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a b s t r a c t 

Background: The human brain is a complex network that seamlessly manifests behaviour and cognition. This network comprises neurons that directly, or indirectly 
mediate communication between brain regions. Here, we show how multilayer/multiplex network analysis provides a suitable framework to uncover the throughput 
of structural connectivity (SC) to mediate information transfer —giving rise to functional connectivity (FC). 
Method: We implemented a novel method to reconcile SC and FC using diffusion and resting-state functional MRI connectivity data from 484 subjects (272 females, 
212 males; age = 29.15 ± 3.47) from the Human Connectome Project. First, we counted the number of direct and indirect structural paths that mediate FC. FC nodes 
with indirect SC paths were then weighted according to their least restrictive SC path. We refer to this as SC-FC Bandwidth . We then mapped paths with the highest 
SC-FC Bandwidth across 7 canonical resting-state networks. 
Findings: We found that most pairs of FC nodes were connected by SC paths of length two and three (SC paths of length > 5 were virtually non-existent). Direct SC-FC 
connections accounted for only 10% of all SC-FC connections. The majority of FC nodes without a direct SC path were mediated by a proportion of two (44%) or 
three SC path lengths (39%). Only a small proportion of FC nodes were mediated by SC path lengths of four (5%). We found high-bandwidth direct SC-FC connections 
show dense intra- and sparse inter-network connectivity, with a bilateral, anteroposterior distribution. High bandwidth SC-FC triangles have a right superomedial 
distribution within the somatomotor network. High-bandwidth SC-FC quads have a superoposterior distribution within the default mode network. 
Conclusion: Our method allows the measurement of indirect SC-FC using undirected, weighted graphs derived from multimodal MRI data in order to map the location 
and throughput of SC to mediate FC. An extension of this work may be to explore how SC-FC Bandwidth changes over time, relates to cognition/behavior, and if 
this measure reflects a marker of neurological injury or psychiatric disorders. 
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. Introduction 

The human brain is a complex and dynamic network comprised of
oth structural and functional dimensions. These dimensions can be ex-
lored with magnetic resonance imaging (MRI) to measure structural
onnectivity (using diffusion-weighted imaging; SC) or changes in brain
ctivity or ‘synchronicity’ between brain regions (using functional con-
ectivity; FC). Over the past decade, studies have shown a moderate cor-
elation ( ∼r = 0.5) between these measures of brain connectivity (SC-FC)
n healthy individuals ( Honey et al., 2009 ; Honey et al., 2010 ; Straathof
t al., 2018 ; Damoiseaux and Greicius, 2009 ; Supekar et al., 2010 ). More
ecently, there is growing interest in elucidating the complexities that
rive the correlation between these types of brain connectivity. For ex-
mple, statistical ( Mi š i ć and Sporns, 2016 ; Messé et al., 2014 ), commu-
ication ( Goni et al., 2014 ; Crofts and Higham, 2009 ) and biophysical
odels ( Honey et al., 2007 ; Breakspear, 2017 ) have converged to cap-

ure an imperfect correspondence between SC and FC ( Suárez et al.,
020 ). This imperfect correspondence warrants investigation into the
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ocation and extent to which SC may mediate FC through either direct
r indirect pathways ( Battiston et al., 2014 ). 

In order to consider brain connectivity at the global scale or as a
connectome ”, we can utilize graph theoretical analysis, enabling us to
xamine metrics of structural and functional graphs such as node degree
 Bullmore and Bassett, 2011 ; Hagmann et al., 2008 ; Sporns, 2013 ) to
haracterize brain connectivity. An extension of graph theoretical anal-
sis is known as a multilayer network analysis, allowing statistical anal-
ses to be performed between the same nodes both within and between
ayers. In the context of the brain, these layers can represent different
ypes of connectivity, such as structural or functional connectivity. We
an then draw links between nodes across layers , termed “pseudo-edges ”
hich can be used to represent relationships between nodes, across lay-

rs i.e., the relationship between SC and FC (SC-FC; see Fig. 1 ). These
elationships can be modeled in the brain with a correspondence of one-
o-one (i.e., multiplex; see Fig. 1 ), one-to-many, or many-to-many. 

Multiplexes offer additional information over traditional monoplex
raph theory, permitting the exploration of how functional connectivity
 September 2022 
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Fig. 1. A 2-layer multiplex of brain connectivity . In the brain, the upper SC layer of a multiplex represents structural connections (blue lines) between nodes 
(blue circles), whereas the lower FC layer represents the functional synchronicity (green lines) between these same nodes (green circles). Grey lines connecting 
nodes across layers represent pseudo-edges. (B) Multiplex SC-FC triangle resulting from collapsing multilayer representation. Functionally synchronous nodes i and 
j may functionally communicate through intermediary node k along structural edges (i,k) and (k,j). (C) Edges (2,3, 3,5) and (2,4, 4,5) form two structural tuples, 
each closed by an FC edge (2,5) and thus are SC-FC triangles. In contrast, edges (0,2, 2,1) and edges (5,6, 6,7) form structural tuples that are not SC-FC triangles. 
Therefore, the total (unweighted) number of multiplex triangles incident to the FC edge (2,5) is 2. SC edges are shown in blue and FC edges shown in green. 
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etween nodes is mediated directly by single SC paths (i.e., edges as
ormally referred to in graph theory) or indirectly by multiple SC paths
multi-paths). Indeed, multiplex models have been used to quantify the
roportion of overlapping high-degree SC and FC nodes (15%; Battiston
t al., 2018 ). More recently, a predictive model estimated that direct
nd indirect (two-edge) SC paths may induce ∼10% and up to 60% of
nterhemispheric FC respectively ( Wang et al., 2020 ). Nonetheless, the
roportion and location of both direct, and indirect SC paths that mediate
C (SC-FC polygons) across the brain remains to be explored. 

SC paths are typically a secondary measure of white matter de-
ived from diffusion MRI (dMRI), thought to comprise axons and myelin
hich potentiate electrical signals across the brain, permitting commu-
ication between distal brain regions ( Jones, 2010 ). Shorter paths re-
uce conduction latency, synaptic retransmission and metabolic cost,
hich explains why on average, the shortest distance between any two
odes in an SC graph is somewhere between one and five edges ( Seguin
t al., 2018 ; Avena-Koenigsberger et al., 2019 ). The velocity of axon po-
entials that are propagated along these paths is directly proportional to
oth the diameter of the axon, as well as the thickness of the sheaths that
nsulate these axons ( Rushton, 1951 ; Hursch, 1939 ). Indeed, a recent ar-
icle estimated that 85% of variance in conduction velocity is accounted
or by axon diameter and g-ratio (comparative thickness of the myelin
heath encasing an axon), calculated using in-vivo dMRI ( Drakesmith et
l., 2019 ). 

SC edges comprise groups of neurons which can be considered as
ables (i.e., neuronal cable theory; Cole and Hodgkin, 1939 ; Davis and
orente de Nó, 1947 ; Hodgkin and Rushton, 1946 ) whereby some cables
xhibit higher resistance than others, and are therefore more restrictive
f information flow (i.e., throughput; Harris and Ross, 1955 ; Schrijver,
002 ). At the macroscopic level, a recent study by Mi š i ć, Sporns, and
cIntosh ( Mi š i ć et al., 2014 ) applied these concepts by considering

he Macaque brain as a communication network in which signal units
owed between grey matter nodes along white matter paths. Compared
o a degree-matched synthetic network, they found information flow
f the macaque brain showed higher loss rate, faster transit times and
ower throughput, although throughput was significantly higher than
 latticized control network. Upon increased load conditions, both the
acaque and synthetic networks demonstrated decreased mean transit

imes of signal units as a function of decreased throughput of structural
athways. Therefore, thicker, unrestricted white matter paths may have
 higher capacity to propagate information (i.e., bandwidth), than thin-
2 
er, restricted paths. Given SC paths can be weighted (to reflect number
f streamlines or cross-section), we can measure the apparent strength
f physical connections that mediate the synchronicity of brain regions
FC). For example, a low SC edge-weight may serve as a bottleneck;
ffectively limiting the information capacity and velocity of this path
 Hursch, 1939 ; Rushton, 1951 ; Paus et al., 2014 ; Avena-Koenigsberger
t al., 2019 ). In contrast, a high weight on every edge in a given path
ay represent a structural highway —able to communicate more infor-
ation, faster. 

Applications of graph metrics to describe SC-FC multiplexes, may
eveal information that is beyond detection with unimodal MRI graphs.
or example, studies have revealed that fMRI and EEG frequency bands
how different topological properties ( Domenico et al., 2016 ; Tewarie
t al., 2016 ). Others have reported lower assortativity of FC (-0.15),
nd higher assortativity of SC (0.1) which may indicate a robustness
o acute injury or neurodegeneration ( Lim et al., 2019 ). Importantly,
hese methods hinge on either the comparison of two distinctly different
easurements (i.e., SC and FC) or the co-dependency (correlation) of
odes or layers as a whole, without offering insight into the location
nd extent to which SC mediates the efficient propagation of information
rom one node to another. 

Work by Crofts et al. (2016) recognised the difference between the
tructural and functional layers in their multiplex adaptation of the clus-
ering coefficient, using simulated, directed FC of the Macaque brain.
his method considers triangles comprised of two SC edges connected by
n intermediary centroidal structural node (i.e., structural tuple) closed
y an FC edge. SC-FC triangles pertaining to centroidal nodes can then
e quantified as a multiplex nodewise “clustering coefficient ” ( Crofts
t al., 2016 ). This local clustering coefficient measures the proportion
f structural tuples that are closed by an FC edge (forming a multiplex
olygon, in this case a multiplex triangle), out of the total number of SC
uples that exist (see Fig. 1 for examples of SC tuples and SC-FC trian-
les). This measure is able to elucidate areas of parameter space in which
clustering ” is dominated by indirect functional connectivity. However,
his measure only reflects the number of binary SC-FC triangles that SC
odes are incident to. 

According to our knowledge, there has been no study that has exam-
ned the number of paths that mediate synchronicity between brain re-
ions, or their weights. Moreover, no consideration has been given to the
ossibility that there may be functionally synchronous nodes that com-
unicate through multiple indirect structural paths, comprising mul-
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Fig. 2. A schematic showing two functionally synchronous nodes (i and j) 

connected by multiple structural tuples ((i,k), (k,j)), ((i,n), (n,j)), ((i,l), 

(l,j)) and one quad ((i,p), (p,m), (m,j)) . Our method weights SC-FC poly- 
gons by their largest minimum edge weight (in blue) between functionally syn- 
chronous nodes i and j (in green). The maximum bandwidth of nodes (i and j) 
irrespective of polygon type is thus 500 streamlines, through the tuple (i.e., SC- 
FC triangle) using the path i-k-j, as this value is higher than the largest minimum 

edge weight of any other path. As a reference point, the bandwidth of the quad 
((i,p), (p,m), (m,j)) is 100. 
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iple structural connectivity weights ( Fig. 2 ). This forms the basis for
hich we consider what a structural layer can tell us about a functional

dge. To investigate this requires a conceptual shift away from consid-
ring the number of triangles that a single SC node is incident to (as
er Crofts et al., 2016 ) and toward considering information about the
tructural paths that mediate indirect communication between a pair of
unctionally synchronous nodes. Moving forward, we propose a graph
heoretic methodology leveraging the concept that structural connec-
ions provide the physical infrastructure that “constrains, maintains and

egulates ” functional communication ( Straathof et al., 2018 , p39). Sub-
equently, we introduce a graph metric utilizing an SC-FC multiplex to
uantify the bandwidth of functional synchronous nodes throughout the
uman brain that are mediated by direct and indirect SC, which we term
SC-FC Bandwidth ”. 

Our aims are fourfold: 

(i) To implement a novel technique to measure the proportion of
functionally synchronous brain regions that are mediated by di-
rect and indirect structural pathways. 

(ii) To examine the relationship between our novel graph metric and
existing measures. 

(iii) To quantify the bandwidth of SC-FC polygons that mediate FC. 
(iv) To map the spatial distribution of SC-FC bandwidth across the

human brain. 

. Method 

.1. Primary Sample 

In the present study, we utilized a publicly available dataset,
rovided by the Human Connectome Project (HCP; http://www.
umanconnectome.org ) from the Washington University-University of
innesota (WUMinn) consortium, including 484 healthy participants

rom the Q4 release (500 subject; Nov 25, 2014; 272 females, 212 males;
ge = 29.15 ± 3.47). For details on the MRI pre-processing and connec-
3 
ivity matrix calculation, the interested reader is referred to Lim et al.
2019) . 

.2. Secondary Sample (MICA) 

In addition to our primary dataset, we conducted a secondary con-
rol analysis, using SC (measured as number of reconstructed stream-
ines) and FC (measures as Pearson’s correlation coefficient) connec-
omes from an open-source independent data set of 50 healthy adults
23 women; 29.54 ± 5.62 years) as part of the Multimodal MRI dataset
or Microstructure-Informed Connectomics (MICA; Royer et al., 2022 ).
hese connectomes were parsed in the Schaefer atlas ( Schaefer et al.,
018 ) with a resolution of 200 nodes for maximum comparability with
ur primary dataset. The MICA dataset has already been described ex-
ensively within Royer et al., (2022) . Hereafter, we will briefly describe
re- and post-processing steps of our primary dataset (HCP). 

.3. MRI Data Acquisition (HCP) 

Data were acquired using a modified 3T Siemens Skyra scanner
ith a 32-channel head coil. Resting-state fMRI data in an eyes-open

ondition were collected for approximately 14 min (1,200 volumes)
ith TR = 720ms, TE = 33.1ms, flip angle = 52, voxel size = 2mm

sotropic, FOV = 208 × 180mm 

2 and 72 slices with opposite phase en-
oding directions in two runs (L-R, R-L). In addition, T1- weighted struc-
ural images (MPRAGE) were acquired using the following parameters:
R = 2,400ms, TE = 2.14ms, flip angle = 8 degrees, voxel size = 0.7mm

sotropic, FOV = 224 × 224mm 

2 and 320 slices. Diffusion-weighted im-
ges (DWI) were acquired with 270 gradient directions (90 per shell;
ulti-shell) with b -values 1000, 2000, 3000mm 

2 , with 90 gradient en-
oding directions in each shell TR = 5520ms, TE = 89.5ms, flip an-
le = 78, FOV = 210 × 180mm 

2 , 111 slices, and voxel size = 1.25mm
sotropic. 

.4. Diffusion and Functional MRI Pre-processing 

From the minimally pre-processed HCP diffusion-weighted MRI data,
hite matter fibres were reconstructed using generalized q-sampling

maging ( Yeh et al., 2010 ) and deterministic streamline tractogra-
hy was performed ( Yeh et al., 2013 ) using DSI studio ( http://dsi-
tudio.labsolver.org ). The HCP minimally processed fMRI data were
rst realigned and co-registered to T1-weighted structural images us-

ng FSL ( Jenkinson et al., 2012 ). Motion in the form of linear trends
nd/or first order drifts with global effects were regressed out of white
atter, ventricular, and global mean signals, using 6 motion param-

ters in Matlab R2016b ( MATLAB 2018 ). White matter and ventricle
oxels were then segmented using T1-weighted images in FreeSurfer
 Fischl, 2012 ). Time-series were then band-pass filtered (0.01–0.1 Hz).
otion scrubbing was used to remove scan frames when significant
otion was detected in the individual time series. Diffusion and func-

ional MRI scans from each subject used in this study were extracted
rom the HCP 500 Q4 data release and minimally preprocessed by the
CP consortium; further details on the specific steps employed can be

ound in Glasser et al. (2013) . The pre-processed fMRI time-series of
ach region of interest was subsequently used to compute partial corre-
ation coefficients between each region of interest, as outlined in the sec-
ion “Construction and Thresholding of SC and FC Adjacency Matrices ”,
elow. 

.5. Parcellation 

We utilised a multi-resolution atlas derived from the Desikan-
illiany cortical atlas excluding sub-cortical areas in line with
 Cammoun et al., 2012 ). Here, each parcel from the original 68 res-
lution is subdivided twice to produce three resolutions of the same
tlas. Analyses were repeated at all three parcellation resolutions (68,

http://www.humanconnectome.org
http://dsi-studio.labsolver.org
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14, 219) to ensure that effects were independent of matrix resolution
s recommended by several studies ( Mansour et al., 2021 ; Vàzquez-
odríguez et al., 2019 ; Zalesky et al., 2010 ). We decided to focus on

he positive correlations only, as the current understanding of negative
orrelations/negative edge weights in whole-brain connectivity is lim-
ted ( Zhan et al., 2017 ); see discussion section. Our method utilises a
ne-to-one mapping between nodes on each layer (i.e., matched parcel-
ation/node density), which has implications for increasing FC and SC
ode density. That is, increasing FC node density comes at the cost of re-
ucing correlation values (and subsequently thresholding-out FC edges),
esulting in a sparser, weaker graph, with reduced ability to model SC-
C polygons across the brain. Similarly, SC node density must be high
nough to accurately model pathways. Therefore, we report our find-
ngs using 219 nodes for both SC and FC graphs hereafter. We organized
hese nodes according to seven canonical resting-state network includ-
ng the visual network, somatomotor network, dorsal attention network,
entral attention network, limbic network, frontoparietal network and
efault mode network ( Yeo et al., 2011 ). 

.6. Construction and Thresholding of SC and FC Adjacency Matrices 

FC adjacency matrices from each subject comprised partial correla-
ion coefficients, which have been shown to reduce spurious correla-
ion effects ( Smith et al., 2013 ). These adjacency matrices were thresh-
lded using regularization based on an elastic-net regression model to
vercome specific limitations of regularisation penalties. L1-norm reg-
larization only detects a subset of highly correlated connections and
2-norm regularisation does not threshold-out (convert to a value of
) small correlation coefficients; which may compromise the trade-off
etween sparseness and the removal of spurious correlations ( Zou and
astie, 2005 ). Elastic-net regression uses both L1- and L2-norm regular-

zation, or a linear combination of the two, depending on the coefficient
 Friedman et al., 2008 ; Lim et al., 2019 ). For example, a coefficient of
 is subject to the L1-norm model (resulting in a sparser graph). There-
ore, this model overcomes limitations of partial correlations albeit at
he cost of lower FC values ( Krämer et al., 2009 ; Ryali et al., 2012 ;
ie et al., 2015 ; Friedman et al., 2008 ; Lim et al., 2019 ) and sparser
raphs, relative to bivariate pairwise correlation coefficients ( Sanchez-
omero and Cole, 2020 ). Neurobiologically speaking, it has been argued

hat the brain is highly integrative and therefore, connections repre-
ented by low partial correlation values should arguably be considered
s weak —that is, the connections represented by these values are indis-
inguishable from noise ( Bielczyka et al., 2018 ). These noisy connections
an influence the sparsity of FC networks, in turn altering the structural
roperties of the connectome ( van den Heuvel et al., 2017 ; Zalesky et al.,
016 ). Therefore, we supplemented the regularization of partial correla-
ion values by applying an empirical precision with a hard thresholding
pproach. Specifically, this involves setting a fixed value of partial corre-
ation (0.1), at which empirical connectomes are thresholded ( Bielczyka
t al., 2018 ). 

SC adjacency matrix edge weights were defined as the number of re-
onstructed streamlines between two ROI derived from diffusion MRI
eterministic tractography (see Lim et al., 2019 ). This measurement
eflects the number of tracts connecting two brain regions, and was
hosen for maximum comparability with existing diffusion MRI stud-
es ( Jeurissen et al., 2019 ). At the individual level, SC, FC and weighted
C-FC (see Weighted SC-FC Triangle Throughput) were constructed for
ach individual subject, resulting in 484 FC, 484 SC (thresholded to ex-
lude number of streamline values lower than one) and 484 weighted
C-FC connectomes which were used for subsequent analyses. At the
roup level, a group-average weighted SC-FC matrix was then computed
sing the sum of all matrix values across individuals divided by 484. All
ost-processing of adjacency matrices was completed using ( MATLAB
018 ) ( http://www.mathworks.com ) and Python (version 3.0). Our full
eighted and unweighted multiplex connectivity python code can be

ound here: https://github.com/parsonsn/SC- FC- Multiplex- Bandwidth .
4 
ull mathematical details of our method are provided in supplementary
aterial. 

.7. Unweighted SC Pathways Closed by an FC Edge 

Brain network communication may rely on direct structural connec-
ions (a single edge), tuples (two edges) or paths with three or more
dges. Here, we establish the contribution of each pathway type to me-
iate FC. For every FC edge, we count the minimum number of asso-
iated structural edges. Firstly, we count the number of single (direct)
C edges ( Fig. 3 ). We count only FC edges that have corresponding SC
dges to avoid over-representing single-edge SC connections. Secondly,
e count SC paths of edge length two (i.e., tuple; see Fig. 2 ). And fi-
ally, we count SC paths of edge length larger than two (See Fig. 2 ). In
ddition, we used the “Proportion of SC-FC Polygons ” Formula below, to
ompute the expected proportion of shortest path length in Erd ő s-Rényi
andomized graphs with the same density as our SC graphs for each sub-
ect to compare standard deviations across individuals, and to contrast
ur empirical values with what would be expected if the graphs were
andom. The Erd ő s-Rényi model is a good predictor of diameter and
verage path length compared to real networks, resulting in networks
ith small diameters, capturing the “small-world ” property observed

n human brain networks. Specifically, the expected proportion of the
hortest paths of length 𝑘 in an Erd ő s-Rényi graph with 𝑛 vertices and
ensity 𝑑 is: 

 

1 − 

(
1 − 𝑑 𝑘 

) ( 𝑛 −2 ) 
( 𝑛 −1− 𝑘 ) 

) 𝑘 −1 ∏
𝑗=1 

(
1 − 𝑑 𝑗 

) ( 𝑛 −2 ) 
( 𝑛 −1− 𝑗 ) 

.8. Weighted SC-FC Bandwidth Calculation 

Here, we introduce mathematical notations for weighted measure-
ents. 

• 𝐴 

[ 𝛼] is the adjacency matrix for Layer 𝛼, where 𝛼 is 𝑠 (for structural
layer) or 𝑓 (for functional layer); 

• 𝐴 

[ 𝛼] 
𝑖𝑗 

is the entry at position ( 𝑖, 𝑗 ) in the adjacency matrix for Layer 𝛼;

• 𝑤 

[ 𝛼] 
𝑖𝑗 

is the weight of edge ( 𝑖, 𝑗 ) on Layer 𝛼. 

We quantify the bandwidth between two synchronous regions ac-
ording to their minimum edge weight ( “max-min method ”; see Fig. 2 ).
hese paths may support higher signal capacity and velocity ( Hursch,
939 ; Rushton, 1951 ; Paus et al., 2014 ; Avena-Koenigsberger et al.,
019 ) relative to other paths incident to a given FC edge (for the math-
matical representation of this measure, see Equation 2). That is, the SC
hroughput of an SC-FC polygon (direct = 1 SC edge; triangle = 2 SC
dges; quad = 3 SC edges) is equal to its largest and thus least restric-
ive bottleneck. Effectively, this measurement reflects the communication

andwidth of each FC edge. Higher bandwidth values incident to a given
C edge therefore reflect throughput of synchronous nodes. 

The weighted throughput of each SC-FC triangle is: 

𝑇 𝑖𝑗 = 𝐴 

[ 𝑓 ] 
𝑖𝑗 

(
1 − 𝐴 

[ 𝑠 ] 
𝑖𝑗 

)
max 
𝑘 ∈𝑉 

(
min 

(
𝑤 

[ 𝑠 ] 
𝑖𝑘 
, 𝑤 

[ 𝑠 ] 
𝑘𝑗 

))
here 𝑉 is the set of nodes. Any triangle containing a functional edge

 𝑖, 𝑗 ) and structural edges ( 𝑖, 𝑘 ) and ( 𝑘, 𝑗 ) has a structural edge of mini-
um weight. In line with our analogy of the structural layer being akin

o a communication network, this minimum weight provides the maxi-
um possible throughput from 𝑖 to 𝑗 in this tuple on the structural layer.
e consider each vertex 𝑘 in our set of nodes 𝑉 , i.e., 𝑘 ∈ 𝑉 , as a possi-

le intermediary node. Finally, we are only interested in tuples that are
riangles containing a functional edge ( 𝑖, 𝑗 ) which we count using 𝐴 

[ 𝑓 ] 
𝑖𝑗 

nd excluding cases where there is also a structural edge ( 𝑖, 𝑗 ) which are
xcluded using the ( 1 − 𝐴 

[ 𝑠 ] 
𝑖𝑗 
) term. 

http://www.mathworks.com
https://github.com/parsonsn/SC-FC-Multiplex-Bandwidth
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Fig. 3. Violin plots showing the proportions of FC 

edges that are closed by a range of path lengths (from 

1-9 edges) for all 484 subjects . Panel A shows the num- 
ber of SC paths connecting FC edges when using empirical 
data, and Panel B shows the number of SC paths connect- 
ing FC edges when using Erd ő s-Rényi randomized graphs 
as SC and FC inputs for each subject. Points are drawn as 
outliers if they are larger than Q3 + W 

∗ (Q3-Q1) or smaller 
than Q1-W 

∗ (Q3-Q1), where W = whisker length, and Q1 
and Q3 are the 25th and 75th percentiles, respectively. 
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.9. Weighted, Direct SC-FC Equation 

 𝑖𝑗 = 𝐴 

[ 𝑠 ] 
𝑖𝑗 
𝐴 

[ 𝑓 ] 
𝑖𝑗 

𝑤 

[ 𝑠 ] 
𝑖𝑗 

.10. Weighted SC-FC Quad Equation 

The weight of a path 𝑖𝑘 1 𝑘 2 𝑗 is calculated as min ( 𝑤 

[ 𝑠 ] 
𝑖𝑘 1 

, 𝑤 

[ 𝑠 ] 
𝑘 1 𝑘 2 

, 𝑤 

[ 𝑠 ] 
𝑘 2 𝑗 

) .
iven two vertices 𝑖 and 𝑗, we consider the path with the largest of

he minimum of these weights ( ma x 𝑘 1 ,𝑘 2 ∈𝑉 min ( 𝑤 

[ 𝑠 ] 
𝑖𝑘 1 

, 𝑤 

[ 𝑠 ] 
𝑘 1 𝑘 2 

, 𝑤 

[ 𝑠 ] 
𝑘 2 𝑗 

) ) as the

ighest throughput pathway. The weighted throughput of each SC-FC
uad is: 

 𝑖𝑗 = 𝐴 

[ 𝑓 ] 
𝑖𝑗 

(
1 − �̂� 𝑖𝑗 − �̂� 𝑖𝑗 

)
max 

𝑘 1 ,𝑘 2 ∈𝑉 

(
min 

(
𝑤 

[ 𝑠 ] 
𝑖𝑘 1 

, 𝑤 

[ 𝑠 ] 
𝑘 1 𝑘 2 

, 𝑤 

[ 𝑠 ] 
𝑘 2 𝑗 

))
Note: �̂� 𝑖𝑗 = 

{ 

0 if 𝐷 𝑖𝑗 = 0 
1 otherwise 

Note: �̂� 𝑖𝑗 = 

{ 

0 if 𝑇 𝑖𝑗 = 0 
1 otherwise 

.11. Weighted SC-FC Bandwidth Equation for Path Length 𝑛 + 1 

 

[ 𝑏 ] ( 𝑛 ) 
𝑖𝑗 

= 𝐴 

[ 𝑓 ] 
𝑖𝑗 

( 

1 − 

𝑛 −1 ∑
𝑝 =0 

𝐴 

[ 𝑏 ] ( 𝑝 ) 
𝑖𝑗 

) 

max 
𝑘 1 ,𝑘 2 ,...,𝑘 𝑛 ∈𝑉 (

min 
(
𝑤 

[ 𝑠 ] 
𝑖𝑘 1 

, 𝑤 

[ 𝑠 ] 
𝑘 1 𝑘 2 

, ..., 𝑤 

[ 𝑠 ] 
𝑘 𝑛 𝑗 

))
𝑤 

[ 𝑏 ] ( 1 ) 
𝑖𝑗 

= 𝐴 

[ 𝑓 ] 
𝑖𝑗 

𝐴 

[ 𝑠 ] 
𝑖𝑗 
𝑤 

[ 𝑠 ] 
𝑖𝑗 

.12. Proportion of SC-FC Polygons 

For each FC edge 𝑖𝑗, we calculate the shortest SC path connecting
ertices 𝑖 and 𝑗. The proportion of SC-FC polygons gives the proportion
f FC edges that have shortest SC paths of length 𝑙, given as 

𝐹 𝐶 𝑝𝑟𝑜𝑝 ( 𝑙 ) = 

∑
𝑖𝑗∈𝐹 𝑃 𝑖𝑗 ( 𝑙 ) |𝐹 |

here 𝐹 is the set of FC edges and 𝑃 𝑖𝑗 ( 𝑙) =
 

1 if the shortest SC path connecting 𝑖𝑗 has length 𝑙 
0 otherwise . 

. Results 

.1. Proportion of Direct and Indirect Structural Paths Mediating 

unctional Connectivity 

Across subjects, we found most FC nodes were indirectly connected,
nd relatively few were directly connected. Empirical FC nodes were
ost frequently connected by two SC edges (i.e., tuple; 44%) followed
5 
y three-path (triplet) SC edges (39%) and direct (one-path) SC edges
10%; see Fig. 3 ). We did not investigate beyond path length of nine as
he small-worldness of brain networks suggests paths of this length are
nlikely to exist ( Bullmore and Bassett, 2011 ; Avena-Koenigsberger et
l., 2019 ). As such, we found the shortest possible path between most

unctionally synchronous nodes was two (i.e., SC-FC triangles), and the
argest number of paths was four. When compared with the expected
roportions of shortest paths of length 𝑘 (for 𝑘 = 1 … , 9 ) in Erd ő s-Rényi
andomized graphs, we found a similar proportion of direct SC-FC path-
ays ( 𝑘 = 1 ) with empirical data ( ∼10%) and different proportions of
C paths facilitated by SC paths of length two and three. The proportion
f paths of length of five and higher was negligible using both empirical
nd randomized data ( < .001). 

.2. Relationships Between FC, SC-FC Bandwidth and Euclidean Distance 

To explore SC-FC Bandwidth in the context of known measurements,
e conducted several statistical analyses. Herein, we plotted SC-FC
andwidth values with partial correlation coefficient and Euclidean dis-
ance of each edge. First, we observed a linear trend when compar-
ng partial correlation coefficient and SC-FC Bandwidth. Therefore, we
hose to model these data using a linear Pearson’s correlation coef-
cient. Secondly, we observed nonlinear trends in scatterplots of Eu-
lidean distance and SC-FC Bandwidth data across polygon types, as well
s in three-dimensional plots of Euclidean distance, partial correlation
oefficient and SC-FC Bandwidth. Therefore, we chose to model these
ata with polynomial fit models, to capture any nonlinear relationships
see Fig. 4 and Online Supplementary Figure 1). Results revealed a diver-
ent pattern below and above bandwidth values of 10 streamlines across
ll polygon types: for SC-FC Bandwidth values below 10, we found no
elationship between FC or Euclidean distance. For SC-FC Bandwidth
alues above 10, we found a strong positive linear correlation between
roup-average FC (partial correlation coefficients) and bandwidth in di-
ect paths ( r = 0.71, p = < 0.001; Fig. 4 ). In other words, the greater the SC-
C Bandwidth, the higher the FC. Regarding SC-FC triangles and quads,
he relationship between FC and SC-FC Bandwidth was also positive,
ut substantially weaker ( r = 0.18, p = < 0.001, and r = 0.17, p = < 0.001, re-
pectively; Fig. 4 ). We found the Euclidean distance between FC nodes
ecays exponentially in relation to SC-FC Bandwidth (direct; adjusted
 

2 = 0.32, triangle; adjusted 𝑅 

2 = 0.26, quad; adjusted 𝑅 

2 = 0.11; Fig. 6 B);
hus, SC-FC Bandwidth slope increases with Euclidean distance up to
andwidth of 100, and very slowly past this point. The slope of this
ncrease is progressively less with a greater number of SC paths, as evi-
ent in the shallower curves in triangles and quads. The plot for direct
aths ( Fig. 4 C) suggests that the greater the SC-FC Bandwidth and Eu-
lidean distance, the higher the FC (adjusted 𝑅 

2 = 0.63). For SC-FC tri-
ngles (adjusted 𝑅 

2 = 0.11) and quads (adjusted 𝑅 

2 = 0.05) this triadic re-
ationship is less pronounced as reflected by lower adjusted 𝑅 

2 squared
alues. Collectively, these findings indicate that high-bandwidth edges
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Fig. 4. SC-FC bandwidth in the context of known measurements. (A) Scatterplots and linear correlations between group-average SC-FC polygon bandwidth and 
group-average partial correlation coefficient of each FC edge for direct SC-FC (left), SC-FC triangles (middle), and SC-FC quads (right). (B) Scatterplots and negative 
exponential fit models between group-average SC-FC polygon bandwidth and group-average Euclidean distance of each FC edge of direct SC-FC (left), SC-FC triangles 
(middle), and SC-FC quads (right). (C) Three-dimensional plots showing triadic relationships between SC-FC polygon bandwidth, group-average partial correlation 
coefficient and Euclidean length of each FC edge for direct SC-FC (left), SC-FC triangles (middle), and SC-FC quads (right). 
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ave particular biological significance —warranting further exploration
nto the spatial distribution of these high-bandwidth edges across
he brain. 

.3. Spatial Distribution of High-Bandwidth SC-FC Polygons 

As shown in the section “Proportion of Direct and Indirect Struc-
ural Paths Mediating Functional Connectivity ”, the relationship be-
ween FC, SC-FC Bandwidth and Euclidean distance highlighted the sig-
ificance of high-bandwidth polygons. Therefore, we examine the dis-
ribution of high SC-FC Bandwidth edges hereafter. Specifically, we fo-
us on the highest 200 SC-FC Bandwidth (4th percentile) edges, to bal-
nce specificity (i.e., clear visualization of spatial patterns) and sensi-
ivity (i.e., more robust SC-FC Bandwidth edges; Zalesky et al., 2016 ).
igh-bandwidth direct SC-FC connections show a bilateral, anteroposte-

ior distribution ( Fig. 5 A, B; Top) and highest bandwidth between right
uperiorfrontal and left superiorfrontal nodes. SC-FC triangles have a
ight superomedial distribution, with the highest indirect bandwidth be-
ween right precentral and paracentral nodes, and between left pre-
entral and postcentral nodes within the somatomotor network (Fig.
C; middle). High-bandwidth SC-FC quads have a superoposterior dis-
6 
ribution ( Fig. 5 A, B; Bottom) and regions with the highest indirect
C-FC bandwidth include left inferior parietal, right inferior parietal,
ight precuneus and inferior parietal nodes within the default mode net-
ork (Fig. 5C; Bottom). Maximum SC-FC Bandwidth diminishes with SC
ath length (i.e., direct, triangle, quads, respectively; Fig. 5 A,B,C). Intra-
etwork connectivity was highest in direct SC-FC (Supplementary Fig.
C; median = 15), followed by SC-FC triangles (Supplementary Fig. 7C;
edian = 4) and SC-FC quads (Supplementary Fig. 7C; median = 2).

nter-network connectivity was highest in SC-FC triangles (Supplemen-
ary Fig. 7B; median = 30) compared to quads (Supplementary Fig. 7C;
edian = 28) and direct SC-FC (Supplementary Fig. 7A; median = 13).

nter-network connectivity was lowest in direct SC-FC (Supplementary
ig. 7C; median = 13). Finally, we found that median bandwidth is high-
st in direct SC-FC (48.33), followed by SC-FC triangles (25.24) and
uads (15.64) suggesting SC-FC polygons with less SC paths have the
ighest bandwidth. 

.4. Inter-subject Variability of Mean SC-FC Bandwidth 

Due to the high frequency of SC-FC triangles identified in our re-
ults, we focus on these SC-FC polygons to examine the inter-subject
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Fig. 5. Spatial distribution of high SC-FC bandwidth edges. Top: (A) Axial and (B) Sagittal spatial distribution of high group average weighted SC-FC Bandwidth 
of direct SC-FC (Top), SC-FC triangles (middle) and SC-FC quads (Bottom) at 219 resolution (see Equation 1). (C) Connectome rings showing high group average 
SC-FC Bandwidth within and between 7 canonical resting-state networks ( Yeo et al., 2011 ) and median SC-FC bandwidth incident to each node. Highest 200 edges 
weights shown; where edge thickness is proportional to edge weight. 
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ariability of mean SC-FC Bandwidth values in the context of an inde-
endent data set (MICA) and parcellation scheme (Schaefer atlas) as
 control analysis. As shown above, violin plots of mean SC-FC Band-
idth values show relatively consistent distributions across parcella-

ion schemes, within 7 canonical resting-state networks, using both HCP
ata parsed with the Desikan-Killiany atlas, and MICA data parsed with
he Schaefer atlas using similar resolutions (219 and 200 nodes, respec-
ively). One-way analysis of variance (ANOVA) revealed these mean SC-
C Bandwidth are significantly different across canonical resting-state
etwork using both the HCP data parsed with the Desikan-Killiany atlas
 F (6,484) = 227, p < .001) and MICA data parsed with the Schaefer atlas
 F (6,50) = 13.77, p < .001). 
7 
. Discussion 

With this paper, we propose a paradigm-shift toward considering
ow and where structural connections may constrain, maintain and
egulate communication between brain regions. Leveraging a multi-
lex framework, we measured the number of paths, bandwidth and
patial distribution of direct and indirect SC polygons to mediate FC
dges. Subsequently, we introduce a novel graph theoretical measure-
ent termed —SC-FC Bandwidth . Using our method, we uncover the

apacity of white matter microstructure to mediate FC in the human
rain. These findings contribute to the emerging characterization of
he structural-functional connectivity relationship. Hereafter, we discuss
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n  
ur main findings with respect to our three aims, raise key methodolog-
cal considerations, identify study limitations and provide suggestions. 

To address our first aim, we measured the proportion of function-
lly synchronous brain regions that are facilitated by direct and in-
irect structural pathways. Our results revealed that few functionally
ynchronous brain regions are facilitated by direct SC edges, and most
re facilitated indirectly by SC tuples (SC-FC triangles). These findings
end support to Wang et al. (2020) who predicted SC from FC by apply-
ng a model with a prediction rate above 60% when including indirect
length-two) paths; suggesting a large number of FC nodes may be fa-
ilitated by indirect SC. Although the proportion of single (direct) paths
ould be replicated using randomized graphs, we could not replicate
roportions of tuples and triplets (paths of length three) using random-
zed data for each subject —suggesting ubiquitous indirect connectivity
n the human brain has biological significance. 

The disparity between random and empirical data can be explained
y a number of factors. First, our Erd ő s-Rényi graphs were density-
atched (i.e., the same number of edges as our empirical data). That

s, the expected diameter (the largest number of vertices which must be
raversed in order to travel from one vertex to another, or longest short-
st paths) is small. Therefore, a similar proportion of paths of length
ne was expected. Regarding the proportion of longer paths, our for-
ula shows that the proportion of paths of length 𝑘 decreases quickly

eyond 𝑘 = 3 in random graphs of this type. Regarding paths of length
wo and three, the proportion of these is randomized (within the con-
traints imposed; i.e., density) and therefore is not expected to coincide
ith the proportion of these paths found in empirical data. 

We found no overlap between high-bandwidth indirect SC-FC and
nown hub-hub SC of the default mode network ( Alves et al., 2019 ),
uggesting direct and indirect connectivity may work in unison to sup-
ort FC. In addition, our finding of ubiquitous indirect connectivity
SC-FC triangles) lends credibility to the notion that the human brain
as well-known “small world ” properties for a reason; i.e. a balance be-
ween integration and segregation in order to be robust to single node
ailure while also maintaining cost-efficient transmission of informa-
ion ( Bassett and Bullmore, 2006 ; Bullmore and Sporns, 2009 ; van den
euvel and Sporns, 2011 ). Furthermore, due to the inconsistent topolog-

cal organisation of the brain (left and right hemispheric subnetworks),
irect paths (i.e., a single large white matter fibre bundle such as the
orpus callosum) can facilitate communication between some, but not
ll contralateral and/or distal nodes. It is conceivable that these direct
aths may also obstruct other nodes, where few crossing fibres exist. In
ome instances, additional anatomical structures may further obstruct
hese nodes (e.g., lateral ventricles). In these instances, SC-FC triangles
nd quads represent the next best available option to propagate informa-
ion from one distal/contralateral node to another. The high frequency
f SC-FC triangles is therefore unsurprising, as these SC-FC polygons
omprise relatively few paths, to facilitate relatively disconnected brain
egions. 

To address our second aim, we found that direct SC-FC polygons
end to have higher bandwidth, and higher corresponding partial corre-
ation coefficients which may reflect higher cost-efficiency (i.e., lower
etabolic cost) relative to SC-FC triangles and quads. The significance of
irect high-bandwidth SC-FC polygons is yet to be explored, although
tudies have linked efficiency and cost-efficiency with executive task
erformance using fMRI ( van den Heuvel et al., 2009 ), MEG ( Bassett
t al., 2009 ), and diffusion MRI ( Li et al., 2009 ). The spatial distribu-
ion of high-bandwidth SC-FC polygons can be considered within the
ontext of recent efforts to map the distribution of SC-FC Pearson’s cor-
elation values across the brain using a multilinear regression model
 Vàzquez-Rodríguez et al., 2019 ). Indeed, this model uncovered higher
ode-specific SC-FC 𝑅 

2 values of unimodal cortices such as the primary
ensory and motor regions, and lower node-specific SC-FC 𝑅 

2 values
n trans-modal cortices within the default mode and salience networks,
here these nodes do not explain a high amount of variance in SC-FC

orrelation values. Extending upon this work, we report that default
8 
ode network nodes exhibit high information capacity relative to nodes
n other networks which cannot be modelled using (a) traditional linear
odelling assumptions, and (b) consideration of only direct SC paths

 Vàzquez-Rodríguez et al., 2019 ). Here, our findings contribute to the
merging nonlinear characteristics of SC-FC relationships in human brain
etworks. Our work also extends upon recent applications of SC-FC mul-
iplex analyses such as ( Lim et al., 2019 ) who reported network-specific
ssortativity of SC-FC correlation values geared toward the dorsal atten-
ion and frontoparietal networks. Importantly, both Vàzquez-Rodríguez
t al. (2019) and Lim et al. (2019) utilize measures of dependency (i.e.,
orrelation coefficient) which although useful at describing general re-
ationships between two variables, cannot describe how information
ransfer between FC nodes is mediated by SC. Therefore, our method
nd subsequent novel graph metric represents an important transition
oward explaining how the structure-function relationship is facilitated,
y considering the capacity of individual nodes to propagate informa-
ion —ultimately giving rise to functional communication. 

To address our third aim, we implemented a novel mathematical
odel within a multiplex framework to quantify the bandwidth of SC-FC
olygons. Higher bandwidth values incident to a given FC edge reflect
reater throughput of synchronous nodes. Our method extends upon
 Crofts et al., 2016 ) who quantified binary centroidal node participation
ithin SC-FC triangles, to instead consider weighted structural paths

hat link functionally synchronous brain regions within common SC-FC
olygon types (i.e., direct, triangles and quads). Subsequently, our mea-
ure offers information above and beyond SC-FC triangle participation. 

To address our fourth aim, we mapped the spatial distribution of
odes with high SC-FC bandwidth across the brain. We report that high
andwidth SC-FC triangles and quads pertain to the somatomotor and
efault mode networks, respectively. At a nodal level, we found the
ighest indirect bandwidth (SC-FC triangles) between right precentral
yral nodes. These nodes are connected by the corticospinal tract, where
ensory information can be relayed to and from the peripheral nervous
ystem. The internal pyramidal layer (V) of the precentral cortex con-
ains large (70-100 micrometres) pyramidal neurons (Betz cells) which
roject long axons to the contralateral motor nuclei of the cranial nerves,
nd to the lower motor neurons in the ventral horn of the spinal cord.
hese axons form the bilateral corticospinal tract. Therefore, proximal
recentral cortex nodes are indirectly linked, by different portions of
 large white matter fibre bundle (the corticospinal tract) which may
xplain their synchronicity (due to their proximity) and high (indirect)
andwidth. 

We found high bandwidth SC-FC quads predominate the default
ode network. This network is generally thought to be mediated by
hite matter pathways including the anterior and posterior cingulum,

he uncinate, superior longitudinal, arcuate, and inferior longitudinal
asciculi and frontal orbito-polar tracts ( Tiepel et al., 2010 ; Buckner et
l., 2008 ). However, a broader extension of this network has recently
een proposed to include several sub-cortical gray matter regions (tha-
amus and basal forebrain; Alves et al., 2019 ), highlighting the potential
o model sub-cortical modulation of large-scale networks within multi-
lex analyses. Therefore, a natural extension of our work may include
apping which intermediary white matter fibre tracts mediate FC be-

ween the precuneus and inferior parietal cortex, and how the distri-
ution/bandwidth of SC-FC polygons may be affected by sub-cortical
hite matter fibre bundle projections. At a nodal level, we found the
ighest bandwidth exists between inferior parietal and precuneus nodes.
his discovery is fitting, given the known hypermetabolism of the pos-
erior cingulate cortex ( ∼40% higher than average; Raichle et al., 2001 ;
fefferbaum et al., 2010 ) relative to other brain areas. A combination of
igher metabolism and higher SC-FC Bandwidth may reflect the highly
eterogeneous role of the PCC within the default mode, right front-
arietal control, dorsal attention, salience, sensorimotor and left fronto-
arietal control networks ( Leech and Sharp, 2010 ). 

Our novel graph metric quantifies the bandwidth of two synchronous
odes (i.e., brain regions) according to their largest minimum edge
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eight which we term the “max-min method ”. This method is akin
o a circuit- or message-switched architecture ( Graham and Rockmore,
011 ) where all data are sent along one path. However, this method
gnores alternate, more restrictive paths between these same nodes. For
xample, our measure does not sum the total bandwidth of multiple
olygons with lower throughput (i.e., sum of multiple max-min paths).
o sum multiple high-bandwidth paths would be akin to a packet-
witched architecture, in which a signal may be broken into smaller
packets ” of signal(s) which take the most efficient path to the target
ode where they are then re-assembled ( Graham and Rockmore, 2011 ).
hese assumptions have important implications regarding the role that
lternate paths may play in enabling the propagation of electrical infor-
ation from one region to another. Hereafter, we discuss each of these

rchitectural assumptions in greater detail. 
In our case, the decision not to sum alternate paths within our SC-

C Bandwidth equation is based on several considerations. Firstly (a)
e rely upon references supporting that the larger the axon, the higher

he throughput ( Harris and Ross, 1955 ; Schrijver, 2002 ). From these
eferences, our max-min theory follows using mathematical principles.
owever, we do not have evidence to suggest that we can sum all poly-
ons that facilitate two functionally synchronous nodes (either linearly,
r polynomially or otherwise). For example, it could be that bandwidth
rows quadratically with the number of streamlines, and it is not true
hat ( a + b ) 2 = a 2 + b 2 . Therefore, the values that we obtain cannot
e added without additional assumptions which may not hold. On the
ther hand, calculating the max-min only requires the assumption that
ess bandwidth means fewer streamlines. 

Secondly, (b) our SC-FC Bandwidth equation assumption (akin to
 circuit-switched architecture) fits within a growing body of research
uggesting human neural networks are already organized for optimal
ommunication efficiency ( Avena-Koenigsberger et al., 2019 ; Seguin et
l., 2018 ). For example, it is known that the number of axons is di-
ectly proportional to gray matter volume across 59 mammalian species
 Laughlin and Sejnowski, 2003 ) and the folds of the human cerebral cor-
ex minimize the total lengths of axons required to join them ( Klyachko
nd Stevens, 2003 ; Simoncelli and Olshausen, 2001 ). Shorter axons in-
rease conduction velocity and decrease voltage entropy ( Hodgkin and
ushton, 1946 ; Spruston et al., 2013 ; Beierlein, 2014 ), making these
aths more efficient than longer paths. The axons comprising these paths
re organized to balance integration and segregation (i.e., small world-
ess; Bassett and Bullmore, 2017 ; Watts and Strogatz, 1998 ) whilst also
educing signal traffic ( Laughlin and Sejnowski, 2003 ) and wiring cost
 Cherniak, 1992 ; Mitchison, 1991 ). Following these insights, it is rea-
onable to posit that wiring cost and signal traffic would be optimized
y using singular, high-bandwidth paths where such paths exist, as op-
osed to splitting information into packets between several paths in or-
er to facilitate ongoing functional communication between source and
arget nodes. This is because the fundamental principle underpinning
xonal conduction velocity ( Hursch, 1939 ; Rushton, 1951 ) states that
he speed of signal is necessarily affected by the thickness of axons, as
ell as the sheaths that insulate these axons. Therefore, paths with dif-

erential bandwidth necessarily transmit signals as differential velocity.
n other words, signals that are split into packets must reach target nodes
t different times which could make seamless communication between
ource and target nodes difficult. 

.1. Computational Results in the Context of Histological Work 

Firstly, our finding of high inter-hemispheric SC-FC Bandwidth (par-
icularly of direct SC-FC polygons) is intuitive, given 99% of interhemi-
pheric corticocortical axons are routed through the corpus callosum
CC; Aboitiz et al., 1992 ; Highley et al., 1999 ; Rosen and Halgren, 2022 )
nd therefore, all inter-hemispheric SC-FC polygons necessarily make
se of the CC. Secondly, our finding that SC-FC Bandwidth decreases
xponentially with longer SC-FC polygons, and longer Euclidean dis-
ance is consistent with the exponential decline of SC with Euclidean
9 
istance reported elsewhere ( Markov et al., 2013 ). However, our find-
ng of higher direct SC-FC Bandwidth relative to SC-FC triangles and
uads is intrinsic to our Max-min model, where longer paths (i.e., paths
ith more “hops ”) increase the likelihood of a low SC edge (i.e., low
eighted sub-path), and thus a lower overall bandwidth. In other words,

he more hops between nodes, the more chance of encountering a low-
eighted (i.e., restrictive) edge, restricting the SC-FC Bandwidth of the

ntire path. 
Our finding of low empirical SC-FC quad frequency is consistent with

istological studies reporting long-range corticocortical fibres are rela-
ively sparse, precluding a direct connection between most contralat-
ral brain regions ( Rosen and Halgren, 2022 ) which is partly mitigated
y small-world network architecture ( Watts and Strogatz, 1998 ; Bassett
nd Bullmore, 2017 ). These long-range white matter connections are
hought to arise due to the tendency of axons to develop or adhere in
lignment with existing axons toward a common distal target —termed
asciculation ( Spead and Poulain, 2020 ). By virtue of this process, it is
ommonly assumed that axons span the entire length of these tracts via
 structural “highway ”, though an alternate theory suggests these axons
erminate at various points along white matter tracts (trans-terminal)
hich may explain why crossing fibres can be identified in up to 90%
f voxels ( Jeurissen et al., 2013 ). To inform this theory, Rosen and Hal-
ren ( Rosen and Halgren, 2022 ) estimated packing density ( Zikopoulos
nd Barbas, 2010 ) and tract diameter ( Yeh, 2020 ) of the arcuate and
uperior longitudinal fasciculus terminating at Broca’s and Wernicke’s
reas. They reported only a fraction of these ipsilateral axons were trans-
erminal (1-5%) supporting the “highway ” theory. However, since the
orpus callosum does not project to any specific cortex, and each fi-
re bundle likely comprises different histological features (i.e., mean
xonal diameter, size of termination field, axonal arborization, molec-
lar synaptic specialization; Deco et al., 2021 ), these findings may not
e generalizable beyond the arcuate and superior longitudinal fasciculi.
oving forward, there is opportunity to reconcile macroscopic and his-

ological features of common indirect SC pathways that utilize the CC,
r other large white matter fibre bundles. 

.2. Methodological Considerations 

Importantly, the edges in our group average SC layer represent the
umber of reconstructed streamlines using deterministic tractography,
et it is unclear whether this is the most appropriate measurement of
C, despite being arguably the most popular ( Jeurissen et al., 2019 ). The
umber of reconstructed streamlines essentially represents a stream or
rack from a starting location (seed) in a direction using the local fibre
rientation guided by individual voxels (deterministic; one streamline
er voxel). Alternatively, probabilistic tractography simulating multi-
le streamlines samples per seed voxel drawn from the local fibre ori-
ntation distribution ( Jones, 2010 ; Calamante, 2019 ; Dhollander et al.,
020 ) should be used in future work to evaluate our findings. Further,
 fundamental limitation of this technology is its non-quantitative na-
ure, i.e., the density of reconstructed connections is not reflective of the
ensity of underlying white matter fibres ( Smith et al., 2015 ). As such,
eterministic tractography is prone to false negatives, and is inherently
 second-order white matter measurement which does not necessarily
eflect information pertaining to the white matter microstructure (i.e.,
xon diameter). For instance, specific diffusion MRI measures relating
o axon and myelin such as axon density, axon diameter, and myelin
ater fraction may provide richer insight underlying SC ( Ganzetti et
l., 2014 ; Glasser and Essen, 2011 ). More recently, total intra-axonal
ross-sectional area of a fibre bundle (or Fibre Bundle Capacity; FBC)
as emerged as measure that can be used as proxy for the “bandwidth ”
f a connection, i.e., the capacity of a fibre bundle to transfer informa-
ion ( Smith et al., 2020 ). Each of these measures may contribute unique
nformation about microstructural properties, albeit with trade-offs re-
ating to each ( Uddin et al., 2019 ). Therefore, there is ample room to
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Fig. 6. Inter-subject variability of mean SC-FC bandwidth across canonical resting-state networks and parcellation schemes. Panel A shows violin plots 
of mean SC-FC bandwidth values (SC-FC triangles) for each HCP subject, across 7 canonical resting-state networks using the Desikan-Killiany atlas with 219 node 
resolution. Panel B shows violin plots of mean SC-FC bandwidth values (SC-FC triangles) for each MICA subject, across 7 canonical resting-state networks using the 
Schaefer atlas with 200 node resolution. ∗ Colors correspond with violin plots. 
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onsider how alternative SC measures relate to FC within a multiplex
ramework. 

SC-FC bandwidth depends on the position, size and density of FC
odes, as well as the number and location of SC paths that connect these
odes. Therefore, the spatial distribution of high-bandwidth edges can-
ot be resolution or atlas invariant. This issue pertains to any graph
etric, for which to the best of our knowledge, there remains no so-

ution. This issue highlights the need to justify the choice of multiplex
arcellation scheme. Moving forward, we propose the use of one-to-
any multiplex mapping; where the connectivity between pairs of FC
odes from a coarse-grained atlas (for example Desikan Killaney 68 cor-
ical resolution) is modeled using ultra high-resolution SC (i.e., ∼1:1000
dges, respectively). Though we report and interpret group-level SC-FC
andwidth, variation exists within each subject with respect to mean
alues (as shown in Figure 6 ) as well as the anatomic location of these
alues. Therefore, we present our interpretation of group-level findings
s an example of how our method can be applied. Moving forward, there
s opportunity to link global or local SC-FC maps from each subject with
ognition, to determine the value of SC-FC bandwidth toward predicting
pecific cognitive processes that may be linked to information capacity
e.g., processing speed). 

Important to note, our findings do not completely explain the bio-
ogical mechanism underpinning information transfer between nodes.
ather, our novel graph metric is an apparent higher-order model

o characterize information transfer capacity between nodes. In fu-
ure, studies may wish to enrich higher-order multiplexes with simu-
ated temporal waveforms ( Hansen et al., 2015 ), excitatory/inhibitory
MRI spike-firing models ( Schirner et al., 2018 ; Breakspear, 2017 ), and
esting-state neural dynamics ( Mi š i ć and Sporns, 2016 ). Due consider-
tion must also be given to if and how to include negative correlations
ithin SC-FC multiplex models which forms the basis for why we ex-

luded these values from our analyses. Although it is generally estab-
ished that the dorsal attention network is anti-synchronous with the
efault mode network ( Dixon et al., 2017 ; Fox et al., 2005 ; Fransson,
005 ; Golland et al., 2008 ) and that the salience network acts as inter-
ediary between these two networks ( Seeley, 2019 ; Seeley et al., 2007 ),

he meaning of these negative (anti) correlations in neuroscience is still
nclear. However, given the nature of an aggregated resting-state FC
ayer, one might consider exploring how negative correlations derived
rom dynamic or task-based FC are facilitated by SC-FC polygons. Lastly,
e found no relationship between SC-FC Bandwidth values below 10
nd Euclidean distance or partial correlation coefficient in any polygon
10 
ype–suggesting that these edges may not have biological significance
r may represent noise. 

. Conclusion 

The introduction of this novel graph metric paves the way to explore
ow the bandwidth of synchronous brain regions relate to cognition,
isease or acute injury. In brain-injured patients, a reduced structure-
unction relationship highlights the potential for multiplex analyses to
hed light on how and where injury to focal grey- or white-matter af-
ects SC-FC polygons, and if these polygons demonstrate alterations in
esponse to injury ( Parsons et al., 2020 ). In addition to understanding
ow and where SC mediates FC between nodes, there is growing inter-
st in predicting FC matrices using SC matrices within machine learning
pproaches. For example, some have predicted FC with accuracy that ex-
eeds biophysical models whilst explaining inter-individual variation in
ognitive performance ( Sarwar et al., 2021 ). Although these techniques
an predict FC with moderate accuracy, machine-learning cannot yet ex-
lain how the complex interplay of biophysical variables manifests an
ndividual’s FC signature. As such, a reconciliation between machine-
earning approaches and multiplex analyses represents a powerful and
nigmatic prospect. 
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