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Abstract The evolution of different theories of cognition over the years has given 
mathematics education researchers new tools for highlighting particular 
characteristics of classroom issues to enable more detailed investigation of how 
students learn mathematics. In the past there has been a strong dominance of the 
dualistic view separating body and mind. In recent times, however, the body has 
been given a more central role in shaping the mind. This has led to the situation 
where some long-standing conundrums of mathematics education have become 
more tractable to researchers. Similarly, by using older ideas in new ways, light 
is being shone on what is possible at different stages of development or different 
levels of schooling. In this issue different views of cognition have been mined by 
the authors of different articles to frame studies and analyses or invent and 
apply new tools. They bring new lenses for looking-in on classrooms, a fresh 
view with old lenses and new methodological tools to the fore. Using a small 
selection of the articles of the issue the empowerment that differing views of 
cognition have enabled for mathematics education research is demonstrated. 
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1 Introduction 
Different views or theories of cognition (e.g., neurological approaches, Luria, 
1966, 1973; information processing approaches, Neisser, 1967; Massaro and 
Cowan, 1993; connectionist approaches, Rumelhart and McCelland, 1986) that 
have evolved over the years have given researchers new tools for highlighting 
particular characteristics of classroom issues to enable more detailed 
investigation as different theories foreground some aspects of situations and 
background others (Ernest, 2010). In all these views of cognition there is a 
strong dominance of the dualistic view separating body and mind and the 
internal and external worlds and this is reflected in mathematics education 
research underpinned by these theories (e.g., Schoenfeld, 1987; Stillman and 
Galbraith, 1998). In recent times, however, the body has been given a more 
central role in shaping the mind (Wilson, 2002) spawning a different 
conceptualisation of cognition, namely embodied cognition. This has led to the 
situation where some long-standing conundrums of mathematics education have 
become more tractable to researchers. Similarly, by using older ideas in new 
ways, new light is being shone on what is possible at different stages of 
development or different levels of schooling. In this issue quite disparate views 



of cognition have been mined by the authors of different articles so as to bring 
together new insights and findings. These have been used to frame studies and 
analyses or invent and apply new tools enabling researchers to productively 
examine classroom activity in mathematics education. A selection of the articles 
in this issue will now be examined to illustrate this observation. 

2 New lens for ‘looking-in’on classrooms 

Radford’s sensuous cognition (2009) is typical of the newer conceptualisations 
of cognition which recognises that cognition is both culturally and historically 
constituted. According to Radford (2014), “mind, body, and world are conceived 
of as intertwined entities. Sensuous cognition stresses the idea that our thinking, 
feelings, deeds, and in fact all our relations to the world (hearing, perceiving, 
smelling, sensing etc.), are an entanglement of our body and material and 
ideational culture”. Taking this view, development of cognition is related to 
cultural development of our senses and our multi-modal (e.g., visual-kinesthetic 
and visual-tactile) sensorial experiences of the world. Although Vygotsky and 
Luria (1994) much earlier contended that use of artefacts plays a pivotal role in 
the evolution of our ways of sensing, Radford extends their role from mere 
“mediators of human thinking and experience” to become “a constitutive part of 
thinking” where they have “a cognitive life”.  
Such a conceptualisation of cognition, allows other researchers a new lens for 
“looking-in” (Williams, 2006) on classrooms. Funahashi and Hino (2014), for 
example, investigate the learning culture set up by the teacher to focus students’ 
attention on the important ideas that become the foundation for new 
mathematical content in a lesson. Links to Radford’s sensuous cognition are 
obvious although the authors do not make them in the article.  
These authors show that it is important for teachers to plan both the activities 
being used and the social interaction they will most likely elicit in accordance 
with their lesson objectives. Using the guided focussing pattern proposed by 
Funahashi and Hino, teachers elicit an object of examination that comes from 
important mathematical ideas proposed by the students. This becomes the 
pronounced focus of the lesson that is identified explicitly by the teacher. The 
attended focus is what is being attended to whilst someone is speaking and 
students’ attention can be drawn to it by the teacher by gestures such as pointing 
to inscriptions or hand movement to draw attention to a possible relationship 
between parts of an inscription. Funahashi and Hino recommend that teachers 
use student thinking to “reveal an explicit attended focus that supports… 
development of new learning content”. If the attended focus is not what the 
teacher intended he/she can rephrase, telegraph or extend the students’ focus 
towards the intended focus intentionally using visual or bodily prompts as above. 
Students modify and make sense of the attended focus not only through hearing 
the words of their teacher and peers but also “by examining and attending to the 
inscriptions and gestures” the teacher uses.  
Funahashi and Hino see these teaching practices as playing a critical role in 
controlling students’ attention so as to guide students’ mathematical thinking 
towards the new learning through classroom interaction. The teacher is thus 
productively focussing the students’ mathematical noticing with a clear goal in 
mind. The students’ hearing and perceiving has been deliberately guided by 
voice, privileging of particular student mathematical ideas rather than others, 



and gesture to allow a particular transformation of the knowledge presented and 
constructed to what would be commonly accepted and used, that is, the 
institutionalised knowledge of the mathematics classroom. The cognitive growth 
here is fostered by the cultural development of the students’ senses and their 
multi-modal sensorial experiences of the mathematics classroom orchestrated 
by the teacher. 

3 Taking a new look with an old lens 

Over the years several mathematics education researchers have developed 
various local frameworks of conceptual growth theorising about how actions can 
be transformed into mental objects to achieve cognitive growth. Pegg and Tall 
(2010), for example, suggest this is achieved by the compression of information 
into thinkable concepts, that is, knowledge structures that are coherent enough 
to be conceived of holistically as a unit that can be named and thought about. The 
article by Nunes et al. (2014) dealing with the cognitive demands of 
understanding sample space in probability draws on traditional notions of 
cognition as this understanding is linked to the development of conceptual 
schemas (Anderson, 1995) which are based on schemas of thought. Such thought 
schemas are internalised schemas of action which result in the same sequential 
organization of thoughts that would accompany such external action but the 
person is able to do this, in the mind as it were, without observable actions.  
In order to develop a sample space schema, Nunes et al. note development of a 
combinatorial schema is a necessary, but not sufficient, requirement. They point 
to a “significant role for instruction” in accelerating the development of such a 
schema in 10-11 year olds “using iconic representations of the processes” in the 
form of tree diagrams. They “hypothesize that the origin of the combinatorial 
schema is in the schemas of classification and logical multiplication”. These 
schemas allow the construction of an inventory of all the equally likely outcomes 
in a probabilistic situation but for a problem solver to link them to their 
probability it is necessary to consider whether they should be treated singly or 
grouped depending on the probabilistic events that are the focus. This requires 
classification into favourable and unfavourable cases (in terms of the event being 
explored) and the ratio schema. Nunes et al. suggest that if these young students 
can “learn how to use their old logical multiplication schemas in the context of 
events…they could generate an inventory of cases for sample space problems”. 
Further, they suggest that tree diagrams are a tool that “affords the 
systematicity” needed to facilitate young students’ moving from simplistic to 
challenging problems in the context of probabilistic situations. The tree diagrams 
also facilitate the aggregation of cases that are equivalent in outcomes for the 
event that is in focus. Classification of outcomes into favourable and 
unfavourable cases via this aggregation links to identification of the ratio that is 
relevant to the solution.  
The short teaching intervention used by the authors took these elements into 
consideration. The authors were then able to demonstrate that it is possible to 
help young students link cognitive schemas developed in other mathematical 
contexts to a new concept in another mathematical domain, namely, the concept 
of sample space in the domain of probability. General problem solving skills such 
as those involving problem interpretation and systematic search are insufficient 
to use the previously developed schemas, albeit combined in a new way, in the 



new domain.  The importance of the contribution of the thoughtful design of a 
teaching program to ensure this “acceleration” cannot be under estimated in the 
authors’ opinion. 
4 Fresh eyes with new tools 
Wawro (2014) takes a highly mathematical approach to investigating cognitive 
growth in the form of use of adjacency matrices as a means of capturing 
prevalent structures in reasoning and measuring the centrality of concepts over 
time in exploring how a classroom community reasons to establish meaning at 
the collective level. The context for this investigation was an undergraduate 
inquiry-oriented linear algebra class. The use of adjacency matrices as a 
methodological tool is not new to social science research although I have not 
seen it used before in mathematics education research; however, Wawro takes a 
novel approach to give a quite different picture of conceptual growth as the 
collective shifts in patterns of thinking and reasoning as understanding develops 
across the classroom community. The mathematics that the undergraduate 
students were collectively coming to terms with over a semester was the 
Invertible Matrix Theorem but we will concentrate on identifying the general 
rather than the particular in examining this article. The study contributes to the 
growing body of literature that focuses on the collective learning community 
rather than the individual learner within that community (e.g., Keene et al., 
2012).  
In terms of shifts in argumentation over the semester, when developing ways to 
reason about a new concept such as linear independence, initially there was a 
reliance on explanations as justifications for claims were considered necessary 
as the students grappled with the new idea during discussion. However, as the 
concept became a thinkable concept with a shared collective understanding of 
what it meant, there was less need to continue to unpack it so such explanations 
were soon discarded and the cycle began again for a new concept in the cluster 
of concepts entailed in the topic. The earlier developed concepts then 
underpinned the development of later concepts as the semester advanced. When 
an argument was the basis for reasoning about a new concept or implication 
between two concepts, a variety of interpretations of these concepts was 
observed particularly in justifying perceived implications. On the other hand, 
when arguments used already well-established concepts or connections between 
such concepts, definitive statements about the concept(s) were made rather than 
a variety of interpretations indicating that collective coherence in the knowledge 
structure underpinning the concept, in other words, a collectively shared 
concept image (Tall and Vinner, 1981), had developed. For the particular 
classroom community studied, reasoning about the new concept also involved 
reasoning about the negations of statements about the concept. Measures of 
centrality revealed the particular concepts that were most densely connected 
throughout the semester discussions.  
The use of this research technique could prove useful in the future for identifying 
progression of conceptual growth in over-arching big-ideas through collective 
discussion for other curricular topics. Considering the extent to which collective 
discussion is encouraged these days in teacher education at both the class and 
group level, the technique seems a credible means for researching such collective 
activity. The use of a new tool has given us not only a new theoretical 
understanding of how students come to know through discussion in a collective 



but also a situated view of how students come to know the particular 
mathematical topic through discussion in a collective. 
 
5 Moving forward 
Even with this small sample of the articles of the issue it has been possible to 
demonstrate the empowerment that differing views of cognition have enabled 
for mathematics education research. At times the insistence by the gatekeepers 
of mathematics education research on the necessity of every reporting of a 
research study to have a theoretical framework has appeared to be a straight 
jacket that endangers mathematics education research to becoming an 
irrelevancy as all traces of creativity are quashed in the pursuit of conformity to 
the blinkered vision of others. Here, however, evolution of different views of 
cognition and their adoption by mathematics education researchers has 
facilitated the expansion of knowledge and the moving of the field forward in a 
productive manner.  
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