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We provide a rich multi-contrast microstructural MRI dataset acquired on an ultra-strong gradient 3T Connectom MRI scanner comprising 5 repeated sets of MRI 

microstructural contrasts in 6 healthy human participants. The availability of data sets that support comprehensive simultaneous assessment of test-retest reliability 

of multiple microstructural contrasts (i.e., those derived from advanced diffusion, multi-component relaxometry and quantitative magnetisation transfer MRI) in 

the same population is extremely limited. This unique dataset is offered to the imaging community as a test-bed resource for conducting specialised analyses that 

may assist and inform their current and future research. The Microstructural Image Compilation with Repeated Acquisitions (MICRA) dataset includes raw data and 

computed microstructure maps derived from multi-shell and multi-direction encoded diffusion, multi-component relaxometry and quantitative magnetisation transfer 

acquisition protocols. Our data demonstrate high reproducibility of several microstructural MRI measures across scan sessions as shown by intra-class correlation 

coefficients and coefficients of variation. To illustrate a potential use of the MICRA dataset, we computed sample sizes required to provide sufficient statistical power 

a priori across different white matter pathways and microstructure measures for different statistical comparisons. We also demonstrate whole brain white matter 

voxel-wise repeatability in several microstructural maps. The MICRA dataset will be of benefit to researchers wishing to conduct similar reliability tests, power 

estimations or to evaluate the robustness of their own analysis pipelines. 
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. Introduction 

The primary aim of this work was to collect, and disseminate to the

euroimaging community, the MICRA (Microstructural Image Compi-

ation with Repeated Acquisitions) data set - a unique and rich multi-

ariate (diffusion, relaxometry, magnetisation transfer) microstructural

RI archive that allows variance and co-variance of measures to be es-

imated between tracts, between multiple time-points and between dif-

erent individuals. 

To provide just one example of the utility of such a dataset, we

resent estimates of sample size calculations that could inform current

r planned future microstructural imaging experiments. With the move-

ent towards “open science ” practices ( Allen and Mehler, 2019 ; Munafò

t al., 2017 ), there is increasing demand to demonstrate a priori that

tudy designs are adequately powered to answer a targeted question.

n turn, this requires an assessment of test-retest repeatability as in-

ut to the sample size estimations. There is also a trend to complement

iffusion-based microstructural measurements with additional measures

hat have enhanced sensitivity to myelin, including those derived from

elaxometry and magnetisation transfer-based approaches ( Ercan et al.,

018 ; Friedrich et al., 2020 ; Geeraert et al., 2019 ; Jung et al., 2018 ;
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ipp et al., 2019 ; Metzler-Baddeley et al., 2017 ; Morris et al., 2020 ;

ddin et al., 2019 ). While it is appealing to collect data across the gamut

f available options, each new contrast takes time (and invokes real cost)

o acquire, and it is important to establish that the measurements are re-

roducible in themselves, and to establish their reproducibility so that,

f necessary, one might prioritise certain image contrasts over others.

here is quite an extensive literature on the reproducibility of single

euroimaging measures (e.g., Papinutto et al., 2013 ; Stikov et al., 2015 ;

iswal et al., 2010 ; O’Connor et al., 2017 ; Vollmar et al., 2010 ; Grech-

ollars et al., 2015 ; Pr čkovska et al., 2016 , Tong et al., 2019 ), focus-

ng predominantly on inter-site reproducibility and with some focusing

n within-site reproducibility. However, to the best of our knowledge,

omparison of the reproducibility of multiple microstructural imaging

easures, measured in the same population, does not exist at the time

cale and sampling frequency presented here. 

The resource provided here to the community addresses this gap,

llowing for detailed assessment of the reliability of measures derived

rom optimised multi-shell diffusion, multi-component relaxometry and

uantitative magnetisation transfer acquisition protocols. Here we com-

ute reliability statistics (intra-class correlation and coefficient of vari-

tion) across three example tracts and individual measures from each
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icrostructural imaging approach. Although these are illustrative exam-

les, these data could be reprocessed and used to compute other parame-

ers from diffusion, relaxometry and quantitative magnetisation transfer

QMT) models. We provide protocols that can be used for power calcu-

ations highlighting the utility of the resource to researchers wishing to

onduct similar reliability tests/ power calculations. However, this rich,

igh quality data resource, acquired on an ultra-strong-gradient Connec-

om 3T system that may not otherwise be readily accessible, will also

e of value to those developing and evaluating new data-processing ap-

roaches (e.g., denoising, clustering, segmentation, joint-estimation and

ractography algorithms). 

. Method 

.1. Participants 

Six neurologically healthy adults (age range 24–30, 3 males and 3 fe-

ales) were recruited from Cardiff University’s staff and student panels.

creening for safety eligibility to undergo MRI scanning was conducted

nd participants received monetary compensation for participation. All

articipation was contingent upon prior written informed consent and

thical approval for this study was granted by Cardiff University’s School

f Psychology ethics committee. 

.2. MRI hardware: ultra-strong gradient 3T 

Whole brain MRI data were acquired using an ultra-strong gradi-

nt (300mT/m) 3T Connectom research only MRI scanner, a modified

T MAGNETOM Skyra (Siemens Healthcare, Erlangen, Germany). Com-

ared to standard MRI gradients (45–80mT/m), the Connectom gradi-

nts allow for shorter diffusion times for a given diffusion weighting

esulting in shorter minimum TEs (greater signal to noise ratio) and

ncreased sensitivity to small water displacements ( Jones et al., 2018 ;

etsompop et al., 2013 ). 

.3. MRI data acquisition 

Each MRI session lasted approximately 45 min (CHARMED = 18 min,

MT = 12 min, McDESPOT = 11 min) and was repeated 5 times within

 two-week period. Care was taken to avoid potential diurnal effects by

erforming scans for each participant at approximately the same time

f day (i.e., within 1–2 h of the same scan start time-of-day). 

The MRI protocol included the following sequences: 

i) Multi-shell diffusion-weighted MRI: single-shot spin echo, echo

planar imaging data were acquired with both anterior-posterior

(AP) and posterior-anterior (PA) phase-encoded directions. The AP-

encoded data comprised of two shells of 20 directions (uniformly-

distributed according to Jones et al., 1999 ) at b = 200 s/mm 

2 and

500 s/mm 

2 , one shell of 30 directions at b = 1200 s/mm 

2 and three

shells of 61 directions at each of b = 2400s/mm 

2 , 4000 s/mm 

2 and

6000 s/mm 

2 , with two leading non-diffusion-weighted images and

a further 11 non-diffusion-weighted images, starting at the 33rd vol-

ume, and repeating every 20th volume thereafter. In the PA-encoded

data, two non-diffusion-weighted images were acquired. The field of

view was 220 × 220 mm in plane, the matrix size was 110 × 110 × 66,

reconstructed to a 110 × 110 × 66 image resulting in 2 × 2 × 2 mm 

3 

isotropic voxels. The TR and TE were 3000 ms and 59 ms, respec-

tively (for all b-values), and the diffusion gradient duration and sep-

aration were 7 ms and 24 ms, respectively. 

ii) Multi-component relaxometry: data were acquired thanks to proto-

type sequences implementing the McDESPOT protocol ( Deoni et al.,

2008 ) with the following parameters: FOV: 220 × 220 × 178.88,

matrix size: 128 × 128 × 104 and 1.72 × 1.72 × 1.72 mm 

3 isotropic

voxels, SPGR: TR: 4 ms, TE: 1.9 ms, 8 flip angles (3, 4, 5, 6, 7, 9, 13

and 18°), SPGR-IR: TR: 4 ms, TE: 1.9 ms, TI: 450 ms, Flip angle: 5°,
full k-space acquisition in PE and slice directions, SSFP: TR: 4.6 ms,

TE: 2.3 ms, Flip angles (10, 13.33, 16.67, 20, 23.33, 30, 43.33 and

60°), SSFP180: as SSFP, but with 180° RF phase increments every

TR. 

ii) Optimised Quantitative Magnetisation Transfer (QMT, Mougin et al.,

2010 ) data were acquired by using a prototype turbo-flash se-

quence with parameters: FOV: 220 × 220 × 178.88, matrix size:

128 × 128 × 104, resolution: 1.72 × 1.72 × 1.72 mm 

3 isotropic vox-

els isotropic, turbo factor 4, radial reordering, non-selective excita-

tion MT pulse duration: 15.36 ms, 11 MT-weighted volumes and 1

vol. without MT-weighting, 11 Frequency offsets (Hz) and 11 flip

angles (degrees): 47,180 (628); 56,360 (332); 12,060, (628); 1000

(332);1000 (333); 2750 (628); 2770 (628); 2790 (628); 2890 (628);

1000 (628); 1000 (628) ( Cercignani and Alexander, 2006 ). 

.4. MRI data pre-processing and processing 

Multi-shell diffusion-weighted data were pre-processed using a

ustom in-house pipeline comprising tools from both the FSL

 Andersson et al., 2003 ; Andersson and Sotiropoulos, 2016 ) and MRTrix

 Veraart et al., 2016 ; Vos et al., 2017 ) software packages and in-house

oftware. Specifically, AP- and PA-encoded images were separately de-

oised (MRTrix dwidenoise, Veraart et al., 2016 ) and drift corrected

 Vos et al., 2017 ), then merged (with incorporated EPI, susceptibility

nd motion correction; FSL topup ( Andersson et al., 2003 ) and eddy

 Andersson et al., 2016 )) corrected for gradient non-linearity distor-

ions ( Glasser et al., 2013 ) with spatio-temporal b-value/vector tracking

 Rudrapatna et al., 2018 ), and finally corrected for Gibbs ringing arte-

acts (MRTrix mrdegibbs, Kellner et al., 2016 ). Subsequent processing

nvolved computation of: (i) free-water corrected fractional anisotropy

FA), mean diffusivity (MD) and radial diffusivity (RD) maps ( Hoy et al.,

014 ) from diffusion tensor MRI using the b = 1000 s/mm 

2 shell (linear

east squares estimation with outlier rejection, Chang et al., 2005 ). Fibre

rientation Distribution Functions (fODFs) were derived from multi-

hell multi-tissue Constrained Spherical Deconvolution (MSMT-CSD,

eurissen et al., 2014 ). Microstructural parameters were estimated from

ll diffusion shells using the CHARMED model ( Assaf et al., 2004 ) us-

ng a nonlinear regression routine employing the Levenberg–Marquardt

ptimization algorithm. 

For McDESPOT data, motion correction was applied to the SPGR and

SFP data using FSL mcFLIRT ( Jenkinson et al., 2002 ) followed by brain

xtraction ( Smith, 2002 ). The QUIT toolbox ( Wood, 2018 ) was utilised

or all subsequent fitting. The DESPOT2-FM model was fitted to estimate

 B0 map ( Deoni, 2009 ), which was used as input for a final fitting to

he 3-pool mcDESPOT model ( Deoni et al., 2013 ), modelling myelin,

xtra-cellular and CSF contributions using the ‘qimcdespot’ function in

UIT. 

QMT data were processed using the QUIT ( Wood, 2018 ) toolbox us-

ng the Ramani model ( Ramani et al., 2002 ). For QMT, the MT-weighted

olumes were aligned to the non-MT contrast for motion correction and

ias correction with B1 maps were applied by computing the B1 field

orrection based on the field estimate from the fifth MT volume, which

as subsequently applied to all MT volumes (FSL FAST, Zhang et al.,

001 ). 

.5. White matter microstructure measures 

The following microstructural measures were computed in each

oxel: restricted diffusion signal fraction (RSF) fitted from CHARMED

nonlinear regression routine employing the Levenberg–Marquardt opti-

ization algorithm, Assaf et al., 2004 ), fractional anisotropy (FA), mean

iffusivity (MD) and radial diffusivity (RD) from diffusion tensor MRI;

yelin water fraction (MWF) and longitudinal relaxation rate (R 1 ) from

he McDESPOT pipeline ( Deoni and Kolind, 2015 ), the macromolecu-

ar proton fraction (MMPF) fitted from the QMT pipeline ( Wood, 2018 ;

amani et al., 2002 ) and magnetisation transfer ratio (MTR) computed
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Fig. 1. Microstructural maps including FA (fractional anisotropy), MD (mean diffusivity, units = mm 

2 /s), RD (radial diffusivity, units = mm 

2 /s), RSF (restricted dif- 

fusion signal fraction), R 1 (longitudinal relaxation rate, units = s − 1 ), MWF (myelin water fraction), MMPF (macromolecular proton fraction) and MTR (magnetisation 

transfer ratio) computed for one representative participant. All contrasts are registered to diffusion space. 
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sing home-grown code. Quantitative maps were subsequently linearly

egistered to the space in which the diffusion MRI data were acquired

‘native space’) using FSL FLIRT (see Fig. 1 for illustration of all maps).

elections of models here are illustrative. The magnitude-reconstructed

aw data are also included in the MICRA dataset, enabling researchers

o explore other modelling options. 

.6. Virtual dissection of tracts 

To assess test-retest repeatability, a white matter projection tract

cortico-spinal), association tract (arcuate fasciculus) and the fornix

ere virtually dissected from whole brain white matter maps for each
Fig. 2. Virtual dissections of the fornix, cortico-spinal tract and arcuate fa
articipant at each time point with probabilistic tractography (MR-

rix iFOD2, 1000 seeds x 5000 streamlines, step size = 0.5 × 2 mm 

3 

oxel size, angular threshold = 90° x step size/voxel size, fODF thresh-

ld = 0.05, Jeurissen et al., 2014 , Fig. 2 ). The fornix was virtually dis-

ected by placing region of interest masks in the anterior hippocampus

nd fornix body. The CST and the arcuate fasciculus were dissected us-

ng TractSeg ( Wasserthal et al., 2018 ) using code available at https:

/github.com/MIC-DKFZ/TractSeg/ . Tractography was conducted in

ach individual subject’s diffusion space. Track density maps (TDI,

alamante et al., 2010 ) of the resultant tracts were computed and

hresholded to exclude voxels through which streamlines passed less

han 20 percent. As an a priori choice, the analysis was restricted to
sciculus dissections in one representative participant (see Methods). 

https://github.com/MIC-DKFZ/TractSeg/
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Table 1 

Test-retest reliability statistics for microstructure measures. Units (mean and SD) for MD 

and RD = 10 − 3 mm 

2 /s; units for R 1 = s − 1 , CV = averaged within subject, ICC = averaged 

across 5 repeated measures. 

Metric Tract Mean SD CV (%) ICC ICC pval r 

FA 0.47 0.005 1.0 0.93 < 0.0001 0.82 

MD 1.00 0.010 0.9 0.94 < 0.0001 0.87 

RD 1.00 0.004 0.6 0.96 < 0.0001 0.88 

RSF 0.13 0.003 2.1 0.88 < 0.0001 0.65 

MMPF Fornix 0.05 0.001 2.6 0.95 < 0.0001 0.85 

MWF 0.07 0.003 4.2 0.95 < 0.0001 0.87 

R 1 0.77 0.005 0.7 0.97 < 0.0001 0.90 

MTR 0.35 0.0004 0.1 0.94 < 0.0001 0.77 

FA 0.55 0.003 0.6 0.97 < 0.0001 0.89 

MD 0.41 0.002 0.5 0.95 < 0.0001 0.81 

RD 0.63 0.001 0.2 0.95 < 0.0001 0.78 

RSF 0.27 0.003 1.2 0.86 0.002 0.52 

MMPF CST 0.09 0.001 1.5 0.97 0.0003 0.74 

MWF 0.16 0.003 1.7 0.97 < 0.0001 0.95 

R 1 1.04 0.004 0.4 0.98 < 0.0001 0.91 

MTR 0.41 0.002 0.5 0.78 0.01 0.37 

FA 0.47 0.005 1.0 0.95 < 0.0001 0.86 

MD 0.47 0.005 1.0 0.96 < 0.0001 0.85 

RD 0.64 0.003 0.5 0.96 < 0.0001 0.81 

RSF Arcuate Fasciculus 0.26 0.004 1.7 0.82 0.005 0.72 

MMPF 0.10 0.002 2.1 0.92 < 0.0001 0.79 

MWF 0.16 0.002 1.4 0.98 < 0.0001 0.93 

R 1 1.07 0.001 0.1 0.97 < 0.0001 0.90 

MTR 0.42 0.003 0.6 0.97 < 0.0001 0.92 

One-way ANOVAs demonstrated no significant differences between ICC computed for 

individual time point pairs or between average ICC and individual time point ICC com- 

parisons for the CST (F(9,70) = 0.74, p = .67) and the Fornix (F(9,70) = 0.19, p = .07). 

Although initially a difference was suggested for the Arcuate Fasciculus (F(9,70) = 2.2, 

p = .03), no comparisons survived correction for multiple comparisons as shown with 

Tukey post-hoc correction. 
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hree tracts in order to show a demonstration of repeatability in one

ssociation, one projection and one commissural pathway. 

.7. Repeatability at the tract-level 

Measures were extracted for each vertex in each streamline and aver-

ged along each tract for statistical comparison. The intra-class correla-

ion coefficient (two-way mixed, absolute agreement) and coefficient of

ariation were computed for average assessment of test-retest repeata-

ility ( Table 1 ) across all repeated scans. 

Moreover, to ascertain whether there was an effect of time on repro-

ucibility (i.e., do those measurements that are more closely-spaced in

ime agree better than those spaced further apart in time?), intra-class

orrelation coefficients were also computed for individual time point

airs across all scan sessions. 

.8. Repeatability at the voxel level 

While our strong preference for microstructural comparisons is to

se a ‘tractometry’-based approach, ( Bells et al., 2011 ; Chamberland

t al., 2019 ) to perform individual/ group microstructural comparisons,

e recognise the prevalence of voxel-based analyses. We therefore con-

ucted a separate analysis of the reproducibility of each metric at the

oxel-level within white matter across the whole brain. This was done by

dopting the white matter skeletonisation approach popularised in the

BSS (Tract-Based Spatial Statistics, Smith et al., 2006 , framework, part

f FSL ( Smith et al., 2004 ). First, and as above, the MMPF, R 1 , MTR and

WF maps for a given participant and timepoint were first registered

o the individual’s native diffusion space using FLIRT ( Jenkinson and

mith, 2001 ). 

Then, FA maps from all subjects at all time-points were aligned

nto a common space using the nonlinear registration tool FNIRT
 Andersson et al., 2007 ; Andersson et al., 2007 ) which uses a b-spline

epresentation of the registration warp field ( Rueckert, 1999 ). Next, the

ean FA image was created and thinned to create a mean FA skele-

on which represents the centres of all tracts common to the group.

ach subject’s aligned FA map was then projected onto this skeleton

n MNI space. The nonlinear warps and skeleton projections generated

or FA were applied to the corresponding non-FA maps (already in dif-

usion space) to create white matter skeletons in MNI space for these

dditional metrics. Prior to analysis, a further thresholding step was

pplied. Specifically, each voxel in the skeletonised data was only re-

ained for further analysis if, in that voxel, all 5 participants at all six

ime-points had an FA > 0.2. This was to provide enhanced assurance

hat the analysis was restricted to white matter. For each metric, the

earson correlation was then conducted across all voxels in the thresh-

lded skeleton between each possible pair of time-points to assess the

epeatability across whole brain white matter. 

.9. Demonstration of sample size estimation 

To further illustrate the utility of the reproducibility data, we con-

ider the minimum number of subjects needed to reach statistical power

f 0.8 and significance of 𝛼 = 0.05 for two different types of statistical

ests routinely carried out in the neuroimaging literature, as outlined

elow (power calculations were computed using G 

∗ Power, see Supple-

entary 2, Faul et al., 2009 ): 

i) Independent groups t-test (e.g., for comparing a group of patients to a

group of healthy controls). Here, we evaluate the numbers of subjects

needed to detect a 1% and 5% group difference in each microstruc-

tural metric. This was done for all measures and tracts according to

means and standard deviations presented in Table 1 ( Fig. 4 ). The

minimum n was computed by inputting the percentage change from

the mean and standard deviations into G 

∗ Power. 
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Fig. 3. Intra-class correlation coefficients (two-way 

mixed, absolute agreement) for test-retest repeatability 

of microstructure measures measured 5 times in 6 par- 

ticipants. ICC = intra-class correlation, CST = cortico- 

spinal tract, FA = fractional anisotropy, MD = mean 

diffusivity, RD = radial diffusivity, RSF = restricted dif- 

fusion signal fraction, MMPF = macromolecular proton 

fraction, MWF = myelin water fraction, R 1 = longitu- 

dinal relaxation rate, MTR = magnetisation transfer ra- 

tio. 

Fig. 4. Voxel-wise whole brain white matter Pearson correlations are presented between individual time points for voxels pooled across all subjects, r = Pearson 

correlation coefficient, p < .0001 for all plots. Fig. 4.1 Fractional Anisotropy (FA), Fig. 4.2 Mean Diffusivity (MD), units = 10 − 3 mm 

2 /s, Fig. 4.3 Radial Diffusivity 

(RD), units = 10 − 3 mm 

2 /s, Fig 4.4 Restricted Signal Fraction (RSF), Fig. 4.5 Macromolecular Proton Fraction (MMPF), Fig. 4.6 Myelin Water Fraction (MWF), Fig. 

4.7 Longitudinal Relaxation Rate (R 1 ), units = s − 1 , Fig. 4.8 Magnetisation Transfer Ratio. For the 2D scatter plots, the colour scale denotes the number of voxels in 

each joint histogram bin. The univariate histograms on the diagonal show the distributions of voxels of a given metric across all voxels (subject to the inclusion 

criteria described in ‘Methods’) for each scan. 

(  

 

 

 

 

3

 

a  

f  

f  
ii) Group (2) x Time (2) between-within groups ANOVA (e.g. , for showing

that there is a difference in the longitudinal evolution of a metric between

two groups). This was estimated across all measures and tracts at

small, medium and large effect sizes ( Fig. 5 ). Pearson correlation co-

efficients were used to account for the correlation amongst repeated

measures for sample size estimation ( Table 1 ). 
. Results 

Microstructural maps computed for one representative participant

re presented in Fig. 1 . Fig. 2 shows a typical reconstruction of the

ornix, arcuate fasciculus and cortico-spinal tracts, which were success-

ully dissected bilaterally for each MRI session for each participant.
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Fig. 4. Continued. 

Fig. 4. Continued. 
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Fig. 4. Continued. 

Fig. 4. Continued. 
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Fig. 4. Continued. 

Fig. 4. Continued. 
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Fig. 4. Continued. 

Fig. 5. ICC coefficients for whole brain white matter voxels pooled across all participants. Error bars represent the lower and upper bound confidence intervals. 
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Fig. 5. Continued. 
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or one participant, calculation of a robust estimate of MWF failed for

ne session, while for another participant, calculation of the MMPF was

ot robust in one session. Thus, these values were not included in the

nalyses. 

.1. Repeatability at the tract level 

The coefficients of variation (CV) were overall low, ( Table 1 ), rang-

ng from 0.2 to 4.2%. Intra-class correlations ranged from 0.78 to 0.98

ith all demonstrating a high degree of repeatability ( Table 1 , Fig. 3 ).

stimated sample sizes for an independent groups t -test to measure a 1%

nd 5% group difference are presented in Fig. 6 and for a 2 × 2 between-

ithin ANOVA to measure small, medium and large effect sizes in Fig. 7 .

The CV values in Table 1 represent the averaged within-subject coef-

cients of variation. ICC values presented in Table 1 and Fig. 3 represent

he two-way mixed effects, absolute agreement with multiple measure-

ents ( Mcgraw and Wong, 1996 ) estimated by the below equation: 

CC = 

M S R − M S E 
M S R + 

M S C −M S E 
𝑛 

S R = mean square for rows; MS E = mean square for error; MS C = mean

quare for columns; n = number of subjects (see Koo and Li, 2016 , pp.

57 for detailed breakdown of equations for ICC). 

.2. Repeatability at the voxel level 

Fig. 4 shows the analysis of repeatability at the voxel-level, for all

oxels on the white matter skeleton (see Methods). For each metric,
oxelwise whole brain white matter Pearson correlations are presented

etween individual time points for voxels pooled across all subjects, with

 colour scale denoting the number of voxels in each joint histogram bin.

dditionally, univariate histograms show the distributions of voxels of

 given metric across all voxels. 

In terms of the Pearson correlation coefficient, the most reproducible

etric is FA with all pair-wise r > 0.95 (which is unsurprising given that

he FA was used to drive the skeletonisation process). The heatmap rep-

esentation of the joint histograms show that, despite some considerable

catter, the vast majority of data points lie along the line of identity. For

he other metrics: R 1 ( r > 0.93) shows superb reproducibility. RSF ( r >

.85), MMPF ( r > 0.84), MTR ( r > 0.81), MWF ( r > 0.88) and RD ( r >

.84) also show good performance. The lowest reproducibility is for MD

 r > 0.62). 

To further ascertain whether there was an effect of time on repro-

ucibility (i.e., do those measurements that are more closely-spaced in

ime agree better than those spaced further apart?), intra-class correla-

ion coefficients were computed for individual time point pairs across

ll scan sessions ( Fig. 5 ). 

.3. Demonstration of sample size estimation 

Returning to the tract-based estimates, Fig. 6 shows estimated sam-

le sizes for statistical designs required to reach a power of 0.8 and

ignificance 𝛼 of 0.05 for independent groups t -test in the fornix, cortico-

pinal tract and arcuate fasciculus for the different metrics. Clearly the

umber of subjects required varies by an order of magnitude depending

n which pathway is examined and which metric is used. A similar het-



K. Koller, U. Rudrapatna, M. Chamberland et al. NeuroImage 225 (2021) 117406 

Fig. 6. Estimated sample sizes for statistical designs re- 

quired to reach a power of 0.8 and significance 𝜶 of 0.05 

for independent groups t -test in three white matter tracts 

across several microstructure measures. Sample sizes were 

estimated for 1% and 5% group differences according to 

means and standard deviations presented in Table 1 . The 

standard deviations were assumed to be constant across 

groups. 
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rogeneity of required sample sizes is seen when powering for ANOVA

nalyses ( Fig. 7 ). 

. Discussion 

We present this paper as an introduction to MICRA – a multi-variate

icrostructural dataset collected on an ultra-strong gradient Connec-

om 3T MRI scanner. We offer the MRI community access to this MRI

rchive as a test-bed for conducting specialised analyses where access to

epeated measures of multi-contrast MRI data may help to inform cur-

ent and future research. As a demonstration of a possible application

f our MRI archive, we explored the reproducibility of microstructural

easures, including intra-class correlations and coefficients of varia-

ion, across multiple white matter tracts. Additionally, we presented es-

imates of samples sizes required for an independent groups t -test and a

roup(2) x Time(2) ANOVA to reach statistical power of 0.8 and signif-

cance of 𝛼 = 0.05 for various effect sizes across white matter measures

nd tracts. 

Virtual dissections performed with probabilistic tractography

iFOD2, Jeurissen et al., 2014 , MRTrix) demonstrated the fornix, the

rcuate fasciculus and cortico-spinal tracts in all six participants and

ere replicated for all of the five repeated MRI scans. The overall low

oefficients of variation within participants and the high correlations

mong repeated measures suggest a high degree of consistency of mi-

rostructure measures across repeated tracts and scans. 

Sample size estimations performed for an independent group com-

arison ( t -test) across microstructure measures and tracts demonstrated

imilar patterns of required sample sizes for 1% and 5% increase

hanges, with expectedly larger samples required for demonstrations
f 1% change. The differences in the standard deviation of measures are

eflected in the different sample sizes required. Notably, MWF in the

ornix and in the cortico-spinal tract, and MMPF in the Arcuate Fasci-

ulus demonstrated the largest sample sizes required. Conversely, the

SF, MTR, RD and R 1 in the fornix, the MTR, FA, MD, RD and R 1 in the

ortico-spinal tract, and the RD, MTR and R 1 in the arcuate fasciculus

emonstrated the smallest required sample sizes. Power analyses to esti-

ate sample sizes for a 2 × 2 between-within ANOVA demonstrated that

he measures showed a similar pattern for sample size requirement for

he fornix and the cortico-spinal tract. In these tracts, measures requir-

ng the smallest sample size were the MWF and R 1 . Diffusion measures

FA, RD, MD) and the MMPF required larger sample sizes, whereas the

TR and the RSF required the largest sample sizes to reach a given ef-

ect size. In contrast, the arcuate fasciculus demonstrated a pattern in

hich the diffusion measure required larger sample sizes compared to

 1 and MTR, with MWF requiring the smallest sample size. 

To conclude, we present a rich multivariate archive of microstruc-

ural MRI data acquired on a Connectom 3T MRI scanner. It is important

or researchers to take into consideration that the reproducibility statis-

ics reported here are directly applicable only to scans and analyses that

ollow conditions unique to the present study conducted on a high gra-

ient Connectom MRI scanner. Although this is unique to the present

tudy, the Connectom-acquired diffusion data offers the highest qual-

ty diffusion data available, offering researchers an indication of what

ight be possible in a ‘best case scenario’. 

Data from this study demonstrate that microstructure measures

erived from multi-shell diffusion, multi-component relaxometry and

uantitative magnetisation transfer acquired on an ultra-strong gradi-

nt 3T MRI scanner are reliable as demonstrated by low coefficients of
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Fig. 7. Estimated sample sizes for statistical designs to reach 

a power of 0.8 and 𝜶 of 0.05 in three white matter tracts for a 

Group (2) x Time Point (2) ANOVA. Pearson correlations be- 

tween all 5 sessions were averaged by transformation to Fis- 

cher’s Z ( Fisher, 1915 ) to obtain an average correlation among 

repeated coefficients for each metric ( Table 1 ). Correlation co- 

efficients were used to estimate required sample sizes for each 

metric. 
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ariation and high intra-class correlation coefficients across measures

nd tracts. 
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