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Abstract: Efficient routing protocols for data packet delivery are crucial to underwater 

sensor networks (UWSNs). However, communication in UWSNs is a challenging task 

because of the characteristics of the acoustic channel. Network coding is a promising 

technique for efficient data packet delivery thanks to the broadcast nature of acoustic 

channels and the relatively high computation capabilities of the sensor nodes. In this work, 

we present GPNC, a novel geographic routing protocol for UWSNs that incorporates 

partial network coding to encode data packets and uses sensor nodes’ location information 

to greedily forward data packets to sink nodes. GPNC can effectively reduce network 

delays and retransmissions of redundant packets causing additional network energy 

consumption. Simulation results show that GPNC can significantly improve network 

throughput and packet delivery ratio, while reducing energy consumption and network 

latency when compared with other routing protocols. 

Keywords: underwater sensor networks (UWSNs); geographic routing; partial network 

coding; packet delivery ratio; energy consumption  
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1. Introduction 

In recently years, underwater sensor networks (UWSNs) [1,2] have been increasingly used in 

applications such as environmental monitoring, gas deposit exploration and exploitation, 

oceanographic data collection, oil spill monitoring, real-time warship monitoring, and disaster 

prevention. Although in general UWSNs are closely related to Wireless Sensor Networks (WSNs), 

several studies [3–6] have shown that many of the traditional techniques designed for WSNs are not 

applicable to UWSNs. It is the characteristics of the underwater channel—commonly regarded as one 

of the most difficult wireless communication channels—that make the design of efficient routing 

protocols for UWSNs a very challenging task [7]. Key issues with the underwater channel include high 

propagation latency due to the low speed of acoustic signals in water (typically 1500 m/s), severely 

limited available bandwidth, high noise, and high error rates. These issues lead to excessive data 

retransmissions, high energy consumption and low packet delivery ratios, which all contribute to the 

difficulties of designing an efficient and reliable routing protocol for UWSNs. 

Geographic information routing has been widely accepted as a preferred method for routing packets 

in UWSNs as it does not require establishing/keeping complete routes or transmitting routing  

messages [8]. Each node knows its own location and the geographic information of the destination 

node and consequently can forward data packets to a locally optimal next-hop node closest to the 

destination node. As a result, geographic routing protocols are reasonably simple and scalable to large 

UWSNs, however they also suffer from serious drawbacks such as sparse network density, void 

communication regions, and inaccurate positioning of nodes, which also lead to excessive 

retransmissions, high energy consumptions and low packet delivery ratios. Therefore, one particular 

design goal of geographic information routing protocols for UWSNs is to minimize power 

consumption, while achieving high packet delivery ratio. 

Ahlswede et al. [9] proposed a new information theory technique—network coding—to tackle the 

issues of power consumption and packet delivery ratio in multicast applications. Ever since its 

inception, a substantial number of researchers [10–12] have studied the benefits of network coding in 

wireless networks. Network coding allows each relay node to first encode received packets before 

forwarding the encoded data, which essentially decreases the size of transferred data, reduces the 

energy consumption at nodes, and improves the network bandwidth utilization, all contributing to the 

extension of the network lifetime. Network coding is also a promising technique for reducing data 

retransmissions and energy consumptions and for improving packet delivery ratio and network lifetime 

in UWSNs [13]. Because underwater sensor nodes possess more computational capabilities than those 

in wireless networks and furthermore the broadcast nature of underwater acoustic channels renders 

multiple routes from a source to a destination, the multiple routes coupled with the exceptional 

computational powers of the sensor nodes provide ample opportunities to apply network coding to 

geographic information routing in UWSNs. 

Network coding can be illustrated by a well-known pattern shown in Figure 1, where two nodes A 

and C exchange data packets x1 and x2 via a relay node B. When node B receives packages x1 and x2 

from nodes A and C respectively, it broadcasts 21 xx ⊕  (their binary XOR) to both nodes A and C. 

When node A receives 21 xx ⊕ , it uses its knowledge of x1 to retrieve x2. In a similar spirit, when node 

C receives 21 xx ⊕ , it uses its knowledge of x2 to retrieve x1. 
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Figure 1. A network coding pattern. 

However, with the traditional full network coding technique as illustrated by Figure 1, nodes in a 

network have to wait for the data packets from all other nodes to arrive before starting decoding, which 

inevitably increases the network delay. To tackle this issue, Wang et al. [14] proposed the partial 

network coding (PNC) solution that can effectively reduce the network delay. In this work, we propose 

GPNC, a novel geographic information routing protocol that adopts partial network coding for 

efficient forwarding of data packets through reducing retransmissions and network delays and 

improving data delivery rates. The GPNC protocol employs a novel forwarding strategy to route data 

packets to any destination node by choosing candidate forwarding nodes according to each node’s 

normalized packet advance and its residual energy in order to appropriately balance energy efficiency 

and data delivery rate. Simulation results show that GPNC can significantly improve network 

throughput and packet delivery ratio, while reducing energy consumption and network latency when 

compared with other routing protocols. 

The rest of this paper is organized as follows: Section 2 reviews previous work on geographic 

information routing and network coding. Section 3 describes the network model and the partial 

networking coding model. Section 4 presents the GPNC routing algorithm, followed by its 

performance evaluation in Section 5. Finally, Section 6 concludes the paper with a summary of major 

contributions and future work. 

2. Related Work 

In this section, we review some of the important existing geographic information routing protocols 

and network coding schemes for UWSNs. 

2.1. Geographic Information Routing 

Geographic information routing uses the location information of sensor nodes to forward data 

packets from a source node to a destination node. Yan et al. [15] proposed the Depth Based Routing 

(DBR) protocol, which can extend the lifetime of an entire UWSN by addressing in the depth direction and 

performing routing adjustment based on depth difference. However, the DBR protocol is only suitable for 

relatively dense networks as the depth of two nodes are not significantly different in sparse networks.  

Xie et al. [16] contributed the Vector-Based Forwarding (VBF) protocol, where during a routing 

process, each node does not need to save status information; instead it uses a forwarding factor to 

calculate the suppression time before forwarding is carried out in order to increase network energy 

efficiency by avoiding unnecessary forwarding, while the routing information is included in each data 
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packet. However, the VBF protocol is also susceptible to network density, which impacts on the 

efficiency of creating a pipe from a source node to a destination node as there may be few nodes in a 

pipe for forwarding packages. In addition, the radius of pipe may significantly influence the routing 

performance. Nicolaou et al. [17] later presented the Hop by Hop VBF (HH-VBF) protocol to alleviate 

VBF’s problem of finding no forwarding node by creating a routing pipe for each forwarding node and 

by adopting redundant control in a self-adaption process. As a result, HH-VBF outperforms VBF in 

terms of both node energy consumption and data delivery rate. 

The Focused Beam Routing Protocol (FBR) [18] is another protocol based on location information, 

which aims to reduce energy consumption in data transmission by restraining flooding of packets. It is 

suitable for both mobile and static UWSNs as it does not require synchronizing clocks at the sensor 

nodes. The Multi-Path Routing (MPR) protocol [19] solves the data collision problem at receiving 

nodes by preventing them from receiving packets from different relay nodes through constructing a 

routing path consisting of multiple subpaths between the source node and the destination node. 

Compared to both the VBF and HH-VBF protocols, the MPR protocol shows a higher throughput in 

dense networks but at the same time leads to a higher energy consumption as it uses a substantial 

number of matrix operations. HH-VBF shows a higher overhead as it relies on flooding to discover 

neighboring nodes. 

Coutinho et al. [4] proposed the GEDAR routing protocol, which adopts geographic and 

opportunistic routing and uses depth adjustment based topology control for communication recovery 

over void regions. Greedy opportunistic forwarding is employed to route packets and move void nodes 

to new depths for the adjustment of topology. GEDAR outperforms the baseline solutions in terms of 

packet delivery ratio, but it exhibits high energy consumptions for low-density UWSNs. 

2.2. Network Coding Schemes for Underwater Networks 

Mo et al. [20] proposed the Practical Coding-based Multi-hop Reliable Date Transfer (PCMRDT) 

protocol to avoid sender-receiver and receiver-receiver collisions and to decrease overall average  

end-to-end delay by combining random linear coding and selective repeat. PCMRDT can significantly 

reduce the network delay while achieving a high energy efficiency. Chitre et al. [21] studied the 

problem of transmitting data efficiently in underwater sensor network. They compared the solutions 

based on Automatic Repeat Request (ARQ), network coding and erasure coding and found that the 

network coding based solution achieved a higher throughput than other solutions did. 

Wu et al. [13] presented the Time Slot based Routing (TSR) algorithm, where network coding was 

used to further reduce the probability of node conflicts, decrease node energy consumption and extend 

network lifetime. Guo et al. [22] contributed a reliable underwater sensor routing algorithm VBF_NC 

based on network coding. They found that combining network coding and multi-path routing can 

achieve higher robustness in UWSNs. They compared their approach with single-path forwarding, 

multi-path forwarding, end-to-end Forward Error Correction (FEC) and even hop-by-hop FEC and 

proved that their approach was more efficient in terms of both error recovery and energy consumption. 

These algorithms only use the error correction property of full network coding to improve the 

reliability of data transmission. However, nodes in a network have to wait for the data packets from all 

other nodes to arrive before starting decoding, which inevitably increases the network delay. To reduce 
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the latency in data transmission, Hao et al. [23] proposed an opportunistic routing protocol based on 

partial network coding. In this work, we combine partial network coding and geographic routing to 

improve the performance of UWSNs. To the best of our knowledge, GPNC is the first geographic 

routing protocol based on partial network coding that is able to reduce the size of transferred data, the 

energy consumptions at nodes, and the network delays in data transmissions while improving the 

bandwidth utilization and the network lifetime. 

3. Network and Partial Networking Coding Models 

In this section, we present the conceptual models used by the proposed GPNC routing protocol. We 

first describe the underwater mobile sensor network model, which is then followed by the packet 

delivery probability model used by GPNC to select the next-hop forwarding set. Finally, we describe 

the partial network coding model used for transmitting data. 

3.1. The Network Model 

Figure 2 depicts a three-dimensional network model used by the GPNC routing protocol, which 

includes several sink nodes and ordinary acoustic sensor nodes. All acoustic sensor nodes have the 

same structure and are randomly distributed in the water. Each sink node is equipped with a RF modern 

and an acoustic modern. We assume that each sensor node knows its 3D location information through 

location services and can save the location information about itself and about its destination node. 

 

Figure 2. A 3D network structure. 

Sensor nodes are deployed under the water in a Euclidean space 3ℜ∈D . At any time t, we model 

the network as an undirected graph G(t) = (V,ε(t)) [4], where { }MinV i ≤≤= 1  is the set of sensor 

nodes and { }jiMjiet ij ≠≤≤= ,,1)(ε  is the finite set of links between nodes at time t.  

For )()( tteij ε∈∀ , nodes ni and nj are neighbors at time t and can communicate directly with each other 

(send and receive messages) via an acoustic link. For Vni ∈∀ , the set of its neighbors at time t is 

defined as })()({)( tteVntN ijii ε∈∃∈= . We assume that all nodes transmit data using the same 

transmitting power and with the same communication range R. 
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3.2. Packet Delivery Probability 

During the initialization phase, each sink node broadcasts information including its transmission 

power f to all sensor nodes, which then each calculates its distance to the sink node based on the 

received signal strength. In the attenuation model of underwater acoustic signal, if the distance 

between a transmitting node and a receiving node is x and the geometry of signal propagation is 

described using spreading factor k (k = 1.5 for a practical scenario), then the attenuation factor is 

calculated by: 

xk axxA =)(  (1)
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Built on the foundation of a typical underwater acoustic channel model described by Equation (1), 

we use Rayleigh fading to model small-scale fading of signal propagation and Binary Phase Shift 

Keying (BPSK) to calculate the average Bit Error Rate (BER). If a symbol Signal-to-Noise ratio 

(SNR) is rs and a bit SNR is rb, then rs = rb if using BPSK. If we further define 1010 br
sr = , then BER is 
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The following passive sonar equation gives each bit SNR of the underwater signal at a  

receiving node: 

fdfadkSLrb log185010)(log10 3 ×+−××−××−= −  (3)

where SL (typically 118 dB) is the sound intensity level. 

Finally, for any pair of nodes with the distance of d, the delivery probability of a packet with the 

size of m bits is given by: 

m
bb rpmdp ))(1(),( −=  (4)

3.3. The Partial Network Coding Model 

With partial network coding [14], each source node simply broadcasts the original data without 

encoding it. Each intermediate forwarding node can adopt an encoding method that uses an appropriate 

length to reduce the delay caused by waiting for the data packets from other nodes to arrive.  

Each destination node executes Gaussian digestion after receiving packets and decides whether 

decoding can be completed successfully. If decoding is done, each decoded packet is transmitted to the 

upper protocol layer; otherwise, the packet is inserted into the waiting queue. Partial network coding 

better adapts to dynamic networks than full network coding does, especially in terms of network delay, 

which can be illustrated by the following example, where the source node S transmits data packets p1, 

p2, p3, and p4 to node D via four intermediate nodes. 

The example in Figure 3 depicts a scenario of full network coding. The source node S encodes the 

data packets of p1 − p4 to be 41 pp ′−′  respectively and sends the encoded packets to the intermediate 
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nodes, which in turn encode them again to be 41 pp ′′−′′  respectively and then forward the re-encoded 

packets to node D. Suppose packets 1p′ , 2p′ , 3p′  and 4p′  from node S arrive at node D at the time 

interval of t, that is their arrival times are t, 2t, 3t, and 4t respectively. Node D can only decode the 

received packets back into the original data of p1, p2, p3, and p4 after all the four packets have been 

received and as a result the average delay of transmitting these data packets is (4t × 4)/4 = 4t. 

'
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Figure 3. Full network coding algorithm. 

In contrast, Figure 4 shows an example of the partial network coding algorithm. The source node S 

broadcasts directly the original data packets to the intermediate nodes, which each encodes them using 

partial network coding of some length and then forwards the encoded packets to the node D. When 

node D receives the encoded data packet r1p3 forwarded by the intermediate node 1 at time t, it decodes it 

back to the original packet p3. When node D receives the encoded data packet r2p2 + r3p3 forwarded by 

the intermediate node 3 at time 2t, it decodes p2 because p3 has already been decoded. In a similar token, 

when node D receives the encoded packets r4p1 + r5p2 + r6p3 and r7p1 + r8p2 + r9p3 + r10p4 from the 

nodes 2 and 4 at time 3t and 4t respectively, it can decode p1 and p4. So the average delay of 

transmitting the four packets is (t + 2t + 3t + 4t)/4 = 2.5t, which is much better than that of the full 

network coding algorithm. 
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Figure 4. Partial network coding algorithm. 
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The original data is divided into different blocks in partial network coding, each of which includes 

N packets. If the random selection strategy is adopted, an intermediate node then randomly selects 

several packets to encode from the cache of the same block. As shown in Figure 5, an intermediate 

node first generates a random integer M and then randomly selects M packets from the cache queue to 

encode before forwarding the encoded data packets. 

 

Figure 5. An intermediate node performing partial network coding. 

Assume M = 2 and node A stores three packets from the same block: 3p′ , 22111 prprp +=′ ,  

and 3322112 prprprp ′+′+′=′ . Then packets 1p′  and 2p′  are encoded by node B to be 

33222221112113322112221112211 )()()()( praprarapraraprprpraprprapapap ′+′++′+=′+′+′++=′+′=′′ . 

With random partial network coding, the coefficients of the unselected data blocks at the 

intermediate nodes are likely to be zero and consequently the generated coding coefficient matrix at a 

receiving node is likely a sparse matrix. As it is easier to generate the inverse of a sparse matrix, the 

decoding rate at the receiving node is higher. If the matrix becomes full rank, the receiving node would 

be ready to perform decoding. But the coefficient matrix produced by random partial network coding 

is usually not full rank. As a result, the encoding vector would have a linear correlation and the 

receiving node would consequently need more than N encoded data blocks to perform decoding, which 

increases the transmission of invalid information and leads to more network consumption. 

As the signal propagation speed in an underwater acoustic channel is very low, the delay in data 

transmission between nodes is significant in UWSNs. Furthermore, the error rate in data transmission 

is high, so some redundancy packets are required at a receiving node, which increases the actual 

energy consumption at intermediate nodes as it is proportional to the number of the forwarded packets. 

To tackle these issues, our GPNC protocol adopts partial network coding to reduce retransmissions, 

transmission delays, and energy consumptions. When an intermediate node receives an irrelevant 

linearly encoded packet, it knows it is a new packet and does not necessarily need to know what packet 

it is. Therefore, even if there is a packet loss, it is unnecessary to retransmit the lost packet, which 

greatly reduces the transmission of redundant data packets as well as energy consumption. 

4. The GPNC Routing Algorithm 

The proposed GPNC routing algorithm uses the geographic information on nodes for routing and 

partial network coding for data transmission. To forward a packet, it attempts to select a forwarding 

node that is nearest the destination node by considering the packet advancement. When a forwarding 
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node needs to transmit data, it encodes the packet using partial network coding, and with the distance 

decreasing to the sink node, the encoded packet can finally arrive at the sink node. When the sink node 

has received N linear independently encoded data packets, it performs decoding to retrieve the packets. 

The GPNC algorithm uses a greedy forwarding strategy to determine the set of next-hop forwarding 

nodes. Let ni be a source node that has a data packet to deliver, Ni(t) be ni’s set of neighboring nodes at 

time t, and Si(t) be ni’s known set of sink nodes at time t. Considering a neighboring node )(tNn ii ∈ , 

its packet advancement is defined as [4]: 

),(),()( jjiij snDsnDnADV −=  (5)

where ),( ii snD  is node ni’s Euclidean distance to its closest sink node )(tSs ii ∈  at time t and 

),( jj snD  is node ni’s Euclidean distance to its closest sink node )(tSs ii ∈  at time t. 

Generally speaking, the greater the packet advancement is, the higher priority the neighboring node 

is given. Then ni’s set of next-hop forwarding nodes at time t is: 

)}0＞(),({)( jiji nADVtNntC ∈=  (6)

For a candidate forwarding node ic Cn ∈ , ),( ci nnD  is the Euclidean distance between the source 

node ni and the forwarding node nc. Assume the packet delivery probability of m bits over distance 

),( ci nnD  is )),,(( mnnDp ci  as given by Equation (4). The candidate forwarding node nc’s normalized 

packet advancement is defined as: 

)),,(()()( mnnDpnADVnNADV cicc ×=  (7)

Based on a node’s energy and NADV, we define the following weighting formula for ordering 

candidate forwarding nodes: 

NADV
E

E
W

o

r )1( ∂−+∂=  (8)

where ∂  is an equivalence factor between a response node’s energy and NADV, Eo and Er are the 

initial and residual energy of the response node respectively. 

We use Equation (8) to calculate the weight of each candidate forwarding node in )(tCi  and create 

a sorted list )(tFi  from )(tCi  ordered by their weight from high to low. The first node in )(tFi  will be 

chosen as the next-hop forwarding node to transmit a data packet and only it fails to do so, the next one 

in )(tFi  would be chosen. The process continues in that order until the data has been successfully 

delivered. The h−th node in )(tFi  will start to transmit data if none of the preceding nodes has 

successfully done that within time h
wT  defined below: 


=

+ ×++=
h

j
pjjd

h
w ThvnnDTT

1
1 /),(  (9)

where v is the speed of sound under water, Tp is the packet processing time, and 

vnnDRT cicd /)),(( −=  is the propagation delay. 

After the optimal next-hop node has been selected, the source node forwards the data packet to the 

selected forwarding node, which then encodes the packet and becomes the source node. The routing 

process continues as such until the data packet has been delivered to the sink node. When the sink node 
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has received all the required linear independently encoded data, it starts decoding to retrieve the 

original data packets. 

5. Performance Evaluation 

Any proposed new protocol needs to be tested and validated against results from open sea 

experiments. While numerous testbed systems have been developed to allow for inexpensive small-scale 

testing, they still require abundant resources to prepare and perform the experiments. Therefore, 

simulators have been commonly adopted as an alternative approach to protocol testing [24]. However, 

many of the existing simulators are not all inclusive as they only focus either on the physical 

communication layer or the networking layers [24]. Furthermore, many of them use a generic 

underwater acoustic channel model and consequently the simulation results may not accurately reflect 

the real-world applications.  

After a thorough investigation, we chose Aqua-Sim [4,25] to conduct a series of simulations.  

Aqua-Sim was developed based on NS-2, a popular network simulator, and has the ability to simulate 

UWSNs. Compared with other wireless network simulators, Aqua-Sim offers many distinctive features 

such as underpinning to discrete-event-driven networks [26], support for mobile and 3D networks, 

simulation of high-fidelity underwater acoustic channels, and implementation of a complete protocol stack.  

We evaluated the performance of the GPNC protocol by comparing it with DBR [15] and  

VBF_NC [22] using Aqua-Sim as the routing protocol simulator. DBR greedily forwards data packets 

to any sink node on the sea surface without using any mechanism to transmit data at all. VBF_NC 

instead employs vector-based forwarding to determine the routes from a source node to a target sink 

node and uses full network coding to transmit data packets. We first compare GPNC with VBF_NC in 

terms of network delay and energy consumption and then compare GPNC with both DBR and 

VBF_NC in terms of packet delivery rate. 

We randomly deployed 800 sensor nodes in a 3D region of 2000 m × 2000 m × 2000 m and  

64 sink nodes in a sea surface region of 2000 m × 2000 m. The data transmission rate of the 

underwater acoustic modern is 2500 bps [27]. The acoustic signal propagation speed is 1500 m/s. The 

sensor nodes each has a transmission range of R = 250 m, an equivalence factor of 5.0=∂ , an initial 

energy of Eo= 100 J, and an energy consumption rate of 60 uJ/bit. There are 1000 original data packets 

generated at the source node and the size of each packet is 64 KB. 

5.1. Effect of the Size of Encoding Information Block N on the Network Performance 

5.1.1. Network Delay 

With (full or partial) network coding, the value of N, which is the number of packets included in 

each data block, impacts the time (network delay) of transmitting the data. We first conducted several 

experiments to compare GPNC (based on partial network coding) and VBF_NC (based on full network 

coding) in terms of network delay impacted by the selection of N. As shown in Figure 6, with the 

increase of N, network delay increases for both GPNC and VBF_NC. The average delay of GPNC is 

smaller than that of VBF_NC when N < 8, and especially the improvement is about 22% when  

3 ≤ N ≤ 5. When N > 5, improvement of delay effect is not obvious and when N > 8, the delay of 
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GPNC even exceeds that of VBF_NC. The longer delay for N > 5 is caused by the increase of the 

number of data packets to be decoded. Figure 7 further explains this phenomenon.  

 

Figure 6. Impact of N on network delay. 

Normally, VBF-NC requires N encoded data packets to decode them back to the N original data 

packets, or the possibility of linear dependency is very small, which never exceeds N + 2. When N < 5, 

the number of required data packets for decoding in GPNC is similar to that in VBF-NC. However 

when N > 8, the number of required data packets for decoding in GPNC will exceed that in VBF-NC, 

leading to the increase of network delay and the decrease of network performance. The reason behind 

this is the essential difference between partial and full network coding algorithms. The partial network 

coding algorithm randomly selects packets for encoding when forwarding data. As a result, the same 

packets may be repeatedly encoded when N gets bigger, reducing the linear independency between 

packets and increasing the number of packets to be decoded and consequently the network delay.  

In contrast, the full network coding algorithm always maintains the linear independency between 

packets such that decoding can only be done after the N linearly independent packets have all been 

received by a receiving node. 

 

Figure 7. Impact of N on the number of required packets for decoding. 

5.1.2. Network Throughput 

Throughput is another measure of network performance. A protocol with network encoding is 

expected to excel in throughput when compared to one without network coding, subject to the choice 
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of N. Figure 8 compares the throughputs of DBR (without network coding), GPNC (N = 3) and GPNC 

(N = 5). With the increasing number of network nodes, throughput increases and gradually levels off 

for all three protocols, which is mainly because the increase of the overall network throughput is 

restrained by the competition among nodes. Figure 8 further reveals that the choice of N in GPNC has 

a clear impact on network throughput. When N = 3, the throughput of GPNC is similar to that of DBR 

because its opportunity of encoding packets is low. When N = 5, the throughput of GPNC is 22% 

better than that of DBR and the advantage of network coding is obvious. In conclusion, as N = 5 yields 

an optimal network performance shown in Figures 6 and 8, we choose N = 5 in later experiments.  

 

Figure 8. Throughput with number of nodes. 

5.2. Energy Consumption 

With network coding, the energy consumption in a UWSN increases with the number of sensor 

nodes as well as the value of N. However, as shown in Figure 9, when N ≤ 6, the growth curve of 

GPNC is clearly lower than that of VBF_NC thanks to the fact that GPNC considers node energy 

consumption when selecting a path. GPNC avoids using low-energy nodes for forwarding packets in 

order to assure the transmission reliability and increase the lifetime of the network nodes. In particular, 

Figure 10 shows the difference of energy consumption between GPNC and VBF_NC when N = 5. 

 

Figure 9. Energy consumption with the number of nodes and the value of N. 
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Figure 10. Energy consumption with the number of nodes when N = 5. 

5.3. Packet Delivery Ratio 

We then conducted a number of experiments to compare the packet delivery ratio of GPNC with 

those of DBR and VBF_NC in terms of the number of nodes and the loss rate. Generally speaking, the 

packet delivery ratio increases with the number of nodes for all the three protocols, however, as shown 

in Figure 11, the protocols using network coding, which are GPNC and VBF_NC, achieve higher 

delivery ratios than the DBR protocol, which does not use network coding at all. Network coding can 

increase delivery rate because it can not only decrease the number of sending packets but also reduce 

collision and competition between packets. More importantly, GPNC’s delivery ratio is about 16% 

higher than that of VBF_NC when N = 5 (GPNC’s network delay is 22% lower than that of VBF_NC 

as shown in Figure 6). 

 

Figure 11. Packet delivery ratio with the number of nodes when N = 5. 

Figure 12 further shows that the packet delivery ratio decreases with the increase of packet loss rate 

of transmission link for all the three protocols. However, the protocols using network coding, which 

are GPNC and VBF_NC, again achieve much higher delivery ratios than the DBR protocol (GPNC 

and VBF_NC are 45% and 26% better than DBR respectively) because with network coding, data 

packets do not need to be retransmitted even if some data is lost in transmission. More importantly, 

GPNC’s delivery ratio is about 19% higher than that of VBF_NC as GPNC employs multiple sink 

nodes for efficient data transmission. 



Sensors 2015, 15 12733 

 

 

 

Figure 12. Packet delivery ratio with the increase of loss rate when N = 5. 

6. Conclusions and Future Work 

In this paper, we have presented a novel geographic and partial network coding based routing 

protocol for UWSNs called GPNC. GPNC uses partial network coding for data delivery in order to 

decrease the number of sending packets and reduce collision between packets. GPNC can improve the 

network delivery rate and at the same time reduce the energy consumption and network delay. GPNC 

uses a new greedy approach to deliver encoded packets to the sink nodes and chooses candidate nodes 

according to a node’s normalized packet advance (NADV) and residual energy. Simulation results 

have shown that GPNC improves network throughput and the data delivery ratio, while reducing 

energy consumption and network delay when compared with the baseline routing protocols.  

How to avoid “void” areas is very important for any greedy strategy, so we plan to investigate how 

the depth adjustment of some nodes can impact void areas and how opportunity forwarding of data 

packets to sink nodes can be incorporated into the GPNC routing protocol. 
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