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Abstract

The prevalence of obesity and associated health conditions is increasing in the developed world. Obesity is related to
atrophy and dysfunction of the hippocampus and hippocampal lesions may lead to increased appetite and weight gain. The
hippocampus is connected via the fornix tract to the hypothalamus, orbitofrontal cortex, and the nucleus accumbens, all
key structures for homeostatic and reward related control of food intake. The present study employed diffusion MRI
tractography to investigate the relationship between microstructural properties of the fornix and variation in Body Mass
Index (BMI), within normal and overweight ranges, in a group of community-dwelling older adults (53–93 years old). Larger
BMI was associated with larger axial and mean diffusivity in the fornix (r = 0.64 and r = 0.55 respectively), relationships that
were most pronounced in overweight individuals. Moreover, controlling for age, education, cognitive performance, blood
pressure and global brain volume increased these correlations. Similar associations were not found in the parahippocampal
cingulum, a comparison temporal association pathway. Thus, microstructural changes in fornix white matter were observed
in older adults with increasing BMI levels from within normal to overweight ranges, so are not exclusively related to obesity.
We propose that hippocampal-hypothalamic-prefrontal interactions, mediated by the fornix, contribute to the healthy
functioning of networks involved in food intake control. The fornix, in turn, may display alterations in microstructure that
reflect weight gain.
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Introduction

The prevalence of obesity and its associated health problems is

growing in the developed world. To develop effective interventions

for obesity prevention, it is important to understand the neural and

psychological factors that contribute to chronic weight gain. In the

current study we investigated in a group of community dwelling,

high functioning older adults the relationship between individual

differences in Body Mass Index (BMI) and variation in the white

matter microstructure of the fornix, the principal fibre tract

associated with hippocampal connections beyond the temporal

lobe [1].

Research into hippocampal function has traditionally focused

on learning and memory [2] but there is growing appreciation of

its involvement in other functions [3] including the regulation of

food intake. Hippocampal lesions in rats can result in increased

appetitive behaviour and weight gain [4,5]. Likewise, reduced

hippocampal volume [6] and abnormal hippocampal activation in

response to food stimulation or feeding manipulations [7] have

been related to obesity, although the direction of causality remains

unclear.

The hippocampus is known to be directly connected, via the

fornix, with several regions involved in the control of food intake.

One such target is the hypothalamus, a complex region involved in

homeostatic functions [8]. Hippocampal projections reach the

preoptic area, anterior hypothalamic nuclei, arcuate nucleus,

ventromedial nucleus and lateral hypothalamic area [9]. The

precommissural fornix also contains efferents to nucleus accum-

bens and the orbital frontal cortices [10,11]. These connections

innervate sites strongly implicated in the hedonic control of food

intake [12,13].

Diffusion MRI tractography [14,15] was used to investigate the

relationship between BMI and microstructure of the fornix, as well

as a comparison tract, the parahippocampal cingulum, which also

contains medial temporal lobe connections but is not directly

linked to either medial prefrontal cortex or hypothalamus [16,17].

Microstructural indices were derived for each tract. The fornix is

a medium-sized pathway that runs through the ventricles and,

hence, is particularly susceptible to cerebrospinal fluid (CSF) based

partial volume artefacts in diffusion tensor imaging (DTI) indices

[18]. This is especially problematic in older adults, as aging is

associated with significant gray and white matter atrophy [19,20].

To account for this confound, data were corrected with the Free

Water Elimination (FWE) approach [21]. This method fits two

tensors, an isotropic and an anisotropic compartment, to the
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diffusion data from each voxel and, hence, allows the elimination

of CSF contamination in white matter microstructural indices.

Additional measurements were made of hippocampal and

whole brain volume, and associations were controlled for potential

confounds of volume measures, age, sex, education, cognitive

function (verbal IQ and episodic memory), blood pressure and

diabetes status.

Methods

Ethics Statement
This study was reviewed and approved by the South East Wales

Research Ethics Committee and each participant provided

informed, written consent. All investigations have been conducted

according to the principles expressed in the Declaration of

Helsinki.

Participants
Forty-six participants over the age of 50 years were recruited for

a project investigating aging and brain structure from the local

community by advertisements posted on the internet, and in

family physician waiting rooms, newsletters and mail shots.

Participants were informed that the study was about aging and

memory; BMI and risk factors were not mentioned explicitly so are

unlikely to have influenced recruitment. Participants fulfilled the

selection criteria for the study if they were free of a history of

neurological and/or psychiatric disease, moderate or severe head

injury, alcohol and/or drug abuse, memory or other cognitive

decline, stroke, large artery or peripheral vascular disease,

structural heart disease or heart failure, and contra-indications

to MRI. Two participants withdrew from the study due to ill

health and one participant was excluded due to a subsequent

diagnosis of Parkinson’s Disease. After visual inspection of the

structural MRI scans for overt pathology three further participants

were excluded because of extensive white matter hyperintensities

suggestive of cerebral microvascular disease [22]. One individual’s

MRI data could not be analysed due to motion artefacts. Finally,

one participant’s height was not recorded at the beginning of the

study leaving 38 MRI and BMI datasets available for analysis in

the present study (see Table 1).

Risk factors for cardiovascular disease such as increased Body

Mass Index (BMI) (weight in kg/height in square meter),

hypertension, diabetes mellitus, high levels of blood cholesterol,

and smoking were documented. Each participant was weighed in

their clothing without shoes on a mechanical scale. Standing

height was measured using a tape measure placed in fixed position

against the wall. Systolic and diastolic blood pressure and pulse

were measured with a digital blood pressure monitor (Model UA-

631; A&DMedical, Tokyo, Japan) whilst participants were relaxed

and comfortably seated with their arm well supported on a table.

Other cardiovascular risk factors were self-reported by participants

in a comprehensive medical history questionnaire.

For 17 participants BMI fell within normal range (18.5–24.9),

for 17 within overweight range (25–30), three participants were

obese (BMI .30), and one individual was underweight (BMI

,18.5). Sixteen participants reported medication to control

hypertension, two reported statins to control cholesterol levels,

and one person was on medication for Type II diabetes mellitus.

Seventeen participants reported never to have smoked and twenty-

one participants to have smoked in the past. The group performed

at superior level of intelligence [Mean IQ=121; SD=8 in the

National Adult Reading Test (NART)] [23] and within normal-

superior range for their age in a number of memory and executive

function tasks (Table 1 and for detailed description see [24]). In

addition, participants were screened for depression with the 15

items Geriatric Depression Scale (GDS15/[25]. All participants

scored within the normal range except for one individual whose

score was on the conventional cut-off of 6.

MRI Data Acquisition
Diffusion weighted MR data were acquired using a 3T GE

HDx MRI system (General Electric Healthcare) with a twice-

refocused spin-echo EPI sequence providing whole oblique axial

(parallel to the commissural plane) brain coverage. Data acquisi-

tion was peripherally gated to the cardiac cycle. Data were

acquired from 60 slices of 2.4 mm thickness, with a field of view of

23 cm, and an acquisition matrix of 96696. TE was 87 ms and

parallel imaging (ASSET factor = 2) was employed. The b-value

was 1200 s/mm22. In each imaging session, data were acquired

with diffusion encoded along 30 isotropically distributed directions

[26] and three non-diffusion weighted scans using an optimised

gradient vector scheme. The acquisition time was approximately

13 minutes.

Diffusion MRI Pre-processing
The acquired images were corrected for distortions, introduced

by the diffusion-weighting gradients, and for motion artefacts

using ExploreDTI [27]. This was achieved using a global affine

registration of each image volume to the first non-diffusion

weighted volume, using normalized mutual information as the

cost-function, followed by appropriate re-orientation of the

encoding vectors and modulation of the signal intensity by the

Jacobian determinant of the transformation [28]. Two separate

processing steps were then taken: the first was to fit a two

compartment model using the FWE approach to the data, to yield

partial volume corrected indices of fractional anisotropy (FA),

mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity

(AD) [21]; the second was to use constrained spherical deconvolu-

tion (CSD) to extract, in each voxel, the fibre orientation density

function (fODF) with the spherical harmonics order no higher

than lmax= 6 [29].

Diffusion MRI Tractography
Deterministic tractography was performed using ExploreDTI

[27,30]. The tracking algorithm estimated the peak in the fODF at

each seed-point and propagated in 0.5 mm steps along this axis.

Peaks in the fODF were then estimated at the new location and

the tracking moved a further 0.5 mm along the axis subtending

Table 1. Participants’ background information.

n 38

Age M= 67.9, SD = 8.6 (53–93 years)

Sex 22 female, 16 male

Handedness 36 right, 2 left

Body Mass Index M= 24.9, SD = 3.5 (17.5–32.5)

Blood pressure systolic M= 141.2, SD = 17.2 (106–186)

Blood pressure diastolic M= 80.8, SD = 9.7 (65–109)

Number diabetic 1

Education M= 15.6, SD = 3.01 (10–22 years)

National Adult Reading Test – IQ M= 121, SD= 8 (90–131)

Verbal free recall M= 32.9 (max 48), SD = 8.2 (14–48)

Geriatric Depression Scale 15 M= 1.21, SD= 1.6 (0–6)

doi:10.1371/journal.pone.0059849.t001

Fornix and BMI
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the smallest angle to the current trajectory. In this way a pathway

was traced through the data until the fODF fell below an arbitrary

threshold (in this case 0.1) or the direction of the pathway changed

through an angle greater than 60u. The procedure was then

repeated by tracking in the opposite direction back to the initial

seed-point to reconstruct the whole pathway passing through the

seed-point. Three dimensional fibre reconstructions were made

by: (i) initial tracking of pathways in the whole brain using every

voxel as a seed-point from which to initiate the tracking algorithm;

(ii) the subsequent application of waypoint region of interest (ROI)

gates (‘‘AND’’, ‘‘OR’’, ‘‘NOT’’ gates following Boolean logic) to

isolate specific tracts from the whole brain tractography data.

ROIs were manually drawn on a colour coded fibre orientation

map [31] for each individual dataset as described in [24] using

landmark techniques that have previously been shown to be highly

reproducible [15,32].

Fornix. A coronal OR ROI was placed around the anterior

pillars and an axial AND ROI around the crus fornici. NOT ROIs

were placed rostral to the anterior pillars, caudal to the crus

fornici, around the corpus callosum and the upper pons (see

Figure 1a).

Parahippocampal cingulum. One axial AND ROI was

placed dorsal to the ventral limit of the splenium and another at

the level of the pons-midbrain junction [17]. A NOT ROI was

placed above the body of the corpus callosum caudal to the rostral-

caudal midpoint of the body of the corpus callosum (see Figure 1b).

Hippocampal and Whole Brain Volume Measures
Hippocampal volumes were generated with the HippoQuant

software [33], developed by BioClinica SAS, Lyon, France. This is

an adaptation of hippocampal outlining techniques (based on [34])

but involves placing approximately 80 landmark points, rather

than tracing full outlines on each slice, with the remaining surface

filled in by deforming a standard three-dimensional hippocampal

template to match these landmark points. In a first step, T1-

weighted images were displayed simultaneously in all three planes

(axial, sagittal, coronal) and a trained rater placed multiple

landmarks on the boundary of the hippocampus, paying particular

attention to areas of difficult anatomical distinction (for example,

the alveus and the boundary with the amygdala). The hippocam-

pal measurements included the hippocampus proper (CA-1 to CA-

4 sectors), dentate gyrus, alveus, fimbria and subiculum. Para-

hippocampal regions (entorhinal cortex and intervening white

matter including perforant pathway) were excluded. The resulting

hippocampal mask was further refined by a tissue-type segmen-

tation step (i.e. voxels segmented as grey or white matter are

included, CSF voxels excluded). The final hippocampal masks

were then checked visually by the rater and edited for obvious

errors. Hippocampal volumes were corrected for head size by

calculating intracranial volume from summing segmented grey,

white matter and CSF images (from the volumetric T1-weighted

image) in Statistical Parametric Mapping 8 [35]. Brain parenchy-

mal fraction (BPF), i.e. the volume of gray and white matter

normalised to total intracranial volume to correct for head size, as

a measure for whole brain volume was also obtained.

Cognitive Assessment
All participants underwent neuropsychological assessment of

working and episodic memory and executive function. Age-related

changes for this sample were present only in episodic memory

performance and were strongest for verbal free recall in the Free

and Cued Selective Reminding task [36]. Performance in this task

was also related to variation in fornix microstructure (FA) [24].

Changes in episodic memory in older age may, in some cases, be

indicative of underlying neurodegenerative disease such as

Alzheimer’s Disease and the prodromal manifestation of Mild

Cognitive Impairment (MCI). MCI and Alzheimer’s disease are

both associated with atrophy of the medial temporal lobe,

including the hippocampus and fornix, and changes in BMI due

to weight loss [37]. For these reasons, we employed verbal free

recall performance in addition to verbal NART-IQ (see Table 1)

as measures of individual variation in cognitive performance that

would potentially confound any relationship between fornix

microstructure and BMI, if covert Alzheimer’s neuropathology

were driving these associations.

Figure 1. Figure 1 illustrates the deterministic tractography reconstructions of a) the fornix and b) the parahippocampal cingulum
on a parasagittal view of one individual’s colour coded diffusion map. Seed (OR) waypoint region of interest gates are illustrated in blue,
AND gates in green and NOT gates in red.
doi:10.1371/journal.pone.0059849.g001
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Statistical Analyses
Statistical analyses were performed using Predictive Analytics

Software (PASW) Statistics 18.0 [38]. BMI data were tested for the

assumption of normal distribution with the Kolmogorov-Smirnov

and Shapiro-Wilk tests. Two-tailed Pearson product moment

correlations were calculated between BMI and white matter

microstructural indices in the fornix and the parahippocampal

cingulum, as well as with total hippocampal volume and brain

parenchymal fraction. These correlations were carried out for all

participants (n = 38) and only for individuals with BMI within

normal-overweight range (n = 34) to ensure that correlations were

not driven by a few extreme cases. Correlations between BMI and

structural indices (10 in total) had to reach p,0.005 to comply

with experiment-wise Bonferroni corrected significance level of

0.05.

Relationships were further explored separately for normal and

overweight participants and females and males. The latter

correlations were evaluated with one-tailed tests and were not

further subjected to multiple-comparison corrections.

Pearson product moment correlations between white matter

microstructural indices in the fornix and potentially confounding

variables of age, education, NART-IQ, verbal free recall, systolic

and diastolic blood pressure and BPF were calculated. Correla-

tions (a total of 28 comparisons) had to reach p,0.002 to comply

with experiment-wise Bonferroni corrected significance level of

0.05.

The role of potential confounds in the relationship between

BMI and white matter microstructural indices were explored with

partial correlations and multivariate hierarchical regression

analyses, which were not further subjected to multiple comparison

corrections. Multivariate hierarchical regression analysis was

employed by entering all confounding variables first into a linear

regression model with BMI as dependent variable, followed by the

stepwise addition of the diffusion MRI indices in the fornix and the

parahippocampal cingulum. Only one participant in the current

study was diabetic – the exclusion of this individual did not alter

any associations.

Results

Relationship between BMI and White Matter
Microstructure
Both Kolmogorov-Smirnov and Shapiro-Wilk tests of normality

produced non-significant results for the BMI data consistent with

Figure 2. Scatterplots visualising the positive relationships between Body Mass Index (BMI) and a) average axial diffusivity (AD)
(x1023mm2.s21) and b) mean diffusivity (MD) (x1023mm2.s21) in the fornix as well as the null relationships between BMI and c) AD
and d) MD in the parahippocampal cingulum (collapsed across hemispheres) in a group of older adults (n =38). R2 refers to the
correlation coefficients based on the normal and overweight sample only (n = 34). BMI ranges are color coded with blue indicating underweight,
green healthy, orange overweight and red obese ranges.
doi:10.1371/journal.pone.0059849.g002
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the null hypothesis of normality (F(38) = 0.08, p = 0.20;

W(38) = 0.98, p = 0.66).

For all 38 participants there were positive correlations between

BMI and fornix AD (r = 0.49; p#0.002) and BMI and fornix MD

(r = 0.46; p#0.004) as well as a trend for a positive correlation

between BMI and fornix RD (r = 0.37; p= 0.02). No correlations

were observed between BMI and fornix FA (r = 0.08, p = 0.64) or

any microstructural indices in the parahippocampal cingulum (FA:

r = 0.20, p = 0.23; MD: r =20.09, p = 0.61; RD: r =20.14,

p = 0.42; AD: r = 0.07, p = 0.68).

After the exclusion of the four extreme cases (three obese and

one underweight individual) (n = 34) the positive correlations

between BMI and axial and mean diffusivity in the fornix

increased in magnitude (AD: r = 0.64, p#0.001; MD: r = 0.55;

p#0.001) (see Table 2, Figure 2). A clearer trend for a relationship

between BMI and fornix RD was observed (r = 0.45, p = 0.007),

but again no correlations were found with fornix FA (r = 0.18,

p = 0.32) or with any of the microstructural indices in the

parahippocampal cingulum (FA: r = 0.13, p = 0.46; MD:

r = 0.07, p = 0.69; AD: r = 0.14, p= 0.42; RD: r = 0.14, p= 0.42)

(see Table 2, Figure 2).

Further exploratory analyses (one-tailed) revealed that partici-

pants with normal weight (n = 17) showed no significant relation-

ships between BMI and microstructural indices in the fornix (FA:

r = 0.23, p = 0.19; MD: r = 0.12, p = 0.65; AD: r = 0.22, p = 0.20;

RD: r = 0.01, p= 0.49). In contrast, overweight participants

(n = 17) exhibited clear positive relationships (uncorrected) be-

tween all diffusivity measures in the fornix (MD: r = 0.44, p#0.04;

AD: r = 0.47, p#0.03; RD: r = 0.42, p#0.05) but not with fornix

FA (r =20.11, r = 0.34).

Females (n = 22) and males (n = 16) demonstrated comparable

positive correlations between BMI and fornix AD (males: r = 0.45,

p#0.03; females: 0.46, p#0.02) and fornix MD (males: r = 0.48,

p#0.03; females: 0.37, p#0.04). Both groups exhibited compara-

ble trends between BMI and fornix RD (males: r = 0.36, p = 0.09;

females: r = 0.32, p = 0.07) but neither group showed any

correlations between BMI and fornix FA (males: r = 0.08,

p = 0.39; females: r = 0.12, p = 0.29).

Relationships with Confounding Variables
Since the strongest correlations were found for the combined

group of normal and overweight participants (BMI 18.5–30) and

the aim of our study was to investigate factors that may contribute

to an individual’s susceptibility to gain weight, the following

analyses did not include the three obese and the one underweight

individual (n = 34).

There were no correlations between BMI and any of the

following variables: age (r =20.04; p= 0.84), systolic and diastolic

blood pressure (r = 0.01; p = 0.99 and r =20.04; p = 0.84),

education (r =20.19; p = 0.28), NART-IQ (r = 0.28; p = 0.11),

verbal free recall (r = 0.24; p= 0.17) or BPF (r = 0.17; p= 0.35).

Further, apart from the already reported positive relationships

between fornix FA and age and verbal free recall respectively [24],

there were no relationships between fornix microstructure and

age, blood pressure, education, or BPF (see Table 3). However,

trends (uncorrected for multiple comparisons) were observed

between fornix diffusivity indices and NART-IQ as well as free

recall (see Table 3).

Partial correlations between BMI and fornix diffusivity indices

(AD, MD, RD), accounting for the variation in potentially

confounding variables of age, education, NART-IQ, free recall,

blood pressure and brain volume did not remove, and in some

cases increased, the magnitude of correlations. The partial

correlations between BMI and fornix microstructural indices

accounting for age were r = 0.64, p#0.001 (AD); r = 0.56,

p#0.001 (MD); r = 0.49, p#0.004 (RD); accounting for education:

r = 0.68, p#0.001 (AD); r = 0.58, p#0.001 (MD); r = 0.50,

p#0.001 (RD); for NART-IQ: r = 0.59, p#0.001 (AD); r = 0.52,

p#0.002 (MD); r = 0.44, p#0.01 (RD); accounting for free recall:

r = 0.62, p#0.001 (AD); r = 0.53, p#0.002 (MD); r = 0.46,

p#0.007 (RD); accounting for blood pressure (systolic and

diastolic): r = 0.65, p#0.001 (AD); r = 0.55, p#0.001 (MD);

r = 0.46, p#0.01 (RD) and accounting for overall brain volume

Table 2. Relationship between Body Mass index and
microstructural indices in the fornix and parahippocampal
cingulum as well with whole brain and hippocampal volume
for the normal and overweight individuals (BMI 20–30)
(n = 34).

BMI

HCV 0.26

BPF 0.12

Fornix FA 0.18

Fornix AD 0.64***

Fornix RD 0.45**

Fornix MD 0.55***

PHC FA 0.13

PHC AD 0.14

PHC MD 0.07

PHC RD 0.14

Abbreviations: AD: axial diffusivity; BMI: Body Mass Index; BPF: Brain
Parenchymal Fraction; FA: Fractional Anisotropy; HCV: Hippocampal volume;
MD: Mean diffusivity; PHC: parahippocampal cingulum (collapsed across
hemispheres); RD: radial diffusivity. Pearson correlation coefficients significant
at Bonferroni corrected level of p,0.005 are highlighted in bold and
correlations with significance below the uncorrected 5% level are highlighted in
italics.
**p#0.01;
***p#0.001.
doi:10.1371/journal.pone.0059849.t002

Table 3. Relationship between microstructural indices in the
fornix and demographic and cognitive variables.

Fornix FA MD AD RD

Age 20.66*** 0.14 20.14 0.31

BP systolic 20.16 20.06 20.10 20.01

BP diastolic 0.22 20.13 20.03 20.20

Education 0.05 0.12 0.10 0.13

NART-IQ 20.11 0.37* 0.35* 0.36*

Free recall 0.56*** 0.18 0.43* 20.02

BPF 0.32 20.13 0.03 20.23

Abbreviations: AD: axial diffusivity; BP: Blood Pressure; BPF: Brain Parenchymal
Fraction; FA: Fractional Anisotropy; Mean diffusivity; RD: radial diffusivity.
Pearson correlation coefficients significant at Bonferroni corrected level of
p,0.002 are highlighted in bold and correlations with significance below the
5% level (uncorrected) are highlighted in italics.
*p#0.05;
***p#0.001 (as previously reported in [24]).
doi:10.1371/journal.pone.0059849.t003
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with BPF: r = 0.64, p#0.001 (AD); r = 0.59, p#0.001 (MD);

r = 0.52, p#0.002 (RD).

Multivariate Analysis
Age, education, NART-IQ, verbal free recall, systolic and

diastolic blood pressure and BPF were entered together into

a hierarchical regression model with BMI as dependent variable,

followed by the stepwise addition of all microstructural indices

(AD, RD, MD, FA) in the fornix and the parahippocampal

cingulum.

The adjusted R2 for all confounding variables together (age,

education, IQ, free recall, blood pressure, BPF) was 0.23 with no

single variable making a significant independent contribution. The

inclusion of white matter microstructural indices improved the fit

of the model from 23% to 45% (adjusted R2=0.45) with fornix

AD being the only variable accounting for a significant proportion

of the variance in BMI (t = 2.9, p#0.01) independent of the other

variables. The pattern of results was similar when free recall was

not used as a covariate. In this case the inclusion of white matter

microstructural indices improved the fit from 15% to 46%

(adjusted R2=0.46) with fornix AD the sole independent predictor

(t = 3.5, p#0.002).

Relationship between Body Weight and Hippocampal
Volume
There was no correlation between BMI and total hippocampal

volume (r = 0.26; p = 0.14).

Discussion

Positive relationships between BMI and fornix microstructure

were observed in a group of older participants. These relationships

were primarily driven by overweight but not obese individuals and

were more pronounced after the exclusion of three obese and one

underweight participant, so were not determined by outliers. The

relationships between fornix microstructural indices and BMI were

comparable between females and males, and were not confounded

by age, education, IQ, episodic memory performance, high blood

pressure, diabetes mellitus or inter-individual variation in whole

brain volume. Thus, we propose that the observed correlation in

our cognitively high functioning group of older people was not

mediated by individual differences in demographic or intellectual

variables, or by cardio-vascular risk states such as high blood

pressure or diabetes.

The regulation of food intake is a complex process involving

interactions between regions responsible for homeostatic, habitual,

reward-related and mnemonic aspects of behavioural control. The

hypothalamus monitors energy levels and responds to them

adaptively through hunger and satiety signals, and is the hub for

homeostatic aspects of food regulation. The hippocampus may

contribute learning and memory processes that influence the

control of appetitive and consummatory behavior, such as

experiencing hunger at set meal times during the day [5,39].

Other hippocampal interactions via the fornix are with the ventral

striatum [11], a key structure in dopamine-based habitual reward

mechanisms, ensuring positive reward associated with food intake.

Medial prefrontal and orbitofrontal cortices contribute to food

regulation by mediating higher level reward and cognitive control

aspects [40,41], important for the successful maintenance of

a healthy body weight. In addition, a variety of subcortical sites

innervate the hippocampus via the fornix [1].

All of these regions contribute unique attributes but need to

interact with each other to ensure the adaptive and efficient

regulation of food intake behaviour. For instance, hippocampal-

prefrontal-ventral striatum circuits are involved in inhibitory

aspects of response control [3] and also mediate the ability to delay

anticipated reward [41]. Further, hippocampal-hypothalamic

connections may facilitate learned patterns of food intake control

and energy balance [39]. The fornix maintains projections

between hippocampus and prefrontal cortex, ventral striatum,

and hypothalamus respectively. Thus, one interpretation of the

observed association between fornix microstructure and BMI is

that the fornix, in connecting all of these regions, contributes

critically to the interactive processes that underlie food intake

regulation.

The relationship with BMI was specific to the fornix and was

not observed for the parahippocampal cingulum. The parahippo-

campal cingulum also contains medial temporal lobe connections,

but in contrast to the fornix is preferentially linked to occipital and

parietal cortices, rather than the medial prefrontal cortex or

hypothalamus [17]. Further within the current sample of normal

and overweight adults, there was no correlation between BMI and

hippocampal volume. Together, this pattern of results suggests

that not all hippocampal/medial temporal lobe connections

contribute substantially but only those that project directly to

regions involved in food regulation such as the hypothalamus and

the prefrontal cortex.

One other study [42] has reported a relationship between fornix

microstructure and obesity. There are, however, a number of

important differences in the present study. Stanek et al. [42]

investigated white matter changes across the whole brain and

found decreases in fornix FA (the authors did not report measures

of diffusivity) in obese individuals. Obesity is associated with

a number of metabolic and pathological abnormalities, so in this

context structural brain changes are less surprising. In contrast, the

present study observed changes in fornix diffusivity in individuals

with BMI ranges in the normal and overweight range demon-

strating that such effects are not exclusively related to obesity and

perhaps emerge before the transition to obesity.

It should be noted that the absence of a correlation between

variations in BMI and blood pressure and other health conditions

may be due to range restrictions in the health variables and the

known difficulties of quantifying lifetime risk exposures, especially

when they are effectively controlled by medication, as in our

sample. In addition, it is unlikely that biological features of

depression would account for our results since participants were

free of a history of major depressive disorder and – all but one

individual, scored within normal range in the GDS15 with even

that individual right on the cut-off score.

Alterations in fornix microstructure were specifically observed

with axial, mean, and radial diffusivity but were not present for

fractional anisotropy. Combined with our previous work on age-

related changes in fornix microstructure and episodic memory in

the same sample of older adults [24], we observed a double

dissociation: partial volume corrected FA was significantly related

with age and memory but not with BMI; whereas diffusivity

indices were related to BMI but not to age or memory

performance. This pattern of results suggests that FA and

diffusivity indices may be sensitive to different microstructural

aspects of white matter and may not always be interchangeable or

directly comparable.

It is difficult to infer the precise biophysical alterations

underlying changes in DTI based indices of FA, MD, AD and

RD because these measures can be modulated by a number of

parameters such as myelination, axonal density and diameter and

the complexity of the underlying fibre architecture [43]. Inter-

pretations of DTI based diffusivity indices in terms of axonal loss

or myelin alterations are primarily based on results from animal
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studies that have investigated single coherently aligned fibres [44].

Since the fibre architecture in the human brain, however, is

complex and scenarios such as crossing fibres affect the magnitude

of DTI based indices (FA for instance drops in areas of crossing

fibres), interpretations based on single fibre experiments may not

be appropriate. Our results suggest that variations in body

composition relate to changes in fornix microstructure. However,

in order to make inferences about the biophysical basis of these

changes more direct microstructural indices of, for instance,

axonal diameter [45] or density [46] will have to be employed in

future studies.

The present study reports a correlational result and thus cannot

infer direction of potential causality. Neurodevelopmental and

inherited factors might predispose an individual to less well

developed fornix connections and, hence, to less efficient

communication and control within food regulatory circuits,

leading to increased food intake. On the other hand, it may also

be possible that body fat itself has detrimental effects on fornix

white matter leading to increased vulnerability to pathological

mechanisms associated, for instance, much later with exaggerated

dementia risk [47]. If this account is correct, then these effects

must be anatomically specific given the lack of correlations in the

parahippocampal cingulum.

The question of directionality as well as the functional

significance of our result and the role of other potential factors

such as hormonal modulation (e.g. cortisol) [48] need to be

addressed in future prospective studies. In the present context, we

might expect BMI associated changes in fornix AD to relate to the

neurophysiological and psychological correlates of food intake

control such as differential responding to food cues in satiety or

food restricted states that could be studied with functional

neuroimaging.

In summary, this is the first study to demonstrate a robust

relationship between microstructural white matter indices in the

fornix tract and variation in BMI within normal and overweight

range in a group of older adults. These results have important

implications for the understanding of neural factors contributing to

an individual’s susceptibility to weight gain.
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