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Abstract 

 Statistical views of reading highlight the link between proficient literacy and the 

assimilation of various regularities embedded in writing systems, including those in the 

mapping between print and meaning. Still, orthographic-semantic (O-S) regularities remain 

relatively understudied, with open questions regarding three issues: (a) how O-S regularities 

should be quantified, (b) how they impact the behavior of proficient readers, and (c) whether 

individual differences in sensitivity to these regularities predict reading skills. The goal of the 

current paper is to address these questions. We start by reviewing previous studies estimating 

print-meaning regularities, where orthography-to-semantics consistency (OSC) is defined as 

the mean semantic similarity between a word and its orthographic neighbors. While we adopt 

this general strategy, we identify a potential confound in previous operational definitions. We 

therefore offer a modified measure, which we use to examine group-level OSC effects in 

available datasets of single word recognition and reading for comprehension. Our findings 

validate the existence of OSC effects but reveal variation across tasks, with OSC effects 

emerging more strongly in tasks involving a direct mapping of print to meaning. Next, we 

present a re-analysis of word naming data from 399 second through fifth graders, where we 

examine individual differences in reliance on O-S regularities and their relation to 

participants' reading skills. We show that early readers whose naming accuracy is more 

influenced by OSC (i.e., those who rely more on O-S) have better passage comprehension 

abilities. We conclude by discussing the role of O-S regularities in proficient reading and 

literacy acquisition.  

 

Keywords: Orthographic-semantic regularities; Print-meaning mapping; Word recognition; 

Reading; Individual differences.   
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1. Introduction 

Over the course of the past decades reading research has become increasingly 

grounded in the notion that proficient reading requires the assimilation of statistical 

regularities present in the writing system. This statistical view of reading maintains that over 

the course of literacy acquisition children become gradually sensitive to the regularities 

available to them in the writing system, and that proficient readers utilize these regularities to 

read more efficiently (see Arciuli, 2018; Frost, 2012; Sawi & Rueckl, 2019 for reviews). This 

theoretical framework highlights the role of statistical learning mechanisms in reading, and 

underlies key questions for reading research: What are the available regularities that are 

embedded in the written input, how can they be quantified, and how do they impact reading 

behavior?     

The first type of regularities to attract the attention of the reading community – and 

perhaps the best studied case to date – are the regularities between orthography and 

phonology (O-P). The assimilation of O-P regularities is considered to play a key role in the 

ability to convert orthographic strings to the spoken forms they represent (phonological 

decoding), which is taken to be one of the fundamental skills underlying reading (e.g. Ehri, 

2005; Share, 1999). Considerable work has been devoted to the question of how exactly to 

quantify O-P regularities (e.g. how to capture the difference between the English words mint 

and pint): Such work resulted in various operational measures, including those that center on 

whether an individual grapheme-phoneme correspondence is regular or not (e.g. Baron & 

Strawson, 1976; Forster & Chambers, 1973), the (continuous) degree of consistency of a 

given O-P pairing (e.g. Jared et al., 1990; Treiman et al., 1995) and information-theoretic 

metrics that quantify the uncertainty and unpredictability of orthographic and phonological 

units (e.g. Protopapas & Vlahou, 2009; Siegelman et al., 2020). There is also an abundance of 

work showing that proficient readers are impacted by O-P regularities such that they 
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recognize faster and more accurately words that are more O-P transparent (e.g. Glushko, 

1979; Jared et al., 1990; Seidenberg, 1985). Empirical data further suggest that readers are 

sensitive to O-P regularities in multiple grain sizes (Steacy et al., 2018; Treiman & Kessler, 

2006), and that developmentally, sensitivity to O-P correspondences is gradually acquired 

over the course of typical reading acquisition (e.g., Sénéchal et al., 2016; Weekes et al., 

2006), with greater reliance on larger grain sizes (e.g., body-rime correspondences) later in 

development (Treiman et al., 2006). Sensitivity to O-P regularities (or lack thereof) also 

accounts for individual differences in reading development, as children with poorer reading 

skills exhibit decreased sensitivity to these regularities (e.g., Siegelman, Rueckl, et al., 2020).  

Yet despite their central role in literacy acquisition, O-P correspondences are only one 

of multiple sources of information present in writing systems: In any given written input there 

is a plethora of different types of regularities that are concurrently available to readers. Some 

of these regularities exist within the orthographic domain: some letters co-occur more 

frequently than others (e.g. Gingras & Sénéchal, 2019) and the same holds for printed words 

(e.g. Fine & Jaeger, 2013). There are also other (and more subtle) types of regularities within 

the O-P mapping, such as associations between orthographic units and stress patterns (e.g., 

Arciuli, 2018). In addition to all these orthographic regularities and O-P associations exist the 

regularities between orthography and semantics, regularities that play a central role in word 

recognition according to computational models of reading but are still relatively understudied 

compared to O-P regularities (see review and examples below). The current paper focuses on 

these regularities in the orthographic-semantic (O-S) mapping.  

In particular, the goal of the current paper is to address three outstanding questions in 

regard to O-S regularities. The first question is how to assess O-S regularities at the word-

level. The second question is whether O-S regularities impact the reading behavior of the 

average proficient reader, to what extent, and under what conditions. The third question is 
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whether and how variability in young readers' sensitivity to O-S regularities is related to 

individual differences in early reading skills.  

The structure of the paper follows these three questions. First, we review previous 

computational and behavioral work on O-S regularities, which leads us to highlight 

methodological considerations related to their measurement. We build upon recent studies by 

Marelli, Amenta, and colleagues (Amenta et al., 2017, 2020; Marelli et al., 2015; Marelli & 

Amenta, 2018) in an attempt to quantify the O-S consistency of a given word relative to 

another. In this section we deal with a potential confound we identify in older definitions and 

propose a modified measure of O-S consistency. Second, we use this modified measure in 

conjunction with available large-scale datasets to examine the impact of O-S consistency on 

group- level behavior across different reading tasks. In doing so we examine data from both 

word recognition tasks (i.e., word naming, lexical decision) and naturalistic text reading for 

comprehension (measured via eye movements). Third, we analyze individual differences in 

sensitivity to O-S regularities as reflected in the degree to which early readers are impacted 

by O-S consistency during word naming. We ask whether young readers differ from one 

another in their reliance on O-S regularities and, if so, whether these individual differences 

account for inter-individual variability in emerging reading skills.  

 

2. What Are O-S Regularities and How Can They Be Measured?  

Historically, O-S regularities have been studied mostly in the context of 

morphological effects on word recognition. The impact of morphological structure on visual 

word recognition has been demonstrated in a long tradition of behavioral studies dating back 

to the 1970s when Murrell and Morton (1974) reported that the recognition of a word is 

facilitated by the prior presentation of a morphologically- related word and Taft and Forster 

(1975) showed that nonwords that comprise real affixes and stems (e.g., dejuvenite) take 
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longer to reject in a lexical decision task than nonwords with no apparent morphological 

structure. In the years since those seminal studies, the role of morphology in reading has been 

investigated using a variety of methodologies, in numerous languages, and in both skilled and 

developing readers (see Feldman, 1994; Frost, 2012; Rastle & Davis, 2008 for reviews).   

To a large extent, this research has been driven by a theoretical perspective that takes 

morphological structure as a primitive in the organization of the lexicon, and maintains that 

explicit representation of morphological relations is the source of morphological effects in 

visual word recognition (see Seidenberg & Gonnerman, 2000 for a historical overview). 

However, an alternative approach takes morphological structure as an emergent property of 

the structure of the mapping between orthographic (and phonological) forms and meaning 

(Plaut & Gonnerman, 2000; Rueckl et al., 1997; Seidenberg & Gonnerman, 2000). From this 

perspective, sensitivity to morphological regularities arise from the same statistical learning 

process that gives rise to the effects of O-P regularities. This view originated from the 

Triangle Model of Reading (Plaut et al., 1996; Seidenberg & McClelland, 1989), which 

considers learning to read as a process in which readers form associations between words' 

orthography, phonology and semantics. Thus, according to this model, during literacy 

acquisition readers assimilate not only O-P regularities but also those in the mapping between 

orthography and semantics (including morphological regularities). The regularities in these 

two mappings are gradually assimilated by learners, until, at the end of the developmental 

trajectory, proficient readers achieve an efficient division of labor between reliance on O-P 

and O-S pathways (Harm & Seidenberg, 2004). 

In terms of behavior studies, early research from this perspective focused on priming 

between morphological relatives. For example, Rueckl et al. (1997) showed that long-term 

morphological priming (of the sort studied by Murrell & Morton, 1974) is modulated by 

orthographic similarity (e.g., came is a better prime for come than bought is for buy). 
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Similarly,  Gonnerman et al. (2007) demonstrated that short-term cross-modal morphological 

priming is graded by both semantic (boldly-bold, lately-late, hardly-hard) and phonological 

(acceptable-accept, criminal-crime, introduction-introduce) similarity.  

Recent research has extended these findings by showing that similarity gradients 

influence the recognition of unprimed words as well. For example, Ulicheva et al., (2020) 

showed that readers are impacted by the degree of the systematicity in the mapping between 

derivational affixes and lexical categories, such that words with morphemes that are more 

specific and more diagnostic in regard to their lexical category are read faster and more 

accurately. Most relevant for the current investigation, Marelli et al. (2015) found that 

reading times of monomorphemic stem words are impacted by whether their meaning is 

maintained in words that are orthographically similar to them: Participants recognized stems 

that are similar in meaning to orthographically similar words (e.g. farm, which is 

semantically related to many words from its orthographic family, farmer, farming, etc.) faster 

than stems with semantically distant (hardly-hard) or unrelated (corner-corn) orthographic 

neighbors.   

Marelli et al. (2015) ascribed this behavioral effect to differences in orthography-to-

semantics consistency (OSC) across words1.  Intuitively, words such as farm are consistent in 

terms of O-S because their orthography is particular (i.e., diagnostic) regarding their 

semantics (words that are orthographically related to farm are also semantically related to it); 

in contrast, the orthographic form corn (e.g., in corner or acorn) is not necessarily particular 

with regard to semantics. Indeed, Marelli et al. (2015) showed that a measure of OSC (see 

definition below) predicted lexical decision latencies of morphologically simple words above 

and beyond their frequency, length, and morphological family size. Note that the 

                                                 
1
 Throughout the paper, we use the abbreviation OSC to refer to operational measures that tap into 

orthographic-semantic regularities (and the corresponding term PSC to refer to parallel measures of 
phonology-phonology regularities). We use the abbreviation O-S (and P-S) to refer to the mapping between 
orthography and semantics (and phonology and semantics) more broadly.  
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conceptualization provided by Marelli et al. emphasizes how the OSC of a word is not a 

consequence of morphological relations only. Rather, it is a cumulative measure of whether 

the orthography of a word is diagnostic of its semantics, a feature that is impacted both by the 

links between a word and words that are orthographically and morphologically related to it 

(e.g., the relation between farm and farmer), and by the degree of semantic associations 

between a word and other orthographically-related words (e.g., the semantic (dis)similarity 

between corn and corner). In other words, OSC encompasses both morphological regularities 

(which form "islands of regularity" in the O-S mapping, Rastle et al., 2000; Rueckl, 2010) 

and other O-S associations (or, in many cases, their absence).  

At the operational level, in a series of recent studies Marelli, Amenta and colleagues 

(Amenta et al., 2017, 2020; Marelli et al., 2015; Marelli & Amenta, 2018) quantified the OSC 

of a word as a function of the semantic similarity of that word and each of its orthographic 

neighbors. Various possible definitions of orthographic neighborhood have been proposed 

(see, e.g., Yarkoni et al., 2008). Amenta et al., (2020) and Marelli & Amenta (2018) defined 

neighbors of a given word as the set of words in which that word is embedded (e.g., corns, 

corner, acorn, etc. are neighbors of corn; again note that not all words in a word's 

orthographic neighborhood are necessarily morphologically related to it, and that depending 

on the exact definition of neighborhood, not all morphological neighbors of a word are 

included in the OSC calculation, e.g., run-ran). There are also multiple ways to quantify 

semantic similarity. In their work, Marelli, Amenta, and colleagues used representations of 

word meaning derived from a Latent Semantic Analysis (LSA) model and computed the 

semantic similarity between a word and each of its neighbors by calculating the cosine 

similarity between the vectors representing the word and the neighbor (values ranging from -

1 to 1; where -1 represents opposite meanings; 1 represents identical meanings; and 0 reflects 

no semantic relationship). Then, Marelli, Amenta, et al. quantified a word’s OSC as the mean 
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cosine similarity between that word and each of its orthographic neighbors. Thus, the greater 

the semantic similarity of a word and its orthographic neighbors, the higher its OSC score.   

More formally, Marelli and colleagues defined a measure of OSC of a word as "the 

frequency-weighted average semantic similarity between the vector of a word and the vectors 

of all words that contain that very same word" (Marelli & Amenta, 2018; p. 1484), a 

definition that is expressed by the formula: 

   ( )  
∑        ( ⃗   ⃗⃗⃗⃗⃗⃗ )
 
   

∑    
 
   

 

where t is the target word ( ⃗ being its LSA representation), rx is each of its neighbors (with 

their corresponding   ⃗⃗⃗⃗  representations in the semantic space), and     is the frequency of each 

neighbor.  

In their recent work, Marelli and Amenta (2018) calculated OSC estimates per this 

definition for a large number of English words. They then examined the relation between 

these estimates and item-level behavior in word recognition tasks, finding that OSC predicted 

naming and lexical decision RT in data from the English and British Lexicon Projects, even 

when controlling for word frequency, mean neighbor frequency, family size, and length 

(Marelli & Amenta, 2018). These findings suggest that Marelli and Amenta's definition of 

OSC captures properties of the structure of the O-S mapping that are relevant to the processes 

underlying word recognition.  

It is important to note that although the mapping from orthography to semantics is of 

obvious relevance to visual word recognition, readers can also access semantics by way of 

phonology. This raises the possibility that the consistency of the phonology-to-semantics (P-

S) mapping could also influence word recognition. Indeed, Amenta and colleagues further 

showed that both OSC and phonology-to-semantics consistency (henceforth: PSC) account 

for inter- item variability in visual word recognition (where PSC is defined as the frequency-
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weighted average semantic similarity of a word to its phonological neighbors; Amenta et al., 

2017). This observation demonstrates the impact of the regularities in both O-S and P-S 

mappings even when controlling for the other source of information, which is important as in 

alphabetic languages (where graphemes represent sounds with at least some consistency) the 

two are correlated by definition.  

 

2.1 Marelli, Amenta, et al.'s Definition of OSC: A Potential Confound 

Although in the current paper we adopt the general strategy proposed by Marelli, 

Amenta, and colleagues, we argue that two specific properties of their operational definition 

may lead to a confound. The first property is that in their definition the word itself is included 

in its neighborhood; this property is reflected by the fact that words that do not have any 

neighbors other than the word itself have an estimate of OSC=1 (Marelli & Amenta, 2018). 

The second property is that Marelli and Amenta's calculation is frequency-weighted (i.e., 

token-based).  

Needless to say, each of these two methodological decisions is justifiable. Thus, there 

is no a priori reason why one would use a type- or a token-based calculation for computing 

OSC, and it is likely that either mode of calculation provides important information on O-S 

associations that the other does not (see, e.g., Chee et al., 2020, for a discussion in the context 

of O-P regularities). Similarly, the decision to include information about the word itself in the 

calculation of OSC can be defended on a theoretical ground (e.g., if a stem X is more frequent 

than a set of semantically-unrelated neighbors that include this stem – say Xy and Xz - in 

most cases where the orthographic form X is encountered the same meaning is present, and 

the original OSC definition captures that). We do not claim here that token-based calculations 

are faulty, or that the frequency of a word itself is by-definition irrelevant for its OSC. 
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Instead, our claim here is that the combination of these two properties may lead to a confound 

in prior measures of OSC.  

Namely, given that the word itself is included in its neighborhood, and given that the 

calculation of mean semantic similarity is frequency-weighted, Marelli and Amenta's OSC is 

affected by the ratio between the frequency of the word and the frequency of its neighbors. 

Importantly, this frequency ratio is not a property specific to the O-S mapping: Frequency is 

an index of how often the representation of an orthographic word form is associated with 

representations of how that word is pronounced and what it means, and hence this frequency 

ratio potentially taps into various types of statistical structure across the O-P, O-S, and P-S 

mappings (and within the O, P, and S representations). In other words, our concern here is 

that given this frequency-ratio confound, previous definition of OSC may not capture O-S 

regularities exclusively. This raises the concern that previous results demonstrating the 

impact of OSC on reading behavior were related to this frequency ratio and the various 

sources of information it encompasses, rather than to O-S regularities per-se. 

Indeed, the results of new analyses we conducted following those reported by Marelli 

and Amenta using their estimates of OSC strengthen our concern: For brevity, the full results 

are reported in Supplementary Materials S1. First, they show that as expected given our 

analysis of the OSC's definition above, OSC per the previous definition has a medium-size 

correlation (r = 0.45) with the log-transformed ratio between a word frequency and the mean 

frequency of its neighbors. Second, and importantly, an analyses of behavioral data from the 

English Lexicon Project (ELP; Balota et al., 2007) suggest that the effects of OSC (per 

Marelli & Amenta's definition) on word recognition behavior are no longer observed when 
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controlling for this frequency ratio2. Overall, then, a need arises for other definitions of OSC 

that reflect the structure of the O-S mapping specifically.   

 

2.2 A Modified Definition of OSC 

Concretely, in the current paper we suggest a modified measure of OSC, which 

follows the general analytical strategy by Marelli, Amenta, and colleagues, but applies two 

methodological modifications. First, it uses a type-based rather than frequency-weighted 

calculation (i.e., each word was counted once regardless of its frequency). Second, the word 

itself is not included in its neighborhood. These two modifications are meant to de-confound 

the OSC measure from the ratio between a word frequency and the frequency of its 

neighbors. Operationally, then, our measure of OSC is defined as the mean (type-based) 

cosine similarity between a word and its orthographic neighbors, which is expressed by the 

formula:  

   ( )  
∑    ( ⃗   ⃗⃗⃗⃗⃗⃗ )
 
   

 
 

where t is the target word (  ⃗ being its LSA representation), rx is each of its neighbors (with 

their corresponding   ⃗⃗⃗⃗  representations), and k is its neighborhood size (i.e., number of 

neighbors of the target word).  

Note that in the analyses below we define orthographic neighborhood as all words in 

the corpus with an orthographic Levenshtein distance of 1. We use this definition of 

orthographic neighborhood (rather than Marelli and Amenta's definition, i.e., all words that 

include a word) to maximize the number of words in the corpus that have at least one 

                                                 
2
  This holds also for gaze durations during reading for comprehension. Mixed-effec t models (similar in 

specification to those reported bel ow) showed no significant effect of Marelli  & Amenta’s OSC estimates on 
log-transformed Gaze Duration when controlling for the log-transformed frequency ratio (p > .1). Models and 

outputs for this analysis are available in the project's OSF page. This null  result stands in contrast to the 
analysis using our alternative definition of OSC (see 'Impact on Eye Movements' section, below), which shows 
that under this definition, O-S regularities do predict Gaze Durations during reading for comprehension. 
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neighbor (specifically, many longer do not have neighbors based on Marelli and Amenta's 

definition, but are more likely to have neighbors under a Levenshtein-distance-based 

definition). Yet we also note already here that the change in the neighborhood definition 

likely affected the types of relations that are captured by our OSC estimates (e.g., it should be 

more sensitive to irregular inflections, e.g., run-ran; but less to other forms of suffixation 

with multiple letters, e.g., run-runner). More broadly, we stress that our definition of OSC is 

only one possible measure of O-S regularities and it should not be taken as an 'optimal' 

measure that captures the full O-S mapping. Thus, much like any other operational definition, 

our measure is based on a series of decisions that went into its quantification (including: the 

use of type-based calculation; the exact definition of neighborhood; the type of semantic 

space used; etc.), each of them inevitably resulting in a measure that is more sensitive to 

some forms of O-S relations than others. Our argument in the rest of the paper is simply that 

our OSC measure is a valid measure of O-S regularities and therefore that the findings below 

regarding its impact on group- and individual- level behavior reflect the effects of O-S on 

reading. In the General Discussion we return to a lengthy analysis of the properties of the O-

S mapping that our OSC measure does and does not capture.  

 

3. Validating the Modified OSC Measure Using Behavioral Data  

The goal of this section is to validate our OSC measure by examining whether it 

predicts reading behavior. We do so by investigating the relation between our estimates of 

OSC and item-level reading behavior in two sets of analyses. The first focuses on word 

recognition data from the ELP, with data from lexical decision and word naming tasks. The 

second examines eye-movements, using data from the Ghent Eye-Tracking Corpus (GECO), 

a book reading eye-movement database (Cop et al., 2017). The combination of the two 
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datasets enables us to examine whether O-S regularities indeed affects reading behavior, and 

whether such effects vary across reading tasks (and in what ways).  

Note that in addition to our metric of OSC (and control variables), in the analyses 

below we also include as predictors measures of O-P regularities as well as a measure of 

PSC. As noted above, the rationale behind this inclusion is that in alphabetic languages, OSC 

and PSC are correlated by definition, and the degree of this correlation depends on O-P 

consistency (see also Amenta et al., 2017). Thus, whenever possible, we consider all these 

regularities (as well as their interactions) in the same models.  

 

3.1 Methods: Estimation of Word Properties 

Our estimation of orthographic and phonological neighborhood used a corpus of 

117,574 English words and their General American pronunciations (Kearns, 2020; based on 

data from Fitt, 2001). Target words were all items from the ELP. For each target word, we 

extracted all neighbors (orthographic and phonological) from the larger corpus, by extracting 

the list of words with a Levenshtein distance of 1 from the word. Orthographic neighbors 

were defined based on orthographic forms (i.e., Levenshtein distance of one letter) and 

phonological neighbors were based on phonological transcriptions (i.e., Levenshtein distance 

of one phoneme). Distances were calculated using the stringdist function from the R package 

stringdist (van der Loo, 2014). Following the work by Marelli, Amenta, and colleagues, in 

the analysis below we use LSA spaces to quantify semantic similarity (but see 

Methodological Considerations for estimates based on alternative semantic representations). 

Specifically, we used pre-trained LSA semantic spaces (from Günther et al., 2014), with 

vectors of 300 dimensions, trained on the TASA corpus, to calculate the mean cosine 

similarities (using the LSAfun R package, Günther et al., 2014). As noted above, OSC was 

defined as the mean cosine similarity between a word and its orthographic neighbors. In 
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addition, the mean cosine similarity between a word and its phonological neighbors served as 

a measure of PSC. In all models below we also included as control variables measures of log-

transformed word frequency, word length, log-transformed orthographic and phonological 

neighborhood sizes, and manner and place of articulation (15 dummy-coded variables). Note 

that in contrast to the OSC measure by Marelli, Amenta, and colleagues, under our definition 

OSC was uncorrelated with the log-transformed frequency ratio between a word and its 

neighbors (r = 0.01), as expected given the modifications applied to its definition. Please 

refer to the project's OSF page (https://osf.io/3aczx/)  for a full list of words with their OSC 

and PSC estimates, along with data and analysis scripts for all models below. 

 

3.2 Impact on Word Recognition 

Here, we used data from all monosyllabic words in the ELP. We focus on 

monosyllabic words so we can include not only measures of OSC and PSC but also a proxy 

of O-P regularities (as measures of O-P regularities are non-trivial to define in words with 

more than one syllable; see e.g. Chateau & Jared, 2003) – but see Supplementary Materials 

S2 for an alternative strategy3. The surprisal (- log(p(phoneme | grapheme))) of the vowel unit 

(estimates from Siegelman, Kearns, et al., 2020) was used as a measure of O-P regularities. 

Note that words for which OSC and PSC could not be calculated (i.e., words that did not 

appear in LSA space, or words with no orthographic or phonological neighbors in the space) 

were excluded from the analysis. Overall, our analyses included k=5355 items for lexical 

decision and k=5541 for word naming. Figure 1 presents the distribution of OSC values 

across monosyllabic words included in the word recognition models, and Table 1 presents the 

pairwise correlations between the various predictors and control variables. The table shows 

                                                 
3
 An alternative approach is to include all words in the analysis and not to include a measure of O-P regularities 

(but only OSC and PSC). In the Supplementary Materials S2 we report such analysis, conducted on all  words in 

the ELP for which OSC and PSC can be calculated (22680 words for word naming; 21702 for lexical decision). 
Importantly, in line with the results of the monosyllabic analysis, we found effects of OSC on lexical decision (in 
both accuracy and RT) but not in word naming. This further val idates our conclusions below.  
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that as expected, OSC and PSC were positively (yet imperfectly) correlated, and that longer 

words tended to have higher OSC and PSC estimates. In addition, words with smaller 

orthographic and phonological neighborhoods tended to have lower OSC and PSC values.  

 

Figure 1. Distribution of OSC Across Monosyllabic Words from the ELP (k=5541 words).  

 

 

 

 

Table 1: Correlations Between Predictors in Word Recognition Models (k = 5541 words). 
Measure 2 3 4 5 6 7 

1) Length -0.36 0.22 0.24 0.02 -0.66 -0.57 

2) Log-transformed frequency  0.09 0.04 0.12 0.29 0.27 

3) OSC   0.58 0.01 -0.31 -0.24 

4) PSC    0.05 -0.22 -0.41 

5) O-P     -0.06 -0.10 

6) Log O neigh size      0.66 

7) Log P neigh size       

Note: OSC = O-S consistency (modified measure of OSC); PSC = P-S consistency; O-P = O-P regularities (surprisal); Log 

O Neigh Size = log-transformed orthographic neighborhood size; Log P Neigh Size = log-transformed phonological 

neighborhood size. 

 

Models on the ELP data reported below use as their basic unit of analysis mean 

behavior in each item (across subjects): That is, models predicting RT use mean item-level 

log-transformed RT as the dependent variable, and models predicting accuracy use mean item 
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accuracy (i.e., proportion correct). We refrained from using (generalized) mixed-effect 

models in the ELP data due to non-convergence of even the most simplified models 

predicting accuracy. Instead, (generalized) multiple regression models were run to predict the 

item-level means from the predictors and control variables shown in Table 1, with standard 

linear models for RT models, and generalized models with a logit link function and a quasi-

binomial family for accuracy models. For simplicity, we did not include all possible 

interactions in our models (e.g., we omitted interactions between frequency and the 

consistency measures). Instead, we focused on the interactions between OSC, PSC, and O-P 

surprisal in light of previous studies that highlight the interactive nature of the O-P, P-S, and 

O-S components of the reading system (e.g., Amenta et al., 2017; Chang & Monaghan, 2019; 

Harm & Seidenberg, 2004; Strain et al., 1995). We also note that despite the inter-

correlations between predictors (see Table 1), in all models reported below multicollinearity 

was reasonably low, with VIF < 3 for all predictors of interest (i.e., all measures except for 

the articulation parameters which are by-definition correlated with one another).  

The results of the models are presented in Tables 2 and 3 for lexical decision and 

naming data, respectively. In lexical decision (Table 2), there were significant main effects of 

all three consistency measures - OSC, PSC, and O-P surprisal - on both response latencies 

and accuracy. In all cases, words with more consistent mappings (higher OSC, higher PSC, 

and lower O-P surprisal reflecting higher O-P consistency) had faster and more accurate 

responses. In addition to these main effects, we found in both RT and accuracy a significant 

sub-additive two-way interaction between O-S and P-S regularities, with larger effects of 

OSC in lower levels of PSC – see Figure 2.  
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Table 2: Effect of the Modified OSC Measure, O-P and PSC on Lexical Decision RT and Accuracy in 
ELP Data.  
Model DV Predictor β SE t p Partial-

R
2
 

1 Acc. OSC
a
 0.100 0.0267   3.759    < .001 0.3% 

 O-P
a
 -0.106 0.0180 -5.902 < .001 0.7% 

 PSC
a
 0.231 0.0333 6.948 < .001 0.1% 

 Log Freq. 0.473 0.0100 46.873 < .001 37.0% 
 Word Length  0.547 0.0219 25.027 < .001 13.3% 
 Log. O Neigh Size 0.391 0.0396 9.887 < .001 2.2% 
 Log. P Neigh Size -0.012 0.0324 -0.376 .707 <0.1% 
 OSC×O-P -0.066 0.0207 -3.200 .001 0.3% 
 PSC×O-P -0.002 0.0226 -0.093 .926 <0.1% 
 OSC×PSC -0.004 0.0008 -5.626 <.001 0.4% 
 OSC×O-P×PSC 0.002 0.0101 0.212 .832 <0.1% 
 Articulation

b
      

        
2 Log-RT OSC

a
 -0.012  0.0019 -6.230 < .001 0.7% 

 O-P
a
 0.006 0.0015 3.851 < .001 0.2% 

 PSC
a
 -0.014 0.0023 -6.022 < .001 0.7% 

 Log Freq. -0.034 0.0007 -46.941 < .001 29.2% 
 Word Length  -0.011 0.0018 -6.068 < .001 0.6% 
 Log. O Neigh Size -0.020 0.0036 -5.483 < .001 0.6% 
 Log. P Neigh Size -0.011 0.0029 -3.851 < .001 0.3% 
 OSC×O-P 0.001 0.0018 0.607 .544 <0.1% 
 PSC×O-P 0.002 0.0016 0.992 .321 <0.1% 
 OSC×PSC 0.004 0.0006 6.072 <.001 0.7% 
 OSC×O-P×PSC -0.0006 0.0008 -0.776 .438 <0.1% 
 Articulation

b
      

        
Note: Models fitted to data including k=5355 monosyllabic words. Acc. = mean accuracy; DV = dependent variable; log-RT 

= log-transformed response time; Log Freq. = log-transformed frequency; OSC = O-S consistency (modified measure of 

OSC); O-P = measure of O-P regularities (surprisal); PSC = P-S consistency; Log. O Neigh Size = log-transformed 
orthographic neighborhood size; Log. P Neigh Size = log-transformed phonological neighborhood size. Models with mean 

accuracy as a DV use a logit link with a quasi-binomial family. Partial-R2 values were computed using the rsq package in R 

(Zhang, 2021).  
a
 OSC, O-P, and PSC were scaled and centered to reduce collinearity with the estimated interactions. 

b Articulation parameters do not have estimates, SE, and t/p -values because these are a set of 15 dummy-coded variables 

(reflecting manner/place of articulation of first consonant, see also Siegelman, Kearns, et al., 2020). 

 

  



19 
 

Figure 2. Estimated Effect of the Interaction Between O-S and P-S Consistency on Lexical 
Decision Accuracy (Top Panel, A) and Response Latencies (Bottom Panel, B). Figure plotted 

using the interactions package in R (Long, 2019). Shaded areas show 95% confidence 
intervals.  

 
 

For word naming RT and accuracy, we found significant effects of O-P surprisal and 

PSC (Table 3): Words that were more consistent in terms of P-S (higher PSC) and O-P (lower 

O-P surprisal) had faster and more accurate naming responses. OSC, however, did not have a 

significant main-effect in predicting naming accuracy or latencies – in contrast to the results 

of the lexical decision models above. Note that the naming RT analyses did reveal a 

significant OSC by PSC interaction (again, a sub-additive interaction mirroring that in lexical 

decision), pointing at OSC effects specifically in P-S inconsistent words. We return to 

discussing this finding below.  
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Table 3: Effect of the Modified OSC Measure, O-P and PSC on Word Naming RT and 
Accuracy in ELP Data.  
Model DV Predictor β SE t p Partial-

R
2
 

1 Acc. OSC
a
 -0.044 0.0270 -1.618 .101 0.1% 

 O-P
a
 -0.245 0.0174 -14.096 <.001 4.1% 

 PSC
a
 0.125 0.0365 3.414 <.001 0.3% 

 Log Freq. 0.028 0.0110 25.788 <.001 14.1% 
 Word Length  0.186 0.0253 7.326 <.001 1.6% 
 Log. O Neigh Size 0.313 0.0466 6.715 <.001 1.0% 
 Log. P Neigh Size -0.087 0.0379 -2.294 .022 1.3% 
 OSC×O-P -0.024 0.0187 -1.265 .206 <0.1% 
 PSC×O-P 0.019 0.0208 0.895 .371 <0.1% 
 OSC×PSC -0.009 0.0073 -1.166 .244 <0.1% 
 OSC×O-P×PSC -0.013 0.0094 -1.393 .164 <0.1% 
 Articulation

b
      

        
2 Log-RT OSC

a
 -0.002 0.0017 -1.021 .308 <0.1% 

 O-P
a
 0.013 0.0013 9.482 <.001 1.6% 

 PSC
a
 -0.006 0.0020 -3.059 .002 0.1% 

 Log Freq. -0.014 0.0006 -21.407 <.001 7.7% 
 Word Length  0.010 0.0016 6.324 <.001 0.7% 
 Log. O Neigh Size -0.027 0.0032 -8.632 <.001 1.3% 
 Log. P Neigh Size 0.012 0.0026 4.796 <.001 0.4% 
 OSC×O-P 0.003 0.0016 1.666 .096 <0.1% 
 PSC×O-P -0.001 0.0015 -0.393 .694 <0.1% 
 OSC×PSC 0.001 0.0005 2.602 .009 0.1% 
 OSC×O-P×PSC -0.001 0.0007 -1.471 .141 <0.1% 
 Articulation

b
      

        
Note: Models fitted to data including k=5541 monosyllabic words. Acc. = mean accuracy; DV = dependent variable; Log-

RT = log-transformed response time; Log Freq. = log-transformed frequency; OSC = O-S consistency (modified measure of 
OSC); O-P = measure of O-P regularities (surprisal); PSC = P-S consistency; Log. O Neigh Size = log-transformed 

orthographic neighborhood size; Log. P Neigh Size = log-transformed phonological neighborhood size. Models with mean 

accuracy as a DV use a logit link with a quasi-binomial family. Partial-R2 values were computed using the rsq package in R 

(Zhang, 2021).  
a
 OSC, O-P, and PSC were scaled and centered to reduce collinearity with the estimated interactions. 

b Articulation parameters do not have estimates, SE, and t/p -values because these are a set of 15 dummy-coded variables 

(reflecting manner/place of articulation of first consonant, see also Siegelman, Kearns, et al., 2020). 

 

3.3 Impact on Eye Movements.  

Here we examined whether the effects of OSC can be generalized to text reading for 

comprehension. To do so we used data from the GECO book reading corpus (Cop et al., 

2017), which includes eye-tracking data recorded as participants read a full book (The 

Mysterious Affair at Styles by Agatha Christie) for comprehension. The corpus includes data 

from two groups of participants: A Dutch-English bilingual group and an English 
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monolingual group; here we only examine data from the latter group of n=14 L1 English 

college- level readers. GECO includes various word- level eye-tracking measures (e.g., first 

fixation duration, total reading time, skipping, etc.) – for brevity we focus only on words' 

gaze duration (i.e., sum of fixation durations per word before moving away from it). The full 

database includes about 774,000 data points (i.e., word occurrences). Because our analysis 

focuses on fixation times, we removed all data points where no fixation was made (i.e., 

skips), which amounted to 38.9% of trials (~301,000 data points). We also excluded words 

for which we did not have estimates of OSC and PSC. That is, we only included words that 

appear in the ELP, which exist in the LSA semantic space, and have at least one orthographic 

and one phonological neighbor in this space, leading to a loss of additional ~87,000 trials. 

Lastly, we excluded outliers where gaze duration was smaller than 80msec or in the top 

percentile across words and subjects. Overall, the results reported below are based on data 

including ~360,000 data points (a full breakdown of the number of word types and tokens per 

subject is available through the code in the project's OSF page).  

Our analysis of the eye-tracking data was conducted using a linear mixed-effect 

model, where we predicted log-transformed gaze duration from OSC, PSC, and their 

interaction as independent variables of interest. We additionally controlled for log-

transformed frequency, orthographic word length, orthographic and phonological log-

transformed neighborhood, and trial number. Models also included by-subject and by-word 

random intercepts (the maximal random effect structure that converged; Barr et al., 2013). 

Models were fitted using the R package lme4 (Bates et al., 2015), with p-value approximation 

using lmerTest (Kuznetsova et al., 2017). The results are presented in Table 4. As can be 

seen, there was a significant main effect of OSC on reading times, with shorter gaze durations 

for words with higher values of OSC. We did not find a main effect of PSC, but did observe a 

significant sub-additive interaction between OSC and PSC, such that the effect of OSC was 
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increasingly more pronounced in words with that are less P-S consistent, mirroring the 

interactions observed in the word recognition analysis above (Figure 3). 

 
Table 4: Effect of the Modified OSC Measure and PSC on Log-transformed Word Reading Times in 
the GECO Eye-movement Database.  

 
Predictor β SE t p Partial 

R
2
 

OSC -0.005 0.0019 -2.707 .007 0.4% 
PSC ~0.000 0.0026 0.004 .997 <0.1% 
Log Freq. -0.030 0.0021 -13.997 <.001 11.2% 
Word Length  0.049 0.0025 19.768 <.001 16.1% 
Trial Number 0.003 0.0006 5.342 <.001 0.1% 
Log. O Neigh Size 0.009 0.0028 3.138 .002 0.6% 
Log. P Neigh Size -0.002 0.0027 -0.772 .441 <0.1% 
OSC×PSC -0.001 0.0005 2.012 .044 0.2% 

      
Note: Log-RT = Log-transformed response time; Log Freq. = Log-transformed frequency; OSC = O-S consistency (modified 
measure of OSC); PSC = P-S consistency; Log. O Neigh Size = Log-transformed orthographic neighborhood size; Log. P  

Neigh Size = Log-transformed phonological neighborhood size. 

All predictors were scaled and centered to reduce collinearity with the estimated interaction and to improve model 

convergence. Effect sizes were estimated using Satterthwaite approximation of degrees of freedom and the t_to_eta2  

function in the R package effectsize (Ben-Shachar et al., 2020). 
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Figure 3. Estimated Effect of the Interaction Between O-S and P-S Consistency on Log-

transformed Gaze Duration in the GECO Eye-movement Database. Figure plotted using the 

interactions package in R (Long, 2019). 

 

3.4 Group-level Effects of OSC: Summary and Discussion  

Our analysis of group- level word recognition data showed that indeed OSC affects 

item-level variability in single word recognition, in line with earlier studies using previous 

operational definitions (Amenta et al., 2017; Marelli et al., 2015; Marelli & Amenta,  2018). 

Importantly, our analysis also showed that the effects of OSC are impacted by task demands: 

We found significant main effects of OSC in lexical decision (on both accuracy and response 

latencies), but not word naming. The divergent findings in the two word recognition tasks are 

theoretically plausible and consistent with other findings that lexical decision and naming are 

differentially sensitive to variables associated with semantic and phonological variables (e.g., 

Balota et al., 2007; Ferrand et al., 2011). Specifically, there is behavioral and computational 

evidence that semantic properties of words have a greater impact in lexical decision tasks, 

suggesting that lexical decision involves more direct O-S processes, and our results regarding 

the main-effects of OSC are consistent with this conclusion. 



24 
 

Our results also revealed several effects of higher-order interactions between O-S, O-

P and P-S regularities on word recognition, including significant OSC by PSC interactions in 

both accuracy and RT in lexical decision, and in naming RT. We reiterate that this OSC by 

PSC interaction was sub-additive, with larger effects of OSC in words that are more P-S 

inconsistent. This interaction is in line with the Triangle Model of Reading: Proficient readers 

are expected to have an efficient division of labor between O-S and O-P processes, and are 

therefore expected to rely more on one source of information when the other is unavailable 

(Harm & Seidenberg, 2004; Strain et al., 1995).  

Returning to the general effects of OSC on reading, one of the key findings in our 

group- level analysis was that OSC effects were not limited to single word recognition tasks: 

Namely, we observed a significant effect of OSC on reading times measured via eye 

movements during connected text reading. This suggests that readers are sensitive to O-S 

regularities also when reading in context for comprehension. Also note that in eye 

movements we again observed an OSC by PSC sub-additive interaction, similar to the one 

found in the word recognition data and in line with a division-of-labor view. To the best of 

our knowledge, this is the first demonstration of effects of O-S regularities (and their 

interaction with P-S) beyond single word recognition. When considered together with the 

word recognition results, these results suggest that skilled adult readers show general reliance 

on O-S regularities in tasks that involve a more direct mapping of orthography to semantics 

(i.e., lexical decision and reading for comprehension), and that the impact of OSC is further 

modulated by the extent of PSC. We return to these points in the General Discussion.  

 

4. Individual Differences in Reliance on O-S Regularities During Word Naming Among 

Early Readers 
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So far, our investigation has focused on item-level effects, showing that O-S 

regularities indeed impact the reading outcomes of the average English skilled adult reader. 

Yet the promise of statistical theories of reading goes beyond accounting for the behavior of 

the average reader. Rather, such approaches have implications also for understanding 

individual differences in reading skills. Computational models suggest that given individual 

differences in learning abilities and/or learning experiences, readers are expected to 

differently rely on the regularities that are available to them in the written input, including in 

particular those between orthography, phonology and semantics (see, e.g., Plaut, McClelland, 

Seidenberg, & Patterson, 1996; Rueckl, 2016; Rueckl, Zevin, & Wolf VII, 2019; Woollams, 

Ralph, Plaut, & Patterson, 2007; Zevin & Seidenberg, 2006). This computational work gives 

rise to two predictions: (1) not all individuals will display similar reliance on O-P and O-S 

pathways during reading, and (2) these individual differences will account for reading skills 

across different developmental stages.  

Behavioral studies on individual differences in reliance on O-P and O-S pathways 

provide some support for these claims. Thus, for example, in our recent study we investigated 

the word naming behavior of 399 primary school-aged children (Siegelman, Rueckl, et al., 

2020). We focused on the individual- level impact of two factors on word naming accuracy: 

(1) O-P regularities - which in English (and in other alphabetic languages) provides a 

generally valid cue to access a word's phonology from its orthographic form, and (2) 

imageability (i.e., the ease of eliciting a mental image), a semantic property that has been 

used to index the degree of semantic involvement in word naming (see also Woollams et al., 

2016). Concretely, we used a word reading task with a manipulation of items' O-P 

consistency and imageability (modeled after the group- level work by Strain, Patterson, & 

Seidenberg, 1995 and adapted for children). Then, to extract individual- level measures of 

reliance on these two sources of information, we ran logistic models on the data of each 
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reader predicting item-level naming accuracy from the two predictors. These models resulted 

in two slope scores for each child, one reflecting extent of reliance on O-P regularities, and 

the other reflecting reliance on imageability. The results showed that individuals who were 

more greatly influenced by O-P regularities during the word naming task,  and less influenced 

by imageability, had better reading skills as reflected in standardized reading test scores (see 

Pugh et al., 2008; Strain & Herdman, 1999; Woollams et al., 2016 for earlier related findings 

with adults). These findings were interpreted as suggesting that better early readers are those 

who rely more greatly on efficient sources of information (e.g., O-P regularities) and less on 

arbitrary cues (e.g., words' imageability).  

Yet note that our prior study and others on adult populations (e.g., Woollams et al., 

2016; but see Ulicheva et al., 2020) examined individual differences in the extent of semantic 

involvement during word naming by focusing on reliance on imageability. In the present 

study, we extend this analysis to focus instead on individual differences in reliance on the 

actual regularities between orthography and semantics, as reflected by the effect of OSC on 

individuals' naming accuracy. This enables us to examine two questions: (1) whether early 

readers differ from one another in their sensitivity to O-S regularities, and (2) what 

characterizes readers who display greater sensitivity to O-S regularities (i.e., is reliance on 

actual O-S regularities associated with better or poorer reading skills?). Our predictions are 

that (1) there will be individual differences in the impact of OSC, and that (2) in contrast to 

reliance on imageability, reliance on the actual regularities between orthography and 

semantics would be positively correlated with reading skills. This is because O-S regularities 

can serve as an efficient cue for the mapping of an orthographic input into semantics (and 

phonology, through indirect O-S(-P) computations), in contrast to imageability which is an 

inefficient semantic cue that does not reflect the O-S regularities in the writing system (i.e., 

does not provide a reliable way to map orthographic units into semantics; and see General 
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Discussion below, for a discussion of how such result is plausible and indeed observed 

despite the lack of OSC main effect in adults' naming in the ELP analysis above).    

 

4.1 Individual-Differences Analysis: Methods  

This section is based on a re-analysis of the word naming data (and measures of 

reading skills) from Siegelman, Rueckl, et al., (2020). The sample includes 399 children in 

the second-fifth grade from two large-scale studies. The first study includes 121 third and 

fourth graders from public and charter schools in a large urban community in the U.S, and 

comprises mostly children with reading disabilities (see Siegelman, Rueckl, et al., 2020, for 

details). The second study includes 278 children in the second-fifth grades from private and 

public schools, with a wider range of reading skills. For brevity and to maximize statistical 

power we report the results of an analysis including the aggregated data of both samples (see 

also aggregated analysis in Siegelman, Rueckl, et al., 2020).  

Within a larger battery of behavioral and neural assessments, each of the children 

participated in a word naming task, including 160 trials presented in a fixed order. 

Participants were asked to read out loud each word as accurately and quickly as possible, and 

their responses were coded for accuracy by an experimenter who sat in the experiment room. 

Words were selected so they would be generally familiar to children in the second grade and 

up. Originally, words were chosen such that they would vary along three independent 

variables (following Strain et al., 1995): frequency, imageability, and O-P regularity. Log-

transformed Frequency was estimated based on the Zeno corpus, grades 1-8 (Zeno et al., 

1995); imageability was based on standard ratings (Paivio et al., 1968); and O-P regularity 

was operationalized as the surprisal of the vowel pronunciation (Siegelman, Kearns, et al., 

2020). Here we also consider the impact of additional independent variables, including OSC, 

along with PSC and additional control variables (see below). Note that the final sample of 
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399 does not include 6 additional children who read more than 98% of the words correctly 

because such near-ceiling accuracy makes it difficult to extract reliable slope scores (see 

Siegelman, Rueckl, et al., 2020, for details and discussion). In addition to data from the word 

naming task, all children participated in three sub-tests of the Woodcock-Johnson III 

(Woodcock et al., 2001): Word Attack (pseudoword reading), Letter Word Identification, and 

Passage Comprehension. We used the raw scores on these three sub-tests as outcome 

measures of reading component skills. 

Our re-analysis approach of the word naming task followed the strategy by 

Siegelman, Rueckl, et al. (2020): We ran a series of logistic regression models, each 

examining the impact of one predictor on word naming accuracy. That is, for each child, we 

ran a series of logistic models with word naming accuracy as the dependent variable, each 

including one of the following variables as independent variables: OSC, PSC, log-

transformed orthographic neighborhood size, log-transformed phonological neighborhood 

size, O-P surprisal, and imageability. These analyses resulted in a series of individual- level 

slope scores for each child, reflecting her/his reliance on each of these factors during word 

naming. In analyses below we examine the links between these slope scores (reflecting 

reliance on each of these factors) and reading skills using correlations and linear models (see 

below). As mentioned above, the original study by Siegelman, Rueckl, et al. (2020) already 

included the slope measures reflecting reliance on O-P regularities and imageability4. Note 

that the slope scores reflecting reliance on O-P surprisal were “flipped” such that higher slope 

scores reflect stronger reliance on O-P regularities (in the same direction as the other slope 

scores). Our decision to extract measures of reliance on orthographic and phonological 

neighborhood size was due to the positive correlations between our OSC and PSC measures 

                                                 
4
 The task also has a manipulation of word's frequency, yet the analysis by Siegelman, Rueckl, and colleagues 

show that individual -level reliance on word frequency does not predict reading skills beyond reliance on O -P 

regularities and imageability at this sample. We therefore do not include frequency in the analysis reported in 
the main text. Follow-up analysis confirmed that the inclusion of slope scores for reliance on frequency does 
not alter the results qualitatively.  
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of interest and these metrics at the item-level (i.e., words with a smaller orthographic 

neighborhood tend to have higher OSC levels; and words with a smaller phonological 

neighborhood tend to have higher PSC values; see Table 1 above); we therefore used these 

slope scores as control variables in the analysis predicting reading skills below. We refer 

readers to the project's OSF page for a list of the 160 words used in the task along with their 

item-level properties.  

 

4.2 Individual-Differences Analysis: Results  

The distribution of sensitivity to O-S regularities across subjects (i.e., slope scores 

reflecting the impact of OSC on naming accuracy) is shown in Figure 4. On average, 

participants' accuracy in the word naming task was not significantly influenced by O-S 

regularities (mean OSC slope score: -0.02, SD = 0.28: p > 0.05) 5 . Nevertheless, the 

substantial individual differences in the impact of OSC on naming accuracy raises the 

question of whether the variability around the mean is meaningful and whether it is predictive 

of reading skills (see a related discussion in Siegelman, Rueckl, et al., 2020 regarding 

imageabillty effects, which were not significant at the group- level in Study 2 but reflected 

meaningful individual differences). Table 5 shows the correlations between the various 

individual- level slope scores, as well as between the slope scores and reading outcomes (i.e., 

Woodcock-Johnson scores). It shows that the pairwise correlations between reliance on O-S 

regularities and reading outcomes were positive and significant, while the correlations 

between reliance on P-S regularities and the same outcomes were negative. Yet these raw 

correlations with reading component skills should be interpreted with caution, as the 

correlation table also shows that there were considerable correlations between the various 

                                                 
5
 The null group-level effect of OSC on naming accuracy in this sample was corroborated by a logistic mixed -

effec t model predicting accuracy from OSC as well as frequency, O-P surprisal, imageability, P-S regularities, 
and orthographic and phonological log-transformed neighborhood size (with by-subject and by-item random 
intercepts): Estimated effect of OSC was insignificant, B=-0.08, SE=0.10, Z=-0.75, p=0.45.  
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predictors: Among other correlations, individuals whose naming accuracy was more strongly 

impacted by OSC showed smaller effects of orthographic neighborhood size, and the same 

was true for the impact of PSC and phonological neighborhood size (a result which is not 

surprising given the negative correlation across the items in the task between OSC/PSC and 

neighborhood size). Also note the various significant correlations of reliance on O-S (and P-

S) with reliance on O-P and imageability (e.g., the positive correlation between O-S and O-P, 

r = 0.23, p < .001). The key question therefore is whether the relation between reliance on O-

S (and/or P-S) regularities and reading skills holds also when controlling for all other slope 

scores.  

 

Figure 4. Individual Differences in Reliance on O-S: Distribution of OSC Slope Scores 
(N=399).  
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Table 5. Correlations Between Slope Scores Extracted from the Word Naming Task.  

 
(2) (3) (4) (5) (6) (7) (8) (9) 

1) O-P -.15 .23 -.50 -.01 .46 .63 .63 .53 

2) Imageability  .01 .17 .06 .01 -.33 -.26 -.28 

3) OSC   .16 -.60 -.14 .23 .31 .31 

4) PSC    -.25 -.65 -.29 -.34 -.27 

5) O neigh size     .52 -.14 -.21 -.17 

6) P neigh size      .26 .31 .27 

7) Word Attack       .78 .69 

8) Letter-Word ID        .79 

9) Passage Comp         

Notes: O-P: O-P regularity  (surprisal); OSC: O-S consistency; PSC: P-S consistency; O neigh size: log-

transformed orthographic neighborhood size; P neigh size: log-transformed phonological neighborhood size. 

Significant correlations (p < .05; N=399) are in bold.  

 

 

To examine this question, we next ran three regression models. Each of these models 

had one component from the Woodcock-Johnson as a dependent variable (i.e., Word Attack, 

Letter-Word Identification, and Passage Comprehension). All models included as central 

independent variables all slope scores calculated from the word naming task (i.e., O-P, OSC, 

PSC, imageability, orthographic neighborhood size, and phonological neighborhood size). 

We also included in the same models the interaction between reliance on O-P and O-S 

regularities. The rationale for including this interaction is that in a system with two pathways 

from a word orthography to phonology - direct O-P and indirect O-S(-P) - the strength of the 

association between skill and an individual's reliance on the regularities in one pathway may 

depend on their reliance on the regularities in the other. The results of these models are 

presented in Table 6.  

In Word Attack and Letter-Word Identification there were no significant effects of 

reliance on O-S or P-S regularities beyond the previously reported contributions of O-P 

regularities and imageability and the impact of the control variables (nor there was a 
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significant O-P by O-S interaction). However, in the model predicting Passage 

Comprehension scores we did observe a significant effect of sensitivity to O-S regularities 

(i.e., impact of OSC on word naming): Individuals who were more greatly impacted by OSC 

during the word naming task had better passage comprehension scores (see Figure 5 for 

visualization). We emphasize that this was a positive association: In the same direction as the 

association between reading skill and reliance on O-P regularities, and in an opposite 

direction from the outcome's association with reliance on imageability (an issue we return to 

in the General Discussion). Also note that the impact of PSC did not have significant effects 

on reading skills in these models when controlling for other predictors.6 In addition to this 

main effect, there was also a significant effect of the interaction between reliance on O-P and 

O-S regularities on Passage Comprehension scores: Thus, the association between the impact 

of OSC and comprehension skills was stronger among participants who showed lesser 

reliance on O-P regularities (Figure 6). 

  

 

  

                                                 
6
 An interesting finding is that in all models better reading skill  was associated with greater imp act of 

phonological neighborhood size and lesser impact of orthographic neighborhood size. While unexpected, this 
result is l ine with the general notion that better early readers are those who more greatly utilize the 

phonological code during reading, here reflected in the magnitude of their phonological neighborhood size 
effec t. It also suggests that poorer readers show relatively greater impact by the same orthographic 
information. 
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Table 6: Regression Models Predicting Reading Skill from Reliance on Imageabiliity, O-P, 
O-S, and P-S Regularities.  

Predictor β (coefficient) SE t value p-value Partial-R
2 

Dependent variable: Word attack (adj-R2=46.7%) 

IMG -1.65 0.25 -6.69  <.001 10.3% 

O-P 3.70 0.31 12.00  <.001 26.9% 

OSC 0.10 0.33 0.29 .753 <0.1% 

PSC 0.62 0.35 1.77   .077 0.8% 

O neigh size -1.05 0.37 -2.86 .004 2.0% 

P neigh size 0.95 0.39 2.41    .015 1.5% 

O-P×OSC 0.02 0.20 0.09 .928 <0.1% 

      

Dependent variable: Letter-word identification (adj-R2=50.3%) 

IMG -1.43 0.29 -4.90  <.001 5.8% 

O-P 3.81 0.36 10.47  <.001 21.9% 

OSC 0.59 0.39 1.51 .132 0.6% 

PSC 0.18 0.41 0.45 .654 <0.1% 

O neigh size -2.38 0.43 -5.48 <.001 7.1% 

P neigh size 2.20 0.47 4.71   <.001 5.4% 

O-P×OSC -0.46 0.24 -1.90 .058 0.9% 

      

Dependent variable: Passage Comprehension (adj-R2=39.0%) 

IMG -1.23 0.22 -5.60 <.001 7.4% 

O-P 1.95 0.27 7.15 <.001 11.6% 

OSC 0.97 0.29 3.30 .001 2.7% 

PSC 0.22 0.31 0.70 .487 0.1% 

O neigh size -0.97 0.33 -2.97 .003 2.2% 

P neigh size 1.38 0.35 3.94  <.001 3.8% 

O-P×OSC -0.49 0.18 -2.69 .007 1.8% 

Notes: IMG: imageability; O-P: O-P regularity (surprisal); OSC: O-S consistency (modified measure of OSC); 

PSC: P-S consistency; O neigh size: log-transformed orthographic neighborhood size; P neigh size: log -

transformed phonological neighborhood size; Predictors are centered and scaled.  
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Figure 5. Variability Among Participants in Reliance on O-P (x-axis) and O-S Regularities 
(y-axis) and its Relation to Passage Comprehension Scores. Dashed Trend Line Shows the 

Correlation Between the Two Slope Scores. Color Scale Presents Scores on Passage 
Comprehension.  

 

 

 

Figure 6. Estimated Effect of the Interaction Between Reliance on O-P and O-S on Passage 
Comprehension Scores. Figure plotted using the interactions package in R (Long, 2019). 
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5. General Discussion 

The goal of the current paper is to advance our understanding of how to measure O-S 

regularities and how they impact group- and individual- level reading behavior. In terms of 

measurement, while we adopted the strategy offered by previous studies (Amenta et al., 2017; 

Marelli et al., 2015; Marelli & Amenta, 2018), we identified a potential confound in previous 

definitions which led us to offer a modified measure of OSC. Then, we used this modified 

measure to investigate group- level effects using available datasets of word recognition 

(lexical decision and word naming) and eye-movements during reading for comprehension. 

Results indicated that O-S regularities affect the reading behavior of adult readers of English, 

but that effects of OSC emerge more clearly (at least in the form of main effects) in tasks that 

place a greater emphasis on semantics compared to phonology (i.e., lexical decision and 

reading for comprehension; but not word naming). These findings are consistent with the idea 

that proficient readers rely more heavily on regularities that provide an efficient source of 

information for solving a particular task (Harm & Seidenberg, 2004): That is, proficient 

readers have knowledge of various types of regularities in their wr iting system, and exhibit 

differential sensitivity to them depending on the reading task's demands (e.g., by showing a 

general effect of OSC in tasks that involve greater semantic involvement such as lexical 

decision and reading for comprehension). Our results also reveal interactions between 

different regularities, including in particular OSC by PSC interactions consistently observed 

in the lexical decision task. As noted above, these interactions are consistent with the notion 

of an efficient division of labor in the Triangle Model of Reading: Proficient readers rely 

more on one source of information when the other is less available (Harm & Seidenberg, 

2004). This observation is also in line with previous behavioral work on interactions between 

O-P and other aspects of O-S processes (interactions between O-P consistency and 

imageability, Strain et al., 1995). 
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In the last empirical section of the paper, we presented an investigation of individual 

differences in reliance on O-S regularities and their relation to emerging reading skills. This 

analysis revealed that early readers who show greater reliance on O-S regularities during a 

word naming task (i.e., greater OSC effect) have better comprehension skills. We wish to 

emphasize two important aspects of these findings.  

The first is the difference between reliance on O-S regularities and reliance on 

imageability: We observed a positive association between reading skill and reliance on O-S 

regularities (in the same direction as reliance on O-P regularities), in contrast to the negative 

correlations between reading skill and reliance on imageability (Siegelman, Rueckl, et al., 

2020, see also Table 6 above). The positive correlation between reliance on O-S regularities 

and skill aligns with a recent study showing that adults who are more sensitive to 

correspondences between orthographic cues and lexical categories (e.g., better at classifying a 

pseudoword ending with –ful as an adjective rather than a noun) show better performance in a 

variety of language tasks including reading, spelling, and author recognition (Ulicheva et al., 

2020). We claim that the dissociation between reliance on O-S regularities versus reliance on 

imageability suggests that better early readers are those who are most able to capitalize on the 

statistical regularities in their writing system, and that these regularities include both O-P and 

O-S correspondences. By contrast, poor early readers rely less on these statistical properties, 

and instead rely more on imageability, a semantic property that does not provide a valid cue 

for "translating" the orthographic code into semantic or phonological representations (i.e., not 

an inherent property of the regularities between orthography and semantics). Most likely, 

poor readers' differential reliance on these various cues is a consequence of a combination of 

factors, including endogenous variables (e.g., individual differences in statistical learning 

skills, see Sawi & Rueckl, 2019; Siegelman et al., 2017) as well as experiential ones (poor 
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readers' increased exposure to simpler texts that are more likely to involve more concrete 

topics, Kearns & Hiebert, 2021). 

The second point we wish to emphasize is that the effect of individual differences in 

reliance on O-S regularities was specific to passage comprehension and was not observed 

when word or pseudoword reading served as the dependent variable. This stands in contrast 

to individual differences in reliance on O-P regularities and reliance on imageability, which 

were associated with all examined component reading skills (word and pseudoword reading 

as well as passage comprehension; Siegelman, Rueckl, et al., 2020 and Table 6 above). This 

difference may be due to the task demands of passage comprehension versus reading aloud of 

words or pseudowords: Thus, we speculate that knowledge of O-S regularities plays a more 

important role in skills such as comprehension that require more computation of semantics, 

and a lesser role in tasks involving simple mapping of orthographic forms to phonology (e.g., 

word or pseudoword naming). 

This point also relates to a caveat in our individual-differences analysis: The fact that 

reliance on O-S was estimated through performance in a word naming task. Yet in our group-

level analysis (i.e., ELP analysis), we found that adult skilled readers were not impacted by 

O-S regularities in word naming, but did show such effects in lexical decision and reading for 

comprehension. Why did we find then that children who were more impacted by O-S 

regularities during word naming were better comprehenders, despite the presumed non-

optimality of O-S information in reading aloud? We believe that this pattern of results points 

to a dissociation between reliance and knowledge of a given code. Thus, we interpret our 

findings as showing that children who are better comprehenders are those who have greater 

knowledge of O-S regularities that they rely on during reading aloud. Later on in 

development, however, good readers may be those who – despite their knowledge of O-S 

regularities – will show less reliance on the same type of regularities in situations where they 
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do not provide an efficient source of information. Instead, better older readers will use O-S 

regularities only in tasks where they are beneficial or when reading specific words that 

encourage the use of this type of information (e.g., P-S inconsistent words – see interactions 

above; or O-P inconsistent polymorphemic words – see Kearns et al., 2016). In other words, 

we claim that the good early readers in our developmental sample were characterized by 

knowledge of both O-P and O-S regularities. Yet, at the end of the developmental trajectory, 

better readers may be those who not only have knowledge of these different regularities, but 

also know when relying on each source of information is a beneficial strategy for the reading 

task at hand.  

Beyond these specific points, an overarching question regarding our findings at large 

has to do with the relation between OSC measure(s) and morphological structure, and 

concretely, whether the impact of OSC on reading behavior goes beyond 'simple' 

morphological effects. As noted in the introduction, OSC is a cumulative measure o f O-S 

regularities that is impacted, but not fully determined by, morphological structure. As such, it 

captures various forms of (ir)regularities in the O-S mapping (of both morphological and 

non-morphological nature) that typical morphological measures do not. Thus, OSC is 

impacted (among other factors) by: the relations between forms and meanings that are not 

expressed through overt affixation (e.g., the relation between hotel, hostel, and motel; and see 

Blasi et al., 2016 for evidence of non-arbitrary links between forms and meaning in the 

context of phonology-semantic associations); the degree of semantic (dis)similarity between 

a word and its neighbors – both morphologically-related and others (e.g., the fact that baker is 

more semantically related to bake than stranger is to strange; or the fact that laughter and 

slaughter are strongly negatively associated); and the ratio between the number of related 

and unrelated words in a target's neighborhood as well as the ratio of their degree of semantic 

similarity (e.g., the word see has some semantically-related neighbors such as sees and seen; 
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but it has a much larger number of unrelated neighbors such as sea, bee, and seed, which 

reduces its OSC value). In light of these differences, we expect OSC to capture reading 

outcomes beyond measures of morphological structure. Indeed, this claim is supported by an 

analysis reported in the Supplementary Materials S3 where we repeat the word recognition 

analysis while also controlling for the ratio of morphologically-related words from the size of 

a word's orthographic neighborhood. In a nutshell, the results show that although the ratio of 

morphologically-related words in a word's orthographic neighborhood is correlated with 

OSC, and is by itself a predictor of reading behavior, OSC still accounts for word recognition 

performance over and above this control variable. And although a full examination of all 

possible morphological measures is beyond the scope of this paper, we argue that this 

finding, combined with the conceptual differences between OSC and measures of 

morphological structure, suggest that the OSC's effects we revealed in this paper indeed go 

beyond morphological effects. 

 

5.1 Methodological Considerations 

While we do believe that the current work improves on previous investigations of O-S 

regularities and their impact on reading behavior, it admittedly involved a series of 

methodological decisions that went into our definition of OSC. We re-iterate our early point 

that our work should not be taken as claiming that our measure of OSC is the only way to 

quantify O-S regularities. Much like in the quantification of O-P regularities where multiple 

measures have been employed (e.g., regularity vs. consistency; type- vs. token-based 

quantification; vowel vs. body-rime measures; etc.), and appear to capture at least partially 

distinct aspects of O-P structure, our specific quantification does not cover all (potentially 

psychologically-relevant) aspects of the O-S mapping. In fact, we doubt whether there is a 

single measure that can capture the full O-S mapping, and this paper does not attempt to offer 
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such an 'optimal' measure. The purpose of the discussion that follows is to highlight specific 

properties of our definition and discuss their potential impact on our findings, while 

providing pointers to further analyses (reported in the Supplementary Materials) and future 

directions that can help explore additional dimensions of the O-S mapping.  

The first methodological decision has to do with the definition of neighborhood. We 

defined a word’s neighborhood as all words with a Levenshtein distance of 1 (either 

orthographic or phonological distance). As noted above, this definition diverges from the one 

used in previous works by Marelli, Amenta, and colleagues, who defined the neighborhood as 

all the words that contain the target word. Note that our choice was driven primarily (but not 

only – see below) by practical considerations: By using this definition we were able to 

minimize the number of words with a non-defined OSC (i.e., words without any neighbors in 

the semantic vector-space). This applies especially to longer, morphologically complex 

words, that do not have neighbors per Marelli, Amenta, et al.'s definition (i.e., are not 

contained within other words). Indeed, out of the 40,481 words in the ELP, 57.7% had an 

undefined value for the OSC measure based on Marelli and Amenta's definition of 

neighborhood using our database (a roughly similar estimate to the proportion of words with 

an OSC=1 – that have only themselves as neighbors – in Marelli & Amenta, 2018). In 

contrast, 39.2% of words had an undefined O-S value when defining neighbors according to a 

Levenshtein distance of 1. Even among monosyllabic words, a substantial proportion of 

words had an undefined O-S value when using Marelli and Amenta's definition of 

neighborhood (e.g., from the 5,968 monosyllabic words in the ELP with O-P estimates in 

Siegelman, Kearns, et al. 2020, 32.3% had an undefined O-S estimate when using the 

previous definition of neighborhood, versus 8.5% using the Levenshtein-distance based one).  

It is important to note, however, that the definition of neighborhood is likely to affect 

the types of relations that are captured by OSC estimates. Any definition of neighborhood 
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incorporates some arbitrary boundary that divides words to those that are included in the OSC 

calculation and those that are not. Thus, whereas a definition based on a Levenshtein distance 

of 1 may be more sensitive to non-morphological orthographic similarity (i.e., grow – crow) 

and irregular morphological relations (e.g., grow – grew), a definition based on embedded 

words will capture morphological relations with affixes longer than one letter (e.g., big – 

bigger). Another consequence is that under Marelli and Amenta's definition shorter words 

often have a very large number of neighbors, with the vast majority of them seemingly 

weakly related to them both orthographically and semantically (e.g., the word rat is 

embedded in 1,874 other words in our database – including words such as lucrative and 

refrigerator; in contrast, the same word has a neighborhood size of 38 under the Levenshtein-

based definition7). Also, our definition of neighborhood is bidirectional (i.e., if word A is a 

neighbor of B then B is a neighbor of A), which is not the case in Marelli, Amenta, et al.'s 

definition. It is interesting to note that despite these differences, re-calculating OSC (and P-S 

consistency) with Marelli and Amenta's definition of neighborhood and our modified 

calculation (i.e., type-based calculation without including the word itself in its neighborhood) 

revealed strong correlations between the estimates based on the two types of neighbors: r = 

0.737 (and r = 0.744 for P-S consistency). Still, the imperfect correlation suggests that as 

expected the definition of neighborhood affects the exact types of relations that are captured 

by the OSC measure, and future work is left with further examining the impact of 

neighborhood definitions on OSC estimates and their predictive value.  

Another methodological choice that went into our analysis is the particular semantic 

vector space used to index semantic similarity. Here we used an LSA model – following the 

work by Marelli, Amenta and colleagues and in line with many others in the 

                                                 
7

  The original paper presenting the OSC measure (Marelli  et al., 2015) avoided this issue by using a position-
specific approach where neighbors are defined only as words that start with the target word (i.e., rats and 
ratio are neighbors of rat; but not lucrative). 
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cognitive/psycholinguistic literature. Yet LSA is a relatively old approach (originally 

described by  Landauer & Dumais, 1997). In the years following its publication other 

Distributional Semantic Models (DSMs) were offered and applied in various domains in 

cognitive sciences (see Günther et al., 2019 for review). One of these models is GloVe 

(Global Vectors for Word Representation), which arguably outperforms LSA in capturing 

semantic similarity (Pennington et al., 2014). In the present context, this raises the question of 

whether our results are contingent on the use of LSA in the estimation of OSC or whether the 

results generalize also to more recent DSMs such as GloVE. To examine this, in a follow-up 

analysis we re-calculated OSC values based on pre-trained GLoVe vectors, compared these 

estimates to the ones using LSA, and re-examined the relations between OSC and word 

recognition accuracy and latencies: We report the results of this analysis in the 

Supplementary Materials S4. In a nutshell, this analysis showed that (1) there is a strong 

(albeit imperfect) correlation between OSC estimates using LSA and GloVe (r = 0.56), (2) 

our measure of OSC based on GloVe again predicts accuracy and response latencies in 

lexical decision (but not naming), although (3) some of the higher-order interactions between 

OSC, PSC, and O-P vary across the estimates using GLoVe and LSA, while others remain 

stable (specifically, the O-S by P-S interactions in lexical decision are replicated). This 

suggests that overall, our results are not contingent on the semantic vector-space used. We 

stress, however, that we do not have any claims regarding the superiority of one DSM or 

another in estimating O-S regularities – this should be the focus of directed future 

investigations. To facilitate such work, in the project's OSF page we provide OSC estimates 

for all words based on both LSA and GloVe.  

Lastly, we stress two additional aspects of OSC that impact the types of associations it 

does and does not capture. The first is our use of a type-based calculation – discussed already 

in the Introduction. We again emphasize that our choice of a type-based calculation should 
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not be taken as a claim against future uses of frequency-weighted measures – the rate of 

occurrence of semantically-related vs. unrelated neighbors may very well be a 

psychologically-relevant factor. Type- and token-based measures should both be explored 

(much like type- and token-based O-P measures that are both theoretically and empirically 

justifiable). Lastly, we stress that there are multiple forms of O-S and P-S regularities that 

OSC/PSC definitions do not capture (both the OSC measure used here and the one used by 

Marelli, Amenta, and colleagues). These include, for example, some irregular morphological 

regularities (e.g., catch and caught), phonostemes (e.g., sneeze and snort), and systematic 

links between grammatical categories and various phonological (and hence also, potentially, 

orthographic) cues (e.g., the fact that in English nouns have on average more syllables and a 

larger proportion of vowel units than verbs, Monaghan et al., 2007; see Dingemanse et al., 

2015 for review). How to capture these regularities and whether and how they play a role in 

reading are far from trivial questions; at present, we simply highlight them to re- iterate that 

current operationalizations of OSC do not provide a full coverage of the rich O-S mapping. 

  

5.2. Conclusions and Future Directions 

The current paper highlights the importance of considering various types of 

regularities available in writing systems and the unique explanatory power each of these 

regularities have in accounting for group- and individual- level reading performance. Within 

this plethora of regularities, O-S associations have a presumably fundamental role in both 

literacy development and proficient reading (Harm & Seidenberg, 2004; Nation & Snowling, 

1998; Seidenberg & McClelland, 1989), yet to date these regularities are still somewhat 

understudied empirically. The current paper, we believe, provides a  step forward in 

understanding how to estimate O-S regularities and in unveiling their influence on reading 

behavior across items (i.e., inter- item variability), reading tasks, and individuals. At the 
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theoretical level, our results demonstrate how readers show differential reliance on different 

regularities across reading situations given the computations required by the task at hand, and 

that better early readers are those who exhibit greater knowledge of the statistical regularities 

in their writing system – not only O-P information, but also O-S – along with lesser reliance 

on arbitrary cues (e.g., imageability). As such, our findings strengthen general notions of 

statistical learning views according to which reading involves extraction of regularities from 

the input, while further demonstrating how proficient reading requires finding a balance 

between multiple sources of information that are present in one's writing system.  

Despite these insights, however, it is clear that many open questions remain regarding 

the full scope of the impact of O-S regularities on reading, and here we highlight two 

outstanding issues. The first has to do with the developmental trajectory of sensitivity to O-S 

regularities: Here we only provided a snapshot into behavior in either the beginning or the 

end of the reading acquisition trajectory, yet a crucial question is how readers gradually 

acquire knowledge of different types of regularities until they reach adult- level proficiency 

(or not, in cases of atypical development). Future studies are therefore left with exploring 

how O-S effects change over the course of reading acquisition, and their role in accounting 

for individual differences at different time points along this developmental trajectory (and see 

Davies et al., 2017 for relevant work in the context of O-P and imageability effects). A 

second outstanding question has to do with cross-linguistic differences: Our work focused on 

one writing system (English), which presents to its readers a particular mix of regularities. In 

other writing systems the reliability of different types of regularities varies (e.g., as a function 

of orthographic depth, Katz & Frost, 1992), and such variability is thought to impact the 

relative contribution of different types of regularities to reading (Seidenberg, 2011), including 

that of O-S regularities. We are hopeful that the current study will provide blueprints for 

future work exploring these important issues, towards a full understanding of how variability 
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in reading - across individuals, tasks, developmental stages, and languages – is determined by 

the statistical information that writing systems encompass and the mechanisms that assimilate 

this information.  
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