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Simple Summary: Due to lacking exploitation capability, traditional genetic algorithm cannot accu-
rately identify the minimal best gene subset. Thus, the improved splicing method is introduced into a
genetic algorithm to enhance exploitation capability for achieving balance between exploitation and
exploration of GA. It can effectively identify true gene subsets with high probability. Furthermore, a
dataset of the body weight of Hu sheep has been used to show that the proposed method can obtain
a better minimal subset of genes with a few iterations, compared with all considered algorithms
including genetic algorithm and adaptive best-subset selection algorithm.

Abstract: Selecting the minimal best subset out of a huge number of factors for influencing the
response is a fundamental and very challenging NP-hard problem because the presence of many
redundant genes results in over-fitting easily while missing an important gene can more detrimental
impact on predictions, and computation is prohibitive for exhaust search. We propose a modified
memetic algorithm (MA) based on an improved splicing method to overcome the problems in
the traditional genetic algorithm exploitation capability and dimension reduction in the predictor
variables. The new algorithm accelerates the search in identifying the minimal best subset of genes
by incorporating it into the new local search operator and hence improving the splicing method. The
improvement is also due to another two novel aspects: (a) updating subsets of genes iteratively until
the no more reduction in the loss function by splicing and increasing the probability of selecting the
true subsets of genes; and (b) introducing add and del operators based on backward sacrifice into
the splicing method to limit the size of gene subsets. Additionally, according to the experimental
results, our proposed optimizer can obtain a better minimal subset of genes with a few iterations,
compared with all considered algorithms. Moreover, the mutation operator is replaced by it to
enhance exploitation capability and initial individuals are improved by it to enhance efficiency of
search. A dataset of the body weight of Hu sheep was used to evaluate the superiority of the modified
MA against the genetic algorithm. According to our experimental results, our proposed optimizer
can obtain a better minimal subset of genes with a few iterations, compared with all considered
algorithms including the most advanced adaptive best-subset selection algorithm.

Keywords: gene selection; sheep weight; memetic algorithm; modifications; local search operator

1. Introduction

In data mining, feature selection is a fundamental strategy to handle “the curse of
dimensionality” [1]. With an effective feature selection procedure, the redundant and
irrelevant features are eliminated to improve the performance of the learning process [2,3].
Further, the feature selection approaches can identify small subsets of biologically impor-
tant genes, which are the most relevant to the target trait, such as genetic diseases and
angiotensin-converting enzyme 2 [4,5]. Thus, in this paper, considering a new application
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to gene selection in a sheep body weight study, we propose a modified memetic algorithm
to effectively select the most important genes from more than 52,000 genes.

The filter algorithm and hybrid feature selection algorithm are the main feature se-
lection methods. The filter algorithm is based on data characteristics, such as distance [6],
correlation [7], and statistical distribution [8], to select subsets of genes [9]. Although gene
selection using filter algorithms is fast and simple, the top k genes contain some redundant
and irrelevant genes for not considering correlation between genes and unreliable feature
evaluation principle. The hybrid feature selection method is usually utilized to select a
few important genes out of a huge number of genes [10]. In the hybrid algorithm, the
filter algorithm is firstly utilized to eliminate many genes, then the wrapper algorithm is
used to further compact the selected subset of genes [11]. It is worthwhile to note that the
filter algorithm may eliminate many useful genes in initial step, and the wrapper method
can learn subsets of gene interact with learning algorithm [12]. One of the most typical
methods is the hybrid dragonfly black hole algorithm for gene selection for the RNA-seq
COVID-19 data, and the authors achieved a good performance for the investigated data [4].
However, the algorithm usually encounters nest effect and produces a sub-optimal subset.
Different from two above-mentioned types of feature-selection methods, heuristic methods
can effectively overcome nest effect [13–15]. Genetic algorithm (GA) is one of heuristic
methods that can widely be applied to gene selection [16], which effectively searches the
entire gene subset space by combining exploration with exploitation [17]. Exploration can
provide a promising subset of genes of the entire gene subset space, while exploitation
can guarantee that the promising subset of genes move toward to the best subset of genes.
However, GA lacks exploitation capability [18]; this means that GA cannot obtain the core
subset of genes. Therefore, local search is incorporated into GA to enhance exploitation
capability, and Memetic Algorithm (MA) is proposed [19].

MA is an improvement of GA, which can undergo self-improvement [20]. Currently,
various local search operators have been incorporated into GA to improve exploitation
capability. For example, the filter algorithm is embedded into GA for fast identification of
the important subset of features [21]. The great deluge algorithm is combined with GA
to improve fine-tuning capability of GA [22]. Lamarckian learning is incorporated into
GA to utilize the most appropriate local search method among local search methods [23].
Moreover, a hybrid method based on dynamic GA and random forest was developed by
Pashaei and Pashaei [5] to distinguish a small meaningful set of genes for cancer classifica-
tion. They have been proven to outperform other state-of-the art feature selection methods,
such as filter and heuristic search algorithms, but they cannot maximize exploitation capa-
bility as the local search operator is utilized to obtain the best subset of genes as possible.
Splicing method [24] can recover the true subset of genes with high probability but cannot
limit the size of gene subsets. Therefore, in our present work, a new local search operator
together with an improved splicing method, is embedded into GA, which is known as GA
based on an improved splicing method, for significant single-nucleotide polymorphisms
(SNPs) identification. There exist some advantages in the proposed method: (1) Compared
with filter algorithm and hybrid algorithm, it can effectively explore the entire space of
gene subsets and find minimal best gene subsets; (2) Compared with GA, it can enhance
exploitation capability of GA for achieving balance between exploitation and exploration
of GA in term of improved splicing method; and (3) Compared with traditional MA, it can
recover the true subset of genes with high probability and limit the size of gene subsets.

The three main contributions in the paper can be given as follows: (1) A new local
search operator along with an improved splicing method, is proposed in the paper. The add
and del operators are embedded into the splicing method. It can recover the true subset of
genes with high probability, and limit the sizes of subsets of genes; (2) A modified memetic
algorithm, GA based on an improved splicing method, is proposed in this paper. It can ac-
celerate search to identify the minimal best subset of genes. The improved splicing method
is utilized to improve starting points to enhance efficiency of search. The improved splicing
method replaces the mutation operator to enhance exploitation capability for achieving
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balance between exploitation and exploration of GA; and (3) In projects where identification
of SNPs for body weights is required, the GA based on an improved splicing method can
find the minimal best subset of genes compared with other heuristic methods, including
GA [25], β-hill climbing [26], salp swarm algorithm [27], artificial bee colony algorithm [28],
sine cosine optimization algorithm [29], and binary particle swarm optimization [30], and
adaptive best-subset selection from Zhu et al. [24].

2. Methods

In this section, a modified memetic algorithm is proposed by combining an improved
splicing method with genetic algorithm. In other words, the improved splicing method is
incorporated into GA to accelerate the search for identifying the minimal best subset of
genes. The main advantages of the proposed method are two-fold: (1) it can provide the
promising subset of genes of the whole gene subset space based on selection and crossover
operators; and (2) compared with traditional GA, it has strong exploitation capability and
recovers the minimal best subset of genes with high probability based on an improved
splicing method.

2.1. The Genetic Algorithm

Genetic algorithm is a heuristic algorithm, which is mainly based on selection and
crossover operators [31]. Selection operator directs GA to find the most promising subset
of genes of the entire gene subset space. The crossover operator has an exploration capa-
bility, which can direct GA to escape from sub-optimal locations. The crossover operator,
individual representation, initialization, and selection operator are discussed below.
a. Individual Representation:

For feature selection, each individual is represented as a subset of genes. Each indi-
vidual is encoded by a binary vector, i.e., ai(t) = [ f1, f2, · · · , fq], fk ∈ {0, 1}, where fk = 0
denoted as the k-th gene is not selected while fk = 1 denoted as the k-th gene is selected.
b. Initialization:

N individuals are randomly generated, which consist of a population P(0), i.e., P(0) =
[a1(0), · · · , ai(0), · · · , aN(0)]. The procedure of randomly generating an individual ai(t)
is shown in Algorithm 1. An initial probability Pinitial = s/q is defined as a gene fi = 1,
where s is the expected number of a subset of genes. A gene is randomly assigned as 0 or
1 by the following way: fi = 1 if U(0, 1) < Pinitial; else, fi = 0. The entire procedure is
repeated until q genes are all assigned.

Algorithm 1 Initialization of individual

1: Input: individual ai(t) = [], probability Pinitial
2: for i = 1, 2, · · · , q do
3: if U(0, 1) < Pinitial then
4: ai(t) = [1, ai(t)]
5: else
6: ai(t) = [0, ai(t)]
7: end if
8: end for
9: Output: individual ai(t)

c. Selection Operator:
Generally, the higher the quality of gene subsets, the more likely they are within the

most promising region of entire search space. Therefore, the survival probability of high
quality gene subsets should be set higher. Based on this principle [32], a proportional
roulette wheel selection is used in the paper. Since error indicators are considered as fitness
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function in the paper, Fi is lower and the individual ai(t) is more likely to survive. The
survival probability is formulated as,

Pi =
1
Fi

∑N
i=1

1
Fi

, (1)

where Fi is the fitness value of the i-th individual ai(t). Each subset of genes is allocated
with a survival probability. Then, roulette wheel sampling-based survival probability is
utilized to select individuals ai(t).
d. Crossover Operator:

The crossover operator has two distinct characteristics [33]: (1) Genes common to
parents are preserved in the offspring. It means that some important genes common
to parents improved by the improved splicing method can still be retained to the next
generation; (2) Produces offspring that are contained in a region of the search space spanned
by parents. It means that the produced offspring remain in the promising area when the
parents are located in the promising region of the entire search space. The uniform crossover
operator is a general form of single-point or two-point crossover, which is used in the paper.
It can be flexible to adjust disruptive effect in term of crossover disruption probability P0,
which is defined as using the bit value of the first parents [34].
e. The Improved Splicing Method:

Splicing method [24], also called the polynomial method, is where subsets of genes
can be updated iteratively until the loss function cannot be improved by splicing. It can
guarantee separation of unimportant genes from a subset of genes. However, the size of
subsets of genes gradually increases over generations. It leads to the minimal best gene
subset, which, potentially, cannot be found in higher generations. Therefore, we propose
an improved splicing method in this paper. The advantages have three points, as follows:
(1) The add and del operators are introduced into the splicing method to limit the maximal
size of subsets of genes Smax. The del operator is used to delete some insignificant genes in
active sets to achieve the desirable maximal size of subsets of genes, while the add operator
is used to add deleted genes for del operator into inactive sets; (2) It can recover the true
subset of genes with high probability; (3) It has strong exploitation capability. Since the
mutation operator has less exploitation capability and may introduce some unimportant or
irrelevant genes into the subset of genes, mutation operator is replaced by the improved
splicing method. The entire process of the improved splicing method mainly is consisted
of five parts, i.e., individual segmentation, evaluation, add and del operators, swap, and
merge. We illustrate the details of the improved splicing method with an example, as
shown in Figure 1, and the algorithm is shown in Algorithm 2.
Step 1 Individual Segmentation:

The individual, i.e., [ f1, f2, · · · , fq], is divided into active set A = { fi| fi = 1, i =
1, · · · , q} and inactive set I = { fi| fi = 0, i = 1, · · · , q}. For example, the individual
is represented as [1, 0, 1, 0, 1, 1, 0], shown in Figure 1a. It is divided into active set A =
{ f1, f3, f5, f6} and inactive set I = { f2, f4, f7}, as shown in Figure 1b.
Step 2 Judge:

If the size of active set A is greater than the maximal size of the subset of genes Smax,
go into Step 3; otherwise, go into Step 5.
Step 3 Evaluation:

The backward sacrifice is used to evaluate the score of each gene in active set A. The
score of each gene is evaluated by

ξ j =
XT

j Xj

2n
(β j)

2, (2)

where n is the number of samples and β j is coefficient of the j-th gene. In Figure 1c, score
of the gene f3 is the highest and score of the gene f6 is the lowest.
Step 4 add and del Operators:
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Some genes with the lowest score in active set A are deleted, and then added into
inactive set I . The del operator is used to delete |A| − Smax genes with the lowest score in
active set A. Deleted |A| − Smax genes are added into inactive set I for add operator. In
Figure 1d, Smax is set as 3. Since the score of the gene f6 is the lowest, the gene f6 in active
set A is deleted, and then added into inactive set I .
Step 5 Evaluation:

The score of each gene in active set A is calculated by backward sacrifice and the
score of each gene in inactive set I is calculated by forward sacrifice. Backward sacrifice is
formulated as Equation (2), while forward sacrifice is formulated as,

ζ j =
XT

j Xj

2n
(

dj

XT
j Xj/n

)2, (3)

where n is the number of samples and dj = XT
j (Y−XAβA)/n. They are both filter methods

based on change in linear loss function. The larger the change in loss function, the more
significant the gene is.
Step 6 Swap:

k genes of the lowest scores in active setA are consisted of setAk; k genes of the highest
scores in inactive set I are consisted of set Ik. Then, setsAk and Ik have swapped each other.
Parameter k is less than or equal min(|A|, |I|). In order to find the best minimal subset of
genes, we should search the optimal parameter k from range {1, 2, · · · , min(|A|, |I|)} by
using grid search. For example, in Figure 1, the parameter k is 1. The score of the gene f5 in
active sets is the lowest and the score of the gene f2 in inactive sets is the highest in terms
of Step 5. Therefore, the sets Ak = { f5} and Ik = { f2} are obtained. Then, the sets Ak and
Ik have swapped with each other. Finally, the new active set { f1, f2, f3} and inactive set
{ f4, f5, f6, f7} are obtained, as shown in Figure 1e.
Step 7 Update:

The active set A is updated by repeating Steps 5–6 until the loss function L = 1
2n ||Y−

XAβA||22 cannot be improved. Then, go to Step 8.
Step 8 Merge:

The updated active set A and inactive set I are merged to form a new individual, as
shown in Figure 1f.

Figure 1. Example of the improved splicing method (a) Individual. (b) Individual Segmentation.
The individuals are divided into active sets and inactive sets. (c) Evaluation. The score of each gene
in an active set is evaluated in terms of backward sacrifice. (d) add and del Operators. Some genes
with the lowest scores in active sets are deleted, then added into inactive sets. (e) Swap. A gene with
the lowest score ( f5) in an active set and a gene with the highest score ( f2) in an inactive set swap
each other. (f) Merge. The active set and inactive set are merged into a new individual.
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Algorithm 2 Improved splicing method

1: Input: An individual A, i.e., A = [ f1, f2, · · · , fp], f j ∈ {0, 1}, Sample X ∈ n × p,
Y ∈ n× 1, threshold τ; Maximal size of the subset of genes Smax;

2: The individual A is divided into active set A = { fi| fi = 1, i = 1, · · · , p} and inactive
set I = { fi| fi = 0, i = 1, · · · , p};

3: if |A| > Smax then
4: Calculate the score of each gene in active set A in terms of backward sacrifice.
5: Delete |A| − Smax genes of the lowest score in active set A to obtain a new active set
A; Then deleted |A| − Smax genes are added into inactive set I to obtain a new inactive
set I .

6: βA = (XT
AXA)−1XT

AY, dI = XT
I (Y−XAβA)/n, where XA ∈ n× |A|, XI ∈ n× |I|;

7: else
8: βA = (XT

AXA)−1XT
AY, dI = XT

I (Y−XAβA)/n, where XA ∈ n× |A|, XI ∈ n× |I|;
9: end if

10: repeat
11: Calculate Loss function L = L0 = 1

2n ||Y− XAβA||22;
12: Calculate the score ξ j of each gene in active set A in terms of backward sacrifice.
13: Calculate the score of each gene ζ j in inactive set I in terms of forward sacrifice.
14: for k = 1, 2, · · · , min(|A|, |I|) do
15: Ak = {j ∈ A : ∑i∈A I(ξ j ≥ ξi) ≤ k}, Ik = {j ∈ I : ∑i∈I I(ζ j ≤ ζi) ≤ k};
16: Ã = (A\Ak)

⋃ Ik, Ĩ = (I\Ik)
⋃Ak, d̃Ĩ = XT

Ĩ (Y − XÃβÃ),
β̃Ã = (XT

ÃXÃ)
−1XT

ÃY;
17: Calculate Loss function Ln = 1

2n ||Y− XÃ β̃Ã||22;
18: if Ln < L then
19: βA = β̃Ã, dI = d̃Ĩ , A = Ã, I = Ĩ , L = Ln;
20: end if
21: end for
22: until L0 − L < τ
23: Merge active set A with inactive set I to generate a new individual A.
24: Output: A new individual A.

2.2. The Proposed Method

A modified memetic algorithm, genetic algorithm based on an improved splicing
method, is a modified version of GA. To accelerate the search to identify the minimal
best subset of genes, a new local search operator, improved splicing method, is utilized
to improve starting points and mutation operator is replaced with the improved splicing
method to enhance exploitation capability for achieving balance between exploitation and
exploration of GA. In addition, the elitist operator is introduced into GA to prevent loss of
the important subset of genes. The proposed algorithm is consisted of the following steps
and the flow chart is shown in Figure 2.
Step 1 Initialization:

Set t = 1 and Maximal number of generation T; N subsets of genes ai(t), i = 1, · · · , N,
is randomly generated, consisted of a population, i.e., P(t) = [a1(t), · · · , aN(t)]. Each
subset of genes is randomly generated in terms of Algorithm 1;
Step 2 Improved Splicing Method:

The improved splicing method shown in Algorithm 2 is used to improve each subset
of genes ai(t) in P(t), i = 1, 2, · · · , N;
Step 3 Evaluation:

Calculate fitness value Fi of each subset of genes ai(t), i = 1, 2, · · · , N, in initial popu-
lation P(t);
Step 4 New Population:

Set empty list of new population NP, i.e., NP = [];
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Step 5 Elitist Operator:
The best subset of genes B(t) in the current generation is directly added into new the

population NP, i.e., NP = [B(t), NP];
Step 6 Selection Operator:

Proportional roulette wheel selection is utilized to select parents ai(t) and aj(t) in the
current population P(t);
Step 7 Crossover Operator:

Parents ai(t) and aj(t) are recombined to produce offspring oi(t) and oj(t) by a uniform
crossover;
Step 8 Improved Splicing Method:

The improved splicing method, shown in Algorithm 1, is used to improve offspring
oi(t) and oj(t). Then, improved offspring oi(t) and oj(t) are added into the new population
NP, i.e., NP = [oi(t), oj(t), NP];
Step 9 Repeat:

Repeat Steps 6–8 until producing (N + 1) individuals;
Step 10 Evaluation:

t = t + 1; P(t) = NP in population of the next generation; calculate fitness value Fi of
each subset of genes ai(t), i = 1, 2, · · · , N, in the new population P(t);
Step 11 Stopping Criterion:

Repeat Steps 4–10 until maximum number of generations T is satisfied or no improve-
ment over 5 generations continuously. Then, go to Step 12;
Step 12 Output:

Output the best subset of genes.

Figure 2. The flow chart of the proposed optimizer.

3. Materials

To check the performance of the proposed optimizer, seven well-known feature selec-
tion methods are compared with it, including adaptive best-subset selection (ABSS) [24],
genetic algorithm (GA) [25], binary particle swarm optimization (BPSO) [30], binary salp
swarm algorithm (BSWA) [27], sine cosine optimization algorithm (SCA) [29], artificial bee
colony algorithm (ABC) [28], and β-hill climbing [26].

3.1. The Investigated Data

In meat production, the body weight (BW) of sheep is a key economic trail [35]. As
pointed out by Cao et al. [36], BWs measured at birth and other life stages are major
indicators for productivity, health, and preventive management. In genetics, some SNPs
are associated with BW, and the identification of these SNPs can improve the efficiency of
sheep breeding programs. However, selecting the significant SNPs among sheep genes is a
NP-hard problem [37].

Here, to investigate the effectiveness of the proposed method, we conduct experiments
on the dataset of three measures of body weights of 240 Hu sheep, including birth weight,
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six-month weight, and weaning weight. The dataset is available in the GEO accession
number GSE152717 [36]. We exclude some genes containing missing values. Then, a brief
dataset characteristic for three types of body weight of Hu sheep is shown in Table 1.

Table 1. The characteristics of a dataset for three measures of BWs from Hu sheep.

Type of BW Number of Genes Number of Instances

Birth weight 54,183 240
Six-month weight 54,183 240
Weaning weight 54,183 240

3.2. The Fitness Function Setting

The mean squared error (MSE) is used as fitness function in the paper, and support
vector regression (SVR) [38] is used as a regression model to predict body weights at three
different times in this paper.

3.3. The Hyper-Parameter Setting

For the body weight measured on each occasion, the hyper-parameters of the proposed
method are set as follows: Number of generations T = 30; Number of individuals N = 20;
Threshold τ = 0.01|A| log(p) log(log n)/n [24], where |A| is the size of the active set, n is
the number of training sets and p is the number of features; Parameters of SVR, including
penalty parameter C, ε in ε-insensitive loss function and σ in Gaussian kernel function are
shown in Table 2; The expected size of the subset of genes s = 2000; For maximal size of the
subset of genes Smax and crossover disruption probability P0, the grid search is utilize to
search the optimal combination Smax and P0. Range of P0 is set as {0.1, 0.2, 0.3, 0.4, 0.5} and
range of Smax is set as {10, 20, 30, 40, 50}. The result is shown in Figure 3. In the dataset of
the birth weight, when Smax = 30, P0 = 0.5, MSE is smaller; In the dataset of the six-month
weight, when Smax = 40, P0 = 0.5, MSE is smaller; In the dataset of the weaning weight,
when Smax = 50, P0 = 0.2, MSE is smaller. The other parameter settings of the proposed
method for the body weights on each occasion are reported in Table 2. Additionally, the
parameter settings for the considered benchmark methods are recorded in Appendix A.

10 20 30 40 50
smax

0.
1

0.
2

0.
3

0.
4

0.
5

P 0

0.228 0.227 0.228 0.223 0.222

0.228 0.227 0.226 0.224 0.225

0.227 0.226 0.225 0.224 0.226

0.228 0.226 0.227 0.223 0.222

0.228 0.225 0.221 0.225 0.226

Birth Weight

10 20 30 40 50
smax

0.
1

0.
2

0.
3

0.
4

0.
5

P 0

5.756 5.652 5.630 5.594 5.533

5.716 5.588 5.614 5.447 5.512

5.729 5.622 5.559 5.524 5.508

5.742 5.645 5.541 5.506 5.444

5.727 5.685 5.582 5.456 5.403

Six-Month Weight

10 20 30 40 50
smax

0.
1

0.
2

0.
3

0.
4

0.
5

P 0

15.876 15.843 15.821 15.807 15.818

15.851 15.830 15.845 15.821 15.773

15.860 15.845 15.815 15.806 15.785

15.842 15.820 15.794 15.808 15.779

15.844 15.842 15.836 15.802 15.790

Weaning Weight

0.2220

0.2235

0.2250

0.2265

0.2280

5.40

5.46

5.52

5.58

5.64

5.70

5.76

15.78

15.80

15.82

15.84

15.86

15.88

Figure 3. Mean squared error with different combinations smax and P0 for analyzing the body weights
on three occasions.
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Table 2. The parameters values used in the proposed method for analyzing the body weights.

Type of BW Smax P0 C ε σ T N s

Birth Weight 30 0.5 0.1 0.01 10−5 30 20 2000
Six-Month Weight 50 0.5 1 0.01 0.01 30 20 2000
Weaning Weight 50 0.2 0.1 0.01 10−5 30 20 2000

4. Results and Discussion

To test the performance of feature selection methods, for predicting the body weights
on each occasion, the instances are divided into training set (170 samples) and test set
(70 samples). The training set is used to obtain the relevant subset of genes while the test
set is used to evaluate MSE of SVR [39]. The initialization of individuals uses Algorithm 1,
the fitness function uses MSE, and the regression model uses SVR in the other heuristic
methods for fair comparison. The experiment results are shown in Table 3. Some main
points can be obtained from our experiment as follows.

Table 3. Performance of feature selection methods for predicting the body weights on three occasions.

Birth Weight Six-Month Weight Weaning Weight

Method MSE NumF MSE NumF MSE NumF

SVR 0.2393 All 5.6800 All 15.9099 All
SWA 0.2392 2053 5.6424 1947 15.8819 2018
ABC 0.2390 1890 5.6264 2025 15.8762 1947
SCA 0.2391 1954 5.6433 2022 15.8815 1964
GA 0.2393 1995 5.6470 1905 15.8831 1952

BPSO 0.2392 1923 5.6464 2080 15.8835 1922
β-hill climbing 0.2389 1928 5.6385 1995 15.8799 1984

ABSS 0.2292 9 5.8182 9 15.8993 9
Proposed method 0.2213 28 5.4026 50 15.7727 48

Note: NumF-number of feature.

4.1. SVR vs. Other Heuristic Methods

In Table 3, the SVR models with heuristic methods, including β-Hill Climbing, SWA,
ABC, SCA, BPSO, can significantly reduce the candidatures of gene to nearly 2000 genes.
Furthermore, according to the error indicator (MSE), the performance of these SVR models
is very similar. For example, all indicators for the birth weight are 0.239, thus we can
confirm that more than 52,000 genes are irrelevant to the birth weight.

4.2. Proposed Method vs. ABSS

In Table 3, the performance of SVR combined with the proposed method is more out-
standing compared with SVR combined with ABSS for the body weight of the Hu sheep on
each occasion. For the six-month weight, the number of selected genes is only a few by ABSS,
and the performance of SVR significantly worsens. This means that ABSS may be limited by
correlation feature method in the initial step of ABSS. It cannot provide the promising subset
of genes of the entire gene subset space while the proposed method can provide the promising
subset of genes of the entire gene subset space by selection and crossover operators.

4.3. Proposed Method vs. GA

In Figures 4 and 5, mean and min fitness value of each generation in the proposed
method are less than in GA over 5 generations or more for the dataset of body weight
at each of the three time points. Both the mean and min fitness value of each generation
gradually decreases (in the proposed method) and increases (in GA) over generations
for the body weight at 6 and 12 months, and at weaning, respectively. It shows that the
mutation operator lacks exploitation capability while the improved splicing method has
strong exploitation capability. In addition, in Figure 5, a minimal min fitness value is found
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in a few generations. It means that the initial start points, and offspring improved by the
improved splicing method, can enhance the efficiency of search. Furthermore, in Table 3,
the quality of the selected subset of genes by the proposed method not only is better than
by GA, but also the size of the selected gene subset by the proposed method is less than by
GA. It shows that the improved splicing method is embedded into GA to find the minimal
best size of subset of genes.
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Figure 4. Mean fitness value of GA and the proposed method for the dataset of the body weights on
three occasions.
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Figure 5. Min fitness value of GA and the proposed method for the body weights on each of the
three occasions.

4.4. Proposed Method vs. Other Heuristic Algorithms

In Figure 4, mean fitness almost remain unchanged over 5 generations in other state-
of-arts optimization algorithms while mean fitness almost continuously decreases over
5 generations in the proposed method. It shows that the improved splicing method can
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prevent premature convergence to identify best gene subsets while the other optimization
algorithms easily encounter sub-optimal gene subsets. Furthermore, in Table 3, the per-
formance of SVR combined with the proposed method outperforms SVR combined with
other heuristic methods, including β-hill climbing, SWA, ABC, SCA, and BPSO. The size of
the selected gene subset by the proposed method is smaller than by heuristic algorithm,
including β-hill climbing, SWA, ABC, SCA, and BPSO. Here, we can conclude that the
proposed method is a successful heuristic algorithm to find the minimal best subset of
genes for gene selection problems.

4.5. Selected Genes

The experimental results exhibit that the proposed method can yield minimal best
gene subsets compared with other feature selections. Thus, Table 4 shows the best subset of
genes obtained by using the proposed method for the body weight on the three occasions.
Figure 6 displays a heatmap created for the identified best subset of genes for the body
weight at the three occasions. The heatmap describe degree of similar and dissimilar among
selected genes and sheep.

Table 4. Selected genes by using the proposed method for the body weight on the three occasions.

Type of BW Selected Genes

Birth Weight

OAR1_103547224.1,OAR1_156571804.1,OAR1_174344110.1,
OAR1_200004020.1,OAR1_246870800.1,OAR1_254887296.1,
OAR11_46573882.1,OAR13_25820059.1,OAR18_41747912.1,
OAR19_10882333.1,OAR25_30336172.1,OAR5_63048172.1,

OAR6_31217798.1,OAR6_73014482.1,OAR9_1294177.1,
OARX_10743378.1,OARX_26036045.1,OARX_8338946.1,

s02618.1,s12587.1,s15089.1,s16141.1,s17567.1,
s44639.1,s50831.1,s64861.1,s70488.1,s75788.1

Six-Month Weight

OAR1_103051402.1,OAR1_138627292.1,OAR1_214050298.1,
OAR1_225069797.1,OAR1_252270534.1,OAR1_57838218.1,

OAR1_72149006.1,OAR11_43264793_X.1,OAR13_22347021.1,
OAR13_9894722.1,OAR16_60244426.1,OAR17_77852604.1,
OAR19_33417302.1,OAR2_149404956.1,OAR2_16857269.1,

OAR2_208372724.1,OAR20_12878785.1,OAR21_26401940.1,
OAR23_40774711.1,OAR23_60556779.1,OAR25_1902197.1,

OAR25_41478486.1,OAR26_24866987.1,OAR26_42053565.1,
OAR26_48607412.1,OAR3_113183544.1,OAR3_119620209.1,

OAR3_27184388.1,OAR3_88091256.1,OAR5_89062571.1,
OAR7_73093180.1,OAR7_97719696.1,OAR8_73226726.1,

OARUn.2169_4737.1,s01688.1,s01826.1,s06354.1,
s07270.1,s13965.1,s14962.1,s17349.1,s35998.1,
s36469.1,s52321.1,s56088.1,s64103.1,s70105.1,

s71447.1,s72138.1,s72816.1

Weaning Weight

OAR1_174220716.1,OAR1_193099978.1,OAR1_208929906.1,
OAR1_285395930.1,OAR1_286637130.1,OAR1_89153973_X.1,

OAR11_8041122.1,OAR13_58349162.1,OAR13_63513054.1,
OAR16_67669492.1,OAR17_12809597.1,OAR17_28751326.1,
OAR17_32705384.1,OAR17_37807906.1,OAR18_55245057.1,

OAR19_41399545.1,OAR2_127646604_X.1,OAR2_130068033.1,
OAR2_161930539.1,OAR2_75375830_X.1,OAR20_5632451.1,
OAR22_28398167.1,OAR25_25782002.1,OAR26_10130406.1,
OAR3_158876220.1,OAR3_182544365.1,OAR3_195768950.1,

OAR3_235746854.1,OAR3_88835595_X.1,OAR4_125875837.1,
OAR4_93485963.1,OAR4_97984717.1,OAR5_42553589.1,

OAR5_93445511_X.1,OAR6_121519387.1,OAR7_78566470.1,
OAR8_36682621.1,OAR9_31965185.1,s07941.1,s26017.1,

s44731.1,s48924.1,s50855.1,s56042.1,s56962.1,
s59822.1,s65507.1,s65803.1
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Figure 6. The heatmap of the actual expression profiles for the best subset of genes obtained from the
proposed method.

4.6. Statistical Analysis

The non-parametric Friedman test is used to show whether there exists any statisti-
cally significant difference among 8 feature selection methods. The average rank of each
algorithm is shown in Table 5. As shown in Table 5, the proposed method has placed in
rank one. The Iman and Davenport statistic FF [40] is calculated as 5.579. The result is
much larger than critical values (F0.1(7, 14) = 2.19). This means that the null hypothesis is
rejected, i.e., there are significant differences among the eight feature selection methods.
Then, the Nemenyi test in post hoc Holm test [40] further is employed to show significant
difference between the proposed method and other feature selection methods. As shown
in Table 6, there are significant difference between the proposed method and GA and the
proposed method and BPSO.
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Table 5. Average rankings of MSE among 8 algorithms on three datasets using Friedman test.

Proposed SWA ABC SCA GA BPSO β-Hill
Climbing ABSS

Rank 1 5.17 2.67 4.67 7 6.5 3 6

Table 6. Post hoc Holm test (0.1).

Comparison p-Values Result

Proposed vs. SWA 0.428 H0 is not rejected
Proposed vs. ABC 0.900 H0 is not rejected
Proposed vs. SCA 0.583 H0 is not rejected
Proposed vs. GA 0.055 H0 is rejected

Proposed vs. BPSO 0.108 H0 is rejected
Proposed vs. β-Hill Climbing 0.900 H0 is not rejected

Proposed vs. ABSS 0.195 H0 is not rejected

5. Conclusions

In this paper, a modified memetic algorithm, a genetic algorithm based on an improved
splicing method, has been proposed for gene selection problems. Different from traditional
genetic algorithm, the optimizer can accelerate search to identify the minimal best subset
of genes. It can absorb characteristics of crossover and selection operators to provide the
promising subset of genes of the entire gene subset space. Furthermore, the improved
splicing method can reduce the size of the promising subset of gene and recover the true
subset of genes with a high probability. The initial points are improved by the improved
splicing method to enhance efficiency of search, and the mutation operator is replaced by the
improved splicing method to enhance exploitation capability for achieving balance between
exploration and exploitation of GA. Therefore, the proposed optimizer can effectively
achieve the best minimal subset of genes out of thousands of genes. Moreover, by using
the body weights on each of the three occasions, we have demonstrated that our modified
memetic algorithm can find the best minimal subset of genes compared with all considered
algorithms, including ABSS. In addition, the proposed optimizer can be generalized to
other high dimensional optimization problems [41,42].
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Appendix A

The parameter settings of SVR for analyzing the body weights are set as follows: In
Birth weight, C = 0.1, ε = 0.01, σ = 10−5; In six-month weight, C = 1, ε = 0.01, σ = 0.01;
In weaning weight, C = 0.1, ε = 0.01, σ = 10−5; crossover disruption probability P0
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settings of GA for the body weights are set as follows: P0 = 0.5 in birth weight; P0 = 0.5 in
six-month weight; P0 = 0.2 in weaning weight. The parameters settings of other feature
selection methods for the body weights are reported in Table A1.

Table A1. The parameters settings of other feature selection methods in analyzing the body weights.

Method Parameter

GA [25] T = 30, N = 20, s = 2000, pm = 0.047

BPSO [30] T = 30, N = 20, s = 2000, vmax = 6,
w = 0.7298, c1 = 1.49618, c2 = 1.49618

SCA [29] T = 30, N = 20, s = 2000, α = 1

ABC [28] T = 30, N = 20, s = 2000, Trials limit = 50,
Flips limit = 0.1

SWA [27] T = 30, N = 20, s = 2000
β-hill climbing [26] T = 30, N = 20, s = 2000, N = 0.9, β = 0.5

ABSS [24] τ = 0.01|A| log(p) log(log n)/n,
smax = [ n

log p log(log n) ], kmax = |A|
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