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ABSTRACT 15 

Background: Hamstring strain injuries are prevalent in sport and re-injury rates have been high for 16 

many years. Whilst much focus has centred on the impact of previous hamstring strain injury on 17 

maximal eccentric strength, high rates of torque development is also of interest, given the important 18 

role of the hamstrings during the terminal swing phase of running. The impact of prior strain injury 19 

on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development 20 

has received little attention.  Purpose: To determine if recreational athletes with a history of 21 

unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower 22 

levels of myoelectrical activity during eccentric contraction, rate of torque development and impulse 23 

30, 50 and 100ms after the onset of myoelectrical activity or torque development in the previously 24 

injured limb compared to the uninjured limb. Study design: Case-control study Methods: Twenty-six 25 

recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring 26 

strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain 27 

injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface 28 

electromyography assessment of the biceps femoris long head and medial hamstrings during 29 

eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, 30 

compared to the contralateral uninjured limb rate of torque development and impulse was lower 31 

during -600.s-1 eccentric contractions at 50 (RTD, injured limb = 312.27 ± 191.78Nm.s-1 vs. uninjured 32 

limb = 518.54 ± 172.81Nm.s-1, p=0.008; IMP, injured limb = 0.73 ± 0.30 Nm.s vs. uninjured limb = 33 

0.97 ± 0.23 Nm.s, p=0.005) and 100ms (RTD, injured limb = 280.03 ± 131.42Nm.s-1 vs. uninjured limb 34 

= 460.54.54 ± 152.94Nm.s-1,p=0.001; IMP, injured limb = 2.15 ± 0.89 Nm.s vs. uninjured limb = 3.07 ± 35 

0.63 Nm.s, p<0.001) after the onset of contraction. Biceps femoris long head muscle activation was 36 

lower at 100ms at both contraction speeds (-600.s-1, normalised iEMG activity (x1000), injured limb = 37 

26.25 ± 10.11 vs. uninjured limb 33.57 ± 8.29, p=0.009; -1800.s-1, normalised iEMG activity (x1000), 38 

injured limb = 31.16 ± 10.01 vs. uninjured limb 39.64 ± 8.36, p=0.009). Medial hamstring activation 39 

did not differ between limbs in the injured group. Comparisons in the uninjured group showed no 40 



significant between limbs difference for any variables. Conclusion: Previously injured hamstrings 41 

displayed lower rate of torque development and impulse during slow maximal eccentric contraction 42 

compared to the contralateral uninjured limb. Lower myoelectrical activity was confined to the 43 

biceps femoris long head. Regardless of whether these deficits are the cause of or the result of 44 

injury, these findings could have important implications for hamstring strain injury and re-injury. 45 

Particularly, given the importance of high levels of muscle activity to bring about specific muscular 46 

adaptations, lower levels of myoelectrical activity may limit the adaptive response to rehabilitation 47 

interventions and suggest greater attention be given to neural function of the knee flexors following 48 

hamstring strain injury.    49 

Key terms: strain injury, neuromuscular function, surface electromyography. 50 

What is known about the subject?: Previous hamstring strain injury results in a greater decline in 51 

eccentric knee flexor strength compared to concentric strength in athletes who have been 52 

rehabilitated sufficiently to return to training and competitive match play. It has also been reported 53 

that this eccentric specific weakness following injury is associated with a reduction in voluntary 54 

activation. However as the primary injurious activity type for hamstring strain injury is during the 55 

terminal swing phase of high speed running, the ability of the hamstrings to development eccentric 56 

torque rapidly is of interest. Whether previous hamstring strain injury impacts upon myoelectrical 57 

activity of rapid eccentric contraction remains to be seen.    58 

What this study adds to the existing knowledge: To our knowledge this is the first study to report 59 

lower rate of torque development and impulse in previously injured hamstrings up to and including 60 

the first 100ms of an anticipated eccentric contraction. With respect to the neural factors associated 61 

with this torque development, myoelectrical activity of biceps femoris long head during slow 62 

maximal eccentric muscle contraction was lower 100ms after the onset of myoelectrical activity  in 63 

the previously injured leg. As all hamstring strain injuries examined in this study were confined to 64 



the biceps femoris long head, the decline in myoelectrical activity suggests a potentially muscle 65 

specific response to injury.  66 
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INTRODUCTION 84 

Muscle strain injuries are problematic for elite, sub-elite and recreational level athletes participating 85 

in running based sports.7, 13, 35, 48 Of all muscle strain injuries in sport, hamstring strain injuries (HSIs) 86 

are the most prevalent. 7, 13, 35, 48 HSIs result in considerable lost time from training and absence from 87 

competition, decrements in athlete performance and, in team sports settings, a financial burden for 88 

the club or organisation.34 One of the most prominent consequences of HSIs that is yet to be 89 

resolved is the high rates of reinjury, an issue of great importance considering previous HSI is 90 

consistently identified as the primary risk factor for future injury.3 Whilst the existence of this injury-91 

reinjury cycle is acknowledged,9 success in reducing reinjury rates in one sport has been largely 92 

attributed to increased rehabilitation time,35 more so than due to a greater understanding of the 93 

maladaptations associated with previous injury or improved rehabilitation practices.  94 

Scant attention has been given to the potential for unattended neural maladaptations associated 95 

with a previous insult to increase the likelihood of future HSI. Recent work has reported lower levels 96 

of myoelectrical activity in the previously injured hamstring during maximal voluntary eccentric 97 

contractions tested at the movement speed of -600.s-1.40 That study was the first to provide empirical 98 

evidence that lower myoelectrical activity in a previously injured hamstring during maximal eccentric 99 

contractions exists. However many other aspects of neural function are yet to be examined. 100 

Myoelectrical activity during rapid force generation is one such avenue of further investigation. Such 101 

work is warranted given one of the primary roles of the hamstring muscle group is rapid 102 

deceleration of the advancing thigh during the terminal swing phase of high speed running.41 103 

Optimal hamstring function during this portion of the running cycle is important as terminal swing is 104 

considered by some to be most injurious phase of gait as it combines moderate muscle strains and 105 

high force eccentric contraction.23, 37   As such, high rates of torque development (RTD) 106 

(Δtorque/Δtime) and early contractile impulse (IMP) (the area under the time vs. torque curve) 107 

during eccentric contractions are important characteristics of hamstring function because the 108 



limited  time available for deceleration (~100ms30) prevents the development of maximal torque.43 109 

Undoubtedly musculotendinous properties, such as muscle size, relative area of fast-twitch fibers, 110 

myosin heavy chain isoform composition and tendon stiffness partly impact on RTD,5, 20, 22 however, 111 

the magnitude of myoelectrical activity also contributes. Specifically, the amount of myoelectrical 112 

activity during the early phase of the contraction has a positive relationship with RTD.1-2 Whether 113 

the initial magnitude of myoelectrical activity is less in a previously injured hamstring and whether 114 

this result in lower initial eccentric RTD and IMP is, however, yet to be examined. 115 

Measures of RTD, IMP and concurrent myoelectrical activity have been obtained largely during 116 

isometric contractions. The information obtained may be limited given the importance of eccentric 117 

strength in the aetiology of HSIs. Therefore assessment of these variables during eccentric 118 

contraction may be considered better suited. Yet, the potential to do so is somewhat limited mainly 119 

due to the lag between the onset of torque development and the movement of the isokinetic 120 

dynamometer lever arm, which we have observed in our lab to be in excess of 100ms. To some 121 

extent this issue can be overcome through the use of an anticipated eccentric contraction whereby 122 

the participant performs an isokinetic eccentric action, however given the short time frame over 123 

which RTD, IMP and myoelectrical activity is analysed the actual contraction is quasi-isometric. 124 

Nevertheless, the intention to perform an eccentric action has been shown to result in greater 125 

movement related cortical potential compared to concentric actions.14 This suggests that the 126 

execution of motor activity is modulated according to the contraction type to be performed.14 127 

Indeed contraction mode specific neural control has been evidenced previously via surface 128 

electromyography (sEMG) with these anticipated eccentric contractions17 suggesting that 129 

contraction mode specific information about myoelectrical activity can be determined with such an 130 

experimental design. Therefore the purpose of the current study was to examine if a previously 131 

injured hamstring displayed lower RTD, IMP and concurrent early myoelectrical activity from the 132 

biceps femoris long head (BF) and medial hamstrings (MH) during anticipated slow and fast eccentric 133 

actions in comparison to the contralateral uninjured hamstring. Myoelectrical activity was recorded 134 



from both BF and MH to determine if alterations in myoelectrical activity were confined to the 135 

previously injured hamstring muscle. A control group was also examined to demonstrate that limb 136 

dominance did not influence RTD, IMP or hamstring myoelectrical activity. 137 
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 MATERIALS AND METHODS 155 

Participants 156 

Recreational level male athletes (n=26) were recruited to participate in the study. All participated in 157 

running based sports such as Australian football, soccer, sprinting and touch rugby. Of these, 13 158 

athletes (26.6 ± 5.8 years; 1.8 ± 0.04m; 83.2 ± 14.3kg) had sustained at least one grade II HSI within 159 

the last 36 months and another 13 athletes (25.9 ± 3.4 years; 1.8 ± 0.05m; 82.8 ± 7.5 kg) had no 160 

history of HSIs. All participants were free of any other lower limb injury, were fully recovered from 161 

their previous HSIs and active in their chosen sport at the time of testing. For all athletes limb 162 

dominance was defined as the preferred kicking leg. All testing procedures were approved by the 163 

Queensland University of Technology Human Research Ethics Committee. Participants gave 164 

informed written consent prior to testing after having all procedures explained to them. 165 

Injury questionnaire 166 

Following recruitment, participants completed an injury questionnaire with their chosen practitioner 167 

(i.e. physiotherapist) who had previously diagnosed and treated all the athletes hamstring strain 168 

injuries. As per previous investigations40 the notes taken from clinical examination were used to 169 

detail the: date of injury and return to pre-injured levels of training and competition; severity (grade 170 

I, II or III)4; location with respect to limb dominance and specific hamstring muscle (BF or MH) 171 

injured; and rehabilitation details of all previous HSIs. Athletes were considered to be successfully 172 

rehabilitated when they returned to pre-injury levels of training and were available for match 173 

selection or competition.15  174 

EMG recording 175 

Myoelectrical activity was measured via sEMG from the MH and BF through the use of circular 176 

bipolar pre-gelled Ag/AgCl sEMG electrodes (10mm diameter, 25mm inter-electrode distance). After 177 

preparation of the skin via shaving, abrasion and sterilisation, electrodes were placed on the 178 



posterior thigh half way between the ischial tuberosity and tibial epicondyles, as per SENAIM 179 

guidelines.26 Muscle bellies were identified via palpation during forceful isometric knee flexion and 180 

correct placement was confirmed by observing sEMG activity during active internal and external 181 

rotation of the flexed knee.  182 

Isokinetic dynamometry  183 

Assessment of knee flexor RTD was performed on a Biodex Systems 3 Dynamometer (Biodex Medical 184 

Systems, Shirley, NY). Participants were seated on a custom pad, placed on top of the original seat, 185 

which contained two holes at the level of the posterior mid thigh to minimise movement artefact 186 

from sEMG electrodes on the dynamometer seat. The hips were flexed at 85˚ from neutral with the 187 

lateral epicondyle of the femur carefully aligned with the fulcrum of the dynamometer. The tested 188 

leg was attached to the lever of the dynamometer via a Velcro strap and padded restraints were 189 

fastened across the trunk, hips and mid thigh of the tested leg to isolate movement to the knee 190 

joint. The range of motion was set at 5˚-90˚ of knee flexion (0˚=full knee extension; knee joint angle 191 

at start position=90˚) and correction for limb weight was performed throughout the range of 192 

motion.  193 

Three sets of four submaximal concentric contractions of the knee extensors and flexors were 194 

performed at +2400.s-1 as a warm-up to prepare the participant for maximal effort in the following 195 

sets. Eccentric testing for both legs consisted of three sets of three consecutive eccentric maximum 196 

voluntary contractions (MVC) of the knee flexors at speeds of -600.s-1 and -1800.s-1 with 30 seconds 197 

rest between sets. The leg and speed testing orders were randomised and athletes were informed of 198 

the testing speed prior to each set. Athletes were instructed to remain relaxed prior to contraction 199 

to allow a stable baseline measurement of torque and sEMG to be obtained. Athletes were 200 

instructed to push their heel back as quickly as they could towards their glueteus when given the 201 

signal to contract and were encouraged verbally by the investigators to ensure maximal effort. The 202 



signal to contract was delivered verbally by the investigators. All athletes were required to attend at 203 

least one familiarisation session and one testing session with ≥ seven days between each session.  204 

Data analysis  205 

For each movement speed the three contractions with the highest peak torque were used for 206 

further analysis. Dynamometer torque and lever position data were transferred to a personal 207 

computer at 1 kHz and stored for later analysis. RTD was determined as the mean of the average 208 

slope of the torque-time trace (Δtorque/Δtime) for the three selected repetitions from the onset of 209 

contraction through until 30, 50 and 100ms of the contraction. Onset of contraction was defined as 210 

when torque deviated 4Nm from the baseline level of torque at rest (Figure 1).42 IMP was calculated 211 

as the area under the torque-time trace across the same time periods. 212 

Surface EMG data was sampled simultaneously with dynamometer data at  1kHz through a 16-bit 213 

PowerLab26T AD recording unit with in-built anti-aliasing filter (ADInstruments, New South Wales, 214 

Australia) (amplification = 1000; common mode rejection ratio = 110 dB; Input impedance = 100 MΩ; 215 

fixed gain) and stored for later analysis where it was fourth order Butterworth filtered between 20-216 

500Hz (24dB roll off) using MATLAB (MathWorks, Natick, Massachusetts) and then full wave rectified 217 

using the root-mean-square method. For each contraction, sEMG data for MH and BF was 218 

normalised to the maximum magnitude of the rectified sEMG signal for that contraction, for each 219 

muscle respectively. Myoelectrical activity was defined as the area under the rectified sEMG-time 220 

trace, commonly referred to as integrated EMG (iEMG), and was measured across 30, 50 and 100ms 221 

after the onset of myoelectrical activity. All myoelectrical data is expressed as normalised iEMG 222 

multiplied by a factor of 1000. Onset of myoelectrical activity was determined by smoothing the 223 

rectified EMG signal (100 point moving average) and then identifying when the smoothed rectified 224 

signal rose above 10% of the maximum signal for the final time.36 The identification of onset was 225 

then confirmed by visual examination of the raw and rectified (unsmoothed) sEMG signal at the 226 



same time point. All analysis was performed using LabCart 7.3 (ADInstruments, New South Wales, 227 

Australia). 228 

Statistical analysis 229 

Data was analysed using JMP version 9.0 Pro Statistical Discovery Software (SAS Inc). Aligned with 230 

the study’s primary objectives, comparisons were made for each dependent variable (RTD, IMP and 231 

BF and MH myoelectrical activity) between the injured and uninjured limbs in the injured group. 232 

Comparisons between dominant and non-dominant limbs in the uninjured group were also made to 233 

determine any influence of limb dominance. The use of ANOVA models was deemed not valid since 234 

analysis of means for variances (ANOMV)  used to test homogeneity of variance of dependent 235 

variables across groups46, 47 indicated that this assumption was not satisfied (p < 0.05). As such, 236 

dependent variables were compared using two tailed paired t tests for both groups. Bonferroni 237 

corrections were performed to account for three comparisons made for each dependent variable 238 

across the velocities used, with significance adjusted to  p<0.0167. To assess the magnitudes of the 239 

differences Cohen’s d was also used to report effect size (ES).  240 
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RESULTS 249 

Participants 250 

The two groups were similar with respect to age, height and body mass (Injured group, 26.6 ± 5.8 251 

years; 1.8 ± 0.04m; 83.2 ± 14.3kg; Uninjured group, 25.9 ± 3.4 years; 1.8 ± 0.05m; 82.8 ± 7.5 kg). All 252 

athletes from the injured group had suffered at least one grade II HSI in the last 36 months. The total 253 

number of HSIs sustained by each athlete in the injured group ranged between one and four 254 

(median = 2) in the same 36 month period. All injuries were confined to the BF. Median time since 255 

most recent HSI was 3.9 months (range = 1.0 – 18.2), with median time taken to return to pre-256 

injured levels of competition being 4 weeks (range = 2 - 6). All athletes from the injured group 257 

reported standard rehabilitation progression (i.e. Ref 24) guided by their physiotherapist, with all but 258 

one of the injured athletes reporting some eccentric conditioning as part of their late phase 259 

rehabilitation program. 260 

RTD and IMP 261 

RTD and IMP was significantly lower in the previously injured knee flexor for -600.s-1 anticipated 262 

eccentric contractions at 50 (RTD, injured limb = 312.27 ± 191.78Nm.s-1 vs. uninjured limb = 518.54 ± 263 

172.81Nm.s-1, p=0.008, ES=1.12; IMP, injured limb = 0.73 ± 0.30 Nm.s vs. uninjured limb = 0.97 ± 264 

0.23 Nm.s, p=0.005, ES=0.87) and 100ms (RTD, injured limb = 280.03 ± 131.42Nm.s-1 vs. uninjured 265 

limb = 460.54.54 ± 152.94Nm.s-1,p=0.001, ES=1.27; IMP, injured limb = 2.15 ± 0.89 Nm.s vs. 266 

uninjured limb = 3.07 ± 0.63 Nm.s, p<0.001, ES=1.20) after the onset of contraction (Figure 2, 267 

Supplementary Table 1). There was no significant difference for RTD or IMP during anticipated 268 

eccentric contractions at -1800.s-1 at any time point (Figure 2, Supplementary Table 1). There were 269 

no between limb differences for either variable in the uninjured group (Figure 3, Supplementary 270 

Table 1).  271 

Integrated EMG 272 



With respect to myoelectrical activity of BF, normalised iEMG was lower at 100ms at both 273 

contraction speeds between limbs in the injured group (-600.s-1, injured limb = 26.25 ± 10.11 vs. 274 

uninjured limb 33.57 ± 8.29, p=0.009, ES=0.80; -1800.s-1, injured limb = 31.16 ± 10.01 vs. uninjured 275 

limb 39.64 ± 8.36, p=0.009, ES=0.92) (Figure 4, Supplementary Table 2), but there were no significant 276 

differences between limbs in the uninjured group (Figure 5). No differences existed with respect to 277 

MH iEMG in either group (Figure 4 & 5, Supplementary Table 2). 278 

DISCUSSION 279 

The hamstring muscle group is the most commonly strained muscle in running based sports. 7, 13, 35, 48 280 

This is purportedly due to the demands of high speed running and specifically the need for rapid 281 

deceleration of the flexing hip and extending knee during terminal swing. 23, 37 As such the ability of 282 

the biarticular hamstrings to generate eccentric force rapidly is a key feature of hamstring function. 283 

The current study examined whether athletes with a prior unilateral HSI history displayed lower 284 

levels of RTD, IMP and myoelectrical activity in the previously injured hamstring compared to the 285 

contralateral uninjured hamstring for brief periods following the onset of anticipated eccentric 286 

contractions. The novel findings from this study are that recreational athletes with a history of HSIs 287 

confined to the BF exhibited i) lesser RTD and IMP 50 and 100 ms after the onset of an anticipated 288 

eccentric contractions at -600.s-1; ii) lesser BF myoelectrical activity at 100 ms after the onset of 289 

myoelectrical activity in anticipation of eccentric contractions at -600.s-1 and -1800.s-1 in the 290 

previously injured limb compared to the uninjured limb. Of further importance was that 291 

myoelectrical activity of the MH was not different between limbs in the injured group. There were 292 

also no differences found between dominant and non-dominant limb for torque or myoelectrical 293 

activity in the control group, indicating no influence of limb dominance.  294 

This is, to our knowledge, the first study to examine RTD, IMP and concurrent myoelectrical activity 295 

in previously injured hamstrings, which makes comparisons to previous work difficult. One previous 296 

study has examined the impact of a simulated handball game on isometric knee flexor function and 297 



this study reported higher baseline RFD relative to bodyweight (6.92 – 9.27Nm/s/kg) compared to 298 

the uninjured limbs ( 4.82 – 5.41Nm/s/kg) in the current study.42 The divergent RFD findings may be 299 

explained by the methodological differences such as athlete expertise (recreational active vs elite 300 

handball players), different knee joint angles used to assess RFD (90o vs 70o of knee flexion) and the 301 

use of anticipated eccentric contraction as opposed to isometric rate of force development in 302 

previous work .   303 

The finding that a previous strain injury to BF results in a lesser ability to generate torque quickly in 304 

anticipation of an eccentric contraction may have important consequences for recurrent HSI risk and 305 

current rehabilitation practices. This is because the time frame in which the knee flexors have to 306 

decelerate the flexing hip and extending knee joints during terminal swing is limited (~100ms30). As 307 

such the rapid development of eccentric torque is paramount to minimise the risk of 308 

overlengthening of the hamstrings. If, as was observed in the current cohort, previously injured 309 

limbs display lower knee flexor RTD and IMP and lower BF myoelectrical activity up to 100ms 310 

following the onset of contraction it might be expected to increase the work required of the 311 

hamstrings at terminal swing to slow the forward moving shank due to poor deceleration during 312 

early swing. Furthermore, a lesser ability to produce a decelerating force for a brief period following 313 

the onset of contraction would likely increase the work required of the hamstrings at longer muscle 314 

lengths and the impact of this may be two fold. Firstly, the increase in work may induce the onset of 315 

fatigue earlier in the BF, which is the primary knee flexor at long muscle lengths.33 Given fatigue 316 

reduces the amount of energy that can be absorbed by a lengthening muscle29 this may increase the 317 

potential for strain induced muscle failure. Secondly, unpublished observations from our lab suggest 318 

that athletes with a previous HSI to BF display lower BF myoelectrical activity during eccentric 319 

contractions at long lengths. If there are extra demands placed on the BF at terminal swing due to 320 

poor RTD and IMP, but due to restricted myoelectrical activity at this muscle length the muscle 321 

cannot meet these demands then this has the potential to increase the likelihood for hamstring 322 

overlengthening. Such overlengthening can be problematic as it may increase the risk of the 323 



hamstrings exceeding their mechanical limits34 or accumulating microscopic muscle damage6 and 324 

this increases the potential for injury/reinjury. 325 

The observations that RTD and IMP were lower in anticipation of a slow, but not fast, eccentric 326 

contraction is intriguing given that the myoelectrical activity of the previously injured BF was lower 327 

in anticipation of both speeds of eccentric contraction. Whilst  RTD was not lower  in the previously 328 

injured limb compared to the contralateral uninjured limb at any time point at -1800.s-1 there was a 329 

medium effect size at 100ms following the onset of contraction (p=0.064, Cohen’s d ES=0.57) and a 330 

larger sample may have revealed a significant difference .  However this finding might also be 331 

indicative of alterations in coordination of the knee flexor muscles in anticipation of a fast eccentric 332 

contraction. Altered coordination may be driven by the intent to protect the previously injured BF in 333 

anticipation of a high speed eccentric action. In the case of this study other knee flexors, not 334 

examined, might be recruited more heavily thus increasing their contribution to knee flexion torque 335 

generation, with the most suited candidate being the uniarticular biceps femoris short head. Indirect 336 

evidence supports this change in contribution to knee flexion torque, given that a previously injured 337 

leg displays compensatory hypertrophy of this muscle,39 which would be suggestive of an increased 338 

volume of work during habitual activities. Moreover, BF atrophy has been found,39 as a possible 339 

consequence of reduced activation and disuse following HSI. Whether such a reorganisation of 340 

muscle activity exists is, however, yet to be explored and should be an area for future examination.  341 

If significant neuromuscular inhibition of BF exists its benefits are most likely to be confined to the 342 

early phase of recovery and rehabilitation. A novel framework proposed previously hypothesises 343 

that pain associated with HSI results in prolonged neural deficits which compromise the 344 

rehabilitation process.34 This framework focuses largely on chronic reductions in voluntary activation 345 

of the previously injured hamstrings during eccentric contractions and the impact of such a 346 

neurological deficit on muscular adaptations (for a thorough discussion of this see Ref 34). However, 347 

reductions in early neural drive of the previously injured BF in response to strain injury may present 348 



another problematic maladaptation associated with previous HSI. Acute restriction of early neural 349 

drive following injury presumably constitutes a strategy to unload the damaged tissue and reduce 350 

pain in the acute recovery period.34 However chronic reductions in early neural drive would be 351 

expected to compromise the rehabilitation process, given the need for high levels of activation to 352 

bring about muscular adaptations.34 The reduction in early myoelectrical activity of BF, combined 353 

with the restriction of myoelectrical activity of BF during maximal eccentric contraction (unpublished 354 

observations from our lab), might be expected to reduce the stimulus the previously injured BF is 355 

exposed to, resulting in limited muscle hypertrophy and sarcomerogenesis. Decrements in these two 356 

factors would be expected to reduce strength and reduce the optimum length of the hamstring 357 

muscle group, respectively, and both have been implicated in HSI aetiology.6, 10 Whilst much work 358 

has been done on the contractile and structural16, 27 implications of strain injury, neural 359 

maladaptation and associated changes have been largely neglected and should be the focus of 360 

future investigations.   361 

If lower BF myoelectrical activity is in response to HSI,  the underpinning mechanism responsible is 362 

of interest. At present most studies have examined the impact of resistance training on neural 363 

factors that influence RTD. These studies all have focused on mechanisms to explain improved RTD 364 

including: increased neural drive; increased motor unit discharge rates; increased motor unit 365 

synchronisation; and earlier recruitment of motor units.11, 21, 38, 44 Whether all of these adaptations 366 

occur ‘in reverse’ following HSI remains to be seen, however the current study found that lower 367 

myoelectrical activity occurred in the previously injured BF. Yet, as the stimulus for neural 368 

maladaptation to HSI is hypothesised to be due to pain34 (as opposed to heavily load or explosive 369 

resistance exercise19) the altered function of the nervous system may differ markedly. HSIs induce 370 

acute45 and chronic9, 28 pain particularly in athletes with recurrent strain injuries. Acute muscle pain 371 

is known to result in short term neural responses resulting in reduced strength, agonistic activation 372 

and muscle endurance, increased antagonistic activity and altered coordination patterns during 373 

static and dynamic motor tasks.12, 18-19, 25 This muscular pain also has the potential to alter central 374 



nervous function at both the spinal and supraspinal level, resulting in increased pain sensitivity and 375 

an expanded neuron population of the painful muscle in the dorsal horn of the spinal cord.31 Pain 376 

has the potential to modulate descending neural pathways32 and by extension the ability to fully 377 

activate the motor neuron pool. This maladaptation of neural function might therefore be expected 378 

to result in a restriction of myoelectrical activity during the onset of contraction and may be 379 

specifically confined to the muscle responsible for the noxious stimulus.            380 

There are some limitations associated with the current work. Firstly, as discussed earlier, the 381 

statistical power of the current study was too low to detect small to moderate effect sizes (Cohen’s d 382 

= 0.2-0.8). A larger sample size might have revealed significant differences between dependent 383 

variables that were not identified in the current study. As such a larger sample, also considering the 384 

inclusion of female athletes, should be a consideration for future investigations; notwithstanding the 385 

difficulty in recruiting athletes for the INJ group. The retrospective nature of these findings do not 386 

allow for the determination of whether lower levels of RTD, IMP and concurrent early myoelectrical 387 

activity of BF are the cause of, or the result of HSI. Potentially the lesser myoelectrical activity in the 388 

previously injured BF could indicate incomplete rehabilitation, whereby the deficits could be 389 

ameliorated with further intervention; a permanent lessening of myoelectrical activity in response to 390 

injury; or a deficit that was present prior to injury. Regardless of the responsible mechanisms, all 391 

athletes were deemed sufficiently rehabilitated to return to play, however the deficits in RTD, IMP 392 

and myoelectrical activity might suggest that rehabilitation was in fact incomplete. Future work 393 

should investigate whether lower myoelectrical activity, particularly of BF, is a risk factor for future 394 

HSI and explore what interventions are successful at restoring myoelectrical activity following HSI. 395 

Furthermore, we were unable to control the rehabilitation programmes of the current cohort, 396 

however all reported largely conventional rehabilitation progression guided by a physiotherapist. 397 

We were also limited because current methodologies do not allow for the performance of eccentric 398 

isokinetic knee flexion in such brief time periods as examined in the current study. As such the 399 

muscle action performed during the assessed time periods was quasi-isometric. Regardless the 400 



intention to perform an eccentric muscle action results in different cortical14 and sEMG17 activity 401 

compared to concentric contractions even when performing quasi-isometric contraction.17 This 402 

suggests that information about contraction mode specific myoelectrical activity can be derived 403 

from quasi-isometric contractions with the intent of performing an eccentric action. Finally, the use 404 

of isokinetic dynamometry at speeds of -60 and -1800.s-1 to assess eccentric neuromuscular function 405 

is not wholly reflective of the demands placed on the hamstrings during injurious activities such as 406 

running and kicking, where greater angular velocities are experienced. The impact of previous HSI on 407 

neuromuscular function during these tasks should be examined further. Nevertheless, isokinetic 408 

testing combined with sEMG allows for the determination of RTD, IMP and myoelectrical activity 409 

whilst controlling for different movement velocities, a variable which was found to influence RTD 410 

and IMP in the current study.  411 

In conclusion, we have shown for the first time, to our knowledge, that a previously strained 412 

hamstring, which has been rehabilitated sufficiently to return to training and competition, displays 413 

lower levels of RTD and IMP in anticipation of a slow maximal eccentric contraction compared to the 414 

contralateral uninjured limb. Furthermore, lower early myoelectrical activity was observed in the 415 

injured BF compared to the contralateral uninjured BF in anticipation of fast and slow maximal 416 

eccentric contraction. Regardless of whether these deficits are a response to or the result of muscle 417 

strain injury they could have important implications for current preventative and rehabilitation 418 

practices. Particularly, given the importance of high levels of muscle activity to bring about specific 419 

muscular adaptations, lower levels of myoelectrical activity may limit the adaptive response to 420 

rehabilitation interventions. This would be expected to limit the effectiveness of rehabilitation 421 

exercises and suggests that consideration be given to deficits in myoelectrical activity following HSI. 422 

A greater appreciation for impaired neural function following HSI might be expected to improve 423 

rehabilitation outcomes.  424 

 425 
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FIGURE CAPTIONS 542 

Figure 1: Representative torque-time trace. Prior to the onset of contraction baseline levels of 543 

torque were determined. Onset of contraction was defined as when knee flexor torque deviated by 544 

4.0Nm from baseline. Rate of torque development was determined as the average change in torque 545 

over time (Δtorque/Δtime) at 30, 50, 100ms from onset of contraction development.    546 

Figure 2: Comparisons between the uninjured and injured limbs of previously injured athletes of 547 

knee flexor rate of torque development (A. -60o.s-1 and B. -180o.s-1) and impulse (C. -60o.s-1 and D. -548 

180o.s-1) at 30, 50 and 100ms from the onset of torque development. Error bars indicate standard 549 

deviation. *p<0.0167 uninjured vs injured limbs.      550 

Figure 3: Comparisons between the dominant and non-dominant limbs of uninjured athletes of knee 551 

flexor rate of torque development (A. -60o.s-1 and B. -180o.s-1) and impulse (C. -60o.s-1 and D. -180o.s-552 

1) at 30, 50 and 100ms from the onset of torque development. Error bars indicate standard 553 

deviation.  554 

Figure 4: Comparisons between the uninjured and injured limbs of previously injured athletes of 555 

integrated electromyography (iEMG) from the biceps femoris long head (A. -60o.s-1 and B. -180o.s-1) 556 

and medial hamstrings (C. -60o.s-1 and D. -180o.s-1) at 30, 50 and 100ms from the onset of 557 

electromyographical activity. Error bars indicate standard deviation. *p<0.0167 uninjured vs injured 558 

limbs. 559 

Figure 5: Comparisons between the dominant and non-dominant limbs of uninjured athletes of 560 

integrated electromyography (iEMG) from the biceps femoris long head (A. -60o.s-1 and B. -180o.s-1) 561 

and medial hamstrings (C. -60o.s-1 and D. -180o.s-1) at 30, 50 and 100ms from the onset of 562 

electromyographical activity. Error bars indicate standard deviation. 563 
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