, 36 symp-HD, and 35 healthy controls),

for which manual amygdala segmentation had been performed by

Ahveninen et al. (2018). We aimed to identify the accuracy with which

three automated segmentation approaches would segment the amyg-

dala for this sample, by comparing the output of each pipeline with

the manual segmentation, thereby identifying which is most appropri-

ate for use in HD. We also aimed to provide estimates of sample sizes

required to produce amygdala volumes that are statistically differen-

tiable between HD and controls, and between pre-HD and symp-HD,

for each automated approach. The automated approaches tested

were FreeSurfer, the complete default FIRST pipeline, and FIRST's

segmentation algorithm applied to whole-head images bias corrected

and nonlinearly transformed into MNI space using ANTS.
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2 | METHODS

2.1 | Participants

The sample comprised 106 participants aged 23 to 72 years from the

IMAGE-HD study (Domínguez et al., 2013, 2016; Georgiou-Karistianis

et al., 2013). These included 34 healthy controls, 35 presymptomatic

huntingtin gene expansion carriers who had not developed motor

symptoms at the time of scanning (termed ‘pre-HD’), and 36 individ-

uals with early stage symptomatic HD (‘symp-HD’). One control par-

ticipant was excluded due to failed MRI labeling via FIRST (described

further in Section 2.3.2), resulting in 34 controls. HD participants were

genetically confirmed to have the huntingtin gene expansion (≥38

CAG repeats), and were between 23 and 70 years of age, with no his-

tory of major neurological illness (except HD), significant head injury,

or non-HD-related psychiatric disturbances. Participants with a

UHDRS total motor score (TMS) ≤ 5 were included in the pre-HD

group, and those with a UHDRS TMS score of 5 or above were

included in the symp-HD group (Domínguez et al., 2013). Participants

with pre-HD had Unified Huntington's Disease Rating Scale (UHDRS)

diagnostic confidence levels of less than four, indicating that they had

not received the HD diagnosis (Huntington Study Group, 1996). Par-

ticipants with symp-HD had Stage 1 or Stage 2 HD.

Groups significantly differed in terms of age (F[2,102] = 8.701,

p < .001), with the symp-HD group being older than the pre-HD

group (p = .001), as is typically observed given the progressive nature

of HD. The symp-HD group was also older than the control group

(p = .003). We chose to retain all participants rather than using sub-

sets of closer age in order to account for the progressive brain atro-

phy that is a fundamental characteristic of HD, and becomes more

severe with older age. In doing so, we accept that there will be some

proportion of atrophy in the symp-HD group attributable to normal

ageing. Pre-HD and control groups did not differ in terms of age

(p = .890). See Table 1 for participants' demographic information and

clinical data.

2.2 | MRI acquisition

MRI scans were acquired on a Siemens Magnetom Trio Tim scanner

with a 32-channel head coil, at Murdoch Children's Research Institute,

Royal Children's Hospital, Victoria, Australia. T1-weighted images

were acquired with: 192 slices, slice thickness 0.9 mm, in-plane reso-

lution 0.8 × 0.8 mm, 320 × 320 field of view, TR = 1,900 ms,

TE = 2.59 ms, inversion time 900 ms, flip angle 9�.

2.3 | Segmentation

2.3.1 | Manual segmentation

Manual tracing of amygdala was performed by L.A. using Analyze 12.0

(AnalyzeDirect, Overland Park, KS) according to an existing protocol

(Velakoulis et al., 2006) while blind to which group (i.e., control, pre-

HD, or symp-HD) participants belonged to. Intraclass correlation coef-

ficients (ICCs) indicating intrarater reliability were .89 (right) and .84

(left). ICCs indicating inter-rater reliability (with Y.G.-J.) were .88

(right) and .80 (left) (Ahveninen et al., 2018).

2.3.2 | Automatic segmentation

FreeSurfer

T1-weighted images were input into the default pipeline of FreeSurfer

6.0, using the ‘recon-all’ command. The amygdalae were isolated from

the resulting ‘aseg’ image.

FIRST

FIRST (Patenaude et al., 2011) was run using the 'run_first_all' script,

which implements automatic registration to the MNI nonlinear 1 mm

template (Fonov et al., 2011), and segmentation. We considered seg-

mentation to have failed for one participant in the control group, due

TABLE 1 Demographic information for participants in HD groups (reproduced from Ahveninen et al., 2018), and for the subset of controls
with successful segmentation for all methods

Presymptomatic HD Symptomatic HD Controls (with successful segmentation)

n 35 36 34

Males (%) 14 (40%) 21 (58%) 12 (35%)

Females (%) 21 (60%) 15 (42%) 22 (65%)

Age (mean ± SD) 41.59 ± 10.00 51.91 ± 9.36 42.58 ± 13.78

(range) (23.93–65.29) (38.99–70.84) (24.38–72.98)

UHDRS TMS (mean ± SD) .94 ± 1.24 19.47 ± 12.42 -

(range) (0–4) (6–60) -

CAG repeats (mean ± SD) 42.31 ± 1.97 43.17 ± 2.48 -

(range) (39–46) (40–50) -

DBS (mean ± SD) 269.70 ± 53.41 379.70 ± 70.02 -

(range) (131.64–369.60) (258.14–556.97) -

Abbreviations: DBS = Disease burden score; UHDRS TMS = Unified Huntington's disease rating scale total motor score.
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to poor registration resulting in the amygdala label being placed too

dorsally, partially overlying basal ganglia structures. Rerunning regis-

tration using the ‘first_flirt’ command with different parameters did

not improve the registration. Thus, we excluded segmentation for this

subject from the dataset. The 34 control individuals listed as partici-

pants are those for whom FIRST segmentation was completed suc-

cessfully, from an initial group of 35 controls.

ANTS/FIRST

T1-weighted images were bias corrected using the

‘N4BiasFieldCorrection’ (Tustison et al., 2010) script in ANTS (Avants

et al., 2011). Images were then registered to the MNI 1 mm

nonlinear template using ANTS, with the ‘AntsRegistration’ and

‘AntsApplyTransforms’ scripts. An affine transformation was first per-

formed, followed by a nonlinear transformation using symmetric dif-

feomorphic normalisation (SyN) with cross-correlation as the

similarity metric. Segmentation was then run on the bias corrected,

nonlinearly registered T1 images in MNI space using FIRST's ‘run_first’

script, using an identity matrix as the input transformation matrix.

FIRST's pipeline also includes bias correction, and we acknowledge

that the images thus underwent bias correction multiple times for this

method. Resulting segmentations were then transformed from MNI

space back to native space with the ‘AntsApplyTransforms’ script,

using the inverse of the affine transformation matrix and nonlinear

warp image generated by ANTS during the registration of T1 images

to the MNI template.

F IGURE 1 Examples of
segmentations resulting from each
technique, for a single participant from
each group. Sagittal, coronal, and axial
slices are displayed for each combination
of participant and segmentation
technique, shown in neurological
orientation (left is left). Surface mesh
representations of segmented amygdala
based on each technique are displayed for
the same individual participants. Yellow
meshes are manual segmentations. Red,
blue, and green meshes are for automated
techniques, and are overlaid on the
manually segmented meshes to illustrate
differences in morphology. Anatomical
axis descriptors: ‘A’ = anterior, ‘L’ = left,
‘P’ = posterior, ‘R’ = right
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2.4 | Statistical analysis

We evaluated the accuracy of the automated amygdala segmentation

approaches by: (a) computing Dice overlap scores between automated

and manual segmentations as a measure of automated segmentation

accuracy; (b) determining whether amygdala volume differences between

groups detected for manually segmented amygdala, could be detected

using automated methods; (c) producing Bland–Altman plots to indicate

estimation bias based on amygdala size; (d) comparing volumes of left

and right amygdala to indicate potential hemispheric bias in volumes pro-

duced by automated methods; and (e) producing sample size estimation

graphs, to provide an indication of relative sample sizes required to detect

group differences in amygdala volume for each method. Statistical ana-

lyses were performed using R (R Core Team, 2018).

2.4.1 | Deviations from normality

All amygdala volumes were compared in native space. We tested

amygdala volumes and Dice scores for normality, skew, and kurtosis,

and found that roughly one-sixth of the data were not normally dis-

tributed. Outliers were also present. We did not transform the data or

correct outliers because we wanted to depict the observed distribu-

tions of volumes provided by each method as accurately as possible.

Due to these violations of normality, we employed nonparametric sta-

tistics in all statistical comparisons.

2.4.2 | Dice overlap scores

Dice scores (Dice, 1945) are used to indicate the accuracy of segmen-

tation with reference to a “true” segmentation—in this case, manual

segmentation, by measuring the proportion of overlap between

segmentations. Dice scores range between 0 (no overlap) and 1 (com-

plete overlap). We obtained Dice scores using the ‘overlap’ function in

Convert3D (www.itksnap.org/c3d/).

2.4.3 | Statistical tests of differences in volumes
and Dice scores between and within groups

Differences between pairs of measurements within subjects, such as

comparisons of left and right hemisphere volumes, were tested using

Wilcoxon signed-rank tests (using the ‘wilcox.test’ function in R). We

calculated standardized effect sizes (denoted by r) for within subject

differences using r = z/sqrt(number of observations; Field, 2013). Dif-

ferences in amygdala volumes between groups were investigated for

each segmentation method using Wilcoxon rank sum tests. The

median of the volume difference between a sample from each group,

in mm3, was reported for these tests. P-values for each of these sets

of tests were both False Discovery Rate corrected (FDR; Benjamini &

Hochberg, 1995) and Bonferroni corrected to control for multiple

comparisons. We report the uncorrected, FDR corrected, and

Bonferroni corrected values. To investigate differences in Dice scores

across the three automated segmentation approaches, we used

Kruskall–Wallis tests (‘kruskal.test’ in R), which are a nonparametric

equivalent to an ANOVA, performed on rank data.

2.4.4 | Plots of amygdala volumes

We generated scatterplots of volumes between segmentation tech-

niques. Intraclass correlation coefficients (the quantitative measure of

correlation relevant for repeated measures comparisons) could not be

computed due to the violations of normality in some subsets of the

data, and thus are not reported.

F IGURE 2 Dice coefficients indicating overlap between automatic amygdala segmentations (FreeSurfer, FIRST, ANTS/FIRST) and the gold
standard manual tracing. Shown for controls (red plots), pre-HD (green plots), and symp-HD (blue plots). Left panel: left hemisphere. Right panel:
right hemisphere. Boxplot canter hinge indicates median, and top and bottom indicate 25th and 75th percentiles. Whiskers extend to the furthest
value within ±1.5 × the interquartile range. Outliers (outside of ±1.5 × the interquartile range) are indicated by asterisks. ‘Con’ = control,
‘pre’ = pre-HD, ‘sym’ = symp-HD
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Bland–Altman plots (Bland & Altman, 1986), which indicate the

difference in estimation between two methods (i.e., between manual

and automated segmentation here), were generated to provide an

indication of possible bias in volume estimation. Similarly to the

approach of Schoemaker et al. (2016), we used the manually seg-

mented amygdala volumes on the X-axis (see also Krouwer, 2008, for

justification of this method), and included regression lines to assist

with interpretation.

2.4.5 | Sample size estimation

Sample size estimation was performed using the R package ‘pwr’ and

was based on two-tailed, two-sample t-tests. We computed estimates

for the size per group of the sample for a range of effect sizes,

expressed as amygdala volume difference in mm3, for each segmenta-

tion type. The sample size estimates were computed separately based

on two separate sets of values. First, they were computed based on

observed power and p-values obtained for t-tests performed on the

amygdala volumes for manually segmented data. This allowed us to

establish the sample size that would be required for each automated

method to produce the equivalent capacity to differentiate between

groups as seen for manual segmentation. Second, to determine mini-

mum sample sizes required to differentiate between each group under

conditions of high power, estimates were computed using power = 0.8

and p = .05 (as per Morey et al. (2009)). Sample size estimates were

computed for left and right amygdala volumes separately because t-

tests, upon which the estimates were based, must be performed sepa-

rately for each hemisphere.

3 | RESULTS

3.1 | Amygdala volumes and volume differences
between segmentation methods

All automated methods overestimated amygdala volumes when com-

pared to manually segmented volumes. Visual inspection indicated

that amygdala segmentations extended further anteriorly for all auto-

mated methods compared with manual segmentations (Figure 1). This

difference was most marked for ANTS/FIRST, followed by FreeSurfer,

then FIRST (Figure 2 and Table 2). Density plots of amygdala volumes

are provided in Figure S1.

3.2 | Dice coefficients based on segmentation type

We sought to examine the extent of overlap between amygdala seg-

mentations produced manually and those produced automatically, by

calculating Dice scores (Dice, 1945).

Average Dice scores (across all groups and both hemispheres)

were 0.65 for FIRST, 0.64 for ANTS/FIRST, and 0.61 for FreeSurfer.

Dice coefficients for each group and hemisphere are shown in T
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Figure 2. There was no significant difference in Dice scores across the

three automated segmentation approaches, for left amygdala

(χ2 = 3.703, df = 2, p = .157), or right amygdala (χ2 = 1.591, df = 2,

p = .451). Similarly, we found no significant differences in Dice scores

for data broken down into groups: controls (left: χ2 = 0.834, df = 2,

p = .659, right: χ2 = 0.912, df = 2, p = .634), pre-HD (left: χ2 = 1.725,

df = 2, p = .422, right: χ2 = 0.601, df = 2, p = .741), and symp-HD (left:

χ2 = 2.931, df = 2, p = .231, right: χ2 = 0.579, df = 2, p = .749).

3.3 | Differences in amygdala volume between
groups detected for volumes derived via each
segmentation method

Next, we examined the extent to which group differences in amygdala

volumes (controls vs. pre-HD, controls vs. symp-HD, and pre-HD

vs. symp-HD) were found for different segmentation methods, using

Wilcoxon rank sum tests (FDR-corrected for multiple comparisons).

Manual segmentation provided volumes that allowed groups to be

most successfully differentiated. Significant differences in manually

segmented volumes were found between controls and pre-HD, and

controls and symp-HD, for both the right and left amygdala. Manually

segmented volumes were differentiable between the two HD groups

only when uncorrected for multiple comparisons (p = .030), but not

with FDR correction (p = .078). For FreeSurfer segmentation, differ-

ences in amygdala volumes were not detected between pre-HD and

symp-HD groups in either hemisphere, though differences were found

between controls and each HD group in the left amygdala, and

between controls and symp-HD in the right amygdala. No significant

group differences in volumes were found for segmentations derived

via FIRST. For ANTS/FIRST, the only volume difference detected was

between controls and symp-HD in the left amygdala. Results for these

comparisons are illustrated Figure 3, and complete statistics including

uncorrected, FDR-corrected, and Bonferroni-corrected p-values are

provided in Table S1.

3.4 | Associations between manually and
automatically segmented volumes, and assessment of
estimation bias

Intraclass correlation coefficients (i.e., the appropriate measure of correla-

tion for measurements within subjects), could not be computed because

the data were nonparametric. We therefore plotted the data to illustrate

the associations between automatically and manually segmented amyg-

dala volumes for each segmentation method (Figure 4). From visual

inspection, these associations appear strongest for FreeSurfer, then

ANTS/FIRST, and weakest for FIRST. For FIRST, the regression line

between automated and manually segmented volumes appears to be dif-

ferent between groups, particularly in the right hemisphere where the

intercept of the regression line for controls appeared lower than that for

symp-HD. The relationship between manually and automatically seg-

mented volumes for each automated method was explored further using

Bland–Altman plots (Figure 5), which are used to indicate estimation bias.

The negative slopes of the regression lines in each panel indicate

that all automated segmentation approaches produced an estimation

bias: overestimation of volumes was more severe for smaller amygda-

lae, and less severe for larger amygdalae. This bias was relatively small

for FreeSurfer, though quite marked for FIRST, and somewhat

reduced for ANTS/FIRST compared to that for FIRST.

F IGURE 3 Amygdala volumes in mm3 based on segmentation type in controls (red plots), pre-HD (green plots), and symp-HD (blue plots).
Left panel: left amygdala. Right panel: right amygdala. Boxplot center hinge indicates median, and top and bottom indicate 25th and 75th
percentiles. Whiskers extend to the furthest value within ±1.5 × the interquartile range. Outliers (outside of ±1.5 × the interquartile range) are
indicated by red asterisks. ***Wilcoxon rank sum test indicated a significant difference in volume between groups with p < .05 (FDR corrected),
** p < .01, *** p < .001
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3.5 | Right versus left amygdala volume
comparisons within segmentation techniques

We compared left amygdala volumes with right volumes within each

segmentation type for all data, and then for each HD group. Wilcoxon

signed rank tests indicated amygdala volumes segmented using

FreeSurfer were statistically significantly larger in the right hemi-

sphere than the left hemisphere, for all groups combined (p < .001,

FDR corrected) and for each group separately (all p < .01). Complete

statistics for these comparisons are listed in Table S2. Right amygdala

volumes were on average 7.6% larger than left (5.5% for controls,

6.4% for pre-HD, and 9.4% for symp-HD). No hemispheric volume dif-

ferences were found for FIRST, ANTS/FIRST, or manual

segmentations.

3.6 | Sample size estimation

Sample size estimates for detection of amygdala volumes between

groups, for a range of effect sizes (indicated by difference in amygdala

volume between groups in mm3), are shown in Figure 6. Graphs in

Figure 6 are based on statistics for left hemisphere amygdala volumes,

F IGURE 4 Scatterplots of automated versus manual amygdala volume in mm3 for each segmentation approach, with regression lines based
on linear models for controls (red plots), pre-HD (green plots) and symp-HD (blue plots). Shaded areas are 95% confidence intervals. Top row: left
amygdala. Bottom row: right amygdala
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as described in Section 2.4.5. Graphs based on statistical comparisons

of right hemisphere volumes are provided in Figure S2.

Sample size estimation indicated that for all comparisons, the

sample size required to detect amygdala volume differences between

groups was smallest for manual segmentation, and largest for FIRST.

For example, in section (e) of Figure 6, the difference observed

between manually segmented amygdala volumes in pre-HD and

symp-HD with the current sample size (n ~ 34 per group) is seen at

the point where the purple line crosses the black vertical line. Follow-

ing the black line upward from this point illustrates that to detect the

same effect with automated approaches requires a larger sample size

of approximately n = 92 per group for ANTS/FIRST, n = 102 for

FreeSurfer, and n = 110 for FIRST. Figure 6 part f) illustrates the sam-

ple sizes required to detect this effect with p = .05 given high power

(0.8) with approximately n = 53 per group for manual segmentation,

and substantially higher for automated methods, such that the gradi-

ent of the curves began to steepen rapidly around this point, produc-

ing values higher than n = 125.

4 | DISCUSSION

For the first time, we examined the accuracy with which different

automated segmentation methods segmented the amygdala at differ-

ent stages of HD. The statistical power in our study, provided by the

large sample size and equally-sized subgroups of the IMAGE-HD

cohort, facilitated the detection of amygdala volume differences

between groups in manually segmented data, which in turn provided a

reference for the assessment of accuracy of automated methods.

Thus this study provides information that is useful for guiding meth-

odological choices in volumetric studies in HD, and may help inform

interpretation of existing amygdala volumetric results.

We found that all automated methods overestimated amygdala

volume for all groups, compared with volumes produced with manual

segmentation. Specifically, FreeSurfer overestimated volumes by 61%

on average, FIRST overestimated volumes by 45% on average, and

ANTS/FIRST by 83% on average. These inflated volume estimates

would be problematic in any context in which absolute amygdala vol-

ume is of primary importance. They also illustrate that amygdalae that

have been segmented with different methods cannot be directly com-

pared in terms of absolute volume, such as where segmentation

methods differ across studies.

Qualitatively, amygdala segmentations extended further anteriorly

for all automated methods compared with manual segmentations. A

factor contributing to this may be that the amygdala segmentation pro-

tocols differ between manual and automated segmentation techniques.

The manual segmentations performed by Ahveninen et al. (2018) and

used here were delineated according to the widely-used protocol speci-

fied in Velakoulis et al. (2006). The training sets for both FreeSurfer and

FIRST employ manually segmented images provided via the Center for

Morphometric Analysis (see https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST,

and http://freesurfer.net/fswiki/SubcorticalSegmentation, wherein it is

indicated that original segmentation protocols are described in Filipek,

Richelme, Kennedy, and Caviness (1994)). Velakoulis et al. specify the

anterior boundary of the amygdala as, “the section anterior to the

appearance of the optic chiasm” (p. 142). In comparison, Filipek et al.

do not explicitly specify an anterior boundary. It is possible that the

amygdala labels in the training sets for FreeSurfer and FIRST extend

F IGURE 5 Bland–Altman plots of amygdala volume for each automated segmentation technique, versus manual segmentation, for all groups
combined. X-axis: manually segmented amygdala volume. Y-axis: difference in amygdala volume between manual segmentation and the
automated segmentation. Red: left amygdala. Black: right amygdala. Dark blue line: mean difference. Light blue lines: upper and lower limits of
differences, that is, mean difference ± 1.96 × SD. Black line: regression line from linear model
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F IGURE 6 Sample size estimation for ability to statistically detect differences in amygdala volumes between groups. Based on observed
power and observed p-values (left), and power = 0.8 and p = .05 (right) for comparisons between control and pre-HD (a,b), control and symp-HD
(c,d), and pre-HD and symp-HD (e,f). Estimates assume parametric data, and are based on t-tests performed on left amygdala volumes
(corresponding graphs based on tests performed on right amygdala volumes are presented in Figure S2). Vertical black lines indicate observed
mean amygdala volume difference between groups in mm3. The Y-axis limits are sample sizes comprising between n = 0 and n = 125 per group.
This upper limit was chosen for clarity of visualization
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more anteriorly than the boundary specified by Velakoulis and col-

leagues, resulting in amygdala segmentations of the current data being

more extensive anteriorly. However, this cannot be confirmed on the

basis of the provided protocols (see Supporting Information for com-

plete protocol descriptions).

A potential caveat relating to manual segmentation in HD is that

atrophy in the amygdala, surrounding or widespread regions may be

visibly noted on the scans. This may compromise the blinding of those

performing manual segmentation to participants' group membership,

which could potentially lead to a systematic bias in amygdala volume

between groups. Although this possibility cannot be eliminated for

the current data, the tracing protocol provides clear anatomical

boundaries, and inter-rater reliability was found to be high, so we are

reasonably confident in the accuracy of the segmentations in the

presence of atrophy.

Quantitatively, we indicated accuracy of automated segmenta-

tions by calculating Dice scores, which represent the proportion of

overlap between label images produced by manual and automated

segmentation. Dice scores ranged between 0.6 and 0.65, and did not

statistically differ between automated segmentation approaches.

These unimpressive scores are not surprising considering that: (a) the

amygdala is a challenging structure to segment, so high automated

labeling accuracy would not be expected, and; (b) the automated

methods greatly overestimated amygdala volume, thus the proportion

of overlap between a given automated (large) label, and the

corresponding manual (small) label, would be small because much of

the automated label extends outside of the manual label. Accordingly,

the more extensive volume overestimation produced by FreeSurfer

and ANTS/FIRST, compared to that for FIRST, may have also reduced

the average Dice scores for these approaches compared to that for

FIRST. Since no automated technique produced segmentations that

markedly altered Dice scores, this metric may not be the most useful

indicator of segmentation accuracy for this data.

In the context of clinical studies, the ability to accurately detect

existing volume differences between HD groups and controls, and

between pre- and symp-HD, may be the most useful criterion for

assessing which segmentation approach to employ. Here, manual seg-

mentation produced volumes that were most easily differentiated

between groups, with controls readily differentiable from both symp-

HD and pre-HD in both the left and right amygdala. Manual segmen-

tation also produced right amygdala volumes that were statistically

different between pre-HD and symp-HD when uncorrected for multi-

ple comparisons, but not with FDR correction. Other methods did not

differentiate amygdala volume in pre-HD and symp-HD. Therefore, in

studies where this distinction is important, manual segmentation and

a slightly larger sample size may be necessary. Furthermore, in order

to more closely characterize where in the amygdala volume differ-

ences occurred between groups or time points, the use of shape anal-

ysis may be beneficial. FreeSurfer was second most effective at

differentiating amygdala volumes between groups, producing segmen-

tations that could distinguish controls from either of the HD groups in

left amygdala, and could distinguish controls from symp-HD in the

right amygdala. Where manual segmentation is not feasible, our

findings indicate that FreeSurfer is the next most effective method at

producing amygdala volumes that preserve differences between

groups. FIRST produced volumes that were not statistically different

between groups, so we do not recommend using FIRST for segmenta-

tion of amygdala in HD in samples of the current size. Incorporating

ANTS nonlinear registration with FIRST segmentation only slightly

improved the ability to detect differences in amygdala volumes

between groups, resulting in a volume difference between controls

and symp-HD only in left amygdala.

The unfavorable results for FIRST may be relevant for the inter-

pretation of previous amygdala volumetric studies in HD that used

FIRST. For example, Coppen, Jacobs, van den Berg-Huysmans, van

der Grond, and Roos (2018) used FIRST to segment subcortical

regions in 79 individuals with manifest HD and 30 controls, and van

den Bogaard et al. (2011) used FIRST in the TRACK-HD sample com-

prising 30 individuals with premanifest HD, 30 with manifest HD, and

30 controls. In both studies, no group differences were found in

FIRST-segmented amygdala volumes, but smaller volumes were found

in the HD groups compared with controls in several regions including

nucleus accumbens, caudate, putamen, and hippocampus. For studies

such as these where multiple brain regions are investigated in rela-

tively large samples, manual segmentation may prove impracticably

time consuming. However, it is possible that FreeSurfer may provide

an automated option with the ability to produce amygdala segmenta-

tions more delineable between groups.

The lack of group differences in amygdala volumes derived from

automated methods may be partially understood by exploring estima-

tion biases for the automated methods. Bland–Altman plots indicated

that all automated segmentation approaches produced a bias wherein

the overestimation of volume was most severe for smaller amygdalae.

This bias was least pronounced for FreeSurfer, strongest for FIRST,

and somewhat reduced for ANTS/FIRST. A similar pattern of bias was

found by Schoemaker et al. (2016) in their paediatric sample, where

FIRST overestimated volumes of smaller structures more severely

than FreeSurfer. Amygdalae in individuals with HD are smaller than

amygdalae in controls as a result of atrophy. Accordingly, the upshot

of this estimation bias was most apparent in the symp-HD group,

where the average differences between manual and FIRST-derived

volumes (as per Table 2) for this group were 96% (left amygdala) and

93% (right amygdala). By contrast for pre-HD differences were 89%

(left) and 88% (right), and for controls 61% (left) and 60% (right). This

bias appears to be a major factor contributing to the inability to detect

differences in volumes between groups for segmentations produced

with FIRST.

In terms of the methodological mechanism of this bias, specula-

tively, it is possible that FIRST's model could not accurately conform

amygdala meshes to amygdalae that were abnormally small due to

atrophy. The Bayesian modeling approach employed in the default

FIRST pipeline allows shape meshes of each structure to deform fur-

ther than the boundaries of the structures in the training set, to fit the

observed anatomy (Patenaude et al., 2011). Feng et al. (2017)

suggested that, particularly in cases of brain abnormality, the use of

linear rather than nonlinear registration in the initial steps of FIRST's
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pipeline could result in a structure in the model being inaccurately

aligned with the same structure in the target data, in ways that the

mesh deformation cannot fully correct for. Feng and colleagues

improved segmentation accuracy with FIRST by incorporating initial

nonlinear transformations and additional quantitative susceptibility

mapping data. In this study, we performed initial ANTS nonlinear reg-

istration to the MNI template in an attempt to reduce the distance

between the model and the underlying (albeit bias corrected,

nonlinearly transformed, and resampled) anatomy. This step appears

to have reduced some of the differences apparent between manually

segmented volumes and those produced by FIRST, as can be seen in

Figure 4. However, any improvement in mesh fitting conferred by this

nonlinear registration did not prevent significant overall volume over-

estimation. The bias toward more severe overestimation of smaller

amygdala also remained, but was somewhat reduced. This reduction

in bias, in turn, may have led to slight improvement in ability of

ANTS/FIRST to differentiate between groups. As mentioned by

Perlaki et al. (2017), continued evaluation of FreeSurfer and FIRST in

future will be useful, as they are actively developed. Amygdala-

specific segmentation techniques such as those by Collins and

Pruessner (2010), Hanson et al. (2012), and Saygin et al. (2017) should

also be evaluated in HD, and may provide promising alternatives in

HD studies investigating amygdala structure.

FreeSurfer segmentations contained an additional bias where

right amygdala segmentations were larger than left amygdala segmen-

tations. This bias was seen in control participants as well as in the HD

groups, indicating that this result was not indicative of lateralized atro-

phy. We did not find a lateralized volume bias for any of the other

segmentation methods, including manual segmentation. This suggests

that it is unlikely to be due to a genuine volume difference, which

manual segmentation should have detected. With respect to laterali-

zation in HD, although there are isolated reports of left lateralized

atrophy in the striatum (Minkova et al., 2017; Mühlau et al., 2007) and

cortex (Rosas et al. (2002), HD is not considered a lateralized disorder

and there is no strong evidence for a hemispheric bias in HD neu-

rodegeneration. It is also unlikely to be due to image artifact, unless a

subtle artifact was present that solely affected segmentation by

FreeSurfer. To the best of our knowledge, there is no published evi-

dence for a right hemisphere volume bias produced by FreeSurfer in

the amygdala specifically. However, Fennema-Notestine et al. (2007)

identified a right-dominant asymmetry in hippocampal volumes in

two-thirds of FreeSurfer's manually traced atlas training set, and a

concomitant right hemisphere volume bias when performing hippo-

campal labeling with FreeSurfer. Given that the hippocampus and

amygdala are adjacent structures with similar tissue intensity values, it

is possible that a similar asymmetry in amygdala volume could exist in

FreeSurfer's training set due to anatomy or otherwise, which could be

translated as a right volume bias when labeling new amygdalae. It may

be useful to note the current finding in relation to future studies

involving amygdala in HD with FreeSurfer segmentation. Clearly, a

bias of this type would be problematic in any study investigating later-

alization of amygdala volume or structure, or where the segmentation

may be used as a mask to investigate amygdala connectivity or

function where hemispheric differences are key features. However,

where lateralization is not the main property of interest, a potential

lateralized bias in volume could be accepted in view of other advan-

tages that FreeSurfer may offer.

Another factor to consider in choosing the most appropriate seg-

mentation method is sample size, which affects statistical power. For

the current data, sample size estimation indicated that in order to

reproduce the statistical differences that were observed in manually

segmented amygdala volume between groups using automated

methods, group sizes would need to be substantially larger. These dif-

ferences were less pronounced for large effect sizes, such as the nota-

ble volume differences between symp-HD and controls, which

reflects the more advanced atrophy in symp-HD. By contrast, the dif-

ference in sample size required to differentiate amygdala volumes

between groups was particularly marked for comparisons between

pre-HD and symp-HD. If p = .05 and power = 0.8 were assumed, sam-

ple sizes over 10 times larger would be required for automated

methods. The substantially larger sample size required for comparison

between different stages of HD reflects the subtle changes in amyg-

dala atrophy that occur as the disease progresses from pres-

ymptomatic into symptomatic stage (Ahveninen et al., 2018).

Sample sizes required to delineate between controls and symp-

HD were smaller for ANTS/FIRST than for FreeSurfer. This appears

unintuitive considering that FreeSurfer was able to statistically differ-

entiate amygdala volumes between these groups more effectively

than ANTS/FIRST. Interpretation of this discrepancy may be assisted

by considering the variances of each subset of the data presented in

Figure S1. This figure illustrates that automated methods incur greater

variance and irregular distributions due to labeling errors, which may

then affect statistical comparisons. We calculated sample sizes using

parametric statistics. We had established that although the majority

of subsets of volume measurements in the current data were normally

distributed, one sixth were not. Therefore, sample sizes we provide

here should be interpreted as approximate indications rather than

prescriptive.

4.1 | Summary and conclusions

The current study utilized a large and balanced sample of individuals

with HD and controls, for which manual segmentation of amygdala

was performed. Manual segmentation provided gold standard volu-

metric data against which to assess existing automated segmentation

protocols, and one experimental method. We found that manual seg-

mentation is the most optimal method of amygdala segmentation in

HD, producing volumes that were most easily differentiated between

groups. Manual segmentation may be necessary in studies aimed at

detecting amygdala volume differences between individuals with pre-

HD and symp-HD, though a slightly larger sample size may be needed.

FreeSurfer performed better than other automated methods on some

measures and may constitute a favorable automated alternative. How-

ever, the introduction of a potential hemispheric bias in volume esti-

mation may be problematic in studies investigating lateralization of
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amygdala volume change in HD. FIRST produced volumes that were

closer in absolute volume to manual segmentations, but more strongly

overestimated the volume of smaller amygdalae, and performed

poorly in terms of differentiating amygdala volume between groups.

Performing initial ANTS nonlinear registration with FIRST only some-

what improved accuracy compared to FIRST alone. When choosing

segmentation methods for the amygdala in HD, options should be

considered in context of the aim of the analysis, and the sample size

available. The current data provide information to this end, and may

also be informative in interpreting existing volumetric findings regard-

ing the amygdala in HD.
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