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ABSTRACT With a rapid growth in the global population, the modern world is undergoing a rapid expansion
of residential areas, especially in urban centres. This continuously demands for increased general services
and basic amenities, which are required according to the kind of population associated with the places. The
advent of location-based online social networks (LBSNs) has made it much easier to collect voluminous
data about users in different locations or spatial regions. The problem of mining location types from the
LBSN data is largely unexplored. In this paper, we propose a pattern mining approach, using the geo-social-
temporal data collected from LBSNs, to infer types of different locations. The proposed method first mines
frequent co-located users and user components from an LBSN and then performs a temporal pattern analysis
to finally categorize the locations. Extensive experiments are conducted on two real datasets that demonstrate
the efficacy of the proposed method in terms of mean reciprocal rank (MRR), visualisations, and insights.
The resulting inference mechanism would be very useful in several application domains including urban
planning, billboard placement, tour planning, and geo-social event planning.

INDEX TERMS Location based social networks, spatial data mining, co-located friendships, geo-social-
temporal patterns.

I. INTRODUCTION
The modern world is going through an expansion in both
urban and rural areas. While the rural areas are growing
at a relatively slower pace, there is a rapid growth of our
cities, horizontally as well as vertically. This is continu-
ously and consistently raising the demands for general ser-
vices and basic amenities. With the development of wireless
communication technologies and ubiquitous GPS-equipped
mobile devices, the online social networking (OSN) sites
rapidly took a new form, called location-based social net-
works (LBSNs). These social networks allow the registered
users to share their location along with the performed activity,
referred as ‘‘check-in’’ (e.g., visiting Taj Mahal, eating at a
local restaurant), and discuss on them as part of their online
social interactions. Some popular LBSNs are Foursquare,
Facebook, Twitter, Weibo, BrightKite, and Gowalla. In recent
years, LBSNs have been quite successful in attracting a large
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portion of online users. Meanwhile, an enormous amount of
the combined geo-social-temporal data is being generated
everyday from user activities. This brings us a huge potential
of solving a range of crucial problems of the growing society.
These data provide opportunities of research in three main
aspects of humanmobility: geographic movement - the places
we visit; temporal dynamics - periodicity constraints in our
movement; and social network - evolution of offline and
online relationships. An analysis of all these aspects together
leads to the discovery of various interesting structural pat-
terns, subject to geographical and social constraints, therefore
enhancing the knowledge discovery process from the view
of data miners. Location type inference based on LBSN data
is one of such research problems with a significant impact.
Important applications of automatic location inference were
seen in urban planning [1], sophisticated tourism [2], real
estate management [3], and geo-social event planning [4].
With ever-expanding urban areas, it becomes difficult to man-
ually identify and organize many different types of regions
of interest (ROIs) and points of interest (POIs). Consider
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the example of a plan to set up a new entity, such as a
hospital, a train station, or a small government office, in a
city. Automatic inference about the type of a potential venue
and surrounding locations would help in making a careful
decision.

In the past decade, there has been significant research inter-
ests on mining and analyzing socio-spatio-temporal patterns
from LBSN data [5]. A great deal of research work has been
recently devoted on profiling users or mining user social
behaviours based on their mobility patterns [6] (for exam-
ple, friend recommendation based on user check-in patterns).
However, another important direction of profiling locations
based on social relationships has not received much attention.
In particular, the problem of mining location types from
visitor social relationships on an LBSN is largely unexplored,
despite its necessity. Some works also exist along the line of
mining different functional zones in an urban area based on
user movement trajectories. This is a very different problem
that is limited to an urban context. In contrast, the problem of
inferring the type of a location (e.g., workplace or residential
area) based on geo-social data is important in a global context
in order to aid intelligent decision making where location
type plays a crucial role. Decision contexts include smart
urban planning, strategic development of tourism, real estate
management, geo-social event planning, and business devel-
opment. There are three major challenges in this problem.
The first challenge is to model the relationship between the
social network connections and spatial check-ins. The second
challenge is to characterise the spatial, social, and temporal
patterns individually as well as combined altogether. The last
challenge is to process the large voluminous data of millions
of records and identify the patterns. It needs to be done in an
intelligent and efficient manner.

In this paper, we study the problem of inferring location
types from LBSNs and invent a step-by-step geo-social-
temporal pattern mining approach as the inference mech-
anism. The method starts with mining the spatial patterns
in the form of frequent co-located users, and then this is
followed by mining the geo-social patterns in the form of
frequent co-located friendship components. The resulting
component patterns help in determining whether a location is
public or private. The patterns are then expanded based on a
solid temporal analysis to form geo-social-temporal patterns.
These patterns in the end decide specific types of locations
of interest. In summary, our work makes the following main
contributions:
• A two-step geo-social pattern mining method is
developed to compute frequent co-located friendship
components.

• A sophisticated temporal analysis is then performed as
the final step of an overall geo-social-temporal pattern
mining method. The complete method ultimately infers
specific location types of interest from LBSN.

• Extensive experiments are performed on two real
datasets. The obtained results are convincing, which
validates the efficacy of the proposed method.

The rest of the paper is organized as follows. Section II
presents a basic background and the problem definition,
which is followed by a geo-social pattern mining method
in Section III. Temporal analysis of the mined geo-social
patterns is provided in Section IV. In Section V, exten-
sive experimental results are presented, before the surveyed
related works in Section VI. Finally, Section VII concludes
the whole paper with a concise summary and future direction.

II. PRELIMINARIES
This section gives a brief background of LBSN and its formal
definition. This is followed by the problem formulation of
location type inference.

A. LOCATION-BASED SOCIAL NETWORKS
The existing social networks like Instagram, Flickr, Twit-
ter, all have a common feature of geo-tagging locations by
the registered users. In these location based social networks
(LBSNs), the social interactions are depicted by online net-
work structures, and the location-based geographical activ-
ities are represented as check-in records, which consist of
sequences of data points with latitude-longitude records, time
stamps, and venue information. Due to the pervasive mobility
of users that leads to their ubiquitous social interactions,
a huge amount of user-generated geo-social data is rapidly
generated and accumulated. Such big geo-social data not only
collectively represent the diverse kinds of real-world human
activities, but also serve as a handy resource for various
geo-social applications.

For simulation of the proposed solution - the data from
Brightkite and Gowalla are used, which have been
active and popular LBSN sites in the past. In these sites,
registered users could share their location through check-in,
and could also see the other nearby users and those who have
checked-in at that place in the past. Along with check-ins,
online friendship data among users is also available. This
data allows studying the three main aspects of human mobil-
ity: geographic movement - the places we visit; temporal
dynamics - periodicity constraints in our movement; and the
social network - evolution of offline and online friendships.
All these aspects when analyzed together exhibit various
interesting structural patterns subject to geographical and
social constraints, therefore enhancing the knowledge discov-
ery process from the view of data miners. In the following,
we formally define LBSNs.

Definition 1: (Social Network):A social network is defined
as a graph N = (U ,R), where U is the set of users (rep-
resented as nodes), and R is the set of relationships or con-
nections between the users (represented as edges between the
nodes). If two users u, v ∈ U are related or connected in the
social network, then there exists an edge ruv ∈ R in N . �

Definition 2: (Location): A location l is defined as a geo-
graphic place on earth marked by its geographic coordinates,
(latitude, longitude) = (l.lat, l.lon). �
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TABLE 1. A sample of data from Brightkite dataset.

Definition 3: (Check-In) A check-in c is defined as an
explicit record of a location c.l visited by a user c.u at
time c.t . �

Definition 4: (Location-Based Social Network):A location
based social network (aka LBSN) is defined as a graph L =
(U ,R,C), where U is the set of users (represented as nodes),
R is the set of relationships or connections between the users
(represented as edges between the nodes), and C is the set of
all check-ins logged by the users in U . �

B. PROBLEM STATEMENT
We consider few selected major types of locations, defined
in Definition 5, in our problem. These locations types are
broadly of either public space or private space in nature.

Definition 5: (Location Type): The type of a loca-
tion l is defined to be one of the following: i) Pub-
lic - Education/Workspace, ii) Public - Marketplace,
iii) Public - Recreation spot, iv) Public - All-time operational,
v) Private - Workspace, and vi) Private - Residence. This
complete set of types is denoted by T . �

Definition 6: (Location Type Inference): Given an LBSN
L, a location l, and a set of location types T , the problem of
location type inference is to identify the type of l as one of
the types in T on the basis of L. �

Our aim is to identify the different types of regions based
on the analysis of the patterns found in the location based data
which consists of (latitude, longitude) coordinates and the
time stamps at which the users checked-in. The users check-in
at different places and so do their friends. If multiple different
and non-related group of friends are present at a location in
the same time-period, it can be intuitively concluded that the
location and its surrounding region is a public area; further
public areas can be classified into different types based on
active time periods like the location which is 24 hours active
can be a hospital complex or a multipurpose building.

III. GEO-SOCIAL PATTERN MINING
The section presents a two-step geo-social pattern mining
method to compute frequent co-located friendship compo-
nents. With the mined user components information, location
types can be initially classified as either public or private.

A. DATA PREPROCESSING
Location based dataset provides two types of information
- i) details about the location where users checked in,
and ii) user social friendship/graph data. The check-in data

actually contains information not being used. Therefore data
cleaning is applied first. Initially, each tuple contains: node id
(users who checked in), time stamp (time and date of check-
in), check-in latitude and longitude, and check-in location
id. The processed data instead consists two dictionaries Du
and Dt : Du contains the location coordinates as key, and
the array of user ids who checked in at the corresponding
location as value; Dt contains the location coordinates as
key, and the array check-in times as value. Further, time and
location coordinates are indexed according to rounded values
to consider them as ranges. Specifically, minutes and seconds
are truncated so time slots per day is reduced to 24 hours.
Similarly the location coordinates (longitude, latitude) are
rounded to deliberately group close-by users.

Example 1: Table 1 below shows a sample representation of
the processed data. The first column contains the key shared
in both Dt and Du, and the remaining columns contain their
respective values. �

B. IDENTIFYING FREQUENT CO-LOCATED USERS
To conduct frequent pattern mining, the following definitions
are introduced:

Definition 7: (Co-Located Users): Two users ui and uj are
said to be co-located, if both ui and uj have checked-in at the
same location in the same time range at least once. �

Definition 8: (Co-Location Support): Co-location support
colsup(ui, uj) between two users ui and uj is defined as the
count of locations checked-in by both ui and uj in the same
time range. �

Definition 9: (Frequent Co-Located Users): Two users ui
and uj are said to be frequent co-located, if the co-location
support colsup(ui, uj) is greater than or equal to a predefined
minimum support threshold minsup. �

The co-located users refer to the users who are checking in
at the same location and in the same time range, and the basic
parameter of minimum support is used to define the degree
by how frequently the users are co-located.

Example 2: Consider Table 1. The support count of the
set of user-ids (1697, 969, 875) is 3, as they appear together
3 times. �

In this step, we mine the set of all the frequent co-located
usersF from the constructed dictionaryDu. Apriori algorithm
can be applied for this task, but it requires n+ 1 scans of the
set of locations L, where n is the length of the longest pattern.
Instead, our mining approach is developed based on the ideas
of FP-growth algorithm [7]. It requires only two passes of
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FIGURE 1. FP-Tree construction from the sample data given in Table 2: (a) shows the FP-Tree constructed after traversal of LID = 1, similarly
(b) and (c) show the FP-Tree after LID=2 and LID=3, and (d) shows the final FP Tree constructed.

TABLE 2. A sample data of Location IDs (LID) and their associated
User IDs.

the location database which is much faster. Following the
divide and conquer approach, it first compresses the data in
the form of an index structure called FP-Tree and then divides
the indexed data into a set of conditional patterns. Each of the
conditional patterns are mined for the frequent co-located
users recursively.
FP-Tree Construction: Check-in data are indexed by an

FP-Tree first. The tree represents the co-located users in a
compressed manner. Its construction starts with a scan of all
the locations in the dictionary Du. All the unique users are
identified, and if their support is greater than minsup they are
retained as frequent users F . All the users in F are sorted in
the descending order of their support count. Denoted by F1,
this is the list of frequent co-located users of length 1. The
root of the FP-tree is created and labelled as ‘‘null’’. For each
check-in transaction Trans corresponding to a location in L,
the frequent users in Trans are sorted and selected according
to the order of F1. This sorted list is denoted by [p|P], where p
is the first element andP is the remaining list. [p|P] is inserted
into the tree Tree as follows. If Tree has a child N such that
N .userId = p.userId , then N ′s count is incremented by 1;
else a new node N is created with a count initialized to 1,
linked to its parent Tree, and linked to all other nodes with
the same userId via the node-link structure. If P is nonempty,
P is recursively inserted to N in the same manner. Table 2
and Figure 1 illustrate the construction of the FP-Tree and
Table 3 shows the mined frequent co-located users from the
tree. The details of the approach are given in Algorithm 1. The
input to the algorithm are the FP-Tree, an empty set α for the
of frequent users obtained so far, and the minimum support
threshold minsup. If the tree contains a single path, then all
possible combinations of the nodes (representing users) β
in the path are formed, and β ∪ α are accepted as frequent
co-located users with support = minsup. Otherwise, the

Algorithm 1Mining Frequent Co-Located Users
Input: FP-Tree Tree, minimum support count threshold
minsup
Output: Complete set of frequent co-located users F
1: procedure FP-growth(Tree, α,minsup)
2: if Tree contains a single path P then
3: F ← initialize an empty set
4: for all combination (denoted as β) of the nodes

in the path P do
5: F ← F∪ pattern β ∪ α with support count =
minsup of nodes in β

6: Return F
7: else
8: for all ai in the header of Tree do
9: generate patternβ = ai∪αwith support count
= ai.support count

10: construct β’s conditional pattern base and
FP_tree Treeβ

11: if Treeβ /∈ φ then
12: call FP-growth(Treeβ , β)

co-location patterns are generated as β = ai ∪ α correspond-
ing to each header ai ∈ FP-Tree, their conditional FP-Trees
are constructed from their conditional pattern bases. If those
trees are non-empty, the FP-growth algorithm is recursively
applied on them to obtain the final frequent co-located users.

C. COMPUTING CO-LOCATED FRIENDSHIP COMPONENTS
The frequent co-located usersF mined in the previous section
are stored in the form of another dictionary Df , where loca-
tion is the key, and the array of maximal frequent co-located
users as value. It captures the spatial patterns of users. In this
step, we further mine geo-social patterns from spatial patterns
by exploring the social relationships among the frequent
co-located users F . The relationships between each pair of
users in each record of Df are checked against the social net-
work in L to extract the connected components of users cor-
responding to each location. Algorithm 2 based on depth first
search (DFS) shows the method for connected components
discovery. It takes the dictionaries of frequent co-located
users Df and the user friendships W as input, and produces
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TABLE 3. Mining the FP-Tree constructed in Figure 1.

Algorithm 2 Computing Co-Located Friendship
Components
Input: Dictionary of frequent co-located usersDf , Dictionary
of user friendships Dw
Output: Array of number of friendship components C
1: procedure ColocatedFriendshipComponents
2: C, s ← initialize an empty array of size size(F) and

an empty stack
3: for all f ∈ Df do
4: mark all users u ∈ Df .value(f ) as not-visited
5: for all u ∈ Df .value(f ) do
6: if u is not visited then
7: mark u as visited
8: push u into s
9: C(f )← C(f )+ 1
10: while s is not empty do
11: v← pop an element out of s
12: for all w ∈ W .value(v) do
13: if w is not visited then
14: Mark w as visited
15: Push w into s
16: Return C

the output C as an array containing the number of components
at each location. It starts with initializing an empty array
with values set to zero for the number of components, and an
empty stack to be used for the DFS-based exploration of the
friendship network (line 2). For each record (set of frequently
co-located users corresponding to one location-time entry),
all the users are initially marked as not-visited (line 4). Then
each not-visited user is accessed (lines 5-6), marked visited
(line 7), and pushed into the stack (line 8). Each such non-
visited user increments the count of the number of friendship
components obtained so far (line 9). Upon accessing each
user, all the elements in the stack are explored until the
stack becomes empty (lines 10-15). While processing, each
element v is popped out from the stack (line 11), all other
not-visited users w related to v in the friendship dictionary
Dw are accessed (lines 12-13), marked visited (line 14), and
pushed into the stack (15). Upon its completion of execution,
the array C would have the total number of friendship com-
ponents for each location-time record, and therefore, returned
(line 16).

PUBLIC AND PRIVATE PLACES
With the mined user components information at each loca-
tion, the public and private location types can be identified

from the rationale that generally the public places have vis-
itors of different backgrounds or socially disconnected with
each other, whereas the private places are visited by peo-
ple who are similar or socially connected with each other.
For instance, a place is marked as public, if its number of
friendship components is greater than or equal to a prede-
fined threshold ε (determined experimentally). Otherwise,
it is marked as private.

Example 3: Figure 2 illustrates the idea used to mark the
places as public and private. The data is a sample from our
BrightKite dataset, continuing fromTable 1. The nodes in
the figure represent the obtained frequent co-located users at a
particular location. The nodes in the same color are connected
together via the friendship relation in the social network.
The first figure shows the frequently co-located users at a
particular location. As nodes 0, 12, 43, and 969 are connected
together, they form one co-located friendship component.
Similarly, three other components are obtained from this
sample, and therefore marked as public. �

FIGURE 2. Illustration of computing co-located friendship components.

IV. TEMPORAL PATTERN ANALYSIS
After classifying locations into private and public by
geo-social pattern mining, we further analyze the temporal
patterns to determine the final types of private locations
(e.g. residence and work studios) and public locations (e.g.
marketplace, corporate area etc.). As the temporal analysis is
data-centric, we start with introducing the datasets (also used
in experiments).

A. DATASET
We use the publicly available datasets of Brightkite1

and Gowalla.2 BrightKite was a popular LBSN dur-
ing 2007-2012. This dataset consists of two files, each
for the check-in data and the friendship network. The
check-ins data consists 4,491,143 check-ins over the period

1https://snap.stanford.edu/data/loc-Brightkite.html
2https://snap.stanford.edu/data/loc-gowalla.html
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FIGURE 3. Trends showing frequencies of hourly check-ins for main time zones of USA.

TABLE 4. Time-intervals for for weekdays.

TABLE 5. Time-intervals for weekends.

of April 2008 - October 2010, and the friendship network
consists of 58,228 nodes and 214,078 undirected edges,
where the nodes represent the users and the edges repre-
sent bi-directional friendships between users. Gowalla was
another LBSN similar to Brightkite. This dataset con-
sists of 196,591 nodes (users) and 950,327 edges (friend-
ships) in the friendship network, and 6,442,890 check-ins
over the period of Feb. 2009 - Oct. 2010.

B. TEMPORAL SEGMENTATION
All check-ins are normally recorded in LBSN in a stan-
dard time zone. Therefore the recorded time is generally
different than its local time. Both the BrightKite and
Gowalla datasets provide time in the UTC format. The
check-ins in most of regions are sparse. Therefore, we create
a smaller datasets by extracting region between 75◦W −
135◦W , which covers most of North America. The extracted
region is divided into four main time zones EST, CST, MST,
and PST. So, before conducting temporal analysis, we convert
check-in times of all extracted locations from UTC to local
time corresponding the check-ins to local events.

The temporal analysis starts with grouping the hourly
time-slots that follow the same check-in pattern. For example,
the evening hours may have a large number of check-ins, con-
veying that these hours having similar number of check-ins
should be considered in the same time-interval. To properly
group hourly time-slots into time-intervals, we use the elbow
method, as illustrated in Figure 3. Figure 3(a) shows the fre-
quency of check-ins in each hour of the day, across different
region time-zones and for both weekdays andweekends in the
BrightKite dataset. In each of the line curves, we con-

sider all the peaks and troughs as candidates for potential
boundaries of time-intervals. Between each pair of consecu-
tive peak and trough, the slope of the line connecting them
is calculated from Slope(Mi,Mi+1) =

|freqi−freqi+1|
|houri+1−houri|

, where
M is the list of consecutive peaks and troughs, freqi is the
frequency of check-ins in the hour of the i-th candidate, and
houri is the hour of the i-th candidate. Figure 3(b) shows the
lines connecting the consecutive candidates and their slopes.
The lines with steep slopes indicate a significant deviation
in the check-in patterns, whereas lines with gentle slopes
indicate an insignificant deviation. We experimentally set
the slope thresholds, separately for the weekdays as θwd =
2000, and weekends as θwn = 1000, over all time zones.
Weekdays and weekends are separated due to the large dif-
ference in their usual check-in patterns. Moreover, to form
the time-interval segments, consecutive time ranges for which
the slopes do not reach the threshold are merged. While the
solid lines in the figure, showing slopes above the threshold,
are accepted as segmentation points; the dotted lines, hav-
ing slopes below the threshold, are rejected. Table 4 and 5
show the final formed time-intervals with their corresponding
notations.

C. LOCATION TYPE IDENTIFICATION
The final step is to further categorize public/private locations
from temporal patterns. For example, if a public location
l ∈ L has active night hours, intuitively we may say that l
belongs to some stadium grounds organizing evening con-
cert events. With such observations, we manually establish
a relationship between the check-ins patterns of a location
at different time-intervals and the possible types, shown
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TABLE 6. Possible public and private types based on weekdays.

TABLE 7. Final public types based on weekdays.

TABLE 8. Final private type based on weekdays.

TABLE 9. Possible public and private types based on weekends.

in Table 6. These relationships are based on real scenarios,
realistic assumptions, and the existing related works on func-
tional zones [8]–[10]. The table differentiates both public and
private places. The second column shows different types of
places based on the time of check-in along with their possible
ranking (lower the order in brackets, higher is the possibility
of the type of place). If a location has been identified as a pub-
lic place and been active from 6am to 2pm (interval A), it is
marked as a place of education like school or workplace (1).
If the same location has been identified as a private place,
it is marked as workplace with highest likelihood (1) and
residence with the second highest likelihood (2). The table
also considers if a location has been active in multiple time
intervals. If a location has been active in intervals A as well
as B and is public, then it is marked as a place of education
or workplace with highest likelihood (1), market with second
highest likelihood (2), and recreation with third highest like-
lihood (3). If the same location has been identified as private,
then it is marked as workplace with highest likelihood (1),

and residence with second highest likelihood (2). In the same
way, we consider all possible combinations and present the
possible types in the table along with their rank likelihood.
This table is further simplified in Table 7 and 8, by clubbing
together the time-interval combinations that show the same
top-ranked types, resulting in the union of time-intervals. For
example, if there are check-ins at a location in time-intervals
A, B, and C (represented as {A∩B∩C}), or in time-intervals
A andB (represented as {A∩B}), or inA, above the threshold,
we can intuitively conclude that there is a high possibility of
the region being an educational or work space like corporate
offices area (therefore, marked by 1). Next possibility is a
marketplace or mall area or some other area that provides
various services/amenities (marked by 2), and the least pos-
sible is the area of recreation like restaurant, resort, club, etc.
(thus, marked by 3). The rankings of super-set categories are
given higher priority when clubbing and searching for final
types. Table 9 simply shows the possible location types during
weekends.
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V. EXPERIMENTS
In this section, we present the details of our experimental
evaluation. Section V-A presents our evaluation strategy, and
Section V-B presents our experimental results.

A. EVALUATION STRATEGY
We compare the results obtained by geo-social-temporal min-
ing with that of manually created Gold standard benchmark,
using the metric mean reciprocal rank (MRR) that focuses
mainly on the rank of inferred location type. Its value is
calculated as shown in Equation 1, where G is the set of gold
standard and ranki is the rank of ith location type of G in the
ranked list of inferred location types. Further, MRR ratios are
measured by comparing the expected (Gold standard, created
manually) and observed (inferred by our proposed method)
type of locations for several sets of locations. The higher the
measure, the better the result quality.

MRR =
1
|G|
×

|G|∑
i=1

1
ranki

(1)

Example 4: Let us consider a gold standard gi = market ,
which is the actual type of a location li identified manually.
Let observed = {recreation,market, education/workspace,
residence} be the ranked set of types of li inferred by the
proposedmethod, where recreation has the highest likelihood
(1) and residence has the lowest (4). MRR for this single
location is calculated as 1

rank (market) in observed =
1
2 =

0.5. MRR of multiple locations is computed as the average of
their individual MRR values. �

To perform the evaluation, we first manually create a Gold
standard, for nine sets of locations for Brightkite and another
nine sets for Gowalla. This is done as follows. In the first
set, we identify the 10 most visited locations in the overall
considered data (10 for Brightkite and 10 for Gowalla, sep-
arately), manually identify their types, and consider them as
a Gold standard. The second set is created by selecting the
10 most visited locations that are inferred as public by our
method (10 for Brightkite and 10 for Gowalla, separately),
their types are manually identified and considered as a Gold
standard. The third set is created in a similar way for private
locations. Similarly, there are six more sets, each set for one
particular category {Education/Workspace (public), Market
(public), Recreation (public), All-time operational (public),
Workspace (private), Residence (private)}. With these Gold
standard types, we compare the types inferred by our method,
using MRR.

B. EXPERIMENTAL RESULTS
In this section, we present our experimental results in two lev-
els. First, the initial results are presented, where the check-in
locations are identified as public or private locations, and
then the results of the exact inferred type of locations are
evaluated.

Figure 4 shows the public and private locations for Chicago
region, here we can see that for both Brightkite (Figure 4(a))

FIGURE 4. Locations identified as public and private in Brightkite and
Gowalla Datasets.

and Gowalla (Figure 4(b)) dataset, the type of locations
identified as private and public are similar. Also in general,
public locations are surrounded by private locations and as we
move towards the centre of the city, the frequency of public
locations increases implying the general region distribution
of a city, thus validating our results.

Further, we show the trend of check-ins when only public
vs private division in the dataset has been done for both
Brightkite and Gowalla in Figure 5. The number of check-ins
for each time zone in both the datasets show similar kind of
trend. The dashed lines show that the number of weekday
check-ins is larger than that of the weekend check-ins (repre-
sented by dotted lines), which is also evident as the number
of weekdays are more than weekend days. Observe that the
trend for weekdays vs weekends check-in is similar for all the
four regions of different time zones. The private and public
locations show the same pattern as well.

Table 10 presents the MRR measures obtained for the
different types of locations in both Brightkite and Gowalla
datasets. The measures are obtained for the 10 most visited
locations of each type shown with IDs a-h, by comparing
the location type inferred by the proposed method to the
Gold standard created manually. IDs a-d are the types for the
locations labelled as public, e-f are different types of private
locations, and g-h consider the 10 most visited location in
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TABLE 10. MRR measure of 10 most checked-in locations of different types.

FIGURE 5. Frequency of checkins for the four main time zones of USA
after public private division for Brightkite and Gowalla dataset.

the public and private supersets without delving into further
grained categories. Observe that the MRRmeasures are quite
satisfactory with values ranging from 60% to 100%.

Figure 6 which shows the trend for final location type dur-
ing weekdays of the four regions in different timezones, for
both Brightkite and Gowalla datasets (Solid line represents
Brightkite and dashed line represents Gowalla). In case of
public locations, shown in Figure 6(a), the minimum num-
ber of check-ins are for market/services locations for both
Brightkite and Gowalla, whereas for other types the trend
differs. In Brightkite, a major proportion of check-ins is of
all-time operational type, followed by education/workspace
region and then recreation. And similar pattern follows for
Gowalla dataset as well, with maximum check-ins in all-time
operational area and further less education/workspace check-
ins, followed by market and recreation. In Figure 6(b) for
private locations, the trend of frequency of check-in is oppo-
site for Brightkite and Gowalla, with workspace being more
active for gowalla and residential area for Brightkite users.

Inmany application domains of planning, knowing the type
of locations, such as workspace, residential area, recreation

area, marketplace, or all-time operational service areas, plays
an important role. Traditionally, this kind of tasks were done
manually. But as our cities and frequently travelled places
are expanding rapidly, these tasks demand smarter ways for
automatic profiling of locations. The proposed method solves
this problem by considering the LBSN data. The place identi-
fied as a private location is not fit for some particular class of
activities such as shopping or new entities such as a shopping
centre. On the other hand, the place identified as a public
location is not fit for residence. A further detailed analysis
can be done by considering the specific type, and assessing
its suitability with the proposed activity or entity. The real
estate industry can utilize the location profile obtained by the
proposed method is assessing the value of a property or its
future prospects. Tour organizers or tourists themselves can
make use of the resulting location types of an untravelled city
or country, to plan their spots and stay locations in such a
way that match their interests. One major advantage of such
method in the planning is that one does not require any local
and detailed knowledge of the location, which makes it easy
even for those completely unaware about the city or country.

VI. RELATED WORK
In the past decade, a significant research has been carried
out in mining interesting patterns from LBSN data, aiming
to assist in different application domains, but the problem of
location type inference has remained unexplored. The most
closely related works are hotspot identification [11], POI
inference [12], and functional zones identification [8], all
of which are in an urban context. It makes them inherently
different than the problem considered in this paper. [11]
uses probabilistic topic modelling based approach to extract
hotspots by finding interesting patterns from twitter user tags.
It can help in applications like traffic control management
by detecting crowded regions. [13] gives a detailed analysis
of the different spatial patterns found in city, and provides
a case study on the cities of the U.S. A topic modeling
based approach is used in [8], [12]to find the POIs (places of
interests) and identify various functional zones or different
type of regions (for example educational areas, recreational
areas etc.) in a city. Note that functional zone is a zone of
the city (a city can be divided into different zones), whereas
location type, as studied in the paper, is inherently different
as property of the location. They extend the same problem in
[8] by analyzing human movement trajectories obtained from
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FIGURE 6. Trend showing the frequency of checkins of the four main time zones of USA after temporal segmentation in Brightkite and Gowalla datasets:
Brightkite (B) shown by solid line, Gowalla (G) shown by dashed line.

the source-destination data of public transport commuters
from subways and bus stops. The problem of identifying
functional zones can be further extended to specific domains.
A cluster ranking based framework is proposed in [14] to
form hierarchical generative structures and rank real estate
locations according to size, price etc. In [15], the authors
take into account all the possible factors that affect the tourist
interests in visiting in-home and out-of-town places, to infer
POIs. Further, a framework based on spatio-temporal LDA
is proposed in [16]. [17], [18] find the daily activity patterns
based on spatio-temporal data. [17] uses a statistical method
to find human activity patterns according to different types of
human groups like students, worker and non-worker, the data
for which is obtained by offline survey; and [18] performs
the same task by using a kernel density estimation to identify
the groups and further cluster the activities using k-means
via Principal Component Analysis. A method for mining
the spatio-temporal patterns in scientific data is presented
in [19]. [20] presents a general framework using Apriori
algorithm to identify the spatio-temporal co-occurrence pat-
terns for continuously evolving spatio-temporal events that
have polygon-like representations focused on solar events
and astronomy to forecast weather more accurately. [21]
further improves the efficiency of the approach by introduc-
ing a spatio-temporal index. Similarly [10] employs Apriori
algorithm to mine spatio-temporal patterns among different
regions for location based data based on user trajectories
from incoming and outgoing trends of a region. Other works
include predicting new check-ins based on users’ previous
check-in trajectory [22], prediction of location from human
activity footprints [23], inferring friend recommendations
and analyze social circle [24], inferring demographics of
users by finding patterns of call logs [25], predicting social
relations [26], and inferring different motifs from mobile
users trajectories [27]. [28] and [29] are recent works on
human mobility modeling from LBSN data.

VII. CONCLUSION
In this paper, we proposed a geo-social-temporal mining
approach to infer location types from location based social
networks data. In particular, user check-in data is first
mined to compute frequent co-located users, upon which the

frequent co-located connected components are then mined
from the social graph for each location. The components give
an initial idea about the type of location, as being either public
or private. Finally, the temporal patterns are analysed for a
finer grained classification to narrow down public locations
further into the categories of workspace/education, market-
place, all-time operational and recreation; and private loca-
tions into workspace and residence. Experiments conducted
on real datasets show convincing results on level-by-level
identifications from the generic public/private to specific
location types. A promising future research direction is to
infer location types across multiple heterogeneous LBSNs to
achieve categorization with higher accuracy.
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