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Abstract

Background: Tracking individuals in environmental epidemiological studies using novel mobile phone technologies can provide
valuable information on geolocation and physical activity, which will improve our understanding of environmental exposures.
Objective: The objective of this study was to assess the performance of one of the least expensive mobile phones on the market
to track people's travel-activity pattern.
Methods: Adults living and working in Barcelona (72/162 bicycle commuters) carried simultaneously a mobile phone and a
Global Positioning System (GPS) tracker and filled in a travel-activity diary (TAD) for 1 week (N=162). The CalFit app for
mobile phones was used to log participants’ geographical location and physical activity. The geographical location data were
assigned to different microenvironments (home, work or school, in transit, others) with a newly developed spatiotemporal
map-matching algorithm. The tracking performance of the mobile phones was compared with that of the GPS trackers using
chi-square test and Kruskal-Wallis rank sum test. The minute agreement across all microenvironments between the TAD and the
algorithm was compared using the Gwet agreement coefficient (AC1).
Results: The mobile phone acquired locations for 905 (29.2%) more trips reported in travel diaries than the GPS tracker (P<.001)
and had a median accuracy of 25 m. Subjects spent on average 57.9%, 19.9%, 9.0%, and 13.2% of time at home, work, in transit,
and other places, respectively, according to the TAD and 57.5%, 18.8%, 11.6%, and 12.1%, respectively, according to the
map-matching algorithm. The overall minute agreement between both methods was high (AC1 .811, 95% CI .810-.812).
Conclusions: The use of mobile phones running the CalFit app provides better information on which microenvironments people
spend their time in than previous approaches based only on GPS trackers. The improvements of mobile phone technology in
microenvironment determination are because the mobile phones are faster at identifying first locations and capable of getting
location in challenging environments thanks to the combination of assisted-GPS technology and network positioning systems.
Moreover, collecting location information from mobile phones, which are already carried by individuals, allows monitoring more
people with a cheaper and less burdensome method than deploying GPS trackers.
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Introduction

Environmental exposures are crucial determinants of people's
health [1]. Despite their importance for health, historically, the
assessment of exposure to environmental health risks has been
mainly based on exposures derived from the occupational or
residential microenvironments [2]. Now, however, it is well
known that this approach is inaccurate to represent most of the
environmental exposures, given the large spatiotemporal
variability of people's activities and microenvironments visited
in a day [3-5]. As a result, researchers have started to perform
small quasi-experimental studies seeking approaches that move
the exposure assessment science from the microenvironment
level to the individual level [6-9]. The finding of a reliable and
accurate remote tracking tool will provide researchers with the
opportunity to determine and understand the causal and temporal
relationship of natural and urban environments with
health-related behaviors and exposures as well as physical and
mental health conditions [10]. However, the previously used
tracking tools, such as travel diaries, questionnaires, and Global
Positioning System (GPS) technology, along with postprocessing
methods have prevented the instauration of this new paradigm
of exposure science in epidemiological studies because they are
limited and suffer from important weaknesses [11,12].

Mobile phone technology may help to overcome the previous
limitations because of its widespread use around the world and
the combination of assisted GPS technology and network
positioning systems [13-16]. The assisted GPS technology makes
use of remote GPS location servers to reduce both power
consumption and the time to first fix position [14]. Network
positioning systems get geolocation using Wi-Fi signals or, in
their absence, from cellular network signals to complement
location information from the assisted GPS technology when
there is limited satellite visibility. However, until now, mobile
phone technology has been assessed only regarding its tracking
performance and accuracy mainly in experimental or
quasi-experimental studies (ie, scripted studies in a controlled
environment and small population sizes) [12,14,17-22].
Moreover, mobile phone technology might not be accurate
enough for street-level tracking because of the limitations in
GPS antenna, digital interface, GPS chipset, or mobile platform
[23].

In this context, the aim of this study was to assess the
performance of mobile phone technology in tracking people's
travel-activity pattern in a dense city while they perform their
daily life activities.

Methods

Study Design and Sample
This is a concurrent validation study comparing the tracking
and travel-activity determination of a mobile phone versus a

GPS tracker and a travel-activity diary (TAD), respectively.
The study is nested in the Transportation, Air Pollution and
Physical Activities (TAPAS) Travel Survey study [24]. In brief,
the TAPAS Travel Survey study aimed to understand the barriers
and benefits of bicycle commuting among those who commute
by a motorized mode within Barcelona city [25-28].

For this study, a convenience sample of 178 participants from
TAPAS Travel Survey study was used. The TAPAS sample
was composed of 815 healthy participants recruited following
stratified sampling according to commute mode (bicycle vs
motorized commuters) in 4 randomized spatiotemporal sampling
points, for each of the 10 districts of Barcelona [25]. The
TAPAS participants were aged 18-65 years, and they lived and
worked or studied in Barcelona city (area: 102 km2; population
density: 15,687 persons/km2). Of these 178 eligible participants,
8 were excluded because of incomplete or imprecise travel
diaries, 6 because they did not wear either the mobile phone or
the GPS tracker for at least 10 hours on any of the days with
TAD information, and 2 because of technical problems with
the GPS tracker, leaving 162 participants for analysis.

The study protocol was approved by the Clinical Research
Ethical Committee of the Parc de Salut Mar (CEIC-Parc de
Salut Mar), and written informed consent was obtained from
all participants.

Instruments and Variables
Participants were instructed to wear a belt with a Samsung
Galaxy Y S5360 mobile phone (Samsung Electronics Co Ltd,
Suwon, South Korea) and a GlobalSat BT-335 GPS tracker
(GlobalSat WorldCom Corp, Taipei, Taiwan) during waking
hours for 7 consecutive days and to fill in a TAD for all of their
trips throughout the day.

The Samsung Galaxy Y S5360 mobile phone was selected
because it has a built-in accelerometer and GPS sensor, it was
available in many countries, and it was among the cheapest
mobile phones on the market when the study began. It uses
Android 2.3.6 and operates with a Broadcom BCM21553 chipset
and a BCM4751 GPS module. The Broadcom BCM4751 is a
single-chip GPS receiver with 12 channels all-in-view tracking
receiver [29]. Its position fix update rate is 1 second. Its accuracy
is within 4.8 m for 95% of its measures. Its average
reacquisition, warm start, and cold start are done in 1, 30, and
30 seconds, respectively. The mobile phones were equipped
with SIM (subscriber identity module) cards with an Internet
data allowance of 500 MB/month, an SD card, and an app called
CalFit. The CalFit app was selected because it was free, open
source, specifically developed for research purpose, and
guaranteed the confidentiality of the information collected.

CalFit is a software for Android mobile phones developed by
the University of California, Berkeley [30-33], which can be
downloaded from the website edmunseto.com [34]. The software
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uses mobile telecommunications technology (network), assisted
GPS, and accelerometer sensors built in the mobile phones to
record the time-resolved location and physical activity of
participants [6]. The network uses Wi-Fi or cellular network
signals to get the geolocation even when there is limited sky
visibility. The assisted GPS technology makes use of remote
GPS location servers to reduce power consumption and time to
first fix position [14]. Each geographical coordinate recorded
is differentiated in either the network or assisted GPS according
to its origin, and its precision is estimated in meters (ie,
accuracy). The accelerometer information is recorded at 10 Hz,
in meters per second squared, and is transformed into physical
activity intensity in metabolic equivalents (METs) per minute
using validated equations [35]. From the physical activity
intensity, it is produced the measure of moderate-to-vigorous
physical activity duration, which has been shown
interchangeable with the ActiGraph accelerometer [35]. For this
study, CalFit was set to provide the geographical coordinates
and physical activity intensity every 10 seconds.

Once data collection was completed, each geographical
coordinate provided by the mobile phone was assigned to 1 of
the 4 predefined microenvironments (home, work or school, in
transit, and others) using a newly developed spatiotemporal
map-matching algorithm. This map-matching algorithm was
developed for this study because of the absence of available
algorithms for postprocessing the clouds of geographical
coordinates generated when participants are at a place. The
chosen cutoff points are based on the extensive revision of the
mobile phones’ location data. In brief, the algorithm computes
the azimuth between sequential coordinates and calculates the
circular variance within groups of 30 coordinates in less than
100 m in linear distance. When the circular variance is greater
than 0.7, the group of coordinates is identified as a potential
place. Then, all coordinates within 30 minutes and 150 m are
considered to belong to this spatiotemporal place. Finally, these
spatiotemporal places are assigned to a specific
microenvironment when distance between the group of
coordinates and the geocoded microenvironment is less than
150 m. The rest of the groups of coordinates that do not belong
to previous microenvironments are classified as other
microenvironments and their central coordinates are calculated.

The GlobalSat BT-335 GPS tracker was selected because of its
good performance in the study by Wu and colleagues [12]. This
tracker uses the GPS chipset SiRFstarIII and 20 channels
all-in-view tracking receiver [36]. Its position fix update rate is
variable. Its accuracy is within 10 m for 95% of its measures.
Its average reacquisition, warm start, and cold start are done in
0.1, 38, and 42 seconds, respectively. The tracker was calibrated
before each deployment following user manual instructions and
configured to provide data on date, time, geographical
coordinates, speed, bearing, and altitude every 10 seconds.
Finally, the TAD used for this study was similar to most travel
logs used in transportation studies. It was previously pilot-tested
within a convenience sample of 36 participants [6]. It includes
questions on start and end time at minute resolution, travel
modes, purpose, and destination address for each trip and
monitors incidences for each day.

At the end of the study week participants returned the TAD,
which was checked, day by day and trip by trip, ensuring that
all trips and destinations and their durations and addresses were
congruent, helping the participant to correct any illogical
situation found. The main travel mode of all multimodal trips
of the TAD (n=177 trips) was defined as the most motorized
travel mode according to the following ranking: car>
motorcycle> bus> metro> bicycle> walk. The geographical
coordinates of both mobile phone–based CalFit and the GPS
tracker that did not belong to the European continent or with a
speed of ≥200 km/h were flagged. Finally, owing to schedule
incompatibilities, not all participants were sampled for a week
(3 had less than 7 days and 25 more than 7 days). As a result,
the total number of monitored days was 1173. Among these,
187 (16%) days were excluded because of the following reasons:
(1) the sensors were worn less than 10 hours during waking
hours according to the wearing time estimates derived from
CalFit physical activity measurements [37]; (2) there was
incomplete TAD information; or (3) the participants reported
issues with the sensors.

For the analysis, 2 datasets were generated. The first dataset
was a trip-level spatiotemporal dataset, with the geographical
coordinates of both mobile phone and GPS tracker at 10-second
resolution for the episodes identified as trips by the TAD to
compare their tracking performance and accuracy. Tracking
performance of the trips reported in the TAD was measured by
2 dimensions, identifiability and traceability. Identifiability of
TAD trips was defined as having ≥30% of trip duration with
geolocation information because it was understood as the
minimum cutoff point to distinguish between a real displacement
and a measurement error. Traceability of TAD trips was
quantified for each identifiable trip by the percentage of the trip
duration with geolocation information. On the other hand, the
tracking accuracy was quantified by the distance between the
geographical coordinates of mobile phone and GPS tracker
throughout TAD trips. This distance was calculated between
concomitant locations (locations with a difference in time of
<10 seconds between both monitors) and corrected for time
difference and traveling speed. The second dataset was a
microenvironment-level dataset, with information on whether
participants were at home, work or school, in transit, or other
locations at 1-minute resolution to assess the agreement and
variability between map-matching algorithm and TAD.

Finally, other measurements to contextualize participants’
characteristics and built environment around the home included
sociodemographic characteristics (eg, age, sex, civil and working
status), health status (the question “In general, would you say
your health is: Excellent, Very Good, Good, Fair, or Poor” from
the SF-36 Health Survey [38]), smoking habits, body mass
index, main commute mode, and objectively measured social,
physical, and built environment variables of a participant’s
residence or neighborhood (eg, deprivation index, population
density, distance to work, altitude, slope, and walkability index).
Details of these procedures have been previously published
[28].
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Statistical Analysis
To assess the validity of the tracking performance of the mobile
phone, the identifiability and average traceability of the mobile
phone for all trips and for each travel mode were compared with
that of the GPS tracker using chi-square test and Kruskal-Wallis
rank sum test, respectively. The validity of mobile phone
tracking accuracy was assessed by the distance between the
concomitant geographical coordinates of the mobile phone and
GPS tracker. The tracking accuracy of each mobile phone
location was overlapped on a Catalonia street map and a district
map of Barcelona city to inspect the spatial coverage and
distribution.

On the other hand, the validity of our map-matching algorithm
to determine the time in each microenvironment (home, work
or school, in transit, and others) was estimated by building a
misclassification matrix versus the TAD. From this matrix, the
sensitivity (recall), positive predictive value (precision),
specificity, negative predictive value, F-score, and Gwet
agreement coefficient (AC1) statistics were computed. F-score
is the harmonic mean of recall and precision. The AC1 is similar
to the multicategory kappa statistic but circumvents the known
weakness of kappa [39]. In the AC1 calculation [AC1 = (p0 −
pe)/(1 − pe)], “p0” is the concordance observed and “pe” is the
concordance expected under the null hypothesis (no
relationship).

Finally, two sensitivity analyses were performed. The first one
was a comparison between the used geolocation accuracy (based
on distance to GPS tracker) and the usual geolocation accuracy
(based on distance to nearest street), using only a subset of
mobile phone geolocations. The subset includes the geographical
locations between the latitudes 41.59 and 41.62 and longitudes
2.605 and 2.645, which belong to the village of Sant Pol de Mar
and its surroundings. In the second sensitivity analysis, we
assessed the effect of participants' characteristics on the
performance of our travel-activity algorithm and the need for
specific calibration. The characteristics of participants studied

were as follows: (1) main travel mode for commuting; (2)
weekdays versus weekend days; (3) median distance from home
to work; and (4) working versus studying status. The effect of
the characteristics on the performance of the algorithm was
assessed by comparing the agreement between abovementioned
characteristics using Kruskal-Wallis rank sum test.

All analyses were conducted during 2014-2015, using R 3.1.3
(The R Foundation for Statistical Computing), Python 2.7
(Python Software Foundation), NumPy ≥ 1.6.1 (Travis
Oliphant), Pandas ≥ 0.12 (Wes McKinney), SQLite ≥ 3.7.13
(D. Richard Hipp), and SpatiaLite ≥ 4.0.0-RC1 (Alessandro
Furieri).

Results

The 162 participants were on average 33 years old, 50% were
female, 20% were single, 40% had at least 1 child, 77% were
currently employed, and 50% were bicycle commuters (Table
1). Participants resided in densely populated neighborhoods
(mean 30,319 persons/km2) and had a relatively short commute
distance (mean 3.4 km; Table 1). The total number of valid
monitoring days was 986 days (out of 1173 possible days),
which represented 3098 trips (mean 19 trips per participant).
The average trip frequency was 3 per day, with each trip having
an average duration of 28 minutes (Table 2). 85.99%
(2633/3098) of these trips were made within Barcelona city
(data not shown).

The mobile phone obtained locations for 905 (29%) more TAD
trips than the GPS tracker (P<.001; Table 2). Their overall
traceability, though, was comparable and the median distance
between mobile phone and GPS tracker concomitant coordinates
(or accuracy) was 24 m overall, 22 m using satellite signal, and
97 m using network signals (from the 1,294,805 compared
geographical coordinates). Moreover, the stratified analysis of
traceability of trips according to travel mode showed that the
mobile phone had better traceability than the GPS tracker, with
the exception of car trips.
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Table 1. Description of participants’ sociodemographic and home characteristics according to the main commute mode.

Underground (n=43)Car, motorcycle, or bus
(n=47)

Bicycle (n=72)All Participants (N=162)Characteristics

Sociodemographica, n (%)

23 (53.5)26 (55.3)34 (47.2)83 (51.2)Sex, female

27 (21-39)34 (28-42)34 (29-41)33 (26-41)Age in years, median (25th-75th)

7 (17.1)5 (11.6)17 (25.4)29 (19.3)Civil status: single

15 (37.5)22 (51.2)22 (32.8)59 (39.3)Has at least 1 child: yes

21 (53.7)25 (58.1)54 (80.6)100 (66.9)Education level: more than secondary

25 (63.4)31 (72.1)59 (88.1)115 (76.8)Working status: yes

34 (85.4)40 (93.0)59 (88.1)133 (88.7)Nationality: Spanish

6 (15.0)15 (34.9)21 (31.3)42 (28.0)Smoking status: current smoker

8 (19.5)15 (34.9)14 (20.9)37 (24.5)Body mass index, ≥25

11 (27.5)12 (27.9)10 (15.2)33 (22.1)High stress level: yesb

18 (43.9)20 (46.5)35 (52.2)73 (48.3)Health status: very good or excellent

Built environment at home level, mean (SD)

0.0 (0.7)−0.1 (0.7)−0.3 (0.7)−0.2 (0.7)Deprivation index, z score

28175 (12859)29575 (12753)32002 (11372)30295 (12212)Population densitya, persons/km2

4.6 (2.0)3.3 (1.8)2.8 (1.4)3.4 (1.8)Distance to work, kilometers

4.4 (5.8)4.5 (6.7)3.4 (3.7)4.0 (5.3)Slope, %

44 (48.2)44 (54.2)37 (28.8)41 (42.7)Altitude, meters

0.0 (2.0)0.4 (2.1)0.6 (2.1)0.4 (2.1)Walkability indexa

aVariables Age, Civil status, Has at least 1 child, Education level, Working status, Nationality, Smoking status, Body mass index and Health status have
12 missing values, High stress level has 14 missing, and Population density and Walkability index have 1 missing.
bHigh stress levels: having a score of ≥4 in each question of the short form of the Perceived Stress Scale [40].
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Table 2. Comparison of Global Positioning System and mobile phone tracking performance and description of mobile phone tracking accuracy.

Travel mode from travel-activity diaryMeasures

OthersBusCarBicycleMetroWalkMotorcycleAll

Tracking performance

Travel diary

61994098395817063583098No. of trips, n

32 (11)32 (11)29 (13)26 (11)35 (11)27 (13)21 (9)28 (12)Duration, minutes,
mean (SD)

Identifiabilitya

1 (16.7)121 (60.8)257 (62.8)574 (68.4)161 (27.7)409 (57.9)280 (78.2)1803 (58.2)GPSb logger, n (%)

5 (83.3)172 (86.4)320 (78.2)766 (91.3)511 (88.0)623 (88.2)311 (86.9)2708 (87.4)Mobile phone, n (%)

.08<.001<.001<.001<.001<.001<.001<.001P value

Traceabilityc

86 (86-86)74 (54-87)79 (61-89)76 (61-90)44 (36-53)74 (55-88)80 (65-94)74 (55-88)GPS logger, median
(25th-75th)

87 (87-87)65 (51-84)64 (46-83)85 (71-95)53 (47-62)79 (60-91)77 (60-92)76 (58-90)Mobile phone, median
(25th-75th)

.32.05<.001<.001<.001.009.60.009P value

Tracking accuracyd

12 (4-29)25 (12-51)34 (13-76)23 (10-49)22 (11-43)21 (9-46)22 (11-47)24 (10-51)Overall, m, median
(25th-75th)

12 (4-28)23 (11-45)29 (11-61)22 (9-45)21 (10-40)20 (8-43)21 (10-43)22 (10-47)Satellite, m, median
(25th-75th)

177 (104-242)54 (22-372)464 (80-2311)69 (23-223)104 (29-609)42 (19-183)66 (22-290)97 (26-574)Network, m, median
(25th-75th)

aIdentifiability of travel-activity diary trips was defined as having ≥30% of trip duration with location information.
bGPS: Global Positioning System.
cTraceability of travel-activity diary trips was quantified among the identifiable trips by the percentage of the trip duration with location information.
dTracking accuracy was quantified by the distance between the geographical coordinates of the mobile phone and the GPS tracker throughout travel-activity
diary trips. This distance was calculated between concomitant geographical coordinates (geolocations with a difference in time of <10 seconds between
both monitors) and corrected for time difference and traveling speed. Overall includes satellite and network locations, while satellite and network refer
to the specific accuracy for each signal.

Figure 1 shows the spatial coverage of all sampled trips and
how the distance between mobile phone and GPS tracker is
greater for the intercity trips. Moreover, the detailed map of
Barcelona districts shows that the accuracy of the mobile phone
while traveling is almost equal across districts with the exception
of Nou Barris district. Figure 2 shows that the distances to the
street were less, median 8.7 m (25th-75th, 4.9-17.6 m),
compared with the distances between concomitant coordinates,
median 46.3 m (25th-75th, 32.7-62.5 m).

The comparison of the overall time in each microenvironment
between map-matching algorithm and TAD showed that there
is overall a good agreement on time spent in microenvironments,

with only 0.1% (work) to 1.2% (other) difference estimated in
each type of microenvironment.

The confusion matrix (Table 3) between map-matching
algorithm and TAD showed an overall accuracy of 83%.
Moreover, the map-matching algorithm in comparison with
TAD was able to properly identify the minutes spent at home
(recall 94% and precision 93%), at work (recall 85% and
precision 90%), in transit (recall 61% and precision 55%), and
at other places (recall 61% and precision 64%). Furthermore,
sensitivity analyses of the microenvironment agreement between
map-matching algorithm and TAD did not show significant
differences in any of the subpopulations (data not shown).
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Table 3. Travel-activity confusion matrix between the travel-activity diary and our map-matching algorithm and its interrelationship statistics (cluster
defined as 150 m; Gwet agreement coefficient AC1=81%).

F score
%

ACCe

%
NPVd

%
PPVc

%
Specb

%
Sensa

%

Travel-activity diaryMap-matching
algorithm TripOthersWorkHome

93929193909426580295755235758495Home

87959690978591401011025720010320Work

629195649561154851043152300020575Others

58929655956179160274451588020755Trip

aSens: sensitivity.
bSpec: specificity.
cPPV: positive predictive value.
dNPV: negative predictive value.
eACC: Accuracy

Figure 1. Catalonia street map and Barcelona district map with the spatial distribution of the mobile phone tracking accuracy among the 986 person-days
monitored. Gray points represent those locations without concomitant locations from Global Positioning System (GPS) tracker to estimate accuracy. In
the district map of Barcelona (inset), the median geolocation accuracy of the mobile phone is shown in the 10 districts of Barcelona city.
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Figure 2. Comparison of distances between smartphone and Global Positioning System (GPS) tracker concomitant locations and to nearest street, while
travelling, through the highway C-32 and N-II, at the surroundings of the village of Sant Pol de Mar.

Discussion

Principal Findings
The main findings of this study are that (1) the mobile phone
obtained locations for 905 (29%) more trips than a commercial
GPS tracker; (2) mobile phone had enough geolocation accuracy
to locate the participants at the street level; and (3) the developed
map-matching algorithm was able to determine people's
travel-activity pattern with an overall accuracy of 83% and
in-transit time with a recall of 61% and precision of 55%.

Comparison With Previous Studies

Tracking Performance and Accuracy of Mobile
Phone–Based CalFit
To our knowledge, this is the first study describing and
comparing tracking performance and accuracy between a mobile
phone and a GPS tracker in free-living conditions. Previous
studies were mainly focused on evaluating the geolocation

accuracy of mobile phones and were conducted in more
car-dependent environments and through experimental designs
[12,14,17,18,41]. These previous experimental designs tested
the accuracy of the location sensor mainly in favorable
environments, such as long unimodal trips, constant speed trips,
big and wide streets (eg, Interstate 4 or 5, US Highway 301, or
downtown Los Angeles), and used accessories to facilitate signal
acquisition (eg, cars with roof carrier to hold mobile phone)
[12,18].

In this deployment, the mobile phone–based CalFit obtained
locations for 905 (29%) more trips than the GPS tracker.
According to previous literature, this could be a consequence
of the faster time to first fix position and the use of network
positioning systems [12]. On the other hand, the traceability of
trips with the mobile phone–based CalFit was almost double
the traceability found by Michael and colleagues [17] in their
scripted study with the Motorola i760 mobile phone (59% vs
35%). Moreover, in contrast to our results, Michael and
colleagues [17] also found that traceability was higher when
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participants traveled by car, whereas in our study traveling by
car was the least traceable travel mode. This difference could
be explained because Michael and colleagues had more car
measurements in suburban areas, where there are lower barriers
for satellite coverage if compared with urban or forest areas.
However, we cannot disentangle to what extent these differences
could be a result of the placement of the device [42] (in this
study, mobile phones were worn on the lower abdomen and the
GPS tracker on the left hip), signal problem (lack of Wi-Fi signal
during intercity trips), or a real mobile phone technical weakness
(such as limitations on GPS antenna, digital interface, or GPS
chipset built in the mobile phone).

The geolocation accuracy of mobile phones using only satellite
signal in previous dynamic experimental studies was between
2 m and 8 m [12,18], which is more precise than the 22 m found
in this study. However, previous studies have assessed only the
horizontal error, and because it is known that horizontal error
could be different from vertical error depending on satellite
distribution [43], differences encountered should be interpreted
with caution. Moreover, our results are consistent with Duncan
and colleagues' [41] finding regarding the accuracy of GPS
trackers in mixed use environments (mean 21 m). On the other
hand, the accuracy reached by the mobile phones’ network
signal in this study, median 97 m (25th-75th, 26-574 m), is
comparable to that found by Zandbergen (74 m) [14]. This could
be due to the high density of wireless network access points in
Barcelona city (>600 access points only from municipal
network) [44]. Furthermore, it is worth noting that the sensitivity
analysis on the spatial accuracy (Figure 2) has shown that
differences between sensors are more a matter of time alignment
or data acquisition rather than spatial error on the coordinates.

Travel-Activity Determination Performance
This is the first study to monitor a large sample of adults during
a full week while they are performing real-life activities using
mobile phone technology. Previous studies mainly focused on
commercial GPS trackers and experimental or
quasi-experimental designs (Multimedia Appendix 1). Moreover,
the built environment conditions of our study area add an extra
challenge, when compared with previous study areas
(Multimedia Appendix 1), because Barcelona is a smaller city
for daily commuting (102 km2), has higher population density
(15,686 persons/km2), and lower prevalence of private motorized
transport use (15%). In addition, previous studies did not provide
information about travel behavior of participants (frequency,
duration, travel mode, or number of other places visited per
day). Finally, the definitions of “in-transit” and “other”
microenvironments are not consistent across previous studies.
Briefly, “in-transit” microenvironments have been defined in
two different approaches: a comprehensive approach, which
includes all travel modes (car, bus, metro, motorcycle, bicycle,
foot, or skate), and a more restrictive approach, which only
includes in-vehicle and/or walking modes (the category “others”
then includes the rest of the travel modes).

The performance of the map-matching algorithm to determine
the time spent at home or work has been shown to be very
sensitive and precise, which is consistent with previous research
[42,45-47]. Another relevant point in this study is the

confirmation that a combined use of the mobile phone–based
CalFit and the map-matching algorithm provides a better
performance to identify the in-transit microenvironments than
previous approaches using only GPS trackers [45,46]. However,
our in-transit results, which include all travel modes, are still
poor in comparison with those focused on the restrictive
definition of in-transit microenvironment (ie, mainly in-vehicle
mode) [42,47]. On the other hand, and in agreement with
previous literature [41], it is still a challenge to distinguish
between places that are very close to each other and to detect
very short trips (eg, <10 minutes). Both are very important
challenges that need to be addressed carefully by researchers
during the study design process because they depend on the
urban design of each city and activity pattern of the population.

Strength and Limitations
The use of the GlobalSat BT-335 as the GPS tracker, which
was found by Wu and colleagues [12] to be among the faster
devices in terms of time to first fix and with better geolocation
accuracy, reinforces the internal validity of our results.
Moreover, the extensive and heterogeneous sample of real-life
trips, composed by commutes within the very dense city of
Barcelona and leisure trips out of the city, shows the robustness
of the external validity of our findings. Therefore, and because
this study used one of the least expensive mobile phones on the
market, in one of the most dense and complex built
environments of Europe, one would expect to find similar or
even better results with higher range of mobile phones or in less
dense cities, which would confirm mobile phones as the
reference tool for personal exposure research. Despite the
encouraging findings of this study, caution is required until
future multicenter studies engaged in different cities replicate
these findings with different populations and other mobile
phones and settings (ie, other urban design environments or
environments with less dense Wi-Fi access points).

The interpretation of the results on tracking performance of
TAD trips by mobile phone–based CalFit calls for prudence
because this tracking definition is based on the percentage of
the trip duration with location information, which does not take
into account geolocation accuracy. On the other hand, the
present assessment of geolocation accuracy is based on the
comparison against a GPS tracker, and it is well known that
GPS trackers are affected by environmental factors (ie, visibility
and geometry of satellites) [43,48]. So, the distance between
mobile phone–based CalFit and GPS tracker may not reflect
the lack of geolocation accuracy of mobile phone when the
geometry and visibility of satellites were challenging [14,49],
but this approach was the most feasible because the 3098
unscripted trips assessed. Furthermore, because of the
comparison between the distances to GPS tracker and the
distances to nearest street, we know that the lack of accuracy
was more a matter of data acquisition than spatial error on the
coordinates. On the other hand, the use of the TAD, as a
reference value for participants' travel-activity pattern, could
have penalized the recall and precision of the map-matching
algorithm because of the recall and response biases. Finally,
another limitation of this study was not having collected the
information regarding the number of satellites in view, the
number of satellites used, and the horizontal dilution of precision
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(HDOP) from the satellite signal in order to improve the recall
in the detection of the transitions between microenvironments.

Applicability and Future Developments
The mobile phone–based CalFit, together with our
map-matching algorithm, provides a clean tracking of people's
activities, which provides researchers with the opportunity to
determine and understand the causal and temporal relationship
of natural and urban environments with health-related behaviors
and exposures as well as physical and mental health conditions.
Moreover, this study is the basis for future studies aiming to
assess if this map-matching algorithm of mobile phone
geolocation shows the same feasibility and precision in other
built environments.

Finally, future improvements in personal monitoring must
include making the apps downloadable from the Internet and
transferring the measurements through the Internet directly to
a cloud server, which we believe will minimize efforts during
the deployment and the burden on participants and will increase

participants' compliance. Furthermore, future developments
should also add automatic algorithms for travel mode recognition
and outdoor time determination, probably using additional
recorded information from location provider (ie, number of
satellites in view, number of satellites used during location
determination, and HDOP) and from other mobile phone built-in
sensors (ie, barometer and light and sound sensors).

Therefore, the use of mobile phones running the CalFit app
provides better information on which microenvironments people
spend their time in than previous approaches based only on GPS
trackers. The improvements of mobile phone technology in
microenvironment determination are because the mobile phones
are faster at identifying first locations and capable of getting
location in challenging environments thanks to the combination
of assisted-GPS technology and network positioning systems.
Moreover, collecting location information from mobile phones,
which are already carried by individuals, allows monitoring
more people with a cheaper and less burdensome method.
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Abbreviations
GPS: Global Positioning System
HDOP: horizontal dilution of precision
TAD: travel-activity diary
TAPAS: Transportation, Air Pollution and Physical Activities
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