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Abstract

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity 

better, here we conduct a genome-wide association study and Metabochip meta-analysis of body 

mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 

339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which 

are novel. Five loci demonstrate clear evidence of several independent association signals, and 

many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% 

of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% 

of BMI variation. Pathway analyses provide strong support for a role of the central nervous system 

in obesity susceptibility and implicate new genes and pathways, including those related to synaptic 

function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and 

adipogenesis.

Obesity is a worldwide epidemic associated with increased morbidity and mortality that 

imposes an enormous burden on individual and public health. Around 40–70% of inter-

individual variability in BMI, commonly used to assess obesity, has been attributed to 

genetic factors1–3. At least 77 loci have previously been associated with an obesity 

measure4, 32 loci from our previous meta-analysis of BMI genome-wide association studies 

(GWAS)5. Nevertheless, most of the genetic variability in BMI remains unexplained. 

Moreover, although analyses of previous genetic association results have suggested 

intriguing biological processes underlying obesity susceptibility, few specific genes 

supported these pathways5,6. For the vast majority of loci, the probable causal gene(s) and 

pathways remain unknown.

Correspondence and requests for materials should be addressed to E.K.S. (espeliot@med.umich.edu), R.J.F.L. (ruth.loos@mssm.edu), 
and J.N.H. (joelh@broadinstitute.org)..
†Present address: Second Floor, B-dong, AICT Building, 145 Gwanggyo-ro, Yeongyong-gu, Suwon-si, Gyeonggi-do,443-270, South 
Korea.
‡A list of authors and affiliations appears in the Supplementary Information.
§These authors jointly supervised this work.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version 
of the paper; references unique to these sections appear only in the online paper.

Supplementary Information is available in the online version of the paper.

Author Contributions A full list of author contributions can be found in the Supplementary Information.

Author Information Reprints and permissions information is available at www.nature.com/reprints.

The authors declare competing financial interests: details are available in the online version of the paper. Readers are welcome to 
comment on the online version of the paper.

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2015 April 01.

Published in final edited form as:
Nature. 2015 February 12; 518(7538): 197–206. doi:10.1038/nature14177.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/reprints


To expand the catalogue of BMI susceptibility loci and gain a better understanding of the 

genes and biological pathways influencing obesity, we performed the largest GWAS meta-

analysis for BMI so far. This work doubles the number of individuals contributing GWAS 

results, incorporates results from >100,000 individuals genotyped with Metabochip7, and 

nearly doubles the number of BMI-associated loci. Comprehensive assessment of meta-

analysis results provides several lines of evidence supporting candidate genes at many loci 

and highlights pathways that reinforce and expand our understanding of biological processes 

underlying obesity.

Identification of 97 genome-wide significant loci

This BMI meta-analysis included association results for up to 339,224 individuals from 125 

studies, 82 with GWAS results (n = 236,231) and 43 with results from Metabochip (n = 

103,047; Extended Data Table 1 and Supplementary Tables 1–3). After regression on age 

and sex and inverse normal transformation of the residuals, we carried out association 

analyses with genotypes or imputed genotype dosages. GWAS were meta-analysed together, 

as were Metabochip studies, followed by a combined GWAS plus Metabochip meta-

analysis. In total, we analysed data from 322,154 individuals of European descent and 

17,072 individuals of non-European descent (Extended Data Fig. 1).

Our primary meta-analysis of European-descent individuals from GWAS and Metabochip 

studies (n = 322,154) identified 77 loci reaching genome-wide significance (GWS) and 

separated by at least 500 kilo-bases (kb) (Table 1, Extended Data Table 2 and 

Supplementary Figs 1 and 2). We carried out additional analyses to explore the effects of 

power and heterogeneity. The inclusion of 17,072 non-European-descent individuals (total n 

= 339,224) identified ten more loci, while secondary analyses identified another ten GWS 

loci (Table 2, Supplementary Tables 4–8 and Supplementary Figs 3–9). Of the 97 BMI-

associated loci, 41 have previously been associated with one or more obesity measure5,8–12. 

Thus, our current analyses identified 56 novel loci associated with BMI (Tables 1 and 2 and 

Extended Data Table 2).

Effects of associated loci on BMI

Newly identified loci generally have lower minor allele frequency and/or smaller effect size 

estimates than previously known loci (Extended Data Fig. 2a, b). On the basis of effect 

estimates in the discovery data set, which may be inflated owing to winner’s curse, the 97 

loci account for 2.7% of BMI phenotypic variance (Supplementary Table 4 and Extended 

Data Fig. 2a, b). We conservatively used only GWS single nucleotide polymorphisms 

(SNPs) after strict double genomic control correction, which probably over-corrects 

association statistics given the lack of evidence for population stratification in family-based 

analyses13 (Extended Data Fig. 3 and Extended Data Table 1). Polygene analyses suggest 

that SNPs with P values well below GWS add significantly to the phenotypic variance 

explained. For example, 2,346 SNPs selected from conditional and joint multiple-SNP 

analysis with P < 5 × 10−3 explained 6.6 ± 1.1% (mean ± s.e.m.) of variance, compared to 

21.6 ± 2.2% explained by all HapMap3 SNPs (31–54% of heritability; Fig. 1a). 

Furthermore, of 1,909 independent SNPs (pairwise distance >500 kb and r2 < 0.1) included 
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on Metabochip for replication of suggestive BMI associations, 1,458 (76.4%) have 

directionally consistent effects with our previous GWAS meta-analysis5 and the non-

overlapping samples in the current meta-analysis (Extended Data Fig. 2c). On the basis of 

the significant excess of these directionally consistent observations (sign test P = 2.5 × 

10−123), we estimate ~1,007 of the 1,909 SNPs represent true BMI associations.

We compared the effects of our 97 BMI-associated SNPs between the sexes, between 

ethnicities, and across several cross-sections of our data (Supplementary Tables 4–11 and 

Extended Data Fig. 4). Two previously identified loci, near SEC16B (P = 5.2 × 10−5) and 

ZFP64 (P = 9.1 × 10−5), showed evidence of heterogeneity between men and women. Both 

have stronger effects in women (Supplementary Table 10). Two SNPs, near NEGR1 (P = 9.1 

× 10−5) and PRKD1 (P = 1.9 × 10−5), exhibited significant evidence for heterogeneity of 

effect between European- and African-descent samples, and one SNP, near GBE1 (P = 1.3 × 

10−4), exhibited evidence for heterogeneity between European and east Asian individuals 

(Supplementary Table 9). These findings may reflect true heterogeneity at these loci, but are 

most likely due to linkage disequilibrium (LD) differences across ancestries. Effect 

estimates for 79% of BMI-associated SNPs in African-descent samples (P = 9.2 × 10−9) and 

91% in east Asian samples (P = 1.8 × 10−15) showed directional consistency with our 

European-only analyses. These results suggest that common BMI-associated SNPs have 

comparable effects across ancestries and between sexes. In additional heterogeneity 

analyses, we detected an influence of ascertainment at TCF7L2 (stronger effects in type 2 

diabetes case/control studies than in population-based studies); however, we saw no 

evidence of systematic ascertainment bias at other loci owing to inclusion of case/control 

studies (Supplementary Tables 10 and 11).

We also took advantage of LD differences across populations to fine-map association 

signals using Bayesian methods14,15. At 10 of 27 loci fine-mapped for BMI on Metabochip, 

the addition of non-European individuals into the meta-analysis either narrowed the genomic 

region containing the 99% credible set, or decreased the number of SNPs in the credible set 

(Supplementary Table 12 and Supplementary Fig. 10). At the SEC16B and FTO loci, the all 

ancestries credible set includes a single SNP, although the SNP we highlight at FTO 

(rs1558902) differs from that identified by a recent fine-mapping effort in African-American 

cohorts16. Fine-mapping efforts using larger, more diverse study samples and more 

complete catalogues of variants will help to further narrow association signals.

We examined the combined effects of lead SNPs at the 97 loci in an independent sample of 

8,164 European-descent individuals from the Health and Retirement Study17. We observed 

an average increase of 0.1 BMI units (kg per m2) per BMI-increasing allele, equivalent to 

260–320 g for an individual 160–180 cm in height. There was a 1.8 kg per m2 difference in 

mean BMI between the 145 individuals (1.78%) carrying the most BMI-increasing alleles 

(>104) and those carrying the mean number of BMI-increasing alleles in the sample (91; 

Extended Data Fig. 2d), corresponding to a difference of 4.6–5.8 kg for an individual 160–

180 cm in height, and a 1.5 kg m−2 difference (3.8–4.9 kg difference) in mean BMI between 

the 95 individuals (1.16%) carrying the least BMI-increasing alleles (<78) and those 

carrying the mean number. Such differences are medically significant in predisposing to 

development of metabolic disease18. For predicting obesity (BMI ≥ 30 kg per m2), adding 
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genetic risk score to a model including age, age squared, sex and four genotype-based 

principal components slightly, but significantly increases the area under the receiver-

operating characteristic curve from 0.576 to 0.601.

Additional associated variants at BMI loci

To identify additional SNPs with independent BMI associations at the 97 established loci, 

we used genome-wide complex trait analysis (GCTA)19 to perform approximate joint and 

conditional association analysis20 using summary statistics from European sex-combined 

meta-analysis after removing family-based validation studies (TwinGene and QIMR). 

GCTA confirmed two signals at MC4R previously identified using exact conditional 

analyses5, and identified five loci with evidence of independent associations (Table 3): 

second signals near LINC01122, NLRC3-ADCY9, GPRC5B-GP2 and BDNF, and a third 

signal near MC4R (rs9944545, Fig. 1b). Joint conditional analyses at two genomic regions 

separated by >500 kb (the AGBL4-ELAVL4 regions on chr. 1, and the ATP2A1-SBK1 

regions on chr. 16), indicate that these pairs of signals may not be independent owing to 

extended LD.

Effects of BMI variants on other traits

We tested for associations between our 97 BMI-associated index SNPs and other metabolic 

phenotypes (Supplementary Tables 13–15 and Extended Data Figs 5 and 6). Thirteen of the 

twenty-three phenotypes tested had significantly more SNPs with effects in the anticipated 

direction than expected by chance (Supplementary Table 16). These results corroborate the 

epidemiological relationships of BMI with metabolic traits. Whether this reflects a common 

genetic aetiology or a causal relationship of BMI on these traits requires further 

investigation.

Interestingly, some loci showed significant association with traits in the opposite direction 

than expected based on their phenotypic correlation with BMI (Extended Data Fig. 5). For 

example, at HHIP, the BMI-increasing allele is associated with decreased type 2 diabetes 

risk and higher high-density lipoprotein cholesterol (HDL). At LOC646736 and IRS1, the 

BMI-increasing allele is associated with reduced risk of coronary artery disease (CAD) and 

diabetic nephropathy, decreased triglyceride levels, increased HDL, higher adiponectin, and 

lower fasting insulin. This may be due to increased subcutaneous fat and possible production 

of metabolic mediators protective against the development of metabolic disease despite 

increased adiposity8. These unexpected associations may help us to understand better the 

complex pathophysiology underlying these traits, and may indicate benefits or side effects if 

these regions contain targets of therapeutic intervention. Furthermore, of our 97 GWS loci, 

35 (binomial P = 0.0019) were in high LD (r2 > 0.7) with one or more GWS SNPs in the 

National Human Genome Research Institute (NHGRI) GWAS catalogue (P < 5 × 10−8), 

even after removing anthropometric trait-associated SNPs. These SNPs were associated not 

only with cardiometabolic traits, but also with schizophrenia, smoking behaviour, irritable 

bowel syndrome, and Alzheimer’s disease (Supplementary Table 17a, b).
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BMI tissues, biological pathways and gene sets

We anticipated the expanded sample size would not only identify additional BMI-associated 

variants, but also more clearly highlight the biology implicated by genetic studies of BMI. 

By applying multiple complementary methods, we identified biologically relevant tissues, 

pathways and gene sets, and highlighted potentially causal genes at associated loci. These 

approaches included systematic methods incorporating diverse data types, including the 

novel approach, Data-driven Expression Prioritized Integration for Complex Traits 

(DEPICT)21, and extensive manual review of the literature.

DEPICT used 37,427 human gene expression microarray samples to identify tissues and cell 

types in which genes near BMI-associated SNPs are highly expressed, and then tested for 

enrichment of specific tissues by comparing results with randomly selected loci matched for 

gene density. In total, 27 out of 31 significantly enriched tissues were in the central nervous 

system (CNS) (out of 209 tested; Fig. 2a and Supplementary Table 18). Current results are 

not sufficient to isolate specific brain regions important in regulating BMI. However, we 

observe enrichment not only in the hypothalamus and pituitary gland—key sites of central 

appetite regulation—but even more strongly in the hippocampus and limbic system, tissues 

that have a role in learning, cognition, emotion and memory.

As a complementary approach, we examined overlap of associated variants at the 97 loci (r2 

> 0.7 with the lead SNP) with five regulatory marks found in most of the 14 selected cell 

types from brain, blood, liver, pancreatic islet and adipose tissue from the ENCODE 

Consortium22 and Roadmap Epigenomics Project23 (Supplementary Table 19a–c). We 

found evidence of enrichment (P < 1.2 × 10−3) in 24 out of 41 data sets examined. The 

strongest enrichment was observed with promoter (histone 3 Lys 4 trimethylation 

(H3K4me3), histone 3 Lys 9 acetylation (H3K9ac)) and enhancer (H3K4me1, HeK27ac) 

marks detected in mid-frontal lobe, anterior caudate, astrocytes and substantia nigra, 

supporting neuronal tissues in BMI regulation.

To identify pathways or gene sets implicated by the BMI-associated loci, we first used 

Meta-Analysis Gene-set Enrichment of varia NT Associations (MAGENTA)24, which takes 

as input pre-annotated gene sets, and then tests for overrepresentation of gene set genes at 

BMI-associated loci. We found enrichment (false discovery rate (FDR) < 0.05) of seven 

gene sets, including neurotrophin signalling. Other highlighted gene sets related to general 

growth and patterning: basal cell carcinoma, acute myeloid leukaemia, and hedgehog 

signalling (Supplementary Table 20a, b).

Second, we used DEPICT, that uses predefined gene sets reconstituted using coexpression 

data, to perform gene set enrichment analysis. After merging highly correlated gene sets, 

nearly 500 gene sets were significantly enriched (FDR < 0.05) for genes in BMI-associated 

loci (Fig. 2b and Supplementary Table 21a, b). The most strongly enriched gene sets 

highlight potentially novel pathways in the CNS. These include gene sets related to synaptic 

function, long-term potentiation and neurotransmitter signalling (glutamate signalling in 

particular, but also noradrenaline, dopamine and serotonin release cycles, and GABA (γ-

aminobutyric acid) receptor activity; Fig. 2c). Potentially relevant mouse behavioural 
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phenotypes, such as physical activity and impaired coordination were also highly enriched 

(Fig. 2b and Supplementary Table 21a). Several gene sets previously linked to obesity, such 

as integration of energy metabolism, polyphagia, secretion and action of insulin and related 

hormones (for example, ‘regulation of insulin secretion by glucagon-like peptide 1′ and 

‘glucagon signalling in metabolic regulation’), mTOR signalling (which affects cell growth 

in response to nutrient intake via insulin and growth factors25), and gene sets overlapping 

the neurotrophin signalling pathway identified by MAGENTA were also enriched, although 

not as significantly as other CNS processes (Fig. 2d). DEPICT also identified significant 

enrichment for additional cellular components and processes: calcium channels, MAP kinase 

activity, chromatin organization and modification, and ubiquitin ligases.

Third, we manually reviewed literature related to all 405 genes within 500 kb and r2 > 0.2 of 

the 97 index SNPs. We classified these genes into one or more biological categories, and 

observed 25 categories containing three or more genes (Supplementary Table 22). The 

largest category comprised genes involved in neuronal processes, including monogenic 

obesity genes involved in hypothalamic function and energy homeostasis, and genes 

involved in neuronal transmission and development. Other processes highlighted by the 

manual literature review included glucose and lipid homeostasis and limb development, 

which were less notable in the above methods, but may still be related to the underlying 

biology of BMI.

To identify specific genes that may account for BMI association, we considered each of the 

following to represent supportive evidence for a gene within a locus: (1) the gene nearest the 

index SNP26; (2) genes containing missense, nonsense or copy number variants, or a cis-

expression quantitative trait locus (eQTL) in LD with the index SNP; (3) genes prioritized 

by integrative methods implemented in DEPICT; (4) genes prioritized by connections in 

published abstracts by GRAIL (Gene Relationships Across Implicated Loci)27; or (5) genes 

biologically related to obesity, related metabolic disease, or energy expenditure based on 

manual literature review (Tables 1 and 2, Extended Data Tables 2–4 and Supplementary 

Tables 23–25). We first focused on the 64 genes in associated loci with more than one 

consistent line of supporting evidence. As expected, many of these genes overlap with CNS 

processes, including synaptic function, cell–cell adhesion, and glutamate signalling 

(ELAVL4, GRID1, CADM2, NRXN3, NEGR1 and SCG3), cause monogenic obesity 

syndromes (MC4R, BDNF, BBS4 and POMC), or function in extreme/early onset obesity in 

humans and mouse models (SH2B1 and NEGR1)6,28,29. Other genes with several lines of 

supporting evidence are related to insulin secretion and action, energy metabolism, lipid 

biology, and/or adipogenesis (TCF7L2, GIPR, IRS1, FOXO3, ASB4, RPTOR, NPC1, 

CREB1, FAM57B, APOBR and HSD17B12), encode RNA binding/processing proteins 

(PTBP2, ELAVL4, CELF1 and possibly RALYL), are in the MAP kinase signalling pathway 

(MAP2K5 and MAPK3), or regulate cell proliferation or cell survival (FAIM2, PARK2 and 

OLFM4). Although we cannot be certain that any individual gene is related to the 

association at a given locus, the strong enrichment of pathways among genes within 

associated loci argues for a causal role for these pathways, prioritizes specific genes for 

follow-up experiments, and provides the strongest genetic evidence so far for a role of 

particular biological and CNS processes in the regulation of human body mass.
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Discussion

Our meta-analysis of nearly 340,000 individuals identified 97 GWS loci associated with 

BMI, 56 of which are novel. These loci account for 2.7% of the variation in BMI, and 

suggest that as much as 21% of BMI variation can be accounted for by common genetic 

variation. Our analyses provide robust evidence to implicate particular genes and pathways 

affecting BMI, including synaptic plasticity and glutamate receptor activity—pathways that 

respond to changes in feeding and fasting, are regulated by key obesity-related molecules 

such as BDNF and MC4R, and impinge on key hypothalamic circuits30–32. These pathways 

also overlap with one of the several proposed mechanisms of action of topiramate, a 

component of one of two weight-loss drugs approved by the US Food and Drug 

Administration33,34. This observation suggests that the relevant site of action for this drug 

may be glutamate receptor activity, supporting the idea that these genes and pathways could 

reveal more targets for weight-loss therapies. BMI-associated loci also overlap with genes 

and pathways implicated in neurodevelopment (Supplementary Tables 21 and 22). Finally, 

consistent with previous work and findings from monogenic obesity syndromes, we confirm 

a role for the CNS—particularly genes expressed in the hypothalamus—in the regulation of 

body mass.

Examining the genes at BMI-associated loci in the context of gene expression, molecular 

pathways, eQTL results, mutational evidence and genomic location provides several 

complementary avenues through which to prioritize genes for relevance in BMI biology. 

Genes such as NPC1 and ELAVL4 are implicated by many lines of evidence (literature, 

mutational, eQTL and DEPICT) and become strong candidate genes in their respective 

locations. It is important to recognize that pathway methods and literature reviews are 

limited by current data sets and knowledge, and thus provide only a working model of 

obesity biology. For example, little is known about host genetic factors that regulate the 

microbiome. Variation in immune-related genes such as TLR4 could presumably exert an 

influence on obesity through the microbiome35. Together, our results underscore the 

heterogeneous aetiology of obesity and its links with several related metabolic diseases and 

processes.

BMI variants are generally associated with related cardiometabolic traits in accord with 

established epidemiological relationships. This could be due to shared genetic effects or to 

other causes of cross-phenotypic correlations. However, some BMI-associated variants have 

effects on related traits counter to epidemiological expectations. Once better understood, 

these mechanisms may not only help to explain why not all obese individuals develop 

related metabolic diseases, but also suggest possible mechanisms to prevent development of 

metabolic disease in those who are already obese.

Larger studies of common genetic variation, studies of rare variation (including those based 

on imputation, exome chips and sequencing), and improved computational tools will 

continue to identify genetic variants associated with BMI and help to further refine the 

biology of obesity. The 97 loci identified here represent an important step in understanding 

the physiological mechanisms leading to obesity. These findings strengthen the connection 

between obesity and other metabolic diseases, enhance our appreciation of the tissues, 
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physiological processes, and molecular pathways that contribute to obesity, and will guide 

future research aimed at unravelling the complex biology of obesity.

METHODS

Study design

We conducted a two-stage meta-analysis to identify BMI-associated loci in European adults 

(Extended Data Fig. 1 and Extended Data Table 1). In stage 1 we performed meta-analysis 

of 80 GWAS (n = 234,069); and stage 2 incorporated data from 34 additional studies (n = 

88,137) genotyped using Metabochip7 (Supplementary Tables 1–3). Secondary meta-

analyses were also conducted for: (1) all ancestries, (2) European men, (3) European 

women, and (4) European population-based studies. The total number of subjects and SNPs 

included in each stage for all analyses is shown in Extended Data Table 1. No statistical 

methods were used to predetermine sample size.

Phenotype

BMI, measured or self-reported weight in kg per height in metres squared (Supplementary 

Tables 1 and 3) was adjusted for age, age squared, and any necessary study-specific 

covariates (for example, genotype-derived principal components) in a linear regression 

model. The resulting residuals were transformed to approximate normality using inverse 

normal scores. For studies with no known related individuals, residuals were calculated 

separately by sex and case/control status. For family-based studies, residuals were calculated 

with men and women together, adding sex as an additional covariate in the linear regression 

model. Relatedness was accounted for in a study-specific manner (Supplementary Table 2).

Sample quality control, imputation and association

Following study-specific quality control measures (Supplementary Table 2), all contributing 

GWAS common SNPs were imputed using the HapMap phase II CEU reference panel for 

European-descent studies37, and CEU+YRI+CHB+JPT HapMap release 22 for the African-

American and Hispanic GWAS. Directly genotyped (GWAS and Metabochip) and imputed 

variants (GWAS only) were then tested for association with the inverse normally 

transformed BMI residuals using linear regression assuming an additive genetic model. 

Quality control following study level analyses was conducted following procedures outlined 

elsewhere38.

Meta-analysis

Fixed effects meta-analyses were conducted using the inverse variance-weighted method 

implemented in METAL39. Study-specific GWAS results as well as GWAS meta-analysis 

results were corrected for genomic control using all SNPs40. Study-specific Metabochip 

results as well as Metabochip meta-analysis results were genomic-control-corrected using 

4,425 SNPs included on Metabochip for replication of associations with QT-interval, a 

phenotype not correlated with BMI, after pruning of SNPs within 500 kb of an 

anthropometry replication SNP. The final meta-analysis combined the genomic-control-

corrected GWAS and Metabochip meta-analysis results.
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Identification of novel loci

We used a distance criterion of ±500 kb surrounding each GWS peak (P < 5 × 10−8) to 

define independent loci and to place our results in the context of previous studies, including 

our previous GIANT meta-analyses. Of several locus models tested, this definition most 

closely reflected the loci defined by approximate conditional analysis using GCTA (Tables 1 

and 2, respectively). Current index SNPs falling within 500 kb of a SNP previously 

associated with BMI, weight, extreme obesity or body fat percentage5,8–11 were considered 

previously identified.

Characterization of BMI-associated SNP effects

To investigate potential sources of heterogeneity between groups we compared the effect 

estimates of our 97 GWS SNPs for men versus women of European ancestry and Europeans 

versus non-Europeans. To address the effects of studies ascertained on a specific disease or 

phenotype on our results we also compare the effect estimates of European ancestry studies 

of population-based studies with the following European-descent subsets of studies: (1) non-

population-based studies (that is, those ascertained on a specific disease or phenotype); (2) 

type 2 diabetes cases; (3) type 2 diabetes controls; (4) combined type 2 diabetes cases and 

controls; (5) CAD cases; (6) CAD controls; and (7) combined CAD cases and controls 

(Supplementary Tables 10 and 11). We also tested for heterogeneity of effect estimates 

between our European sex-combined meta-analysis and results from recent GWAS meta-

analyses for BMI in individuals of African or east Asian ancestry10,41 (Supplementary Table 

9). Heterogeneity was assessed as described previously42. A Bonferroni-corrected P < 5 × 

10−4 (corrected for 97 tests) was used to assess significance. For heterogeneity tests 

assessing effects of ascertainment, we also used a 5% FDR threshold to assess significance 

of heterogeneity statistics (Supplementary Table 11).

Fine-mapping

We compared the meta-analysis results and credible sets of SNPs likely to contain the causal 

variant, based on the method described previously14, across the European-only, non-

European, and all ancestries sex-combined meta-analyses. For each index SNP falling within 

a Metabochip fine-mapping region (27 for BMI), all SNPs available within 500 kb on either 

side of the index SNP were selected. Effect size estimates and standard errors for each SNP 

were converted to approximate Bayes’ factors according to the method described 

previously15. All approximate Bayes’ factors were then summed across the 1-megabase 

(Mb) region and the proportion of the posterior odds of being the causal variant was 

calculated for each variant (approximate Bayes’ factor for SNPi/sum of approximate Bayes’ 

factors for the region). The set of SNPs that accounts for 99% of posterior odds of 

association in the region denotes the set most likely to contain the causal variant for that 

association region (Supplementary Table 12).

Cumulative effects, risk prediction and variance explained

We assessed the cumulative effects of the 97 GWS loci on mean BMI and on their ability to 

predict obesity (BMI ≥ 30 kg m−2) using the c statistic from logistic regression models in the 

Health and Retirement Study17, a longitudinal study of 26,000 European Americans 50 
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years or older. The variance explained (VarExp) by each SNP was calculated using the 

effect allele frequency (f) and beta (β) from the meta-analyses using the formula VarExp = 

β2(1 − f)2f.

For polygene analyses, the approximate conditional analysis from GCTA19,20, was used to 

select SNPs using a range of P value thresholds (that is, 5 × 10−8, 5 × 10−7, …, 5 × 10−3) 

based on summary data from the European sex-combined meta-analysis excluding 

TwinGene and QIMR studies. We performed a within-family prediction analysis using full-

sib pairs selected from independent families (1,622 pairs from the QIMR cohort and 2,758 

pairs from the TwinGene cohort) and then SNPs at each threshold were used to calculate the 

percentage of phenotypic variance explained and predict risk (Extended Data Figs 2 and 3). 

We then confirmed the results from population-based prediction and estimation analyses in 

an independent sample of unrelated individuals from the TwinGene (n = 5,668) and QIMR 

(n = 3,953) studies (Extended Data Fig. 3 and Fig. 1c). The SNP-derived predictor was 

calculated using the profile scoring approach implemented in PLINK and estimation 

analyses were performed using the all-SNP estimation approach implemented in GCTA.

Enrichment analysis of Metabochip SNPs selected for replication

The 5,055 SNPs that were included for BMI replication on Metabochip included 1,909 

independent SNPs (r2 < 0.1 and > 500 kb apart), of which 1,458 displayed directionally 

consistent effect estimates with those reported previously5. To estimate the number of 

Metabochip SNPs truly associated with BMI, we counted the number of SNPs with 

directional consistency (DC) between ref. 5 and a meta-analysis of non-overlapping samples 

for these 1,909 SNPs. We then calculated DC in the presence of a mixture of associated and 

non-associated SNPs assuming P(DC ∣ associated) = 1 and P(DC ∣ not associated) = 0.5. In 

this formulation, DC = R/2 + S, meaning that S = 2DC – T, in which T equals the total 

number of SNPs, R equals the number of SNPs not associated with BMI, and S equals the 

number of SNPs associated with BMI. With DC = 1,458 and T = 1,909, we estimate S to be 

2DC – T = 2 × 1,458 – 1,909 = 1,007.

Joint and conditional multiple SNP association analysis

To identify additional signals in regions of association, we used GCTA19, an approach that 

uses meta-analysis summary statistics and an LD matrix derived from a reference sample, to 

perform approximate joint and conditional SNP association analysis. We used 6,654 

unrelated individuals of European ancestry from the ARIC cohort as the reference sample to 

approximate conditional P values.

Manual gene annotation and biological description

All genes within 500 kb of an index SNP were annotated for molecular function, cellular 

function, and for evidence of association with BMI-related traits in human or animal model 

experiments (Supplementary Table 22). We used several avenues for annotation, including 

Spotter (http://csg.sph.umich.edu/boehnke/spotter/), SNIPPER (http://csg.sph.umich.edu/

boehnke/snipper/), PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), OMIM (http:/

www.omim.org) and UNIPROT (http://www.uniprot.org/). When no genes mapped to this 

interval the nearest gene on each side of the index SNP was annotated. In examining 
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possible functions of genes in the region, we excluded any references to GWAS or other 

genetic association studies. We analysed 405 genes in the 97 GWS loci and manually 

curated them into 25 biological categories containing more than three genes.

Functional variants

All variants within 500 kb (HapMap release 22/1000 Genomes CEU) and in LD (r2 > 0.7) 

with an index SNP were annotated for functional effects based on RefSeq transcripts using 

Annovar43 (http://www.openbioinformatics.org/annovar/). PhastCon, Grantham, GERP, and 

PolyPhen44 predictions were accessed via the Exome Variant Server45 (http://

evs.gs.washington.edu/EVS), and from SIFT46 (http://sift.jcvi.org/) (Extended Data Table 

4).

Copy number variations correlated with BMI index SNPs

To study common copy number variations, we used a list of copy number variations well-

tagged by SNPs in high LD (r2 > 0.8) with deletions in European populations from phase 1 

release of the 1000 Genomes Project47 (Supplementary Table 25).

eQTLs

We examined the cis associations between the 97 GWS SNPs and expression of nearby 

genes in whole blood, lymphocytes, skin, liver, omental fat, subcutaneous fat and brain 

tissue48–55 (Supplementary Table 23). Conditional analyses were performed by including 

both the BMI-associated SNP and the most significant cis-associated SNP for the given 

transcript. Conditional analyses were conducted for all data sets, except the brain tissue data 

set due to limited power. To minimize the potential for false-positives, only cis associations 

below a study-specific FDR of 5% (or 1% for some data sets), in LD with the peak SNP (r2 

> 0.7) for the transcript, and with conditional P > 0.05 for the peak SNP, are reported 

(Extended Data Table 2).

MAGENTA

We used the MAGENTA method to test predefined gene sets for enrichment at BMI-

associated loci24. We used the GWAS + Metabochip data as input and applied default 

settings.

GRAIL

We used GRAIL27 to identify genes near BMI-associated loci having similarities in the 

published scientific text using PubMed abstracts as of December 2006. The BMI loci were 

queried against HapMap release 22 for the European panel, and we controlled for gene size.

DEPICT

We used DEPICT to identify the most likely causal gene at a given associated locus, 

reconstituted gene sets enriched for BMI associations, and tissues and cell types in which 

genes from associated loci are highly expressed21. To accomplish this, the method relies on 

publicly available gene sets (including molecular pathways) and uses gene expression data 

from 77,840 gene expression arrays75 to predict which other genes are likely to be part of 
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these gene sets, thus combining known annotations with predicted annotations. For details 

and negative control analyses please see Supplementary Methods.

We first clumped the European-only GWAS-based meta-analysis summary statistics using 

500 kb flanking regions, LD r2 > 0.1 and excluded SNPs with P ≥ 5 × 10−4; which resulted 

in a list of 590 independent SNPs. HapMap phase II CEU genotype data37 was used to 

compute LD and genomic coordinates were defined by genome build GRCh38. Because the 

GWAS meta-analysis was based on both GWAS and Metabochip studies, there were 

discrepancies in the index SNPs that are referenced in Table 1 of the paper and the ones used 

in DEPICT, which was run on the GWAS data only. Therefore we forced in GWS index 

SNPs from the GWAS plus Metabochip GWA meta-analysis into the DEPICT GWAS-only 

based analysis. This enabled a more straightforward comparison of genes in DEPICT loci 

and genes in GWS loci highlighted by manual lookups, and did not lead to any significant 

bias towards SNPs on Metabochip (data not shown). We forced in 62 of the GWS loci in 

Table 1, so all of the 97 SNPs were among the 590 SNPs. The 590 SNPs were further 

merged into 511 non-overlapping regions (FDR < 0.05) used in DEPICT analysis. For 

additional information on the analysis please refer to Supplementary Methods.

Cross-trait analyses

To explore the relationship between BMI and an array of cardiometabolic traits and 

diseases, association results for the 97 BMI index SNPs were requested from 13 GWAS 

meta-analysis consortia: DIAGRAM (type 2 diabetes)56, CARDIoGRAM-C4D (CAD)57, 

ICBP (systolic and diastolic blood pressure (SBP, DBP))58, GIANT (waist-to-hip ratio, hip 

circumference, and waist circumference, each unadjusted and adjusted for BMI)13,59, GLGC 

(HDL, low density lipoprotein cholesterol, triglycerides, and total cholesterol)60, MAGIC 

(fasting glucose, fasting insulin, fasting insulin adjusted for BMI, and two-hour 

glucose)61–63, ADIPOGen (BMI-adjusted adiponectin)64, CKDgen (urine albumin-to-

creatinine ratio (UACR), estimated glomerular filtration rate, and overall CKD)65,66, 

ReproGen (age at menarche, age at menopause)67,68, GENIE (diabetic nephropathy)69,70. 

Proxies (r2 > 0.8 in CEU) were used when an index SNP was unavailable.

Enrichment of concordant effects

We compared the effects for the 97 BMI index SNP across these related traits using a one-

sided binomial test of the number of concordant effects versus a null expectation of P = 0.5. 

Concordant and nominally significant (P < 0.05) SNP effects were similarly tested using a 

one-sided binomial test with a null expectation of P = 0.05. We evaluated significance in 

either test with a Bonferroni-corrected threshold of P = 0.002 (0.05/23 traits tested).

Joint effects of cross-trait associations

To determine the joint effect of all 97 BMI loci on other cardiometabolic phenotypes, we 

used the meta-regression technique from ref. 64 to correlate the effect estimates of the BMI-

increasing alleles with effect estimates from meta-analyses for each of the metabolic traits 

from other consortia (DIAGRAM, MAGIC, ICBP, GLGC, ADIPOGen, ReproGen and 

CARDIoGRAM).

Locke et al. Page 12

Nature. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cross-traits heatmap

To explore observed concordance in effects of BMI loci on other cardiometabolic and 

anthropometric traits, we converted the effect estimates and standard errors (or P values) 

from meta-analysis to Z-scores oriented with respect to the BMI-increasing allele, for each 

of the 97 BMI index SNPs in the twenty-three traits. We then classified each Z-score as 

follows to generate a vector of the Z-score of each trait at each locus: 0 (not significant) if 

−2 ≤ Z ≤ 2; 1 (significant positive) if Z > 2; −1 (significant negative) if Z < −2.

Extended Data Fig. 5 displays these locus-trait relationships in a heatmap using Euclidean 

distance and complete linkage clustering to order both loci and traits.

Cross-traits bubble plot

We also represent the genetic overlap between other cardiometabolic traits and BMI 

susceptibility loci with a bubble plot in which the size of each bubble is proportional to the 

fraction of BMI-associated loci for which there was a significant association (P < 5 × 10−4). 

Each pair of bubbles is connected by a line proportional to the number of significant BMI-

increasing loci overlapping between the traits.

NHGRI GWAS catalogue lookups

We extracted previously reported GWAS association within 500 kb of and r2 > 0.7 with any 

BMI-index SNP from the NHGRI GWAS catalogue71 (http://www.genome.gov/gwastudies; 

Supplementary Table 17a, b). For studies reporting greater than 30 significant hits, 

additional SNP-trait associations were pulled from the literature and compared to BMI index 

SNPs the same as with other GWAS catalogue studies.

ENCODE/Roadmap

To identify global enrichment of data sets at the BMI-associated loci we performed 

permutation-based tests in a subset of 41 open chromatin (DNase-seq), histone modification 

(H3K27ac, H3K4me1, H3K4me3 and H3K9ac), and transcription factor binding data sets 

from the ENCODE Consortium22, Roadmap Epigenomics Project23 and when available the 

ENCODE Integrative Analysis60,72 (Supplementary Table 19). We processed Roadmap 

Epigenomics sequencing data with multiple biological replicates using MACS2 (ref. 73) and 

then applied same Irreproducible Discovery Rate pipeline used in the ENCODE Integrative 

Analysis60,72. Roadmap Epigenomics data with only a single replicate were analysed using 

MACS2 alone. We examined variants in LD with 97 BMI index SNPs based on r2 > 0.7 

from the 1000 Genomes phase 1 version 2 EUR samples74. We matched the index SNP at 

each locus with 500 variants having no evidence of association (P > 0.5, ~1.2 million total 

variants) with a similar distance to the nearest gene (± 11,655 bp), number of variants in LD 

(±8 variants), and minor allele frequency. Using these pools, we created 10,000 sets of 

control variants for each of the 97 loci and identified variants in LD (r2 > 0.7) and within 1 

Mb. For each SNP set, we calculated the number of loci with at least one variant located in a 

regulatory region under the assumption that one regulatory variant is responsible for each 

association signal. We estimated the P value assuming a sum of binomial distributions to 

represent the number of index SNPs (or their LD proxies; r2 > 0.7) that overlap a regulatory 
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data set compared to the expectation observed in the 500 matched control sets. Data sets 

were considered significantly enriched if the P value was below a Bonferroni-corrected 

threshold of 1.2 × 10−3, adjusting for 41 tests.

Extended Data

Extended Data Figure 1. Study design
*The SNP counts reflect sample size filter of n ≥ 50,000. §Counts represent the primary 

European sex-combined analysis. Please see Extended Data Table 1 for counts for secondary 

analyses.

Extended Data Figure 2. Genetic characterization of BMI-associated variants
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a, Plot of the cumulative phenotypic variance explained by each locus ordered by decreasing 

effect size. b, The relationship between effect size and allele frequency. Previously 

identified loci are blue circles and novel loci are red triangles. c, Quantile–quantile (Q–Q) 

plot of meta-analysis P values for all 1,909 BMI-replication SNPs (blue) and after removing 

SNPs near the 97 associated loci (green). d, Histogram of cumulative effect of BMI risk 

alleles. Mean BMI for each bin is shown by the black dots (with standard deviation) and 

corresponds to the right-hand y axis.

Extended Data Figure 3. Partitioning the variance in and risk prediction from SNP-derived 
predictor
a, b, The analyses were performed using 2,758 full sibling pairs from the TwinGene cohort 

(a) and 1,622 pairs from the QIMR cohort (b). The SNP-based predictor was adjusted for 

the first 20 principal components. The variance of the SNP-based predictor can be 

partitioned into four components (Vg, Ve, Cg and Ce) using the within-family prediction 

analysis, in which Vg is the variance explained by real SNP effects, Cg is the covariance 

between predictors attributed to the real effects of SNPs that are not in LD but correlated 

due to population stratification, Ve is the accumulated variance due to the errors in 

estimating SNP effects, and Ce is the covariance between predictors attributed to errors in 

estimating the effects of SNPs that are correlated due to population stratification. Error bars 

reflect s.e.m. of estimates. c, The prediction R2 shown on the y axis is the squared 

correlation between phenotype and SNP-based genetic predictor in unrelated individuals 

from the TwinGene (n = 5,668) and QIMR (n = 3,953) studies. The number shown in each 

column is the number of SNPs selected from the GCTA joint and conditional analysis at a 

range of P-value thresholds. In each case, the predictor was adjusted by the first 20 principal 

components. The column in orange is the average prediction R2 weighted by sample size 

over the two cohorts. The dashed grey line is the value inferred from the within-family 

prediction analyses using this equation R2 = (Vg + Cg)2/(Vg + Ve + Cg + Ce).
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Extended Data Figure 4. Comparison of BMI-associated index SNPs across ethnicities
a, b, BMI effects observed in European ancestry individuals (x axes) compared to African 

ancestry (a) or Asian ancestry (b) individuals (y axes). c, d, Allele frequencies between 

ancestry groups, as in a and b. e, f, Comparison of the estimates of explained variance. In all 

plots, novel loci are in red and previously identified loci are in blue.
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Extended Data Figure 5. Effects of BMI-associated loci on related metabolic traits
Unsupervised hierarchical clustering of the 97 BMI-associated loci (y axis) on 23 related 

metabolic traits (x axis). The top row shows the a priori expected relationship with BMI 

(green is concordant effect direction, purple is opposite). Loci with statistically significant 

concordant direction of effect are highlighted in green, and significant but opposing effects 

are in purple. Grey indicates a non-significant relationship and those with no information are 

in white. The key in the top left corner also shows the count of gene–phenotype pairs in each 

category (cyan bars).
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Extended Data Figure 6. Bubble chart representing the genetic overlap across traits at BMI 
susceptibility loci
Each bubble represents a trait for which association results were requested for the 97 GWS 

BMI loci. The size of the bubble is proportional to the number of BMI-increasing loci with a 

significant association. A line connects each pair of bubbles with thickness proportional to 

the number of significant loci shared between the traits. Traits tested include the current 

study BMI SNPs, African-American BMI (AA BMI), hip circumference (HIP), HIP 

adjusted for BMI (HIPadjBMI), waist circumference (WC), waist circumference adjusted 

for BMI (WCadjBMI), waist-to-hip ratio (WHR), waist-to-hip ratio adjusted for BMI 

(WHRadjBMI), height, adiponectin, coronary artery disease (CAD), diastolic blood pressure 

(DBP), systolic blood pressure (SBP), high-density lipoprotein (HDL), low-density 

lipoprotein (LDL), total cholesterol (TC), triglycerides (TG), type 2 diabetes (T2D), fasting 

glucose (FG), fasting insulin (FI), fasting insulin adjusted for BMI (FIadjBMI), two-hour 

glucose (Glu2hr), diabetic nephropathy (Diab_Neph), age at menopause (AgeMenopause), 

and age at menarche (AgeMenarche).

Extended Data Table 1

Descriptive characteristics of meta-analyses

Meta-analysis Total number
of studies

Maximum number of
subjects

Number of
SNPs* λ GC

European sex-combined

 GWAS 80 234,069 2,550,021 1.526

 Metabochip 34 88,137 156,997 1.25

 Joint GWAS+Metabochip 114 322,154 2,554,623 1.084

European men

 GWAS 72 104,666 2,473,152 1.279

 Metabochip 34 48,274 152,326 1.121

 Joint GWAS+Metabochip 106 152,893 2,477,617 1.006
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Meta-analysis Total number
of studies

Maximum number of
subjects

Number of
SNPs* λ GC

European women

 GWAS 74 132,115 2,491,697 1.336

 Metabochip 33 39,864 153,086 1.029

 Joint GWAS+Metabochip 107 171,977 2,494,571 1.002

European population-based

 GWAS 49 162,262 2,502,573 1.385

 Metabochip 20 46,263 155,617 1.034

 Joint GWAS+Metabochip 69 209,521 2,506,448 1.003

All ancestries

 GWAS 82 236,231 2,550,614 1.451

 Metabochip 43 103,047 181,718 1.25

 Joint GWAS+Metabochip 125 339,224 2,555,496 1.004

*
For the GWAS and joint GWAS+Metabochip analyses, SNP count reflects n ≥ 50,000.

Extended Data Table 2

Previously known GWS BMI loci in European meta-analysis

SNP Chr:Position *Notable gene(s) Alleles EAF β SE P value

rs1558902 16:52,361,075 FTO(B,N) A/T 0.415 0.082 0.003 7.51E-153

rs6567160 18:55,980,115 MC4R(B,N) C/T 0.236 0.056 0.004 3.93E-53

rs13021737 2:622,348 TMEM18(N) G/A 0.828 0.06 0.004 1.11E-50

rs10938397 4:44,877,284 GNPDA2(N); GABRG1(B) G/A 0.434 0.04 0.003 3.21E-38

rs543874 1:176,156,103 SEC16B(N) G/A 0.193 0.048 0.004 2.62E-35

rs2207139 6:50,953,449 TFAP2B(B,N) G/A 0.177 0.045 0.004 4.13E-29

rs11030104 11:27,641,093 BDAF(B,M,N) A/G 0.792 0.041 0.004 5.56E-28

rs3101336 1:72,523,773 NEGR1(B,C,D,N) C/T 0.613 0.033 0.003 2.66E-26

rs7138803 12:48,533,735 BCDIN3D(N); FAIM2(D) A/G 0.384 0.032 0.003 8.15E-24

rs10182181 2:25,003,800
ADCY3(B,M,N,Q); POMC(B,G);

NCOA1(B)
SH2B1(B,M,Q); APOBR(M,Q);

G/A 0.462 0.031 0.003 8.78E-24

rs3888190 16:28,796,987 ATXN2L(Q); SBK1(Q,D); SULT1A2(Q);
TUFM(Q) A/C 0.403 0.031 0.003 3.14E-23

rs1516725 3:187,306,698 E7V5(N) C/T 0.872 0.045 0.005 1.89E-22

rs12446632 16:19,842,890 GPRC5B(C,N); IQCK(Q) G/A 0.865 0.04 0.005 1.48E-18

rs2287019 19:50,894,012 QPCTL(N); GIPR(B,M) C/T 0.804 0.036 0.004 4.59E-18

rs16951275 15:65,864,222 M4P2K5(B,D,N); LBXCOR1(M) T/C 0.784 0.031 0.004 1.91E-17

rs3817334 11:47,607,569 MTCH2(M,Q); C1QTNF4(Q,I); SPI1(Q);
CELF1(D) T/C 0.407 0.026 0.003 5.15E-17

rs2112347 5:75,050,998 POC5(M); HMGCR(B); COL4A3BP(B) T/G 0.629 0.026 0.003 6.19E-17

rs12566985 1:74,774,781 FPGT-TNNI3K(N) G/A 0.446 0.024 0.003 3.28E-15

rs3810291 19:52,260,843 ZC3H4(D,N,Q) A/G 0.666 0.028 0.004 4.81E-15

rs7141420 14:78,969,207 NRXN3(D,N) T/C 0.527 0.024 0.003 1.23E-14

rs13078960 3:85,890,280 CADM2(D,N) G/T 0.196 0.03 0.004 1.74E-14

rs10968576 9:28,404,339 LINGO2(D,N) G/A 0.32 0.025 0.003 6.61E-14
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SNP Chr:Position *Notable gene(s) Alleles EAF β SE P value

rs17024393 1:109,956,211 GNAT2(N); AMPD2(D) C/T 0.04 0.066 0.009 7.03E-14

rs12429545 13:53,000,207 OLFM4(B,N) A/G 0.133 0.033 0.005 1.09E-12

rs13107325 4:103,407,732 SLC39A8(M,N,Q) T/C 0.072 0.048 0.007 1.83E-12

rs11165643 1:96,696,685 PTBP2(D,N) T/C 0.583 0.022 0.003 2.07E-12

rs17405819 8:76,969,139 HNF4G(B,N) T/C 0.7 0.022 0.003 2.07E-11

rs1016287 2:59,159,129 LINC01122(N) T/C 0.287 0.023 0.003 2.25E-11

rs4256980 11:8,630,515 TRIM66(D,M,N); TUB(B) G/C 0.646 0.021 0.003 2.90E-11

rs12401738 1:78,219,349 FUBP1(N); USP33(D) A/G 0.352 0.021 0.003 1.15E-10

rs205262 6:34,671,142 C6orf106(N); SNRPC(Q) G/A 0.273 0.022 0.004 1.75E-10

rs12016871 13:26,915,782 MTIF3(N); GTF3A(Q) T/C 0.203 0.03 0.005 2.29E-10

rs12940622 17:76,230,166 RPTOR(B,N) G/A 0.575 0.018 0.003 2.49E-09

rs11847697 14:29,584,863 PRKD1(N) T/C 0.042 0.049 0.008 3.99E-09

rs2075650 19:50,087,459 TOMM40(B,N); APOE(B); APOC1(B) A/G 0.848 0.026 0.005 1.25E-08

rs2121279 2:142,759,755 LRP1B(N) T/C 0.152 0.025 0.004 2.31E-08

rs29941 19:39,001,372 KCTD15(N) G/A 0.669 0.018 0.003 2.41E-08

rs1808579 18:19,358,886 NPC1(B,G,M,Q); C18orf8(N,Q) C/T 0.534 0.017 0.003 4.17E-08

SNP positions are reported according to Build 36 and their alleles are coded based on the positive strand. Effect alleles, 
allele frequencies, betas (β), s.e.m., sample sizes (n), and P values are based on the meta-analysis of GWAS I + II + 
Metabochip association data from the European sex-combined data set.
*
Notable genes from biological relevance to obesity (B); GRAIL results (G); BMI-associated variant is in strong LD (r2 ≥ 

0.7) with a missense variant in the indicated gene (M); gene nearest to Index SNP (N); association and eQTL data converge 
to affect gene expression (Q); DEPICT analyses (D); copy number variation (C).
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Figure 1. Cumulative variance explained and example of secondary signals
a, The estimated variance in BMI explained by SNPs selected at a range of P values using 

unrelated individuals from the QIMR (n = 3,924; purple) and TwinGene (n = 5,668; gold), 

their weighted average (cyan), inferred from within-family prediction (red; Extended Data 

Fig. 2), and by all HapMap phase III SNPs in 16,275 unrelated individuals from the QIMR, 

TwinGene and ARIC studies (orange). b, Plot of the region surrounding MC4R (ref. 36). 

SNP associations from the European sex-combined meta-analysis are plotted with joint 

conditional P values (Pj) indicated for the three conditionally significant signals. SNPs are 

shaded and shaped based on the index SNP with which they are in strongest LD (rs6567160 

in blue, rs994545 in yellow and rs17066842 in green).
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Figure 2. Tissues and reconstituted gene sets significantly enriched for genes within BMI-
associated loci
a, DEPICT predicts genes within BMI-associated loci (P < 5 × 10−4) are enriched for 

expression in the brain and central nervous system. Tissues are sorted by physiological 

system and significantly enriched tissues are in black; the dotted line represents statistically 

significant enrichment. b, The gene sets most significantly enriched for BMI-associated loci 

by DEPICT (P < 10−6, FDR < 4 × 10−4). Nodes represent reconstituted gene sets and are 

colour-coded by P value. Edge thickness between nodes is proportional to degree of gene 

overlap as measured by the Jaccard index. Nodes with gene overlap greater than 25% were 

collapsed into a single ‘meta-node’ (blue border). c, The nodes contained within the most 

enriched meta-node, ‘clathrin-coated vesicle’, which shares genes with other gene sets 

relevant to glutamate signalling and synapse biology. d, The ‘generation of a signal involved 

in cell–cell signalling’ meta-node represents several overlapping gene sets relevant to 

obesity and energy metabolism (gene sets with P < 4 × 10−3, FDR < 0.05 shown). For the 

complete list of enriched gene sets refer to Supplementary Table 21a.
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Table 1

Novel GWS BMI loci In European meta-analysis

SNP Chr:position Notable gene(s)* Alleles EAF β s.e.m. P value

rs657452 1:49,362,434 AGBL4(N) A/G 0.394 0.023 0.003 5.48 × 10−13

rs12286929 11:114,527,614 CADM1(N) G/A 0.523 0.022 0.003 1.31 × 10−12

rs7903146 10:114,748,339 TCF7L2(B,N) C/T 0.713 0.023 0.003 1.11 × 10−11

rs10132280 14:24,998,019 STXBP6(N) C/A 0.682 0.023 0.003 1.14 × 10−11

rs17094222 10:102,385,430 HIF1AN(N) C/T 0.211 0.025 0.004 5.94 × 10−11

rs7599312 2:213,121,476 ERBB4(D,N) G/A 0.724 0.022 0.003 1.17 × 10−10

rs2365389 3:61,211,502 FHIT(N) C/T 0.582 0.020 0.003 1.63 × 10−10

rs2820292 1:200,050,910 NAV1(N) C/A 0.555 0.020 0.003 1.83 × 10−10

rs12885454 14:28,806,589 PRKD1(N) C/A 0.642 0.021 0.003 1.94 × 10−10

rs16851483 3:142,758,126 RASA2(N) T/G 0.066 0.048 0.008 3.55 × 10−10

rs1167827 7:75,001,105 HIP1(B,N); PMS2L3(B,Q); PMS2P5(Q);
WBSCR16(Q)

G/A 0.553 0.020 0.003 6.33 × 10−10

rs758747 16:3,567,359 NLRC3(N) T/C 0.265 0.023 0.004 7.47 × 10−10

rs1928295 9:119,418,304 TLR4(B,N) T/C 0.548 0.019 0.003 7.91 × 10−10

rs9925964 16:31,037,396 KAT8(N);ZNF646(M,Q); VKORC1(Q);
ZNF668(Q); STX1B(D); FBXL19(D)

A/G 0.620 0.019 0.003 8.11 × 10−10

rs11126666 2:26,782,315 KCNK3(D,N) A/G 0.283 0.021 0.003 1.33 × 10−9

rs2650492 16:28,240,912 SBK1(D,N); APOBR(B) A/G 0.303 0.021 0.004 1.92 × 10−9

rs6804842 3:25,081,441 RARB(B) G/A 0.575 0.019 0.003 2.48 × 10−9

rs4740619 9:15,624,326 C9orf93(C,M,N) T/C 0.542 0.018 0.003 4.56 × 10−9

rs13191362 6:162,953,340 PARK2(B,D,N) A/G 0.879 0.028 0.005 7.34 × 10−9

rs3736485 15:49,535,902 SCG3(B,D); DMXL2(M,N) A/G 0.454 0.018 0.003 7.41 × 10−9

rs17001654 4:77,348,592 NUP54(M); SCARB2(Q,N) G/C 0.153 0.031 0.005 7.76 × 10−9

rs11191560 10:104,859,028 NT5C2(N); CYP17A1(B); SFXN2(Q) C/T 0.089 0.031 0.005 8.45 × 10−9

rs1528435 2:181,259,207 UBE2E3(N) T/C 0.631 0.018 0.003 1.20 × 10−8

rs1000940 17:5,223,976 RABEP1(N) G/A 0.320 0.019 0.003 1.28 × 10−8

rs2033529 6:40,456,631 TDRG1(N); LRFN2(D) G/A 0.293 0.019 0.003 1.39 × 10−8

rs11583200 1:50,332,407 ELAVL4(B,D,N,Q) C/T 0.396 0.018 0.003 1.48 × 10−8

rs9400239 6:109,084,356 FOXO3(B,N); HSS00296402(Q) C/T 0.688 0.019 0.003 1.61 × 10−8

rs10733682 9:128,500,735 LMX1B(B,N) A/G 0.478 0.017 0.003 1.83 × 10−8

rs11688816 2:62,906,552 EHBP1(B,N) G/A 0.525 0.017 0.003 1.89 × 10−8

rs11057405 12:121,347,850 CLIP1(N) G/A 0.901 0.031 0.006 2.02 × 10−8

rs11727676 4:145,878,514 HHIP(B,N) T/C 0.910 0.036 0.006 2.55 × 10−8

rs3849570 3:81,874,802 GBE1(B,M,N) A/C 0.359 0.019 0.003 2.60 × 10−8

rs6477694 9:110,972,163 EPB41L4B(N); C9orf4(D) C/T 0.365 0.017 0.003 2.67 × 10−8

rs7899106 10:87,400,884 GRID1(B,N) G/A 0.052 0.040 0.007 2.96 × 10−8

rs2176598 11:43,820,854 HSD17B12(B,M,N) T/C 0.251 0.020 0.004 2.97 × 10−8

rs2245368 7:76,446,079 PMS2L11(N) C/T 0.180 0.032 0.006 3.19 × 10−8
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SNP Chr:position Notable gene(s)* Alleles EAF β s.e.m. P value

rs17724992 19:18,315,825 GDF15(B); PGPEP1(Q,N) A/G 0.746 0.019 0.004 3.42 × 10−8

rs7243357 18:55,034,299 GRP(B,G,N) T/G 0.812 0.022 0.004 3.86 × 10−8

rs2033732 8:85,242,264 RALYL(D,N) C/T 0.747 0.019 0.004 4.89 × 10−8

GWS isdefinedas P < 5 × 10−8. SNP positions are reported according to Build 36 and their alleles are coded based on the positive strand. Alleles 
(effect/other), effect allele frequency (EAF), beta (β), standard error of the mean (s.e.m.) and P values are based on the meta-analysis of GWAS I + 
II + Metabochip association data from the European sex-combined data set.

*
Notable genes from biological relevance to obesity (B); copy number variation (C); DEPICT analyses (D); GRAIL results (G); BMI-associated 

variantis in strong LD (r2 ≥ 0.7) with a missens evariant in the indicated gene (M); gene nearest to index SNP (N); association and eQTL data 
converge to affect gene expression (Q).

Nature. Author manuscript; available in PMC 2015 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Locke et al. Page 47

Table 2

GWS BMI loci from secondary analyses

SNP Chr:position Notable gene(s)* Alleles EAF β s.e.m. P value Analysis

Novel loci

rs9641123 7:93,035,668 CALCR(B,N); hsa-miR-653(Q) C/G 0.430 0.029 0.005 2.08 × 10−10 EPB

rs7164727 15:70,881,044 LOC100287559(N), BBS4(B,M,Q) T/C 0.671 0.019 0.003 3.92 × 10−9 All

rs492400 2:219,057,996 PLCD4(B,Q); CYP27A1(B); USP37(N);
TTLL4(M,Q); STK36(B,M); ZNF142(M);

RQCD1(Q)

C/T 0.424 0.024 0.004 6.78 × 10−9 Men

rs2080454 16:47,620,091 CBLN1(N) C/A 0.413 0.017 0.003 8.60 × 10−9 All

rs7239883 18:38,401,669 LOC284260(N); RIT2(B,D) G/A 0.391 0.023 0.004 1.51 × 10−8 Women

rs2836754 21:39,213,610 ETS2(N) C/T 0.599 0.017 0.003 1.61 × 10−8 All

rs9914578 17:1,951,886 SMG6(D,N); N29617(Q) G/C 0.229 0.020 0.004 2.07 × 10−8 All

rs977747 1:47,457,264 TAL1(N) T/G 0.403 0.017 0.003 2.18 × 10−8 All

rs9374842 6:120,227,364 LOC285762(N); T/C 0.744 0.023 0.004 2.67 × 10−8 EPB

rs4787491 16:29,922,838 MAPK3(D); KCTD13(D); INO80E(N);
TAOK2(D); YPEL3(D); DOC2A(D);

FAM57B(D)

G/A 0.510 0.022 0.004 2.70 × 10−8 EPB

rs1441264 13:78,478,920 MIR548A2(N) A/G 0.613 0.017 0.003 2.96 × 10−8 All

rs17203016 2:207,963,763 CREB1(B,N); KLF7(B) G/A 0.195 0.021 0.004 3.41 × 10−8 All

rs16907751 8:81,538,012 ZBTB10(N) C/T 0.913 0.047 0.009 3.89 × 10−8 Men

rs13201877 6:137,717,234 IFNGR1(N); OLIG3(G) G/A 0.140 0.024 0.004 4.29 × 10−8 All

rs9540493 13:65,103,705 MIR548X2(N); PCDH9(D) A/G 0.452 0.021 0.004 4.97 × 10−8 EPB

rs1460676 2:164,275,935 FIGN(N) C/T 0.179 0.021 0.004 4.98 × 10−8 All

rs6465468 7:95,007,450 ASB4(B,N) T/G 0.306 0.025 0.005 4.98 × 10−8 Women

Previously identified loci

rs6091540 20:50,521,269 ZFP64(N) C/T 0.721 0.030 0.004 2.15 × 10−11 Women

rs7715256 5:153,518,086 GALNT10(N) G/T 0.422 0.017 0.003 8.85 × 10−9 All

rs2176040 2:226,801,046 LOC646736(N); IRS1(B,Q) A/G 0.365 0.024 0.004 9.99 × 10−9 Men

SNP positions are reported according to Build 36 and their alleles are coded based on the positive strand. Alleles (effect/other), EAF, beta (β), 
s.e.m. and P values are based on the meta-analysis of GWAS I + II+ Metabochip association data from the data set shown in the ‘Analysis’ 
column. EPB denotes European population-based studies, ‘All’ denotes all ancestries.

*
Notable genes from biological relevance to obesity (B); copy number variation (C); DEPICT analyses (D); GRAIL results (G); BMI-associated 

variant is in strong LD (r2 ≥ 0.7) with a missense variant in the indicated gene (M); gene nearest to the index SNP (N); association and eQTL data 
converge to affect gene expression (Q).
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Table 3

Secondary signals reaching GWS by conditional analysis

SNP Chr: position Nearest gene Alleles EAF β s.e.m. Variance explained P value

rs1016287 2:59159129 LINC01122 T/C 0.294 0.023 0.003 0.021% 2.62 × 10−11

rs4671328 2:58788786 LINC01122 T/G 0.457 0.021 0.004 0.021% 2.73 × 10−8

rs758747 16:3567359 NLRC3 T/C 0.241 0.022 0.004 0.018% 2.00 × 10−9

rs879620 16:3955730 ADCY9 T/C 0.620 0.024 0.004 0.027% 2.17 × 10−9

rs12446632 16:19842890 GPRC5B G/A 0.860 0.036 0.005 0.031% 1.06 × 10−14

rs11074446 16:20162624 GP2 T/C 0.867 0.029 0.005 0.019% 1.71 × 10−10

rs6567160 18:55980115 MC4R C/T 0.233 0.048 0.004 0.084% 3.52 × 10−38

rs17066842 18:56191604 MC4R G/A 0.960 0.051 0.008 0.020% 6.99 × 10−10

rs9944545 18:56109224 MC4R T/C 0.296 0.020 0.004 0.017% 1.01 × 10−8

rs11030104 11:27641093 BDNF A/G 0.791 0.051 0.004 0.087% 1.26 × 10−34

rs10835210 11:27652486 BDNF C/A 0.570 0.020 0.004 0.020% 1.25 × 10−8

SNP positions are reported according to Build 36 and their alleles are coded based on the positive strand. Alleles (effect/other), EAF, estimated 
beta (β), s.e.m., explained variance, and P values from GCTA. First row at each locus represents lead signal, other row(s) represent secondary 
signals.
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