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1 | INTRODUCTION

Abstract

Background and Objective: Evidence from rat and nonhuman primate studies indi-
cates that axons comprising the fornix have a characteristic topographical organiza-
tion: projections from the temporal/anterior hippocampus mainly occupy the lateral
fornix, whereas the more medial fornix contains fibers from the septal/posterior hip-
pocampus. The aim of this study was to investigate whether the same topographical
organization exists in the human brain.

Methods: Using high angular resolution diffusion MRI-based tractography at 3T, sub-
divisions of the fornix were reconstructed in 40 healthy adults by selecting fiber path-
ways from either the anterior or the posterior hippocampus.

Results: The tract reconstructions revealed that anterior hippocampal fibers predomi-
nantly comprise the lateral body of the fornix, whereas posterior fibers make up the
medial body of the fornix. Quantitative analyses support this medial:lateral distinction in
humans, which matches the topographical organization of the fornix in other primates.
Conclusion: This novel tractography protocol enables the separation of fornix fibers
from anterior and posterior hippocampal regions in the human brain and, hence, pro-
vides a means by which to compare functions associated with different sets of con-

nections along the longitudinal axis of the hippocampus.
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memory (Aggleton et al., 2000; D’Esposito, Verfaellie, Alexander, &
Katz, 1995; Gaffan & Gaffan, 1991; Vann et al., 2008). Neuroimaging

The fornix is the principal white matter tract connecting the hippo-
campal formation with areas beyond the temporal lobe, including pre-
frontal cortex, the anterior thalamic nuclei, the mammillary bodies, the
ventral striatum, and the basal forebrain (Aggleton, 2008; Poletti &
Creswell, 1977). Neuropsychological investigations of patients with

fornix damage first highlighted the importance of this tract for episodic

*Joint first authors.

findings from healthy participants, as well as from patients with fornix
pathology, have further established the importance of this tract for
episodic memory (Metzler-Baddeley, Jones, Belaroussi, Aggleton, &
O’Sullivan, 2011; Metzler-Baddeley, Hunt, et al., 2012; Oishi, Mielke,
Albert, Lyketsos, & Mori, 2012; Zhuang, Sachdey, et al., 2012; Zhuang,
Wen, et al., 2012). Despite the role of this tract in cognition, surpris-
ingly little is understood about the organization of the fibers within
the human fornix and how this might relate to its various connections.
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The principal motivation to examine their topography arises from
the growing evidence for functional differences along the anterior-
posterior axis of the hippocampus (Collin, Milivojevic, & Doeller, 2015;
Fanselow & Dong, 2010; Poppenk, Evensmoen, Moscovitch, & Nadel,
2013; Strange, Witter, Lein, & Moser, 2014). For instance, evidence
from functional neuroimaging studies suggests a role of the posterior
hippocampus in spatial navigation (e.g., Hartley, Maguire, Spiers, &
Burgess, 2003), whereas anterior hippocampus has been associated
with goal-directed spatial decision making (Viard, Doeller, Hartley,
Bird, & Burgess, 2011). Thus, a method that would allow the ana-
tomical dissociation of fibers associated with anterior and posterior
hippocampal regions in humans would aid the study of functional dis-
sociation between these different hippocampal networks.

In macaque monkeys, the projections from the anterior hippocam-
pus mainly occupy the lateral fornix, whereas the more medial fornix
contains fibers from the posterior hippocampus (Saunders & Aggleton,
2007). A similar organization exists in the rat, whereby fibers from
the temporal hippocampus (equivalent to the primate anterior hippo-
campus) are located more laterally within the fornix, whereas fibers
from the more septal hippocampus (equivalent to the posterior hip-
pocampus) are found more medially (Swanson & Cowan, 1977; Wyss,
Swanson, & Cowan, 1980). It is not yet known if the human fornix has a
similar topography, even though such information could provide a use-
ful means to compare the respective functions of the anterior and pos-
terior hippocampal networks (Aggleton, 2012; Strange et al., 2014).

This study, therefore, employed the damped Richardson-Lucy al-
gorithm (Dell'acqua et al., 2010) for deterministic tractography on high
angular resolution diffusion imaging data (HARDI) (Tuch et al., 2002)
to visualize those axons linked, respectively, to the anterior hippocam-
pus and to the posterior hippocampus. The extent of overlap between
the reconstructions was then determined quantitatively. In addition,
various white matter microstructural properties of these two subpop-
ulations of fornical fibers were characterized by diffusion tensor-based
indices of fractional anisotropy (FA), radial diffusivity (RD) (Basser,
Mattiello, & LeBihan, 1994; Pierpaoli & Basser, 1996), tissue volume
fraction (f) (Pasternak, Sochen, Gur, Intrator, & Assaf, 2009), and by the
hindrance-modulated orientational anisotropy (HMOA) (Dell’Acqua,
Simmons, Williams, & Catani, 2013). The HMOA provides a novel fiber
population-specific index of the diffusion properties along the recon-
structed pathways, which may be more sensitive to inter-individual
differences in white matter microstructure than tensor-based metrics
(Christiansen, Aggleton, et al., 2016; Dell’Acqua et al., 2013). The pur-
pose of comparing these various indices between the two populations
of fornical fibers (anterior and posterior hippocampus) was to appre-
ciate if these potentially distinct pathways might be distinguishable in
ways additional to their physical location.

2 | MATERIALS AND METHODS

2.1 | Participants

Forty healthy participants were recruited from Cardiff University
volunteer databases and from the local community via poster

advertisements. Participants were between 19 and 40 years of age
(mean age = 26.60; standard deviation = 6.46; 21 women, 1 left-
handed) without any known history of neurological or psychiatric
iliness, head injury, drug/alcohol abuse, or MRI contraindications as
obtained by self-report. All participants underwent cognitive assess-
ment in the Cambridge Brain Sciences Laboratory tasks (Hampshire,
Highfield, Parkin, & Owen, 2012) and performed within normal
ranges for their age group (please see Table 1 in Metzler-Baddeley,

Caeyenberghs, Foley, & Jones, 2016).

2.2 | Diffusion-weighted MRI and T,-weighted MRI
scanning protocols

The MRI data were acquired at the Cardiff University Brain Research
Imaging Centre (CUBRIC) with a 3T General Electric HDx MRI sys-
tem (GE Medical Systems, Milwaukee) using an eight channel receiver
only head RF coil. The MRI protocol consisted of the following im-
aging sequence: A high-resolution T,-weighted anatomical scan
(FSPGR) (256 x 256 acquisition matrix, TR=7.8ms, TE = 2.9 ms,
flip angle =20, 172 slices, 1 mm slice thickness, FOV =23 cm).
Diffusion data were acquired employing a spin-echo echo-planar
HARDI sequence with diffusion encoded along 60 isotropically dis-
tributed orientations and 6 nondiffusion-weighted scans according to
an optimized gradient vector scheme (Jones, Horsfield, & Simmons,
1999) (Field of view 230 x 230 mm, 96 x 96 acquisition matrix, TR/
TE = 87 ms, b-value = 1200 s/mm?, 60 slices, 2.4 mm slice thickness,
reconstructed spatial resolution 1.8 x 1.8 x 2.4 mm). Data acquisition
was peripherally gated to the cardiac cycle with a total acquisition
time of ~30 min depending on the heart rate.

The diffusion-weighted HARDI data were corrected for distortions
induced by the diffusion-weighted gradients, artifacts due to head
motion, and due to EPI-induced geometrical distortions by nonlinearly
registering each image volume to their T,-weighted anatomical im-
ages (resulting in a reconstructed spatial resolution of 1 x 1 x 1 mm)
(Irfanoglu, Walker, Sarlls, Marenco, & Pierpaoli, 2012), with appropri-
ate reorientation of the encoding vectors (Leemans & Jones, 2009)
in ExploreDTI (Version 4.8.3) (Leemans, Jeurissen, Sijbers, & Jones,
2009). A two compartment model using the Free Water Elimination
(FWE) approach (Pasternak et al., 2009) to correct for any partial vol-
ume artifacts in the diffusion metrics (Metzler-Baddeley, O'Sullivan,
Bells, Pasternak, & Jones, 2012) was fitted to derive maps of FA, RD
and f (Metzler-Baddeley, O’Sullivan, etal., 2012; Pasternak etal.,
20009).

2.3 | Tractography and tract-specific measures

Whole-brain tractography was performed for each participant using
the damped Richardson-Lucy spherical deconvolution algorithm
(Dell’'acqua et al., 2010), which allows the recovery of multiple fiber
orientations within each voxel, including those affected by partial
volume. The tracking algorithm estimated peaks in the fiber orienta-
tion density function (fODF) at the center of each image voxel, and
seed points were positioned at the vertices of a 2 x 2 x 2 mm grid
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superimposed over the image. Streamlines along the orientation of
the fODF peaks were then generated in 0.5 mm steps and fODF peaks
were reestimated at each new location (Jeurissen, Leemans, Jones,
Tournier, & Sijbers, 2011). Tracts were terminated if the fODF thresh-
old fell below 0.05 or the direction of pathways changed through an
angle greater than 45° between successive 0.5 mm steps. This pro-
cedure was then repeated by tracking in the opposite direction from
the initial seed point. Streamlines outside a minimum of 10 mm and
maximum of 500 mm length were discarded. At each 0.5 mm step,
local estimates of FA, RD, and f were acquired through interpolation
of associated parameter maps while HMOA was captured at the time
of streamline generation by recording the minimally subtending local
fODF peak magnitude with appropriate normalization (Dell’Acqua
et al,, 2013).

2.4 | Reconstruction of anterior/posterior
hippocampal fornices

Reconstructions of the fornix were based on an anterior/posterior
split of the hippocampus using each participant’s T,-weighted scan.
Region of interests (ROIs) were defined following Boolean logic by
placing “SEED” (either/or), “AND” (inclusive), or “NOT”" (exclusive)
waypoint gates.

2.4.1 | Anterior hippocampal fornix

For the segment of the fornix associated with the anterior portion of
the hippocampus, a “SEED” ROI was placed around the body of the
fornix on the coronal plane 6 mm posterior to the anterior commis-
sure, as defined by that participant’s T,-weighted scan (Figure 1A-I,
blue bar). An “AND” ROI was placed halfway along the length of the
left or right hippocampus, respectively, on the coronal plane as shown
in Figure 1B-I (green bar). Consequently, the tract reconstructions
reflected those fiber pathways that reach or extend anterior to this

FIGURE 1 (A, B) Parasagittal images
showing the shared landmarks used for
reconstructing the anterior (A-1, B-1) and
posterior (A-1l, B-1l) hippocampal fornix.
The same SEED gate is first placed around
body of fornix (sagittal plane, blue bar A-I,
I). Midway between the head of the uncus
and the tail of the hippocampus (both
marked with a black bar), a bar was placed
as either an AND gate (B-I, green, anterior
hippocampus) or a NOT gate (B-I, red,
posterior hippocampus), using the lateral-
most sagittal plane point where the uncus
is still visible
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“AND” ROI. For consistency, the same coronal section provided the
“AND” ROI for the two hemispheres. The microstructural indices (FA,
RD, f, and HMOA) were averaged along the tract reconstructions that
were jointly compiled from both hemispheres, so giving a single over-
all mean value for each participant for each measure.

2.4.2 | Posterior hippocampal fornix

For the posterior hippocampal fornix, the procedure was identical
to that described above except that a “NOT” gate, instead of an
“AND” ROI, was placed at the mid-hippocampal level (Figure 1B-
I, red bar). This NOT gate should exclude those fibers continuing
anteriorly beyond this point, that is, only fibers associated with the
posterior half of the hippocampus should be reconstructed. The mi-
crostructural indices were calculated as for the anterior hippocam-
pal fornix.

For both the anterior and posterior hippocampal fornix fiber re-
constructions, “NOT” ROIs were applied to exclude any extraneous
fibers not consistent with the known fornix anatomy. These NOT ROls
were placed as follows using the midline sagittal plane for reference:
i. on the coronal slices immediately anterior to the genu of the corpus
callosum and immediately posterior to the splenium of the corpus cal-
losum, ii. on the axial slices at the level of the lower limit of the body of
the corpus callosum and at the level of the upper limit of the pons, and
iii. on the sagittal slices lateral to the fornix at the edge of the medial
temporal lobe for each hemisphere.

Before calculating and comparing the four microstructural indi-
ces for the anterior and posterior hippocampal reconstructions, the
anterior hippocampal fornix streams were truncated at the posterior
hippocampus, so that they began at the same coronal level as the pos-
terior streams (Figure 2B-1,Il). This procedure excluded the additional
part of the anterior hippocampal fornix (along the length of the hippo-
campus) that would otherwise make the comparison nonequivalent. In
practice, fibers relating to the anterior hippocampal reconstructions
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were cut short along the body of the hippocampus, at the level of the
AND gate, using the “splitter tool” function in ExploreDTI.

To provide an initial visualization of the reconstructed anterior and
posterior hippocampal fornix tracts for all participants, all reconstruc-
tions were converted into Nifti format and warped into the Montreal
Neurological Institute (MNI) standard 2-mm FA template for diffusion-
weighted scans. All Nifti images were combined into one composite
image across participants for each tract and the mean of this compos-

ite image was computed using FSL FMRIB software.

2.5 | Statistical analysis

All statistical analyses were carried out using SPSS v. 20 (IBM Corp,
2011). All micro- and macrostructural data for each tract were in-
spected for outliers, defined as values larger than three times the ab-
solute z-score from the mean.

2.6 | Assessment of overlap between fornix
subdivisions

In addition to visualizing the MNI-transformed results for the ante-
rior and posterior hippocampal reconstructions (Figure 3), two voting

FIGURE 3 Mean MNI normalized voxels across all participants
for the anterior hippocampal fornix reconstruction (blue) and the
posterior hippocampal fornix reconstruction (red). Voxels containing
both tracts are shown in pink. (Coronal section: X = 89 on MNI 1 mm
T1-weighted FMRIB template)

FIGURE 2 (A) Examples of fornix

fiber streams for the anterior (blue) and
posterior (red) hippocampus from a left
sagittal (1) and right sagittal (Il) view. (B)
Examples of the “truncated” anterior fornix
fiber streams (blue) accompanied by the
full posterior hippocampal streams (red).
(Anterior hippocampal fornices were cut

at the AND/NOT gate levels depicted in
Figure 1A-Il, B-11)

algorithms were applied to the data. For both methods, the partici-
pants’ T,-weighted images were first coregistered nonlinearly with
Elastix (Klein, Staring, Murphy, Viergever, & Pluim, 2010) to the MNI
1 x 1 x 1 mm template and then transformed using individual partici-
pant’s anterior hippocampal and posterior hippocampal fornix tract
masks (3D volumes in which voxels intersected by a streamline are
set to 1, all others to 0) into a common space using the same warp
fields. The overlap between the two fornix reconstructions was then
investigated using the following two methods.

The first method (‘probability based’) assigned a varying shade be-
tween red and blue to each voxel occupied by the anterior or posterior
hippocampal fornix (blue for anterior and red for posterior). The shade
was determined by the ratio of participants who possessed either tract
within this voxel, for example, if more participants possessed the an-
terior hippocampal fornix in a given voxel than posterior hippocampal
fornix, then this voxel would be a bluer shade rather than a redder
shade. In the case of a 50/50 split, the voxel color was halfway be-
tween red and blue, that is, purple.

The second illustrative method (‘winner takes all’) used the same
initial process, but then applied a ‘winner takes all’ binary voting
scheme to the probability-based data. Consequently, voxels were as-
signed either to the anterior hippocampal or the posterior hippocam-
pal fornix according to whether they received more projections from
the anterior or posterior hippocampus across participants. Voxels with
equal numbers of projections from anterior and posterior hippocam-
pus are illustrated in purple.

Quantitative measures of overlap between the anterior and poste-
rior hippocampal-derived fornices were also calculated (Dice, 1945). A
Dice score was calculated for each individual using the following for-
mula (where x is the Dice score, A and B are two separate tract masks,
and C is the overlap between them): x = 2C/(A+B). Dice scores vary
between 0 and 1, the higher the score the greater the level of overlap

between the samples.
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2.7 | Relationship of microstructural indices from the
two fornix subdivisions

When comparing the four microstructural indices for the anterior and
posterior hippocampal reconstructions, the anterior hippocampal data
came from truncated reconstructions (see above) so that they began
at the same coronal level as the posterior streams (Figure 2B-1, B-1l).
The four microstructural indices (FA, HMOA, f, RD) for the ante-
rior and the posterior hippocampal fornix subdivisions were separately
compared using paired sample t-tests (two-tailed) and correlational
analyses (Pearson’s r correlations). These comparisons were always
restricted within the same index, for example, making four t-tests in
total. Consequently, a Bonferroni adjusted alpha level of 0.0125 (i.e.,
0.05 alpha level divided by four comparisons) helped to determine

significance.

3 | RESULTS

3.1 | Anterior and posterior hippocampal fornix
reconstructions

Both fornix subdivisions could be reconstructed in all 40 participants
for both hemispheres. Based on the outlier criterion (see Methods),
one value for the anterior hippocampal fornix RD (n = 39) and two val-
ues for the posterior hippocampal fornix f (n = 38) were excluded from
the analyses. For all remaining participants, the anterior hippocampal
fiber streams occupied a lateral position within the body of the fornix,
whereas the posterior hippocampal fiber streams were located in the

medial portion of the fornix (Figures 3 and 4).

3.2 | Visual representation: Anterior versus posterior
hippocampal fornix

The outcome of the ‘probability based’ model is shown in Figure 4A,B.
The areas of overlap between the tracts are illustrated by the purple
hues. It is evident that the two structures remain largely separable,

FIGURE 4 (A, B) Relative probability
maps depicting voxels that “belong” to
the anterior (aHPCFx, blue) or posterior
(pHPCFx, red) hippocampal fornix, with
purple as equal ownership. The images in
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particularly in the z-axis. The results of the ‘winner take all’ method
(Figure 4C,D) binarize the same voxels according to the voting scheme
described above. This binarized image demonstrates how few voxels

contribute equally to either tract.

3.3 | Dice scores and overlap

The median Dice score for the anterior and posterior hippocampal
fornix was 0.23 (lower quartile, 0.16; upper quartile, 0.30). Likewise,
the mean Dice score was similarly low (0.23; S.D. 0.09), again reflect-
ing the low voxel overlap between the subdivisions (Cabezas, Oliver,
Llado, Freixenet, & Cuadra, 2011; Van Leemput et al., 2009).

3.4 | Correlations and t-test comparisons between
diffusion measures

Significant positive correlations (all p <.0125 Bonferroni corrected)
were found between the anterior and posterior hippocampal fornices
for each of the four microstructural measures (Pearson r: FA 0.62, RD
0.75, f 0.68, HMOA, 0.64). Despite these correlations, within-subject
t-tests revealed differences in these same measures (all p < .001) be-
tween the anterior (truncated) hippocampal fornix [mean and standard
deviation: FA 0.37 (0.03), RD 0.86 (0.06) x10°, f 0.70 (0.03), HMOA
0.25 (0.03)], and the posterior hippocampus [FA 0.39 (0.02), RD 0.91
(0.11) x10%, f 0.66 (0.03), HMOA 0.27 (0.04)].

4 | DISCUSSION

The fornix is the principal white matter tract associated with the hip-
pocampal formation. However, despite its status, relatively little is
known about the organization of fibers within this tract in humans.
In both nonhuman primates and rats, a topography exists along the
medial-lateral axis of the fornix that relates to the longitudinal axis of
the hippocampus. To determine whether a similar topography exists in

the human fornix, we used deterministic tractography to reconstruct

(A) go from the midline (left) to the lateral
(right) parasagittal plane (MNI 2 mm y-axis
slices 45-48). The images in (B) proceed
vertically from MNI z-axis slice 44-47,
that is, inferior (left) to superior (right).

(C, D) Binary segmentations of anterior
and posterior hippocampal fiber streams
according to a winner-takes-all scheme
(blue = anterior; red = posterior). Other
conventions are the same as in (A and B)
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fornix fibers associated with either the anterior or posterior hip-
pocampus. A clear distinction was found as fibers associated with
the anterior hippocampus were located laterally within the body of
the fornix, whereas fibers associated with the posterior hippocampus
were found medially. Thus, we found the same topographical organi-
zation as has been reported previously in nonhuman primates and rats
(Meibach & Siegel, 1977; Saunders & Aggleton, 2007). Formal analy-
ses of the two fiber populations showed little overlap between the
pathways associated with the anterior and posterior hippocampus.

Current diffusion-based MRI methods are unable to determine the
direction of any particular connection, that is, they cannot distinguish
hippocampal efferents from afferents within the fornix. Nevertheless,
it is most likely that the MRI signals principally reflect the topogra-
phy of hippocampal efferents as the reciprocal afferent fibers are far
less numerous within the tract (Saunders & Aggleton, 2007). These
hippocampal efferents principally arise from the CA fields and the
subicular cortices (Chase et al., 2015; Saunders & Aggleton, 2007).
For this reason it can be inferred that the more lateral fornix fibers
preferentially innervate targets like the prefrontal cortex, nucleus ac-
cumbens, and the anteromedial thalamic nucleus, as in every instance
the anterior hippocampus provides the most numerous inputs to these
sites (Aggleton, Wright, Rosene, & Saunders, 2015; Barbas & Blatt,
1995; Chase et al., 2015; Christiansen, Dillingham, et al., 2016). In
contrast, more posterior hippocampal projections in the fornix include
the dense inputs to the mammillary bodies (Christiansen, Dillingham,
et al., 2016). It should, however, be emphasized that in the rat and ma-
caque brains these distinctions are relative, that is, there is a gradient
in the anterior-posterior inputs from the subiculum and CA1 rather
than a sharp division between the anterior and posterior hippocam-
pus (Aggleton, 2012; Barbas & Blatt, 1995; Evensmoen et al., 2015;
Kjelstrup et al., 2008; for review see Strange et al., 2014).

Studies with monkeys have also shown that some hippocampal
afferents are organized topographically within the fornix (Saunders
& Aggleton, 2007). Injections of a retrograde tracer directly into the
fornix demonstrated how the basal forebrain projections to the hip-
pocampus have a medial-lateral organization within the tract. The
most medial and more dorsal parts of the medial septum were found
to project within the medial fornix (Saunders & Aggleton, 2007),
possibly suggesting greater termination in the posterior hippocam-
pus. Fibers located in the middle of the coronal plane of the fornix,
that is, in the intermediate part of the fornix, arose from more lateral
cell populations in the medial septum and from the diagonal band of
Broca. Interestingly, such a septo-hippocampal topography has been
reported in both the rat and the cat, where the most medial part of
the medial septum and the ventromedial part of the diagonal band
innervate the septal hippocampus, that is, the posterior hippocampus
(Siegel, Edinger, & Ogami, 1974; Witter, 1986). In contrast, more lat-
eral parts of the medial septum and the dorsomedial part of the diago-
nal band project upon the temporal (i.e., anterior) hippocampus.

Four white matter microstructural indices (FA, RD, f, and HMOA)
were acquired for the two fornix subpopulations. Perhaps unsur-
prisingly, given the close anatomical proximity of the two subpopu-
lations, all microstructural indices significantly correlated across the

two fornix reconstructions. However, clear pathway differences arose
when comparing each microstructural index for the anterior and pos-
terior hippocampus, suggesting differences in the axonal organization
of the two subpopulations. Anterior hippocampal/lateral fornix fibers
exhibited significantly lower FA and lower HMOA as well as higher f
and RD than posterior hippocampal/medial fornix fibers. The pattern
of larger FA and HMOA together with lower RD suggests a more co-
herently aligned and more densely packed axon population in medial
portions compared to lateral portions of the fornix. At the same time,
the anterior hippocampus/lateral fornix fibers showed higher f, that
is, a higher fraction of the signal attributable to tissue after the free
water correction, than posterior/medial fibers. While the explanation
for these differences remains unclear, contributing factors may include
small differences in the angle of curvature and the extent to which
the voxels include ventricular space. One further issue that could af-
fect these comparisons concerns the way in which parahippocam-
pal fibers pass through the posterior CA1 to join the medial fornix
before crossing hemispheres in the dorsal hippocampal commissure
(Demeter, Rosene, & Van Hoesen, 1985). In practice, the positioning
of the “SEED” ROI around the body of the fornix should exclude much
of this potential contribution as the large majority of fibers in this com-
missure cross caudal to this ROl (Demeter et al., 1985).

An implication of the tract reconstructions is that there are topo-
graphic distinctions within the medial-lateral dimension of the for-
nix that are likely to reflect corresponding differences in function
along the longitudinal axis of the hippocampus. Of the two areas, the
anterior hippocampus has been more linked to stress, anxiety, and
emotional processing (Bannerman et al.,, 1999; Chase et al., 2015;
O’Mara, 2005), whereas the posterior hippocampus is more typically
linked to fine-grain spatial processing (Poppenk et al., 2013; Strange
et al., 2014). These differences do not, however, reflect a dichotomy,
rather a gradation of change along the anterior-posterior axis (Collin
et al., 2015; Poppenk et al., 2013; Strange et al., 2014). One inter-
pretation is that the anterior hippocampus is important for forming
large-scale representations of the environment, whereas the poste-
rior hippocampus provides more detailed representations (Poppenk
et al., 2013; Strange et al., 2014). As a consequence, it has been pro-
posed that relative differences along this axis include memory encod-
ing, scene construction, and imagining events (anterior hippocampus),
along with memory retrieval and spatial navigation (posterior hippo-
campus) (Poppenk et al., 2013; Zeidman & Maguire, 2016). The novel
tractography protocol described here allows future investigations to
examine the relationships between these different aspects of cogni-
tion, alongside the respective sets of white matter connections.

A previous study employing a similar methodology (Christiansen,
Aggleton, et al., 2016) demonstrated that the fornix can also be di-
vided between its precommissural and postcommissural fiber subdi-
visions (Poletti & Creswell, 1977). The precommissural fornix contains
hippocampal connections with the basal forebrain, ventral striatum,
and prefrontal cortex, whereas the postcommissural fornix connec-
tions reach the medial diencephalon and hypothalamus (Poletti &
Creswell, 1977). Using diffusion imaging, the precommissural and
postcommissural fibers were found to occupy different locations
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within the body of the fornix: the postcommissural fornix fibers were
located dorsally, whereas the precommissural fibers were located ven-
trally (Christiansen, Aggleton, et al., 2016). Together with the present
results, these findings suggest that there is a topography along the
two planes of the fornix, that is, within both the dorsal-ventral and
medial-lateral axes of the tract, with both topographies reflecting dif-
ferent sets of hippocampal connections. Consequently, hippocampal
efferents to prefrontal cortex should first predominantly occupy the
lateral fornix and then the dorsal fornix, going anteriorly along the

body of the fornix.

5 | CONCLUSIONS

This study demonstrated a clear separation of human fornical fibers
depending on whether they were associated with the anterior or pos-
terior hippocampus. Fibers associated with the anterior hippocampus
were located laterally within the body of the fornix, whereas fibers
associated with the posterior hippocampus were located medially.
These findings pave the way for future work to determine whether
these fornical subpopulations contribute to different cognitive func-
tions and whether they are differentially affected by pathological con-
ditions such as Mild Cognitive Impairment and Alzheimer's disease,
both known to be associated with microstructural changes in the for-
nix (Fletcher et al., 2013; Metzler-Baddeley, Hunt, et al., 2012; Sexton
et al., 2010). The present findings offer, for example, a means to help
determine whether there are differential rates of disruption in the
white matter associated with the anterior and posterior hippocampus

in these diseases.
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