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Insulin resistance is a major risk factor for many diseases.
However, its underlying mechanism remains unclear in part
because it is triggered by a complex relationship between mul-
tiple factors, including genes and the environment. Here, we
used metabolomics combined with computational methods to
identify factors that classified insulin resistance across individ-
ual mice derived from three different mouse strains fed two dif-
ferent diets. Three inbred ILSXISS strains were fed high-fat or
chow diets and subjected to metabolic phenotyping and
metabolomics analysis of skeletal muscle. There was significant
metabolic heterogeneity between strains, diets, and individual
animals. Distinct metabolites were changed with insulin
resistance, diet, and between strains. Computational analysis
revealed 113 metabolites that were correlated with metabolic
phenotypes. Using these 113 metabolites, combined with
machine learning to segregate mice based on insulin sensitivity,
we identified C22:1-CoA, C2-carnitine, and C16-ceramide as
the best classifiers. Strikingly, when these three metabolites
were combined into one signature, they classified mice based on
insulin sensitivity more accurately than each metabolite on its
own or other published metabolic signatures. Furthermore,
C22:1-CoA was 2.3-fold higher in insulin-resistant mice and
correlated significantly with insulin resistance. We have identi-
fied a metabolomic signature composed of three functionally

unrelated metabolites that accurately predicts whole-body insu-
lin sensitivity across three mouse strains. These data indicate
the power of simultaneous analysis of individual, genetic, and
environmental variance in mice for identifying novel factors
that accurately predict metabolic phenotypes like whole-body
insulin sensitivity.

The development of disease in humans often results from a
complex interplay between genetic, epigenetic, and environ-
mental factors. Although widely held that the environment
plays a major role in metabolic disease, defining the heritable
contribution has proven difficult. Genome-wide association
studies have revealed a number of SNPs associated with meta-
bolic disease, but collectively these do not account for the
majority of disease in the population (1, 2). One difficulty likely
involves the complex interaction between genes and environ-
mental factors such as diet and life-style choices (e.g. exercise)
(3). Several human trials have demonstrated significant modi-
fication (positive and negative) of disease risk associated with
specific SNPs in response to the intake of specific or total fats
(4 –9). These data suggest that dietary recommendations for fat
and other macronutrients at a population level may be ill-ad-
vised and that more work is needed to establish how the envi-
ronment and genetics interact. Certain genotypes might be bet-
ter suited to specific combinations of macronutrients in the diet
and a mismatch may be detrimental to health.

Insulin resistance is a major risk factor for many metabolic
diseases (10). A number of defects have been linked to insulin
resistance, including impaired insulin signaling, accumulation
of specific lipid species (11–13), oxidative stress (14, 15), or
inflammation (16). Many of these studies have focused on the
use of a single mouse strain, notably the C57Bl/6J mouse. How-
ever, it has emerged that genetic background has a significant
impact on metabolism (17–23), so there is a growing need for a
more expansive analysis of insulin resistance in mice of differ-
ent genetic backgrounds. Indeed, a number of panels compris-
ing many different recombinant inbred mouse strains have
been developed such as ILSXISS (24, 25), HMDP (23), BXD
(26), and collaborative cross (27), and several pivotal studies of
dietary manipulation in these panels have provided novel
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insights into metabolism. For example, although calorie restric-
tion is widely thought to mediate a prolonged life span in mice
(28), when this was examined across 41 different inbred
ILSXISS mouse strains there was profound variation in the
response. Although calorie restriction was found to extend life
span in a few strains, �10 strains underwent life-shortening in
response to the same manipulation (29). Similarly, marked var-
iation in the metabolic response to high-fat, high-sucrose feed-
ing was reported across more than 100 inbred HMDP mouse
strains (23), and diversity has also been reported among com-
monly used mouse strains (22).

In addition to genetic diversity in metabolism, it has also
been reported that individual mice from exactly the same
genetic background also display considerable variability in their
metabolic response to diet, further adding to the complexity of
metabolic studies in mice. For example, a 4-fold difference in
adiposity was observed in C57Bl/6J mice fed a high fat diet (30),
and others have reported similar variability in body weight and
glucose tolerance in this strain (31). Despite these reports, indi-
vidual variability has been largely ignored as most studies of
insulin resistance consider averaged data from groups of mice.

These present findings highlight the key role of genetics and
possibly epigenetics in metabolic homeostasis and the complex
interplay between genes and the environment in determining
the risk of metabolic disease. Here, we encapsulate environ-
mental, genetic, as well as individual variability and focus on
the metabolome as a read-out of the integrated contribution
of these parameters to a range of phenotypes, most notably
insulin resistance. We studied three inbred ILSXISS strains
on two different diets and subjected them to metabolic
phenotyping and metabolomics analysis of skeletal muscle.
Using machine learning, we have identified a novel insu-
lin sensitivity signature in muscle, comprising C22:1-CoA,
C2-carnitine and C16:0-ceramide.

Results

Metabolic heterogeneity between strains

We have studied the metabolic response to a diet high in fat
and sucrose (HFD)5 in three distinct inbred mouse strains from
the ILSXISS cross (24, 25, 29). Specific strains were selected
based on their divergent responses to calorie restriction (29),
with strain #89 showing extended life span, #97 reduced life
span, and #50 showed no change in life span in response to
calorie restriction. The three strains differed in body weight on
a chow diet (Fig. 1A), and HFD increased body weight in two of
the three strains (Fig. 1B). Body composition measured after 4
weeks on the diet revealed HFD increased adiposity in all
strains (Fig. 1C). Although strain #89 appeared resistant to
HFD-induced weight gain, this strain showed a HFD-induced
increase in adiposity accompanied by a decrease in lean mass
(Fig. 1D). Oxygen consumption, metabolic rate, energy intake,

and ambulatory activity were similar between strains (Fig. 1E,
data not shown).

Marked variability was evident in glucose tolerance between
the strains (Fig. 2A). Strain #50, and to a lesser degree #89,
exhibited HFD-induced glucose intolerance as apparent from
the incremental area under the curve (iAUC) of the glucose
tolerance test (GTT) (Fig. 2B). Strain #89 was significantly more
glucose-tolerant than the other strains both under chow and
HFD-fed conditions (Fig. 2B). In fact, the glucose tolerance
observed in strain #89 fed a HFD was indistinguishable from
that observed in the other strains when fed a chow diet (Fig. 2B).
Strains #50 and #97 developed hyperinsulinemia upon HFD
feeding, both under fasting conditions and during the GTT (Fig.
2, D and E). The hyperinsulinemia in strain #97 was much
higher than in other strains, and this probably accounted for the
normal glucose tolerance upon HFD feeding (Fig. 2, A, B, D, and
E). Only strain #50 developed fasting hyperglycemia on HFD
(Fig. 2C), and strain #97 displayed significantly lower fasting
glucose on HFD compared with the other strains on HFD (Fig.
2C). Despite the widespread variability in glucose tolerance/
hyperinsulinemia, insulin action assessed ex vivo in white adi-
pose tissue (WAT) explants was impaired in all HFD-fed strains
at 10 nM insulin (Fig. 2F). Interestingly, only strain #97 dis-
played reduced 2-deoxyglucose (2DG) uptake in the presence
of the more physiological 0.5 nM insulin dose. This strain also
showed a significantly higher insulin-stimulated 2DG uptake
on chow diet than any other strain (Fig. 2F).

113 metabolites significantly correlated with metabolic
parameters

The large variability in metabolic phenotypes observed in
these mice upon HFD feeding, ranging from marked glucose

5 The abbreviations used are: HFD, diet high in fat and sucrose; CA, classifica-
tion accuracy; IRI, insulin resistance index; GTT, glucose tolerance test; 2DG,
2-deoxyglucose; VLC, very-long chain; LC, long chain; AUC, area under the
curve; iAUC, incremental area under the curve; WAT, white adipose tissue;
BW, body weight; Ext, external; IR, insulin-resistant; IS, insulin-sensitive;
IS-SIG, insulin sensitivity signature; Cor Met, 113 correlated metabolites.

Figure 1. Variability in body composition in response to HFD. A, starting
body weight. B, change in body weight during 6-week diet intervention. C–E,
body composition analysis determined adiposity (C) and lean mass (D) at
week 4 of the diet intervention. E, energy intake of mice is shown. Data are
mean � S.E., n � 5–11 (A–D) and n � 3–5 (E); * different from corresponding
chow group: *, p � 0.05; **, p � 0.01; ***, p � 0.001; �, p � 0.05 (one-tailed t
test); # different from all other strains p � 0.05.

Metabolic variability across mouse strains
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intolerance (strain #50), hyperinsulinemia with normal glucose
tolerance (strain #97), to mild glucose intolerance that was
indistinguishable from other strains on chow diet (strain #89),
provided an ideal cohort to identify metabolites associated with
insulin resistance across different strains and diets. Here, we
studied skeletal muscle due to its prominent role in whole-body
insulin sensitivity. We subjected skeletal muscle (quadriceps)
from the three strains fed two diets to metabolomics assess-
ment using mass spectrometry and measured 165 metabolites
in 29 mice. For further analyses, we also included sums and
ratios of some of the metabolites, resulting in a total of 218
metabolite parameters (supplemental Table S1). We performed
correlation analyses whereby each metabolite was correlated
with each metabolic phenotype, including GTT iAUC, fasting
glucose, fasting insulin, adiposity, HOMA-IR, WAT 2DG
uptake, and a factor referred to here as the “insulin resistance
index” (IRI), calculated as GTT iAUC � fasting insulin. To take
into account the genetic and in particular the individual varia-
bility, rather than grouping mice and using averaged data, each

mouse was used as an individual data point (n � 29). We iden-
tified 113 metabolite parameters that correlated with one or
more of the metabolic phenotypes (Fig. 3A and supplemental
Table S1). Of these, 44 metabolites correlated with IRI, includ-
ing metabolites previously implicated in insulin resistance such
as long-chain (LC) and very-long-chain (VLC) CoAs and car-
nitines (13). Nine of these showed a correlation coefficient
of �0.5 or � �0.5 (Fig. 3B).

Metabolites changed with insulin resistance, diet, and
between strains

We next wanted to assess the relationship between individ-
ual metabolites and various features of our cohort, including
insulin sensitivity, diet, or strain of origin. To assess insulin
sensitivity, we employed an insulin resistance index or IRI that
relied on both glucose tolerance and insulin levels. This was
necessary as use of either of these parameters alone would have
mis-represented animals with normal glucose tolerance but
substantial hyperinsulinemia or vice versa. As shown in Fig. 4,
there was a 12-fold range in IRI across all animals. An upper
tertile cutoff was used to separate insulin-resistant from insu-
lin-sensitive mice. Intriguingly, although most insulin-resistant
mice were fed a HFD, it is noteworthy that there were several
HFD-fed mice among the insulin-sensitive mice (Fig. 4, arrow-
heads). Notably, most of the latter mice were from strain #89.
This highlights the importance of including this strain in the
analysis.

Figure 2. Variability in metabolic phenotypes in response to HFD. A and B,
intraperitoneal GTT at a glucose dose of 2 g/kg lean mass was performed on
the mice at week 5 of the diet intervention. A, blood glucose was measured
during the GTT. B, iAUC analysis from data in A. C, fasting blood glucose was
assessed. D and E, blood insulin was assessed after fasting (D) and at 15 min
following glucose injection (E). F, 2-[3H]deoxyglucose uptake was assessed in
response to indicated doses of insulin in WAT explants. Data are mean � S.E.,
n � 5–10 (A–E), n � 5– 6 (F); *, different from corresponding chow group: *,
p � 0.05; **, p � 0.01; ***, p � 0.001; �, p � 0.05 (one-tailed t test); #, different
from all other strains p � 0.05; �, different from strain #89 p � 0.05.

Figure 3. 113 metabolites significantly correlate with metabolic pheno-
types. A, hierarchical clustering and heat map of Pearson correlation coeffi-
cients of correlations between metabolites and metabolic phenotypes are
displayed. Blue and red corresponds to negative or positive correlation,
respectively. B, Pearson correlation coefficients of correlations between
metabolites and IRI are shown. 44 metabolites significantly correlated with IRI
(purple and red) and 9 of these had a correlation coefficient �0.5 or � �0.5
(red). FA, fatty acyl; SAFA, saturated FA; carn, carnitine; Cer, ceramide; LC, long-
chain; VLC, very-long-chain.

Metabolic variability across mouse strains
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Table 1 summarizes significant differences in metabolic phe-
notypes in the 29 mice when grouped based on insulin resis-
tance, diet, or strains. As expected, adiposity, GTT AUC and
iAUC, fasting insulin and glucose, and IRI and HOMA-IR were
all significantly changed with insulin resistance and with diet
(Table 1). Although adiposity was significantly increased in
insulin-resistant mice (Table 1), it appears that adiposity was
not driving the classification of some HFD-fed mice into the
insulin-sensitive group: two HFD-fed insulin-resistant mice
displayed lower adiposity than any of the HFD-fed insulin-sen-
sitive mice and even some of the chow-fed insulin-sensitive
mice (Fig. 4B, arrows and arrowheads). Somewhat unexpected
were the changes between strains as they were grouped inde-
pendently from diet. Notably, strain #97 showed significantly
lower body weight compared with both other strains, and strain
#89 displayed significantly higher fasting glucose than the other
strains. The GTT AUC was significantly different between
strains #50 and #97.

We next examined metabolite changes between insulin-re-
sistant and insulin-sensitive mice. Of the 44 metabolites that
significantly correlated with IRI (Fig. 3B), C22:1-CoA was the
only metabolite that was significantly changed (q �0.05) with a
2.3-fold increase in insulin-resistant mice (Fig. 5).

Analysis of metabolite changes between HFD and chow-fed
mice identified seven metabolites that were significantly (q
�0.05) changed �1.5-fold (Fig. 6A). Notably, C22:1-CoA was

not among these metabolites. C19:3-CoA was the most signifi-
cantly increased metabolite in HFD mice, whereas other
metabolites (free carnitine and C2-carnitine) were decreased in
HFD mice (Fig. 6, A and B). C19:3-CoA as well as other poly-
unsaturated acyl-CoAs likely originated from the HFD itself.
Notably, there was no overlap between metabolite changes with
insulin resistance or diet, which is likely due to the fact that
some mice fed a HFD were quite insulin-sensitive and vice versa
(Fig. 4).

Interestingly, a number of metabolites were significantly
changed between the different strains (Fig. 7). Arg and ratios
comprising Arg, were significantly increased in strain #50 com-
pared with strains #89 and #97 (Fig. 7, A and B). Other metab-
olites that were different in strain #50 compared with other
strains included C14:0-ceramide and malate/citrate ratio. Only
two metabolites were significantly altered between strain #97
and #89, Tyr and C16:2-CoA (Fig. 7, A and B).

In summary, distinct and non-overlapping metabolites were
changed with insulin resistance or diet or between strains. This
outcome emphasizes the usefulness of including different
strains in the analysis that are less susceptible to HFD-induced
insulin resistance (such as the #89 strain), thereby making it
feasible to differentiate between HFD feeding and insulin resis-
tance per se.

Insulin resistance classification analysis and novel signature

Given that the metabolite changes with HFD or insulin resis-
tance were distinct and the HFD-fed mice were distributed
across a range of insulin sensitivities, we reasoned that these 29
mice present an ideal cohort to perform unbiased classification

Figure 4. Metabolic phenotypes in individual mice. A and B, indicated met-
abolic phenotypes are shown in 29 individual mice ranked for insulin resis-
tance as assessed by the IRI. A, insulin-resistant (IR) chow-fed mice (arrow) and
insulin-sensitive (IS) HFD-fed mice (arrowheads) are indicated. B, two HFD-fed
IR mice (arrows) displayed lower adiposity than any HFD-fed IS mice or even
some chow-fed IS mice (arrowheads). Upper tertile cutoffs of metabolic phe-
notypes are indicated with dotted lines.

Figure 5. Metabolites changed with insulin resistance. A, volcano plot
shows metabolite log2 fold change (�) of IR compared with IS mice plotted
against �log10 p value, indicating C22:1-CoA as significantly changed (q
�0.05, above horizontal line) metabolite. Vertical lines indicate �1.5-fold
change (�0.58 log2 fold change). C16:0-ceramide and C2-carnitine are indi-
cated. B, C22:1-CoA levels in IR and IS mice are shown. Data are mean � S.E.,
n � 10 –19; **, p � 0.01.

Table 1
Metabolic phenotypes of mouse groups based on IR, diet, or strain
Significantly different phenotypes (p � 0.05) are indicated in bold.

Phenotypes

IR Diet Strain
Low
IRI

High
IRI p value Chow HFD p value #50 #89 #97

p value
50 vs. 89

p value
50 vs. 97

p value
89 vs. 97

Body weight (g) 24.7 25.0 0.8123 24.5 25.1 0.5759 25.3 27.2 22.2 0.1061 0.0022 0.0002
Adiposity (%) 16.1 22.7 0.0057 14.5 22.0 0.0007 17.9 17.1 20.0 0.7985 0.4815 0.3455
GTT AUC 1058 1345 0.0041 1018 1286 0.0050 1321 1104 1039 0.1212 0.0314 0.3980
GTT iAUC 360 624 0.0002 354 542 0.0085 541 379 427 0.1251 0.2140 0.5400
Fasting glucose (mM) 7.6 7.2 0.3816 7.4 7.6 0.6647 7.2 8.6 6.7 0.0080 0.2447 0.0014
Fasting insulin (ng/ml) 0.52 0.91 0.0003 0.51 0.79 0.0093 0.66 0.58 0.72 0.4673 0.6900 0.3449
IRI (1000�) 177 537 0.0000 173 420 0.0013 392 225 277 0.1736 0.2825 0.4572
HOMA-IR 4.3 7.5 0.0029 4.1 6.7 0.0153 5.4 5.4 5.5 0.9811 0.9795 0.9604

Metabolic variability across mouse strains
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analyses. We used machine learning to perform classification
analyses to determine the classification accuracy (CA) of
metabolites in distinguishing mice based on insulin resistance,
diet, or strain, using the ensemble learner, random forest (32,
33). Similar to that described above, this was performed using
data from individual mice, whereby each mouse’s metabolite(s)
were utilized to classify that mouse into a certain group, and the
accuracy reflects “observed” versus “true” classification. In this
analysis, a ratio of 2 represents 100% CA, whereas a ratio of 1
reflects random chance (34). We assessed the CA ratio of the
significant 113 metabolites (Cor Met) to classify mice based on
insulin resistance (1.37 CA ratio), diet (1.85), and strain (1.72),
and the Cor Met signature classified mice significantly better
than random chance in all three cases (Fig. 8A). The classifica-
tion analysis allows determination of the contribution of each
individual metabolite to the overall classification accuracy of
the signature by using “leave-1-out” analysis. In addition to
C22:1-CoA, which was also found to be elevated in insulin-
resistant mice (Fig. 5), three additional metabolites were iden-
tified that classified the mice according to insulin resistance:
C19:3-CoA, C2-carnitine, and C16:0-ceramide (Table 2). This
is interesting as C19:3-CoA and C2-carnitine were significantly
changed with diet (Fig. 6) and were also among the best diet
classifiers (Table 2). This is not surprising as the insulin-resist-
ant group is over-represented with HFD-fed mice (Fig. 4). In
addition, ceramide has been identified as a major driver of insu-

lin resistance in other studies (35, 36). Arg and Arg-based
metabolites were among the best strain classifiers (Table 2).

We next tested whether a signature composed of the best
insulin resistance classifiers could improve the CA observed
with the Cor Met signature. C19:3-CoA was not included in this
signature as, while being a top insulin resistance classifier, it was
the most significantly increased metabolite in HFD-fed mice
and likely originated directly from the diet. The novel signature,
here referred to as IS-SIG, comprises C22:1-CoA, C2-carnitine,
and C16:0-ceramide. IS-SIG classified mice based on insulin
resistance (1.72 CA ratio) more accurately than Cor Met (1.37)
and better than based on diet (1.61), while performing poorly in
classifying mice according to their strain of origin (1.08) (Fig.
8A). We next tested the contribution of individual metabolites
within this signature to the classification performance/
accuracy of IS-SIG and determined the classification accuracy
of these three metabolites individually. Although all three
metabolites individually performed significantly better than
random chance, they did not perform as well as IS-SIG (C22:1-
CoA, 1.5; C2-carnitine, 1.36; and C16:0-ceramide, 1.32) in clas-
sifying mice based on insulin resistance (Fig. 8B).

Increases in body weight or adiposity have been associated
with insulin resistance, and these parameters were significantly
correlated with IRI in our cohort (Table 1 and supplemental
Table S1). We therefore determined whether these body com-
position parameters were able to classify mice based on insulin
resistance on their own or whether they improved the IS-SIG
classification accuracy when combined with this metabolite
signature (Fig. 8B). Intriguingly, body weight change (�BW,
1.28 CA ratio) or adiposity (1.14) performed much worse than
IS-SIG (1.72) and did not improve the classification accuracy of
IS-SIG when combined with IS-SIG, but rather reduced its clas-
sification accuracy (1.60). These data show that insulin resis-
tance is independent of body weight gain or adiposity in our
cohort, which is consistent with the observed diversity of adi-
posity in both insulin-sensitive and -resistant mice (Fig. 4B).

We next compared the classification accuracy of Cor Met
and IS-SIG to distinguish mice based on insulin resistance with
11 metabolite signatures (Table 3) that were previously shown
to correlate with insulin resistance (35– 46). Only 6 of the 11
published signatures performed significantly better than ran-
dom chance (Fig. 8C). A number of these signatures contained
ceramides (Table 3, Ext 1, 3, 6, 9, and 11), and their performance
depended on the combination and nature of the ceramide. For
example, Ext 1 was C16-ceramide (35, 36) that was also part of
IS-SIG (Fig. 8B) and performed the best out of all external sig-
natures, whereas two signatures did not perform well (e.g. C14-
(Ext 9) or C18-ceramide (Ext 11)). Branched chain amino acids
were also included in a number of these signatures (Table 3, Ext
2, 4, 5, 8, and 10), and also their classification accuracy varied
and relied on inclusion of additional metabolites (Table 3). In
summary, IS-SIG performed significantly better than any of the
tested external signatures in distinguishing mice based on insu-
lin resistance (Fig. 8C).

Discussion

This study adds to the growing literature on the significant
contribution of genetic diversity to environmental influences

Figure 6. Metabolites changed with diet. A, volcano plot shows metabolite
log2 fold change (�) of HFD-fed mice compared with chow-fed mice plotted
against �log10 p value, indicating significantly changed (q �0.05, above hor-
izontal line) metabolites. Vertical lines indicate �1.5-fold change (�0.58 log2
fold change). C22:1-CoA and C16:0-ceramide are indicated. B, metabolite lev-
els or ratios of significantly changed metabolites (fold � �1.5, q�0.05) in
chow and HFD-fed mice are shown. Data are mean � S.E., n � 14 –15; **, p �
0.01; ****, p � 0.0001.

Metabolic variability across mouse strains
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on metabolism. Here, we studied metabolism of several inbred
mouse strains in response to HFD feeding, and we observed a
diverse response ranging from robust �-cell compensatory
response with no glucose intolerance to markedly impaired glu-
cose tolerance in response to HFD. Conversely, impaired adi-
pocyte insulin action was observed in all strains. Hence, as is
also emerging from human studies (2), this study shows that the
metabolic response to the environment, such as diet, is highly
divergent in large part due to genetic diversity but also due to
individual variance. By embracing this diversity and studying
muscle metabolomics in a cohort of mice across three different
strains and two diets, we identified a novel muscle metabolic
signature that is diagnostic of insulin resistance.

Wide ranging phenotypic diversity was observed across the
strains in response to HFD particularly in glucose tolerance
(Fig. 2). Strain differences in diet-induced glucose intoler-
ance have previously been documented (17, 20, 22). Of the three
ILSXISS lines tested in this study, strain #97 resisted changes in
glucose tolerance following HFD similar to reports in BALB/c

mice (22). However, unlike BALB/c mice, protection from glu-
cose intolerance in strain #97 appeared to be driven by hyper-
insulinemia (Fig. 2). Moreover, this strain became obese on a
HFD despite normal glucose tolerance (Figs. 1 and 2). Strain
#89 developed mild glucose intolerance in response to a HFD
with no changes in body weight or fasting/fed insulin (Figs. 1
and 2), and four of the five HFD-fed mice of this strain were
classified insulin-sensitive (Fig. 4). Together with previous
studies (17, 20, 22, 23), these findings confirm that genetic
diversity governs the metabolic response to calorie-excess diets
and show that this response is highly variable between strains
involving a complex combinatorial pattern of changes in
�-cells, liver, muscle, and adipocyte function.

Three metabolites were identified as the strongest classifiers
when mice were distinguished based on insulin sensitivity, C22:1-
CoA, C2-carnitine, and C16-ceramide (Table 2), and when com-
bined into a signature (IS-SIG) these metabolites classified mice
based on insulin resistance more accurately than each of the
metabolites individually, Cor Met, any previously published exter-

Figure 7. Metabolites changed between strains. A, volcano plots show metabolite log2 fold changes (�) between different strains plotted against �log10 p
value, indicating significantly changed (q �0.05, above horizontal line) metabolites. Dotted lines indicate �1.5-fold change (�0.58 log2 fold change). C22:1-CoA,
C2-carnitine, and C16:0-ceramide are indicated. B, metabolite levels or ratios of significantly changed metabolites (fold � �1.5, q �0.05) between strains are
shown. Data are mean � S.E., n � 9 –10; *, p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001. Orn, ornithine; Cit, citrulline; Asx, Asp/Asn.
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nal signature, or body composition parameters (Fig. 8, B and C).
The IS-SIG metabolite C22:1-CoA/erucoyl-CoA was significantly
correlated with insulin resistance (Fig. 3B) and was the only metab-
olite that was significantly elevated in insulin-resistant mice (Fig.
5). Most notably, changes in this metabolite did not correspond to
diet or mouse background (Figs. 6 and 7). In support of a role in
insulin sensitivity, serum levels of erucic acid were reported to be
significantly correlated with insulin resistance in humans with
type 2 diabetes (47). Mice are capable of de novo synthesis of erucic
acid (48), and the elongase required for its synthesis (Elovl3) is
highly induced in brown adipose tissue upon cold exposure, link-

ing it to metabolism (49). Whole-body deletion of Elovl3 in mice
results in reduced barrier function of the skin, reduced lipid accu-
mulation in brown adipose tissue, and resistance to diet-induced
obesity (50–52). Notably, Elovl3 also synthesizes C20:1-CoA,
the metabolite that was most correlated with insulin sensitivity
(Fig. 3), suggesting that Elovl3 and its products might play a role
in insulin resistance. Furthermore, erucic acid has a low oxida-
tion rate, and it inhibits mitochondrial oxidation (53–55). This
is of interest as mitochondrial dysfunction has been implicated
in insulin resistance (56). Future studies will be required to
explore the mechanistic link between this metabolite and insu-
lin resistance in muscle. The second IS-SIG metabolite, C2-car-
nitine or acetyl-carnitine, was significantly reduced upon HFD
feeding (Fig. 6) and was a strong diet classifier (Table 2). The
reduction in C2-carnitine levels in muscle might reflect ineffi-
cient fatty acid breakdown and has been linked to diminished
activity of carnitine acetyltransferase and/or reduced glucose
flux through the pyruvate dehydrogenase complex (57–59).
The third IS-SIG metabolite, C16:0-ceramide, has previously
been implicated in insulin resistance (35, 36). C16:0-ceramide
was elevated in WAT from obese humans and mice (36) and
genetic manipulations that modulated C16:0-ceramide glob-
ally, in brown adipose tissue, or in liver affected whole-body
insulin sensitivity (35, 36). Although C16:0-ceramide was not
changed in insulin-resistant mice (Fig. 5), it was identified as a
strong insulin resistance classifier using classification analysis
(Table 2), and it was capable of distinguishing mice based on
insulin resistance better than other external signatures (Fig. 8C,
Ext 1). Although other studies specifically focused on the role of
C16:0-ceramide (35, 36), here we identified this metabolite out
of 218 metabolites as an insulin resistance diagnostic in a totally
unbiased manner using machine learning.

The fact that the three metabolites combined (IS-SIG) were a
better diagnostic of insulin resistance than each metabolite
individually (Fig. 8B) could suggest that they are characteristic
of distinct modes of insulin resistance raising the possibility
that different strains exhibit different mechanisms of insulin
resistance, a fact that has been largely overlooked in studies
using single mouse strains. In support of this, C2-carnitine and

Figure 8. Classification analysis and novel IS-SIG. A, CA ratios are shown of
Cor Met and IS-SIG to classify mice based on IR, diet, or strain. B and C, CA
ratios are shown of Cor Met, IS-SIG, individual metabolites, body composition
parameters (BCP), including adiposity and body weight change (� BW), or
external signatures (Ext) to classify mice based on IR. CA ratio of 2 represents
100% accuracy, and CA ratio of 1 represents random chance (dotted lines).
Median CA ratio of IS-SIG is indicated with a red dotted line. Data are shown as
median CA ratio � confidence limits calculated over 500 –1000 bootstrap-
ping runs; *, p � 0.001 compared with random (dotted line at 1); #, p � 0.0001
compared with all other signatures. Cer, ceramide.

Table 2
Best classifiers for classification based on IR, diet, and strain
The four best classifiers are listed for classification based on IR, diet, and strain. Metabolite levels (pmol/mg) or ratios are shown of mice grouped based on IR, diet, or strain.
Significantly changed metabolites (q �0.05) are indicated in bold. Orn, ornithine; Cit, citrulline; SC, short-chain; IR, insulin resistance.

IR Diet Strain
Low
IRI

High
IRI q value Chow HFD q value #50 #89 #97

q value
50 vs. 89

q value
50 vs. 97

q value
89 vs. 97

IR classifiers
C22:1-CoA 0.066 0.156 0.0484 0.071 0.122 0.2529 0.106 0.081 0.103 0.7102 0.9632 0.7709
C19:3-CoA 1.51 2.19 0.0976 1.16 2.29 0.0001 1.99 1.73 1.52 0.7102 0.4138 0.7559
C2-carnitine 76 58 0.1232 85 56 0.0024 75 70 64 0.8266 0.3178 0.8785
C16-Ceramide 0.875 1.041 0.4172 0.880 0.980 0.4450 0.872 0.891 1.03 0.8833 0.2381 0.5277

Diet classifiers
C19:3-CoA 1.514 2.193 0.0976 1.163 2.294 0.0001 1.99 1.73 1.52 0.7102 0.4138 0.7559
Free carnitine 239 193 0.1673 270 179 0.0008 202 194 271 0.8710 0.1459 0.1697
Sum of SC-carnitines 84 65 0.1325 93 63 0.0024 84 76 71 0.7102 0.2727 0.9323
C2-carnitine 76 58 0.1232 85 56 0.0024 75 70 64 0.8266 0.3178 0.8785

Strain classifiers
Arg 92 125 0.6844 98 108 0.9001 191 58 56 0.0171 0.0061 0.9567
Arg/(Orn 	 Cit) ratio 0.660 0.770 0.8058 0.695 0.698 0.9812 1.206 0.465 0.395 0.0016 0.0002 0.1939
C12-OH/C10-DC-carnitine 0.055 0.081 0.4172 0.060 0.068 0.7724 0.065 0.042 0.083 0.1848 0.4498 0.1892
Arg/Orn ratio 2.698 3.719 0.6217 2.791 3.292 0.7473 4.878 1.928 2.232 0.0171 0.0183 0.6126

Metabolic variability across mouse strains

J. Biol. Chem. (2017) 292(47) 19135–19145 19141

 at U
niv of G

uelph - O
C

U
L

 on D
ecem

ber 17, 2017
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


C22:1-CoA, both of which might be indicative of mitochondrial
dysfunction, were not correlated with each other (data not
shown). This suggests that although these metabolites might be
diagnostic of a common defect, their mechanism is likely dif-
ferent. Notably, the inclusion of body composition parameters
worsened IS-SIG’s performance in distinguishing mice based
on insulin resistance, indicating that the signature acts inde-
pendently of adiposity or body weight change (Fig. 8B).

A number of metabolites were significantly changed with
diet or between strains (Figs. 6 and 7). Polyunsaturated LC and
VLC acyl-CoAs were increased with HFD, suggesting these are
likely acquired via the diet with lard and safflower oil as the
sources of fat. Two metabolites that were decreased in skeletal
muscle from HFD-fed mice were free carnitine and C2-carni-
tine (mentioned above). The diminution in free carnitine could
stem from increased production of the LC acyl-carnitines, due
to a rise in fatty acid supply (57). Although the HFD-mediated
increased metabolites are likely diet-specific, reduced free car-
nitine and/or C2-carnitine might be useful biomarkers to deter-
mine food intake or, in particular, fat intake in studies involving
humans.

Surprisingly, a number of metabolites were significantly dif-
ferent between strains, including Arg, Tyr, and C14-ceramide
(Fig. 7). These metabolites did not change with either diet or
insulin sensitivity. Notably, some of the external signatures
contained Tyr (Ext 5, 8, and 10) or C14-ceramide (Ext 6 and 9),
and this possibly negatively affected their performance in clas-
sifying mice based on insulin resistance (Fig. 8C). Hence, these
metabolites are likely tightly controlled by the genetic variance
between these strains but in a manner unrelated to insulin
sensitivity.

The ILSXISS lines were originally derived from an 8-way-
cross of distinct inbred mouse lines (24, 25). Given that some of
these parental strains differ in their susceptibility to develop
diet-induced metabolic disease (17, 20, 22, 23), the observed
variance in metabolic responses to HFD observed herein was
somewhat predictable. The novel utility of the present findings
lies in the unique combinations of phenotypes present within
the ILSXISS strains with respect to various hallmark indicators
of the metabolic syndrome as well as the use of individual ani-
mals in the analysis and machine-learning-mediated classifica-
tions. The phenotypic diversity makes the ILSXISS cross (24,
29), as well as similar murine crosses (23, 26, 27), powerful tools
in the search for mechanistic understanding related to nutri-

ent-induced disease. Future studies incorporating larger num-
bers of strains and other metabolic tissues will allow for the
capture of even greater phenotypic and metabolomic diversity,
more closely resembling that observed in human studies, and
this will subsequently lend itself to identification of underlying
genetic drivers.

In conclusion, in this study we have exploited the variance in
insulin sensitivity between different inbred mouse strains,
between individual mice within an inbred strain, and between
mice fed different diets to identify metabolites in skeletal mus-
cle that best classify mice according to this variance in insulin
sensitivity. Machine learning identified an insulin sensitivity
signature that comprises three metabolites, C22:1-CoA,
C2-carnitine, and C16:0-ceramide. Previous studies have impli-
cated both ceramides and acylcarnitines as major contributors
to insulin resistance in muscle highlighting the significance of
this approach. C22:1-CoA, a novel metabolite implicated in
insulin resistance in this study, is of major interest as this
metabolite inhibits mitochondrial oxidative capacity, and
serum C22:1 fatty acid levels are correlated with human insulin
resistance. Strikingly, the contribution of each of these metab-
olites on their own to insulin sensitivity was considerably less
than their combined contribution, suggesting that there are
likely multiple pathways that contribute to insulin resistance
and providing major justification for the development of mul-
tiparametric signatures that classify insulin sensitivity at a pop-
ulation level. These studies provide an important proof-of-
principle for exploiting omics platforms such as metabolomics
that represent an integrated output of multiple variables,
including genetic, environmental, and possibly epigenetic vari-
ables for identifying the full repertoire of pathways and factors
that contribute to insulin resistance at a population level.

Experimental procedures

Animals and metabolic phenotypes

All experiments were approved by the Garvan Institute and
University of Sydney Animal Ethics Committees. Male mice
were group-housed on a 12-h light/dark cycle with free access
to chow diet (13% calories from fat, 65% carbohydrate, and 22%
protein) or HFD (47% fat (7:1 lard-to-safflower oil ratio), 32%
carbohydrate, and 21% protein) and water. Body composition,
indirect calorimetry, GTTs, and insulin measurements were
performed as described previously (60, 61). After 6 weeks on the

Table 3
External signatures
Metabolites, species, sample origin, and references are listed for 11 external signatures (Ext 1–11). carn, carnitine; Cer, ceramide; Glx, glutamate/glutamine.

Signature Ext 1 Ext 2 Ext 3 Ext 4 Ext 5 Ext 6 Ext 7 Ext 8 Ext 9 Ext 10 Ext 11

Refs. 35, 36 44 38 45 37 41 42 46 39 43 40
Species Mouse Human Human Human Human Human Human Human Human Human Human
Sample Adipose/Liver Plasma Plasma Plasma Serum Muscle Serum Plasma Plasma Serum Muscle
Metabolites C16-Cer Val Sum Cer Val Val Sum Cer Gly Val Sum Cer Val C18-Cer

Leu/Ile C18-Cer Leu/Ile Leu/Ile C14-Cer Leu/Ile C14-Cer Leu/Ile
Gly C20-Cer C3-carn C3-carn C16-Cer Ala C3-carn
Phe C24-Cer C5-carn C5-carn C24:1-Cer Glx Phe
Glx C24:1-Cer Ala Phe Tyr

Glx Tyr
Met Pyruvate
Phe Malonyl/hydroxy-butyryl-CoA
Tyr
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diet and a 4-h fast, mice were anesthetized at �11 a.m. with
isofluorane, and tissues were removed and freeze-clamped,
immediately submerged into liquid N2, and stored at �80 °C.
2-[3H]Deoxyglucose uptake into epidydimal fat explants was
performed as described previously (60). The IRI was calcu-
lated as fasting insulin (ng/liter) multiplied by the iAUC of
the GTT (mM�min). HOMA-IR was calculated as fasting
insulin (microunits/ml) multiplied by fasting glucose (mM)
and divided by 22.5.

Metabolomics assessment

Whole-quadriceps skeletal muscle was powdered under liq-
uid N2, aliquoted, lysed in appropriate buffer (50% acetonitrile,
0.3% formic acid; except for acyl-CoAs: 50% 2-propanol, 50%
0.1 M KH2PO4, pH 4.45) using a Tissue Lyzer II (Qiagen), and
subjected to metabolomics analysis using stable isotope dilu-
tion techniques. Amino acids and acylcarnitine were measured
as described previously (62, 63) using a Waters Acquity UPLC
system equipped with a TQD and MassLynx 4.1 operating sys-
tem. Organic acids were quantified as described previously (64)
employing Trace Ultra GC coupled to ISQ MS operating under
Xcalibur 2.2 (Thermo Fisher Scientific). Ceramides and acyl-
CoA esters were extracted, purified, and analyzed as described
previously (65– 67). Acyl-CoAs were analyzed by flow injection
analysis using positive electrospray ionization on a Waters
Xevo TQS, employing methanol/water (80:20%, v/v) contain-
ing 30 mM NH4OH as the mobile phase. Spectra were acquired
in the multichannel acquisition mode monitoring the neutral
loss of 507 atomic mass units (phosphoadenosine diphosphate)
and scanning from m/z 750 to 1060. Heptadecanoyl-CoA was
employed as an internal standard for LC and VLC CoA esters.
CoAs were quantified using authentic saturated (C0-C18) and
unsaturated (C16:1, C18:2, C18:1, and C20:4) acyl-CoA calibra-
tors. All reported CoAs, including low abundant C22:1-CoA,
were within detection limits of the assay. Corrections for heavy
isotope effects, mainly 13C, to the adjacent m 	 2 spectral peaks
were made empirically by referring to the observed spectra for
the analytical standards.

Computational analyses, correlation and hierarchical
clustering

All analyses were performed in the R programming environ-
ment (68). Pairwise Pearson’s correlation coefficient (r) was cal-
culated for all parameters, and the resulting r values were plot-
ted as heat maps in R. Hierarchical clustering was performed
using complete linkage for agglomeration.

Computational analyses, classification studies

Random forest (32, 33) was used to build three classification
models using diet-, strain-, and IRI-based stratifications as the
response variables. Binary classes were assigned to samples for
IRI (
270,000 � 1; �270,000 � 0) or diet (HFD � 1; chow � 0),
or strains (1 � strain #50; 2 � strain #89; and 3 � strain #97).
Two IRI cutoffs were considered, upper tertile and median. The
upper tertile cutoff achieved a greater fold difference between
insulin-sensitive and insulin-resistant groups than the median
cutoff. Training and testing data sets were obtained through a
3/4 to 1/4 split, bootstrapped over 500 times. Sampling was

done with replacement. The class imbalance (IRI, 10 and 19
mice) was balanced using the SMOTE algorithm (69, 70) over-
sampling technique (with k � 5) while training the models.
ConfusionMatrix from the caret package (71) was used to
calculate associated error and accuracy statistics. CAs are
observed versus true classification of the testing set. For each
model, at least 1000 trees were generated (ntree � 1000) to
ensure robustness, and mtry ranged from 1 to 55 depending on
the number of features tested. Importance of each feature was
assessed via a mean decrease in accuracy. To obtain the ratio,
the CA was divided by the random CA where the mouse iden-
tities were randomized with confidence limits calculated by the
delta method (72).

Statistical analysis

Data are presented as mean � S.E., unless otherwise indi-
cated. Statistical analyses were performed using t test, analysis of
variance (ANOVA), or multiple t test analysis using GraphPad
Prism software. Significance was set at p � 0.05 or q �0.05 (mul-
tiple t test analysis) and p values are indicated.
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