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Abstract 
 
Background  Older adults have shown an attenuated post-exercise increase in muscle 

protein synthesis rates following ingestion of smaller amounts of protein when 
compared to younger adults. Consequently, it has been suggested that older 
adults are required to ingest more protein to increase post-exercise muscle 
protein synthesis rates when compared to younger adults. 

Objective We investigated whether co-ingestion of 1.5 g free leucine with a single, 15 g 
bolus of protein further augments the post-prandial muscle protein synthetic 
response during recovery from resistance-type exercise in older men.  

Methods Twenty-four healthy older men (67 ± 1 y) were randomly assigned to ingest 
15 g milk protein concentrate (MPC80) with (15G+LEU; n = 12) or without 
(15G; n = 12) 1.5 g free leucine after performing a single bout of resistance-
type exercise. Post-prandial protein digestion and amino acid absorption 
kinetics, whole-body protein metabolism, and post-prandial myofibrillar 
protein synthesis rates were assessed using primed, continuous infusions with 
L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine and L-[1-13C]-leucine combined 
with the ingestion of intrinsically L-[1-13C]-phenylalanine labeled milk protein.  

Results A total of 70 ± 1 % (10.5 ± 0.2 g) and 75 ± 2 % (11.2 ± 0.3 g) of the protein-
derived amino acids were released in the circulation during the 6 h post-
exercise recovery phase in 15G+LEU and 15G, respectively (P < 0.05). Post-
exercise myofibrillar protein synthesis rates were 16 % (0.058 ± 0.003 vs 0.049 
± 0.002 %·h-1; P < 0.05; based upon L-[ring-2H5]-phenylalanine) and 19 % 
(0.071 ± 0.003 vs 0.060 ± 0.003 %·h-1, P < 0.05; based upon L-[1-13C]-leucine) 
greater in 15G+LEU when compared with 15G. 

Conclusions Leucine co-ingestion further augments the post-exercise muscle protein 
synthetic response to the ingestion of a single 15 g bolus of protein in older 
men.  
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Introduction 
 
The age-related decline in skeletal muscle mass and strength, termed sarcopenia, is 
accompanied by impairments in functional capacity and an increased risk of developing 
chronic metabolic diseases (4). Whereas basal muscle protein synthesis and breakdown rates 
appear to be unaffected by age (27), the muscle protein synthetic response to the main 
anabolic stimuli, namely food intake and physical activity, seem to be blunted in older 
individuals (41). This anabolic resistance is now considered as a central factor contributing to 
the progression of sarcopenia.  
A single session of resistance-type exercise strongly increases muscle protein synthesis rates 
(30) and therefore represents an effective strategy to compensate for anabolic resistance. 
For older individuals, ingestion of more than 20 g protein is required to augment post-
exercise muscle protein synthesis rates (10, 30, 47). Older individuals possess the capacity 
to further increase the post-exercise muscle protein synthetic response by ingesting larger 
protein doses, with ingestion of 40 g protein further enhancing the muscle protein synthetic 
response (47, 48). However, older individuals seldom consume 40 g protein in a single meal 
(34, 35). Therefore, data are warranted to determine nutritional strategies that can augment 
the muscle protein synthetic response to ingestion of small(er) amounts of protein during 
recovery from resistance-type exercise in older adults. 
Leucine has been established as one of the most anabolic amino acids due to its ability to 
phosphorylate key anabolic signaling proteins (i.e., mTORC1 and S6K) in skeletal muscle 
tissue (3, 13). Previous work has demonstrated that co-ingestion of free leucine augments 
the muscle protein synthetic response to protein or amino acid ingestion in older individuals 
at rest (7, 9, 42) and after a bout of resistance-type exercise (2, 7, 9). More recently, it was 
demonstrated that leucine co-ingested with the main meals augments the integrated 
anabolic response to resistance-type exercise over multiple days (24). What remains unclear, 
however, is the effect of free leucine co-ingestion on post-prandial protein handling of the 
ingestion of a small amount of protein during post-exercise recovery in older individuals. 
Therefore, in the present study we assessed post-prandial protein handling and the muscle 
protein synthetic response to the ingestion of a single 15 g bolus of protein with or without 
additional free leucine (1.5 g) during recovery from a single bout of resistance-type exercise 
in older individuals.  
We hypothesized that co-ingestion of 1.5 g free leucine with a single bolus of 15 g protein 
further increases post-exercise muscle protein synthesis rates when compared to the 
ingestion of 15 g protein. To test our hypothesis, we selected 24 healthy older (67 ± 1 y) 
men who ingested 15 g protein with or without 1.5 g free leucine during recovery from a 
single bout of resistance-type exercise. By combining the ingestion of specifically produced 
intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine labeled milk protein concentrate 
with the administration of primed continuous infusions of L-[ring-2H5]-phenylalanine, L-[1-
13C]-leucine and L-[ring-2H2]-tyrosine, we were able to assess protein digestion and amino 
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acid absorption kinetics, the stimulation of post-exercise muscle protein synthesis rates and 
the post-prandial incorporation of dietary protein-derived amino acids during recovery from 
exercise in older individuals.   
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Materials and methods 
 
Subjects 
 
A total of 24 healthy, normoglycemic, older men (67 ± 1 y) were selected to participate in the 
present study. Subjects’ characteristics of the study participants are presented in Table 3.1. 
Subjects were randomly assigned to ingest either 15 g protein (15G: n = 12) or 15 g protein 
with 1.5 g crystalline free leucine (15G+LEU: n = 12) after completing a single bout of whole-
body resistance-type exercise. All subjects were informed of the nature and possible risks of 
the experimental procedures before their written informed consent was obtained. The study 
was approved by the Medical Ethical Committee of the Maastricht University Medical Centre, 
The Netherlands, and conformed to standards for the use of human subjects in research as 
outlined in the most recent version of the Helsinki Declaration. This study is part of a greater 
project, which was registered at the Netherlands Trial Registry as NTR4492. Data from the 
15G group have been previously published as part of a protein dose-response study 
conducted in older men (Chapter 2). 
  
Table 3.1 Subjects’ characteristics1 

    

  15G (n = 12) 15G+LEU (n = 12) P 

Age, y 69 ± 2 66 ± 2 0.45 
Total body mass, kg 78.8 ± 3.2 79.0 ± 2.4 0.96 
Total lean mass, kg 57.6 ± 2.3 58.1 ± 1.5 0.86 
Appendicular lean mass, kg 24.9 ± 1.1 25.6 ± 0.7 0.64 
Percentage body fat, % 23.9 ± 0.9 23.2 ± 1.2 0.62 
Height, m 1.75 ± 0.02 1.78 ± 0.01 0.23 
BMI, kg·m-2 25.8 ± 0.8 24.9 ± 0.8 0.43 
HbA1c, % 5.3 ± 0.1 5.3 ± 0.1 0.80 
Resting glucose, mmol·L-1 5.8 ± 0.2 6.2 ± 0.2 0.13 
Resting insulin, mU·L-1 9.3 ± 0.9 8.4 ± 1.2 0.59 
HOMA-IR 2.4 ± 0.2 2.4 ± 0.4 1.00 
MVPA, min 145 ± 31 160 ± 33 0.95 
1RM - Leg press, kg 179 ± 8 166 ± 6 0.23 
1RM - Leg extension, kg 86 ± 6 88 ± 2 0.79 
1RM - Lat pulldown, kg 60 ± 4 62 ± 4 0.78 
1RM - Chest press, kg 60 ± 6 58 ± 5 0.77 

 

1Values are mean ± SEM. n = 12 per treatment group. 15G: 15 g dietary protein, 15G+LEU: 15 g dietary protein 

+ 1.5 g crystalline leucine. 1RM: one repetition maximum, HbA1c: glycosylated hemoglobin, MVPA: moderate-

to-vigorous physical activity, Resting: resting and fasted values. Data were analyzed with a student’s unpaired t-

test. No differences were detected between groups. 
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Pretesting 
 
Participants arrived at the laboratory at 0830 h by car or public transport in an overnight 
fasted state. Upon arrival, body weight, body composition, and bone mineral content were 
measured with DEXA (Dual-energy X-ray absorptiometry, DEXA; Discovery A; Hologic, 
Bedford, MA). Thereafter, all participants performed an oral glucose tolerance test (OGTT). 
Plasma glucose and insulin concentrations were measured to determine oral glucose 
intolerance and/or the presence of type 2 diabetes according to 2006 American Diabetes 
Association guidelines (1). All subjects were screened on medical issues and excluded if any 
gastrointestinal, neurological or renal diseases were present. 
Subjects were cleared to perform resistance-type exercise by a cardiologist who examined 
electrocardiograms (ECG) measured at rest and during submaximal cycling (performed at 70 
% of age-predicted heartrate max). The subjects were then familiarized with the exercise 
equipment and physical activity protocol. Subjects first performed a 10-min cycling warm-up 
at 70 % of their age-predicted heart rate max before completing an estimation of their 1RM 
(one repetition maximum) on the leg press and leg extension exercises using the multiple 
repetitions testing procedure (22). For each exercise, subjects performed 10 submaximal 
repetitions to warm-up and become familiarized with the equipment and to have lifting 
technique critiqued and corrected. Subjects then performed sets at progressively increasing 
loads until failing to complete a valid repetition, judged by their inability to complete the full 
range of motion for an exercise. Ideally, subjects failed within 3–6 repetitions during the last 
and heaviest set. A 2-min resting period between subsequent attempts was allowed. The 
pretesting and experimental trials were separated by a period of at least 7 days. 
 

Diet and physical activity  
 
All volunteers were instructed to refrain from any exhaustive physical activity and to keep 
their diet as consistent as possible 72 h prior to the trial. Subjects filled in dietary records for 
48 h immediately before the experimental trial. Subjects consumed 8.6 ± 0.5 MJ·day-1 on 
average, with 47 ± 1 energy% (En%) as carbohydrate, 33 ± 1 En% as fat, and 18 ± 1 En% as 
protein. Dietary protein intake averaged 1.1 ± 0.1 g·kg-1 bodyweight. On the evening before 
the experiment, all subjects consumed a standardized meal (22.0 ± 0.6 kJ·kg-1 bodyweight, 
consisting of 55 En% as carbohydrate, 20 En% as protein, and 25 En% as fat). 
 
Experimental Protocol 
 
At 0800 h, participants reported to the lab in a fasted and rested state and had Teflon 
catheters inserted into the antecubital veins of one arm and the top of the opposite hand. 
At 0830 h (t = -150 min), a background blood sample was taken prior to the initiation of the 
tracer infusion protocol. The plasma and intracellular phenylalanine and leucine pools were 
primed with a single, intravenous dose (priming dose) of L-[ring-2H5]-phenylalanine (3.6 
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µmol·kg-1), L-[ring-2H2]-tyrosine (1.10 µmol·kg-1), L-[1-13C]-leucine (7.19 µmol·kg-1). Once 
primed, the continuous stable isotope infusion was initiated (infusion rate: 0.06 µmol·kg-

1·min-1 L-[ring-2H5]-phenylalanine, 0.018 µmol·kg-1·min-1 L-[ring-2H2]-tyrosine, 0.12 µmol·kg-

1·min-1 L-[1-13C]-leucine; Cambridge Isotopes Laboratories, Andover, MA). Participants rested 
for 1.5 h until 1000 h (t = -60 min), when the participants completed the resistance-type 
exercise session. At 1100 h (t = 0 min), immediately after the resistance-type exercise session, 
subjects had a blood sample and muscle biopsy collected from a randomized leg. 
Subsequently, subjects ingested a 500 mL beverage containing 15 g intrinsically L-[1-13C]-
phenylalanine and L-[1-13C]-leucine labeled milk protein (MPC80) alone (15G) or with 
(15G+LEU) an added 1.5 g of crystalline free leucine. The beverages contained 1.5 mL vanilla 
extract to improve palatability (Dr. Oetker, Amersfoort, the Netherlands). Blood samples (10 
mL) were subsequently taken at t = 30, 60, 90, 120, 180, 240, 300, 360 min after protein 
ingestion. A second muscle biopsy was obtained from the contralateral leg at 1700 h (t = 

360 min), signifying the end of the experimental trial. 
Blood samples were collected in EDTA containing tubes and centrifuged at 1000 g for 10 
min at 4 °C. Aliquots of plasma were frozen in liquid nitrogen and stored at –80 °C. Muscle 
biopsies were obtained from the middle region of the M. vastus lateralis, 15 cm above the 
patella and approximately 4 cm below entry through the fascia, using the percutaneous 
needle biopsy technique (5). Muscle samples were dissected carefully and freed from any 
visible non-muscle material. The muscle samples were immediately frozen in liquid nitrogen 
and stored at –80 °C until further analysis. 
 
Resistance-type exercise protocol 
 
The exercise protocol consisted of 60 min of moderate-to-high intensity whole-body 
resistance-type exercise. After 10 min of self-paced cycling at 100 W with a cadence of 60–
80 RPM, subjects performed 5 sets of 10 repetitions on the horizontal leg press machine 
(Technogym BV, Rotterdam, Netherlands), 2 sets of 10 repetitions on the lat pull down 
machine (Technogym BV), 2 sets of 10 repetitions on the chest press machine and 5 sets of 
10 repetitions on the leg extension machine (Technogym BV). The first set of the lower body 
exercises were performed at 50 % 1RM and sets 2–5 were performed at 75-80 % 1RM. All 
sets on the upper body exercises were performed at 75-80 % 1RM. Subjects were allowed 
to rest for 2 min between all sets.  
 
Preparation of tracer and production of intrinsically-labeled protein 
 
The stable isotope tracers L-[ring-2H5]-phenylalanine, L-[1-13C]-leucine and L-[ring-2H2]-
tyrosine were purchased from Cambridge Isotopes (Andover, MA) and dissolved in 0.9 % 
saline before infusion (Basic Pharma, Geleen, the Netherlands). Continuous intravenous 
infusions were performed using a calibrated IVAC 598 pump (San Diego, CA, USA). 
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Intrinsically L-[1-13C]-phenylalanine and L-[1-13C]-leucine labeled milk protein (MPC80) was 
extracted from whole milk obtained during the constant infusion of L-[1-13C]-phenylalanine 
(455 µmol·min-1) and L-[1-13C]-leucine (200 µmol·min-1) for 96 h in a lactating dairy cow (8, 

38). The milk was collected, processed, and fractionated into the MPC80 similarly to what 
has been previously described (15, 31, 38). The L-[1-13C]-phenylalanine and L-[1-13C]-leucine 
enrichments in MPC80 were measured by gas chromatography-combustion-isotope ratio 
mass spectrometry (GC-C-IRMS; MAT 252, Finnigan, Breman, Germany) and averaged 38.3 
mole percent excess (MPE) and 10.8 MPE, respectively. The proteins met all chemical and 
bacteriological specifications for human consumption. 
 
Plasma and muscle analysis 
 
Plasma glucose and insulin concentrations were analyzed using commercially available kits 
(GLUC3, Roche, Ref: 05168791 190, and Immunologic, Roche, Ref: 12017547 122, 
respectively). Plasma amino acid concentrations and enrichments were determined by gas 
chromatography-mass spectrometry analysis (GC-MS; Agilent 7890A GC/5975C; MSD, 
Wilmington, Delaware, USA). Myofibrillar protein-bound L-[ring-2H5]-phenylalanine 
enrichments were determined by GC-MS analysis, whereas the L-[1-13C]-phenylalanine and 
L-[1-13C]-leucine enrichments were determined by GC-C-isotope ratio mass spectrometer 
analysis (GC-C-IRMS; Trace GC Ultra, IRMS model MAT 253; Thermo Scientific). For 
complete details, see the Materials and methods section in Chapter 2.  
 
Western blotting 
 
Muscle was homogenized as previously described (40), 10 μL of protein was loaded and 
standard SDS-PAGE procedures were followed. Antibodies included total and 

phosphorylated mTOR (Ser2448), S6 protein kinase 1 (S6K1; Thr389), RS6 (Ser235/Ser236), 
anti-phospho-eukaryotic translation initiation factor 4E-binding protein-1 (4E-BP1; 

Thr37/46), anti-mTOR, anti-S6K1, anti-ribosomal protein S6 (RS6), and anti-4E-BP1, which 
were purchased from Cell Signaling Technology (Danvers, MA). a-tubulin (Abcam) was used 
as a loading control. All samples for a given protein were detected on the same membrane 
using chemiluminescence and the FluorChem HD imaging system (Alpha Innotech, Santa 
Clara, CA, USA).  

Calculations 
 
Ingestion of L-[1-13C]-phenylalanine labeled protein, intravenous infusion of L-[ring-2H5]-
phenylalanine, and blood sample enrichment values were used to assess whole-body amino 
acid kinetics in non-steady state conditions. Total, exogenous, and endogenous 
phenylalanine rates of appearance (Ra) and plasma availability of dietary protein-derived 
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phenylalanine that appeared in the systemic circulation as a fraction of total amount of 
phenylalanine that was ingested, (Pheplasma) were calculated using modified Steele’s 
equations (6, 11, 46). Myofibrillar protein fractional synthetic rate (FSR) was calculated using 
the standard precursor-product method. For complete details, see the Materials and 

methods section in Chapter 2. 

 

Statistics 
 
All data are expressed as mean+SEM. Baseline characteristics between groups were 
compared using a student’s unpaired t-test. A two-factor repeated measures ANOVA (time 
x treatment) with time as within-subjects factor and treatment group as between-subjects 
factor was performed for the analysis of plasma amino acid concentrations, plasma tracer 
enrichments, whole-body kinetics and glucose and insulin concentrations. The analysis was 
carried out for the period starting at the time of protein administration, between t = 0 and 
360 min. Upon identification of a significant time x treatment interaction, Tukey post hoc 
testing was used to identify time points in which the treatments differed. Non time-
dependent variables (i.e., Whole-body metabolism, FSR values, L-[1-13C]-phenylalanine 
myofibrillar enrichments) were compared between treatment groups using Student’s 
unpaired t-tests. Statistical significance was set at P < 0.05. All calculations were performed 
using SPSS 21.0 (IBM, Chicago, Illinois, USA). 
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Results 
 
Plasma concentrations 
 
Plasma glucose (Figure 3.2A) and insulin (Figure 3.2B) concentrations after protein ingestion 
did not differ between the PRO and PRO+EX groups (P > 0.05). Plasma insulin 
concentrations increased after protein ingestion in both treatments, reaching peak levels 30 
min after protein ingestion. 
 

 

Plasma leucine concentrations (Figure 3.3A) increased rapidly following protein ingestion (P 
< 0.01), but were greater in 15G+LEU (peak values: 407 ± 23 µmol·L-1) when compared to 
15G (peak values: 234 ± 16 µmol·L-1, respectively, P < 0.01). Area under the curve (AUC) 
analysis revealed that plasma leucine availability over the 6 h post-prandial was 
approximately 1.8-fold greater in the 15G+LEU group when compared to the 15G group (P 
< 0.001). Plasma phenylalanine concentrations (Figure 3.3C) increased rapidly following 
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Figure 3.2 Plasma glucose (A, mmol·L-1) and insulin concentrations (B, mU·L-1) following ingestion of 15 g milk 
protein (15G; n = 12) or 15 g milk protein with 1.5 g free leucine (15G+LEU; n = 12) after resistance-type exercise 
in older men. The dotted line represents the ingestion of the beverage. Values represent means + SEM. Data 
were analyzed with repeated measures (time x treatment group) ANOVA. A; time effect: P < 0.01, treatment 
effect: P > 0.05, time x treatment group: P > 0.05. B; time effect: P < 0.01, treatment effect: P > 0.05, time x 
treatment group: P > 0.05. 
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protein ingestion (P < 0.01), but did not differ between groups (P > 0.05). Plasma tyrosine 
concentrations (Figure 3.3D) increased following protein ingestion (P < 0.01) but did not 
differ between groups (P > 0.05).   
 

 

Plasma amino acid enrichments 
 
Plasma enrichments from ingested (L-[1-13C]-phenylalanine), infused (L-[ring-2H5]-
phenylalanine) and ingested and infused (L-[1-13C]-leucine) amino acid tracers did not differ 
between treatments before protein ingestion (t = 0 min; P > 0.05). After protein ingestion, 
plasma L-[1-13C]-phenylalanine enrichments, originating from the ingested protein, increased 
in both groups reaching peak values at t = 60 min in 15G (9.6 ± 0.5 MPE) and t = 120 min in 
15G+LEU (8.7 ± 0.5 MPE) in 15G+LEU. Plasma L-[ring-2H5]-phenylalanine enrichments 
decreased after protein ingestion in both groups (P < 0.001), but no significant group effect 
was detected (P > 0.05). Plasma L-[1-13C]-leucine enrichments increased after protein 
ingestion (P < 0.001), but no significant group effect was detected (P > 0.05).  

Figure 3.3 Plasma leucine (A), phenylalanine (B) and tyrosine (C) concentrations (μmol·L-1) following ingestion 
of 15 g milk protein (15G; n = 12) or 15 g milk protein with 1.5 g free leucine (15G+LEU; n = 12) after resistance-
type exercise in older men. The dotted line represents the ingestion of the beverage. Values represent means 
+ SEM. Data were analyzed with repeated measures (time x treatment group) ANOVA. A; time x treatment 
group: P < 0.01. B; time x treatment group: P > 0.05. C; time x treatment group: P > 0.05. Plasma leucine area 
under the curve over 360 min (B, μmol·360 min·L-1) and analyzed with a student’s unpaired t-test. *Significant 
difference (P < 0.05) from 15G. 
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Whole-body amino acid kinetics 
 
Exogenous phenylalanine appearance rates (Figure 3.4A) increased following protein 
ingestion with peak levels being reached at t = 60 min in both treatment groups (15G: 0.19 
± 0.01, 15G+LEU: 0.16 ± 0.02 μmol Phe·kg-1·min-1; P > 0.05). Dietary protein-derived amino 
acid availability, calculated as a fraction of the total amount of ingested protein (Figure 
3.4B), was higher in 15G (75 ± 2 %) when compared to 15G+LEU (70 ± 1 %; P < 0.05).  
 

 

Whole-body protein synthesis rates did not differ between the treatment groups (15G: 0.60 
± 0.01, 15G+LEU: 0.59 ± 0.01 μmol Phe·kg-1·min-1; P > 0.05). Whole-body protein breakdown 
rates did not differ between the treatment groups (15G: 0.49 ± 0.01, 15G+LEU: 0.49 ± 0.01 
μmol Phe·kg-1·min-1; P > 0.05). Protein ingestion resulted in a positive whole-body protein 
net balance, with no differences observed between the treatment groups (15G: 0.108 ± 
0.004, 15G+LEU: 0.105 ± 0.003 μmol Phe·kg-1·min-1; P > 0.05). Furthermore, leucine co-
ingestion did not appear to influence whole-body phenylalanine oxidation rates (15G: 0.049 
± 0.003, 15G+LEU: 0.046 ± 0.002 μmol Phe·kg-1·min-1; P > 0.05).  
 

  

Figure 3.4 Exogenous phenylalanine rate of appearance (A, Ra) expressed in µmol·phenylalanine·kg-1·min-1 
following ingestion of 15 g milk protein (15G; n = 12) or 15 g milk protein with 1.5 g free leucine (15G+LEU; n 
= 12) after resistance-type exercise in older men. The dotted line represents the ingestion of the beverage. 
Values represent means + SEM. Data were analyzed with repeated measures (time x treatment group) ANOVA. 
Time x treatment group: P < 0.01. C; time x treatment group: P < 0.01. Dietary protein-derived amino acid 
plasma availability (B), calculated as a fraction of the total amount of ingested protein (% ingested protein). 
*Significantly different (P < 0.05) from 15G+LEU. 
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Myofibrillar fractional synthesis rates and protein-bound enrichments 
 
Myofibrillar L-[1-13C]-leucine and L-[ring-2H5]-phenylalanine enrichments were measured in 
muscle samples collected immediately before protein ingestion and after the 6 h post-
prandial period. The post-prandial increase in myofibrillar protein bound L-[1-13C]-leucine 
enrichments tended to be greater in 15G+LEU when compared to 15G (0.0360 ± 0.0016 vs 
0.0314 ± 0.0016 MPE, respectively; P = 0.055). The post-prandial increase in myofibrillar 
protein bound L-[ring-2H5]-phenylalanine enrichment was greater in 15G+LEU when 
compared to 15G (0.0330 ± 0.0015 vs 0.0278 ± 0.0011 MPE, respectively; P < 0.05).  
Myofibrillar protein FSR (in %·h-1) was calculated using L-[ring-2H5]-phenylalanine (Figure 
3.5A) plasma and muscle protein-bound enrichments and using L-[1-13C]-leucine (Figure 
3.5B) plasma and muscle protein-bound enrichments. When FSR was calculated using L-
[ring-2H5]-phenylalanine, myofibrillar protein FSR was approximately 16 % greater in 
15G+LEU (0.0575 ± 0.0032 %·h-1) when compared with 15G (0.0495 ± 0.0021 %·h-1; P < 
0.05). When FSR was calculated using L-[1-13C]-leucine, myofibrillar protein FSR was 
approximately 19 % greater in 15G+LEU (0.0710 ± 0.0048 %·h-1) when compared with 15G 
(0.0598 ± 0.0030 %·h-1; P < 0.05). L-[1-13C]-phenylalanine myofibrillar protein-bound 
enrichments (Figure 3.6) were not different in 15G+LEU (0.0205 ± 0.0022 MPE) when 
compared with 15G (0.0171 ± 0.0017 MPE; P = 0.24). 
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Figure 3.5 Myofibrillar protein fractional synthetic rates (FSR in %·h-1) assessed using L-[ring-2H5]-phenylalanine 
(A) and L-[1-13C]-leucine (B) and following ingestion of 15 g milk protein (15G; n = 12) or 15 g milk protein with 
1.5 g free leucine (15G+LEU; n = 12) after resistance-type exercise in older men. Values represent means + 
SEM. Data were analyzed with a student’s unpaired t-test. *Significantly different (P < 0.05) from 15G. 
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Cellular signaling analyses 
 
The phosphorylation status (ratio of phosphorylated to total protein) of key proteins involved 
in the initiation of muscle protein synthesis are presented in Figure 3.7. Phosphorylation of 
S6K (Figure 3.7B) decreased in both groups over time (time effect, P < 0.01). 
Phosphorylation of 4E-BP1 (Figure 3.7D) increased over time and to a greater extent in 15G 
compared with 15G+LEU (P < 0.01). 

 

Figure 3.6 L-[1-13C]-phenylalanine incorporation into myofibrillar protein following ingestion of 15 g milk 
protein (15G; n = 12) or 15 g milk protein with 1.5 g free leucine (15G+LEU; n = 12) after resistance-type exercise 
in older men. No significant differences between groups (P = 0.24). Values represent means + SEM. Data were 
analyzed with student’s unpaired t-test. 
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Figure 3.7 Muscle phosphorylation status (ratio of phosphorylated to total protein) of mammalian target of 
rapamycin (mTOR; A) S6 protein kinase 1 (S6K; B), ribosomal protein S6 (RS6; C), and eukaryotic translation 
initiation factor 4E-binding protein-1 (4E-BP1; D) in older men after resistance-type exercise (0 min) and 360 
min after the ingestion of 15 g milk protein (15G; n = 12) or 15 g milk protein with 1.5 g free leucine (15G+LEU; 
n = 12). Values represent means + SEM.  Data were analyzed with repeated measures (time x treatment group) 
ANOVA. A; time effect: P > 0.05, treatment effect: P > 0.05, time x treatment group: P > 0.05. B; time effect: P 
> 0.01, treatment effect: P > 0.05, time x treatment group: P > 0.05. C; time effect: P > 0.05, treatment effect: 
P > 0.05, time x treatment group: P > 0.05. D; time effect: P < 0.01, treatment effect: P > 0.01, time x treatment 
group: P < 0.01 *Significantly different (P < 0.05) compared to t = 0 min. †Significant difference (P < 0.05) from 
15G+LEU at the same time point. 
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Discussion 
 

In the present study, we examined the impact of free leucine co-ingestion on post-prandial 
protein handling and the subsequent muscle protein synthetic response following the 
ingestion of 15 g protein during recovery from resistance-type exercise in older men. We 
observed that 70-75 % of the dietary-derived amino acids were absorbed into the circulation 
after ingestion of 15 g protein. Co-ingesting 1.5 g free leucine with 15 g protein further 
increased post-exercise myofibrillar protein synthesis rates, but did not detectably increase 
the incorporation of dietary protein-derived amino acids in myofibrillar protein. 
We administered a primed, continuous intravenous infusion of L-[ring-2H5]-phenylalanine, L-
[ring-2H2]-tyrosine and L-[1-13C]-leucine throughout a 6 h post-exercise recovery period in 
older individuals. Following exercise, participants ingested either 15 g intrinsically L-[1-13C]-
phenylalanine labeled milk protein with or without 1.5 g free leucine. With this experimental 
protocol, we were able to assess in vivo protein digestion and amino acid absorption kinetics, 
whole-body protein metabolism, myofibrillar protein synthesis, and the incorporation of 
dietary protein-derived amino acids in muscle protein (8). After protein ingestion, we 
observed a rapid rise in circulating plasma amino acid concentrations (Figure 3.3) and an 
increase in the rate of exogenous phenylalanine appearance (Figure 3.4A), demonstrating 
rapid protein digestion and subsequent absorption of dietary protein-derived amino acids 
during post-exercise recovery. As expected, fortification with 1.5 g free leucine resulted in a 
greater peak plasma leucine concentration (407 ± 23 vs 234 ± 16 μmol·L-1, P < 0.01) at t = 
30 min, and 1.8-fold greater plasma leucine availability over the entire 6 h post-prandial 
period, when compared to the ingestion of 15 g protein (P < 0.01). We observed 70-75 % 
of dietary protein-derived amino absorption into the circulation over the 6 h post-prandial 
period in both groups. This represents a high degree of protein absorption in comparison 
to recent work from our lab using the same methodology (16, 28, 29). The discrepancy is 
likely attributed to the relatively small amount of dietary protein that was provided in the 
present study along with the extended 6 h post-prandial assessment period, implying that 
more protein derived amino acids can be absorbed during a 6 h post-prandial period when 
the ingested protein bolus is smaller (Holwerda et al., accepted). Free leucine fortification 
seemed to compromise protein digestion and/or amino acid absorption as dietary protein-
derived phenylalanine availability was lower following leucine co-ingestion when assessed 
over the entire 6 h post-prandial period (10.5 ± 0.2 vs 11.2 ± 0.3 g; P < 0.05). This was 
attributed to a mild attenuation of exogenous amino acid appearance rates observed 
between t = 30-120 min (Figure 3.4A). It could be speculated that the added free leucine 
may have stimulated splanchnic amino acid retention of dietary-protein derived amino acids 
during first pass. In agreement, prior work in neonatal pigs has demonstrated that free 
leucine co-ingested with a low protein dose stimulates an increase in jejunum, but not liver 
protein synthesis (23, 33). Altogether, our data demonstrate that free leucine co-ingestion 
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further increases the post-prandial rise in leucine concentrations but attenuates the rate of 
appearance of dietary protein-derived amino acids into the circulation. 
By administering a primed, continuous intravenous infusion of L-[ring-2H5]-phenylalanine and 
L-[ring-2H2]-tyrosine and providing intrinsically L-[1-13C]-phenylalanine labeled protein, we 
were able to assess post-prandial whole-body protein synthesis, breakdown, net balance 
and oxidation. In both groups, protein ingestion resulted in a positive whole-body net 
protein balance during post-exercise recovery. However, fortification with free leucine did 
not further impact whole-body post-prandial protein synthesis, breakdown or net balance. 
These findings are in agreement with prior work in older men at rest (32) and in younger men 
during post-exercise recovery (19). Despite previous reports that leucine administration 
lowers whole-body amino acid oxidation rates (18, 26), we did not observe this effect. These 
studies achieved far greater plasma leucine availability in comparison to the present study, 
which may lead to a reduction in protein breakdown rates (26, 36) and thereby lower the 
availability of amino acids for oxidation (19, 36). Our present data align with recent work 
administering similar, meal-like amounts of leucine (~4.5 g total) (32), and demonstrate that 
leucine co-ingestion does not impact whole-body phenylalanine oxidation rates. 
Changes in whole-body protein metabolism do not necessarily reflect changes on a muscle 
level. Therefore, we also collected skeletal muscle biopsies to directly assess the impact of 
leucine fortification of a low protein dose on intramuscular signaling and the muscle protein 
synthetic response to feeding. Resistance-type exercise and protein ingestion activate 
intramuscular signaling proteins that regulate protein translation with mTOR and its 
downstream targets, S6 kinase, RS6 and 4E-BP1 being of particular relevance. We observed 
no differences in mTOR or RS6 phosphorylation, but detected a decrease in S6 kinase 
phosphorylation over time. These findings align with previous work showing a rapid increase 
in S6 kinase activity following exercise, which subsides over 3-6 h (20, 45). Considering that 
biopsy timing was intended to assess the muscle protein synthetic response during the entire 
post-prandial period, it is most likely that transient increases in signaling activity had 
subsided by 6 h. However, 4E-BP1 phosphorylation increased over time in both groups, and 
to a greater extent after the ingestion of 15 g protein when compared with the ingestion of 
15 g with leucine. We speculate that the higher leucine availability in 15G+LEU may have 
transiently activated 4E-BP1 at an earlier time in comparison to 15G (12, 14, 17), which 
steadily activated 4E-BP1 over the 6 h post-prandial period (20, 43).  
Combining stable isotope labeled amino acid infusions with ingestion of intrinsically-labeled 
protein, we were able to assess muscle protein synthesis rates under both steady-state (L-
[1-13C]-leucine) as well as non-steady state (L-[ring-2H5]-phenylalanine) precursor conditions 
(8). Previous work has demonstrated that the ingestion of a low protein dose (< 20 g) 
following resistance-type exercise does not further stimulate an increase in muscle protein 
synthesis rates in older individuals (47, 48). In the present study, free leucine co-ingested 
with a low protein dose (15 g) increased myofibrillar protein synthesis rates by 16 % (L-[ring-
2H5]-phenylalanine, Figure 3.5A) and 19 % (L-[1-13C]-leucine, Figure 3.5B) when compared 
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with the ingestion of 15 g protein. These findings are in line with multiple studies 
demonstrating that free leucine co-ingestion can further increase the muscle protein 
synthetic response to protein ingestion in older individuals at rest (2, 9, 24, 42) and during 
recovery from resistance-type exercise (2, 7, 9, 24). In the present study, participants 
ingested intrinsically L-[1-13C]-phenylalanine labeled protein, allowing us to directly assess 
the metabolic fate of the dietary protein-derived amino acids (16, 38, 42). Despite the 
greater post-prandial muscle protein synthetic response following the co-ingestion of free 
leucine, we did not observe a significantly greater L-[1-13C]-phenylalanine enrichment in 
myofibrillar protein in 15G+LEU compared with 15G (Figure 3.6). The absence of a 
difference in the incorporation of dietary protein-derived amino acids in myofibrillar protein 
may be related to the mild attenuation in dietary-protein derived phenylalanine availability 
in the circulation when free leucine was co-ingested (Figure 3.4).  
The muscle protein synthetic response to protein ingestion has been shown to be impaired 
in older (41) and/or more clinically compromised populations (25, 44). Resistance-type 
exercise is an effective strategy to improve the sensitivity of skeletal muscle to the anabolic 
properties of dietary protein. However, recent work from our group has demonstrated that 
ingestion of less than 30 g protein does not further increase the muscle protein synthetic 
response during post-exercise recovery in older men (Holwerda et al., accepted). We (28) 
and others (47, 48) have shown that increasing protein intake can compensate for this 
anabolic resistance, with as much as 45 g of protein being required to achieve a robust 
anabolic response during exercise recovery in older individuals. However, ingesting such 
large protein amounts may not be feasible in older and/or more clinically compromised 
populations. The current data extend upon previous findings and show that free leucine co-
ingestion can augment the post-exercise muscle anabolic response to protein ingestion (2, 

7, 9, 24). Therefore, leucine co-ingestion may increase the efficiency by which ingestion of 
low protein doses enhance the muscle protein synthetic response during recovery from 
exercise. Simply adding leucine to a post-exercise snack may represent an effective strategy 
to maintain muscle mass in the older population without the need to ingest large doses of 
protein. However, few long-term intervention studies have assessed the anabolic effect of 
leucine co-ingestion on skeletal muscle adaptation. Whereas leucine supplementation does 
not seem to increase muscle mass in older individuals in resting conditions (21, 39), it has 
been suggested that leucine supplementation might augment resistance training-induced 
skeletal muscle adaptation (37). Nonetheless, more work is needed to assess the long-term 
anabolic effects of leucine co-ingestion in combination with exercise training in the older 
population.  
In conclusion, leucine co-ingestion augments the post-exercise muscle protein synthetic 
response to ingestion of a small amount of protein in older men. 
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