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Theoretical and empirical models consider executive 
function (EF) to be hierarchical in structure, consisting 
of (i) a domain-general module termed cognitive control, 
which is concerned with coordinating cognitive opera-
tions, implementing strategies for problem solving, and 

monitoring errors (Thomas et al.,  2013) and (ii) a sub-
set of more specialized (modality-specific) operations 
including working memory, inhibition, and executive 
attention (Diamond, 2013; Tirapu-Ustarroz et al., 2018). 
In this paper, we report on a longitudinal investigation 
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Abstract
This longitudinal study modeled children's complex executive function (EF) 
development using the Groton Maze Learning Task (GMLT). Using a cohort-
sequential design, 147 children (61 males, 5.5–11 years) were recruited from six 
multicultural primary schools in Melbourne and Perth, Australia. Race/ethnicity 
data were not available. Children were assessed on the GMLT at 6-month intervals 
over 2-years between 2010 and 2012. Growth curve models describe age-related 
change from 5.5 to 12.5 years old. Results showed a quadratic growth trajectory on 
each measure of error—that is, those that reflect visuospatial memory, executive 
control (or the ability to apply rules for action), and complex EF. The ability to 
apply rules for action, while a rate-limiting factor in complex EF, develops rapidly 
over early-to-mid childhood.

www.wileyonlinelibrary.com/journal/cdev
mailto:
https://orcid.org/0000-0002-5490-0042
https://orcid.org/0000-0003-3747-0287
https://orcid.org/0000-0001-6618-2853
https://orcid.org/0000-0001-7566-2445
https://orcid.org/0000-0003-3838-6773
https://orcid.org/0000-0002-1129-8071
https://orcid.org/0000-0002-0320-969X
https://orcid.org/0000-0002-6947-9537
https://orcid.org/0000-0001-8863-2624
https://orcid.org/0000-0002-8245-1205
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:thomas.mcguckian@acu.edu.au


      |  649COMPLEX EXECUTIVE FUNCTION OVER CHILDHOOD

of EF over childhood using a single, well-validated maze 
learning paradigm, the Groton Maze Learning Task 
(GMLT). Distinct growth curve models are presented 
that describe age-related changes in higher-order cog-
nitive control processes (specifically, rule-based error 
monitoring) and visuospatial working memory.

Development of complex EF in children

It is widely accepted that EF develops rapidly over child-
hood and into the adolescent period, in synergy with the 
heightened demands of learning, schooling, and socio-
cultural participation. The development of complex EF 
is, indeed, critical to the acquisition of academic and life 
skills (Zelazo & Carlson,  2017), and predicts academic 
achievement (Best et al., 2011; Pascual et al., 2019) and 
later adaptive function (Benson et al.,  2013). These re-
lations underscore the importance of understanding the 
pattern of growth in the individual cognitive processes 
that make up EF and for developing a framework for 
objectively evaluating EF in children who do not meet 
expected intellectual milestones.

Developmental studies reveal a period of ongo-
ing development in EFs over childhood, adolescence 
and adulthood, with more complex aspects of cog-
nitive control among the last to develop (Alloway & 
Gathercole, 2012; Casey et al., 2005). Of particular im-
portance is the ability to apply action-oriented rules in 
the context of executive control and problem solving 
(Zelazo & Carlson, 2017); such rules govern the selection 
of a behavior from a set of possible actions, for example, 
in the DCCS, if a color game, then if red, place card here. 
In general, higher-order cognitive control—as shown by 
the use of complex rules—has a more prolonged period 
of development than low-level cognitive operations like 
working memory and draws more heavily on maturation 
of the late-developing prefrontal cortex (PFC; Botvinick 
& Cohen, 2014). Taken together, this suggests that matu-
rational aspects of EF are best described by some type of 

growth curve. However, the comparison of growth tra-
jectories for specific cognitive operations is difficult be-
cause different tests are often used at different age points 
(Mirabella,  2021). As well, longitudinal studies of EF 
often do not span the entire school-aged period, which 
further limits the modeling of developmental change 
(Zelazo & Carlson, 2020).

Behavioral and cognitive neuroscience studies show 
that performance of complex visuospatial tasks that 
involve rule-governed behavior (like maze learning) is 
dependent on separable cognitive processes that include 
planning based on prior behavior, feedback from errors, 
and holding information in memory about the outcomes 
of prior moves or trials (Carlson et al.,  2019). Hidden 
pathway maze-learning paradigms have a long his-
tory in experimental psychology and neuropsychology 
(Thomas et al., 2014). These paradigms generally require 
participants to apply set rules about permissible moves 
(or touch responses) in order to find and learn a maze 
path that is hidden from view. The GMLT is a particu-
larly well-validated, computer-controlled version of the 
Milner Hidden Pathway Maze learning test, used in the 
study reported here. In the GMLT (Figure 1), performers 
are instructed to follow a set of rules that govern the type 
of moves that are allowed in order to learn a hidden maze 
(within a square grid of tiles) over repeated trials. For the 
GMLT, the following four rules apply: (i) move one tile at 
a time; (ii) do not move diagonally; (iii) do not backtrack 
along the path; and (iv) return to the last correct tile after 
an error. After each move, visual feedback is temporarily 
provided on the selected tile (green tick or red cross) to 
indicate whether the performer has correctly hit on the 
hidden path or not. If they correctly hit the path, they 
can make their next selection. If they hit off the path, 
they are required to return to the last correct tile and 
select an alternate next tile. A trial is complete when the 
performer reaches the end of the maze.

While completing trials, two types of errors are re-
corded by the computer. Rule-break errors, which 
occur when a move is made that is not allowed by the 

F I G U R E  1   Example images of the Groton Maze Learning Task, showing (a) the task display during a trial, and (b) the task display after 
the entire path has been successfully completed.

(a) (b)
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four defined rules, reflect the ability to remember and 
apply set rules (i.e., error monitoring). Legal errors (also 
termed spatial errors), where responses are in accordance 
with the four defined rules but to locations that do not 
lie on the hidden pathway, reflect visuospatial memory 
(Thomas et al., 2013). Total errors, calculated as the sum 
of rule-break errors and legal errors, gives a compos-
ite measure of EF that includes aspects of visuospatial 
working memory, executive attention, and inhibition. 
Response duration is the total time taken to complete all 
trials, and reflects psychomotor speed and general per-
formance efficiency (Thomas et al., 2011, 2016).

The neuropsychological literature provides strong 
evidence for the independence of cognitive operations 
measured by different GMLT metrics. Double dissoci-
ations in the performance profiles of neurological syn-
dromes are particularly powerful in demonstrating this 
point. In patients with lesions of the PFC, we see a high 
proportion of rule-break errors, relative to spatial errors 
(P. J. Snyder et al., 2008), while patients with damage to 
the medial temporal lobe show the reverse pattern of 
performance with a higher proportion of spatial learn-
ing errors. Further, patients with schizophrenia see 
greater improvement for rule-break errors than spatial 
errors when treated with medication, while children 
treated for Attention Deficit Hyperactivity Disorder 
with stimulant medication show greater improvement 
for spatial errors than rule-break errors (A. M. Snyder 
et al., 2008).

Studies of convergent and divergent validity sup-
port the independence of rule-break and spatial errors 
(Pietrzak et al., 2008). For school-age children, Thomas 
et al.  (2016) showed that rule-breaks on the GMLT 
correlated moderately (r  =  .50) with other measures of 
working memory that also involve error monitoring (like 
Continuous Paired Associate Learning), but not with 
simple measures of spatial updating (Corsi Blocks). As 
well, cross-sectional comparisons reveal that difficul-
ties in error monitoring are evident in younger children 
(5–6 years of age) who commit proportionally more rule-
breaks than children aged 9 years, but only on more 
complex 8 × 8 or 10 × 10 mazes (Thomas et al., 2011). This 
result suggests that the ability to enlist error monitor-
ing strategies is not well developed in younger children, 
especially when the spatial difficulty of the task is high. 
Such errors are virtually absent by adulthood.

The primary aim of the study presented here was to 
examine the development over childhood of complex 
EF and its component processes using a well-validated 
paradigm and powerful (cohort-sequential) longitu-
dinal design. Few longitudinal studies have afforded 
growth modeling across the entire primary-school aged 
period. Moreover, our use of the GMLT enabled re-
peat testing without the confound of learning effects 
(Snyder et al.,  2005), and a componential analysis of 
cognitive operations. Specifically, we were interested in 
comparing the pattern of age-related change between 

the visuospatial working memory and rule-based error 
monitoring components of EF. We predicted that growth 
trajectories would differ between these measures: first, 
a linear growth trend was predicted on visuospatial 
working memory consistent with patterns observed on 
related measures like Corsi blocks (Thomas et al., 2016); 
second, a quadratic trend was predicted on the measure 
of rule-based error monitoring (an aspect of executive 
attention), based on the observation that higher-order 
EFs show rapid consolidation over the early-to-middle 
childhood period (Zelazo & Carlson,  2017). Despite 
the predictions outlined above, the current analyses 
are considered relatively exploratory given the some-
what novel approach and limited longitudinal studies 
of primary-school aged children on which the study is 
based.

M ETHOD

Participants

Our sample of typically developing children were re-
cruited as part of a longitudinal study of motor and cog-
nitive development in children (Ruddock et al., 2016). A 
total of 147 typically developing children (61 male) aged 
between 5.5 and 11 years of age were recruited from six 
mainstream (public and independent) primary schools 
in the greater Melbourne and Perth metropolitan areas. 
Specific racial and ethnic data were not collected origi-
nally, and thus were not available, but the sample re-
flected the multicultural communities of these areas. 
The Australian population has ancestries (of at least one 
parent) of approximately 57% European, 31% Oceanian 
(including ‘Australian’), 17% Asian, 3% Indigenous, 3% 
North African and Middle Eastern, 1% Peoples of the 
Americas, 1% Sub-Saharan African (Australian Bureau 
of Statistics, 2021). All children were identified by par-
ents on a developmental questionnaire as being free 
of any major medical or neurological condition, and 
none reported an intellectual disability. Demographics 
of the sample measured at baseline are provided in 
Table  1. Overall motor ability was assessed using the 
McCarron Assessment of Neuromuscular Development 
(McCarron,  1997); a Neurodevelopmental Index score 
of >80 (20th percentile) was set as the cut point to in-
clude typically developing children in the study at Time 
0 (Hyde & Wilson, 2013).

Groton Maze Learning Task

Complex EF was assessed using an 8 × 8 version of the 
GMLT (Cogstate, 2018), presented centrally on a 12-inch 
touchscreen PC. Hidden beneath the grid of tiles is a 
20-step pathway that leads from a start location at the 
top-left corner to an end location at the bottom-right 
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corner of the grid (see Figure 1 for an example). The child 
is instructed explicitly to solve the maze by finding the 
hidden pathway while adhering to four rules: (i) move 
one tile at a time; (ii) do not move diagonally; (iii) do not 
backtrack along the path; and (iv) do return to the last 
correct tile after an error. After each move, the computer 
provides temporary feedback on the selected tile (green 
tick or red cross) to indicate whether the child has cor-
rectly hit on the hidden path or not. If they correctly hit 
the path, they can make their next selection. If they hit 
off the path, they are required to return to the last correct 
tile and select an alternate next tile. A trial is complete 
when the child reaches the end location. A total of five 
trials were completed at each timepoint, and the correct 
path remained the same for each of the five trials. The 
goal is to find the pathway using the least moves pos-
sible and, hence, the fewest errors. A new path was used 
for each successive timepoint. Normative data for the 
8 × 8 GMLT is only available for children aged 6–9 years: 
mean number of total errors in a healthy standardization 
sample is 52.9 (SD  =  14.8) at 6 years of age, 50.0 (22.2) 
at 7 years, 43.1 (20.3) at 8 years, and 30.5 (12.3) at 9 years 
(Cogstate, 2018).

Four primary outcomes were calculated from the 
GMLT. Rule-break errors was calculated as the total 
number of times any of the four rules were broken, 
summed for all five trials. Legal errors was calculated as 
the total number of times a response was in accordance 
with the rules but to a location that did not lie on the 
hidden pathway, summed for all five trials. Total errors 
was calculated as the sum of rule-break errors and legal 
errors. Response duration was calculated as the total time 
(in seconds) taken to complete all five trials. (Thomas 
et al., 2013).

Procedure

Children were assessed every 6 months over a 2-year pe-
riod from 2010 to 2012. Children were recruited in the 
first year, and followed for a maximum of 2 years, or 
until they no longer attended primary school. Ethics ap-
proval was obtained from the relevant Human Research 
Ethics Committee at RMIT University and all children 
and their parents gave their informed consent. Children 
were not provided an incentive for participation. All 
children were tested in schools, during school hours, 
in a quiet room. Administration of testing sessions 
(completed as part of a separate longitudinal study, see 
Ruddock et al.  (2016)) was conducted over two 45-min 
sessions, with tasks administered in a counterbalanced 
order. In addition to the demographic questionnaire and 
motor screening assessment, participants completed the 
Double-Step Reaching Task (Hyde & Wilson, 2013) and 
tests of visual processing speed (Cogstate,  2018); how-
ever, these additional tasks were not included in the cur-
rent analysis. For the GMLT, each child sat in a chair at 
a desk while the tablet PC was centred in front of them, 
with the screen positioned vertically and level with head 
height, close enough for their arm to comfortably reach 
and touch the screen with a stylus pen. Children were 
told the rules of the GMLT and then provided with un-
timed practice trials using a novel pathway. Additional 
practice trials were provided, if necessary, until it was 
determined that the child understood the task.

Design and data analysis

To examine age-related changes on GMLT metrics over 
childhood, we used a cohort sequential design (CSD) and es-
timated developmental trends over the 5.5-to-12.5-year-old 
period using growth curve modeling (GCM). A CSD com-
bines a sequence of separate age cohorts to form a single 
overlapping age distribution, and is used to generate longi-
tudinal data when performance is measured over a limited 
temporal scale (Duncan et al., 1996; Estrada & Ferrer, 2019; 
Prinzie & Onghena, 2005). In the current study, children 
were classified into one of 12 age cohorts based on their age 
(in months) at Time 0, rounded to the nearest 6-month in-
crement. Age cohorts were defined in 6-month increments, 
resulting in the following cohorts: 5.5-, 6-, 6.5-, 7-, 7.5-, 8-, 
8.5-, 9-, 9.5-, 10-, 10.5-, and 11-years. Children were assessed 
at five time points, separated by 6 months, over a 2-year 
period. Older children in grades 5 and 6 were tested until 
they graduated from primary school. Growth curves were 
estimated to describe the pattern of age-related change on 
GMLT performance metrics over the 5.5- to 12.5-year age 
period. In our study, less than 10% of children failed to 
complete all five occasions of testing. Importantly, GCM is 
used to model nonlinear developmental trajectories where 
the rate of growth often varies as a function of age (Curran 
et al., 2010; DeLucia & Pitts, 2006).

TA B L E  1   Descriptive statistics of typically developing children 
at baseline

Age at 
baseline

Sample size Mean age in years (SD)

Girls Boys Girls Boys

5.5 3 — 5.81 (0.19) —

6 6 — 6.31 (0.15) —

6.5 11 9 6.70 (0.14) 6.63 (0.15)

7 5 5 7.18 (0.22) 7.13 (0.10)

7.5 10 6 7.72 (0.17) 7.75 (0.14)

8 6 11 8.19 (0.14) 8.22 (0.17)

8.5 7 4 8.68 (0.15) 8.75 (0.15)

9 9 6 9.28 (0.17) 9.24 (0.13)

9.5 7 6 9.76 (0.16) 9.69 (0.11)

10 8 8 10.23 (0.17) 10.23 (0.18)

10.5 9 3 10.67 (0.11) 10.75 (0.17)

11 5 3 11.37 (0.17) 11.56 (0.61)

Note: N = 147. Age at baseline was used to determine cohorts. Age was 
measured in months and converted to years. Example: a participant aged 
6 years and 6 months = 6.5 years.
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Analytic approach

Outliers (values >±3 SDs from the mean score) were 
assessed at each of the five time points. Only two data 
points (<1% of the data) were determined to be outli-
ers, and thus no outliers were excluded. This ensured 
that all valid data points contributed to the integrity 
of the model fit (Ruddock et al., 2016). To ensure that 
data sufficiently represented the sample tested in the 
polynomial GCM, each age cohort at the five time 
points contained observations from at least three 
different children (Curran et al.,  2010). Statistical 
models were estimated using the lme4 function in 
the lmerTest package in RStudio (Bates et al., 2015). 
Models were estimated for each outcome variable 
separately. Firstly, a null model (Model 0) including 
only the outcome variable and random intercept of 
participant ID was estimated. Terms were then added 
to models and tested hierarchically according to the 
following sequence: Model 1 random intercept of 
participant ID nested within cohort was added due 
to the hierarchical nature of the study design; Model 
2 fixed effect of participant age was added; Model 3 
fixed effect of testing period and interaction between 
participant age and testing period was added; Model 
4 fixed effect of orthogonal (using the poly function) 
quadratic term for participant age was added; Model 
5 fixed effect of orthogonal cubic term for partici-
pant age was added. Akaike information criterion 
(AIC) and Bayesian information criterion (BIC) were 
used to compare goodness of fit between models. 
The fit of each model was compared to the previous 
model (e.g., Model 1 vs. Model 2, Model 2 vs. Model 
3, etc.) using the anova function, with a significant 
difference (i.e., p < .05) used to determine if model fit 
was improved. The most complex model, Model 5, is 
represented by:

where �j ∼N
(

��j, �
2
aj

)

for ID:Cohort; where �k
∼

N
(

��k, �
2

ak

)

  
for Cohort.

Value was the outcome variable, with age and testing 
period used as fixed effects as well as their interaction. 
Orthogonal polynomial quadratic and cubic terms were 
included as additional fixed effects. A nested random 
effects structure was specified with id clustered within 
each cohort. Detailed models and their output are pro-
vided in Appendix S1.

Total errors on the GMLT for children aged 6–9 years 
at Time 0 was compared with normative data provided 
by Cogstate (2018) using independent t-tests.

RESU LTS

A detailed breakdown of the number of observations, 
mean, SD, SE, and confidence intervals according to 
participant age, pooled across cohorts, for each GMLT 
variable is provided in Appendix S2. Results for response 
duration are presented in Appendix S3.

Legal errors

Participant legal errors, colored by cohort, and model 
estimate with 90% prediction interval, are presented in 
Figure 2.

Descriptive analysis

Visual inspection suggests that legal errors decline at a 
steady rate over the course of childhood; however, there 
was some slight between-age fluctuation in performance 
from 8.5 to 12.5 years.

Growth curve analysis

A quadratic trend was found to be the best fitting 
model for GMTL legal errors, p =  .03; −2LL = 2155.7, 
AIC = 4339, BIC = 4402. Adding a cubic term did not 
improve model fit significantly, p  =  .31, therefore, a 
quadratic curve was deemed to have the most parsimo-
nious fit (Table 2).

Rule-break errors

Participant rule-break errors, colored by cohort, and 
model estimate with 90% prediction interval, are pre-
sented in Figure 3.

Descriptive analysis

Visual inspection reveals a steep reduction in the number 
of rule-break errors between 5.5 and 7 years, followed by 
a more gradual reduction until 9 years, followed by a 
flattening of the curve up to 12.5 years.

Growth curve analysis

A quadratic trend was found to be the best fitting model for 
GMTL rule-break errors, p < .001; −2LL = 1900.8, AIC = 3830, 
BIC = 3892. Adding a cubic term did not improve model fit 
significantly, p = .75; therefore, a quadratic curve was deemed 
to have the most parsimonious fit (Table 2).

valuei
∼N

(

�, �2
)

,

�=�j[i],k[i] +�1 ∙Age+�2 ∙Age2+�3 ∙Age3

+�k ∙I (Period=k, 1… 5)+� j ∙
(

Age ∙�k
)

,
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Total errors

Participant total errors, colored by cohort, and model esti-
mate with 90% prediction interval, are presented in Figure 4.

Descriptive analysis

Total errors on the GMLT at Time 0 did not differ between 
our sample and the standardization sample of Cogstate 
(Cogstate, 2018) at age 6, 7, 8, or 9 years (each t < 1, p > .05). 
Visual inspection suggests that the average number of 
total errors made by children on the GMLT decreased at 
a steady rate over the 5.5 to 10-year age period, with the 
suggestion of more modest reduction after this time period.

Growth curve analysis

A quadratic trend was found to be the best fitting model 
for GMTL total errors, p < .001; −2LL = 2361.3, AIC = 4751, 
BIC = 4813. Adding a cubic term did not improve model 
fit significantly, p = .54; therefore, a quadratic curve was 
deemed to have the most parsimonious fit (Table 2).

DISCUSSION

The aim of this longitudinal study was to investigate 
and model the development of complex EF in healthy 

children using a rule-based, maze learning paradigm—
the GMLT. Growth curve models were generated on 
each GMLT metric, and the fit compared between linear, 
quadratic, and cubic age using BIC and AIC criteria. On 
legal errors, rule-break errors, and total errors, quad-
ratic trends were the best fitting and most parsimonious 
model in each case. For changes in response duration 
over childhood, a cubic trend was the best fitting (and 
more parsimonious) growth function. As predicted, we 
showed a quadratic growth trend on error monitoring 
(i.e., rule-break errors). Contrary to predictions, a quad-
ratic was also shown on a metric of visuospatial work-
ing memory (i.e., legal errors), however the shape of this 
function was much shallower over the age period stud-
ied (5.5–12.5 years). The pattern of steep decline in rule-
break errors between 5.5 and 7 years suggests a period 
of rapid consolidation of simple action-oriented rules 
that support learning of a visuospatial navigation task. 
These results are discussed below in relation to other 
paradigms commonly used to assess complex EF in chil-
dren. The implications of our findings for developmental 
theory are also considered.

The number of total errors committed by children 
in our cohort did not differ from the standardized sam-
ple reported by Cogstate  (2018), indicating that GMLT 
performance in our sample was representative of typi-
cally developing children. A rapid reduction in total 
response duration was found between 6.5 and 8.5 years 
followed by further (but more gradual) reduction until 
12.5 years. This change in response duration reflects an 

F I G U R E  2   Participant legal errors, colored by cohort, made when completing the Groton Maze Learning Task. Black line indicates 
growth curve model estimate with 90% prediction interval.

20

40

60

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5
Age (years)

Le
ga

l e
rro

rs

Cohort
5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

 14678624, 2023, 3, D
ow

nloaded from
 https://srcd.onlinelibrary.w

iley.com
/doi/10.1111/cdev.13888 by A

ustralian C
atholic U

niversity L
ibrary - E

lectronic R
esources, W

iley O
nline L

ibrary on [10/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



654  |      MCGUCKIAN et al.

improvement in performance efficiency and psychomo-
tor speed, in line with (1) the reduction in rule-break 
and legal error rates, interpreted as a reduced time–cost 
in the integration and application of rules, and (2) im-
provements in fine- and gross-motor capabilities, which 
facilitate precise and rapid motor actions required to 
physically interact with the maze quickly.

The shallow quadratic trend on our measure of visuo-
spatial working memory (or legal/spatial errors) is consis-
tent with age trends reported for working memory tasks 
like the Corsi blocks (Farrell Pagulayan et al.,  2006) 
and backward color recall (Röthlisberger et al.,  2013). 
Indeed, quadratic trends have been suggested for more 
complex working memory tasks like backward color re-
call (Röthlisberger et al., 2013), which requires the recital 
of a series of colors in reverse order. Taken together, 
quadratic trends in the development of (visuospatial) 
working memory are likely to manifest under both sim-
ple and complex task instructions, including integration 
of a higher-order action-oriented instruction, such as re-
versing the order of presented stimuli. The current study 
provides considerable strength in its repeated use of the 
same task and longitudinal modeling of working mem-
ory over childhood; however, studies that sample over a 
wider age range (i.e., beyond 12 years old) are required to 
better understand developmental trends on more com-
plex tasks.

The quadratic trend that we observed on rule-break 
errors suggests that the ability to use simple action-
oriented rules in a spatial learning task is acquired 
rapidly over the course of early-to-middle childhood. 
Children reduced the average number of such errors 
from 20 at 5.5 years of age, to less than 10 errors by age 
7, and to around four errors by 9 years. The ability to 
apply such rules is thought to be supported by a process 
of self-reflection and higher-order attentional control 
(Zelazo,  2015). Even use of simple rules, such as those 
involved in the GMLT, requires a capacity to monitor 
goal-directed behavior in real-time. In essence, reflec-
tion (via sub-vocal verbalisation) is thought to enable the 
child to reference previously learned task rules in order 
to solve an action problem, while also keeping other fea-
tures of the task in mind (e.g., accessing the correct path 
held in working memory; Zelazo, 2015). An inability to 
reflect may also explain the utilization deficiency that 
occurs with young children, where a gap exists between 
the ability to learn task rules and call upon them mid-
task (Clerc et al., 2014). The improvement with age may 
be further aided by the transition from reactive to pro-
active cognitive control that occurs from 3- to 8-years of 
age (Munakata et al., 2012). In the context of the GMLT, 
it may be that older children are better able to proac-
tively maintain action-oriented rules for future planning 
of moves, whereas when this cognitive control is en-
listed in younger children, rule use is slower and more 
cognitively demanding, resulting in more rule-break er-
rors and slower overall response time. Taken together, T
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we argue that age-related changes in the ability to en-
list simple action-oriented rules through reflection and 
proactive control, combined with an expanding capacity 
to buffer visuospatial information in working memory, 

maintains steady improvement on the GMLT over this 
critical developmental period.

It follows that performance of visuospatial learning 
tasks that involve more complex rule structures will 

F I G U R E  3   Participant rule-break errors, colored by cohort, made when completing the Groton Maze Learning Task. Black line indicates 
growth curve model estimate with 90% prediction interval.
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F I G U R E  4   Participant total errors, colored by cohort, made when completing the Groton Maze Learning Task. Black line indicates 
growth curve model estimate with 90% prediction interval.
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follow different growth trajectories to those with sim-
pler rule structures, like the GMLT (Perone et al., 2018). 
This is supported by both structural and functional 
neuroimaging data. First, tasks that involve hierarchi-
cal rule structures or more abstract reasoning tend to 
rely more heavily on lateral regions of the PFC (Bunge 
& Zelazo, 2006). These higher-order cortical regions de-
velop relatively late, and then exert top-down influence 
on lower-level (but earlier developing) sensorimotor re-
gions. Second, at a neural level, there is a shift with age 
and experience from sparse (within network) activation 
to a more targeted and well-defined grouping of net-
work activation (Chevalier et al.,  2019). This changing 
pattern occurs progressively over childhood and into 
adolescence. Finally, structural immaturities in the de-
velopment of EF networks in younger children appear to 
necessitate a different pattern of neural activation. Put 
simply, when presented with a complex spatial planning 
and updating task, younger children appear to enlist net-
works other than those associated with mature EF—the 
left parietal cortex is one region where compensatory ac-
tivation is evident (Morton et al., 2009). Taken together, 
our behavioral modeling of EF abilities suggests that 
performance of younger children may be supported by 
these less-efficient compensatory processes that are yet 
to fully develop. However, higher-level control is rapidly 
conferred as children enter middle-to-late childhood. 
With age, the capacity to couple the rule-monitoring 
functions of the PFC (and cingulate cortex) with lower-
level spatial buffering in working memory is likely to un-
derpin advances in complex task performance.

Limitations

Despite the strengths of the current investigation, there 
are some limitations that should be considered when in-
terpreting the findings. Primarily, considering that chil-
dren with MAND scores below the 20th percentile were 
excluded, the current findings cannot be extended to 
children with developmental delays in motor skill. This 
is an important consideration given the EF deficits (e.g., 
inhibitory control) of children with motor difficulties, 
such as Developmental Coordination Disorder (Subara-
Zukic et al., 2022; Wilson et al., 2013, 2017). Furthermore, 
given the lack of more detailed demographic informa-
tion, the generalisability of the findings are somewhat 
limited to typically developing children in metropoli-
tan areas of Western-cultured cities of Melbourne and 
Perth, Australia. It is likely that developmental trends 
in EF will be similar for typically developing cohorts 
arising from other metropolitan (and regional) areas; 
however, without the availability of more comprehensive 
demographic data, this cannot be assumed. Finally, as 
the GMLT was administered as part of a battery of tests 
in a separate longitudinal study (Ruddock et al., 2016), 
it is possible that fatigue and/or motivation for the task 

could have varied between timepoints. However, as the 
order of assessments were counterbalanced across time 
points, this should mitigate the issue of learning effects 
between 6-month testing points, and the results may ac-
tually give a more representative insight into day-to-day 
EF of children.

Future directions

One factor for future investigation concerns possible 
cross-cultural differences in the development of EF be-
tween developing and emerging countries. There is some 
evidence that growth patterns in EF are not as readily 
observed in developing regions (Schirmbeck et al., 2020). 
Cross-cultural comparisons are needed to fully under-
stand growth patterns and the constraints of living condi-
tions, socio-economic status, diet, and physical activity.

Looking beyond pre-set developmental trajecto-
ries (i.e., linear, quadratic and cubic), future modeling 
of growth curves could be extended by testing the best 
fitting function without regard to its shape (termed 
spline function) which help model critical points along 
a developmental trajectory where change occurs. These 
functions maximize data fit but are often difficult to 
interpret in terms of current theories of development 
(Telzer et al., 2018).

CONCLUSION

Typically developing children show distinct patterns of 
growth in the ability to enlist different facets of EF in a 
rule-based learning task. The decline on rule-break er-
rors between 5.5 and 9 years combined with quadratic 
growth trend over the childhood period suggests rapid 
acquisition of the ability to enlist simple action-oriented 
rules in goal-directed behavior (specifically, maze navi-
gation). This change in cognitive control is likely to act 
as a rate limiting factor in performance of tasks that re-
quire complex EF. These behavioral results mirror struc-
tural changes in the development of neural networks 
that underpin working memory and cognitive control, 
particularly synergies between PFC and cingulate cortex 
(Botvinick & Cohen, 2014; Garner & Dux, 2020). Steady 
maturation in such networks supports the ability to inte-
grate the maintenance of visual–spatial information on-
line while solving cognitive tasks. For tasks that involve 
more complex action-oriented rules (than those exam-
ined here), a more protracted period of development may 
be necessary (Zelazo, 2015). The ability to describe these 
patterns of growth in EF with greater precision has im-
portant implications for the design of learning environ-
ments for school-aged children; the aim of which should 
be to present learning tasks that impose constraints on 
working memory and cognitive control that are scaled 
appropriately for proximal learning.
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