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Abstract

In load forecasting fields, electricity demand with hierarchical structure is very popular where there

are some differences among investigated load series because of geography or customers’ habits. Common

methods usually ignore their differences and introduce some complex models to improve forecasting

performance. Therefore, appropriately dealing with the diverged series is necessary to achieve accurate

predictions in hierarchical load forecasting. In this paper, we propose an iterative decompose-cluster-

feedback algorithm, which is modified from CLC method, to further improve the performance of forecasts

at the total level of hierarchy. Compared with CLC, this algorithm applies empirical mode decomposition

(EMD) to decompose load series into sub-series with various amplitude-frequency characteristics, which

can avoid directly operating on load series. Specifically, the divergence can have detrimental effects on

forecasts if ignored. Finally, we test the proposed algorithm with three real tasks of load forecasting with

hierarchical structure, and the experimental results show that the performance of our algorithm is at

least 43% better than a SVR-BU method, 52% better than a TD-MLP and a TD-LSTM-SDE method,

and 32% better than several methods belonging to middle-out method.

Keywords: Hierarchical time series, load forecasting, clustering, decomposition

1. Introduction

Time series with hierarchical structure are common in the field of load forecasting [1]. The total

electricity consumption in a region can be dis-aggregated with its difference in sub-region of sale, price,

weather and degree of electricity consumption [2, 3]. For example, in Buzna et al. [4], total load in

a region can be obtained from the total load of different sub-regions. While in load forecasting, it is

problematic to simply aggregate different time series because of divergence of load series [5]. Therefore,

load forecasting considering hierarchical structure (HLF) has attracted attention of many scholars and

has become an important research area of energy forecasting. In brief, hierarchical forecasting is an
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approach for modelling time series which have hierarchical structure. Here, a simple 3-level hierarchical

structure is shown in Figure 1.

Figure 1: A simple 3-level hierarchical structure: each node represents one load time series, and the nodes such as A1 and

B1 in level 2 represent the most basic load series units. The high-level series in hierarchy are the aggregation of the series

from lower levels.

A common objective of HLF methods is to optimize the forecasting performance at a total level in the

hierarchy. The existing approaches on HLF can be mainly divided into four groups: Top-Down approach,

Bottom-Up approach, Middle-Out Approach and reconciling method [6, 7, 8, 9]. Firstly, the Top-Down

approach is one of the most common methods in HLF. It follows a process of aggregation and then

prediction, and the details can be found in Fliedner [10] and Chen et al. [11]. The second approach is the

Bottom-Up which generates forecasts of individual series in hierarchy, and some examples can be seem in

Zheng et al. [12], Ye et al. [13], Goehry et al. [14] and Black and Henson [15]. Contrary to the Top-Down

method, this approach follows a process of first forecasting separately and then aggregating [16]. Thirdly,

as for the Middle-Out approach, it follows a process which starts at an intermediate level in the hierarchy.

Specifically, the Middle-Out approach can be divided into two categories: cluster-based method and

ensemble-based method [7]. The cluster-based method is to cluster series with similar characteristics to

reduce variance [17, 18], and the specific clustering criterion can be divided into density based, centroid-

based and distribution-based methods [19]. While there is a dilemma that the optimal clustering is

difficult to obtain by common clustering methods. The ensemble-based method can solve this problem

to some extents for the centroid-based methods. The idea of this method is to make multiple groups of

experiments with several choices of initial clustering number, and the results are obtained by weighted

average approach. For this method, the shortcomings caused by the defects of clustering methods can

be reduced. The last method is reconciling method which reconciles the independent individual forecasts

in all levels of a hierarchy. Specifically, this method utilizes the hierarchical relationships to improve the

predictions [20]. To conclude, two queries can be extracted in the existing approaches:

a. These existing approaches directly deal with the load time series in hierarchy. However, according to

the existing research in Taieb et al. [21], different load series in hierarchy can contain very different

patterns. Therefore, the forecasts generated at different levels of a hierarchy would not be coherent,

and the forecasting results may occur significant errors. Therefore, we raise a question that directly
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dealing with complex load series is an appropriate operation? Whether this operation will ignore

the different information sets available and generation conditions of load series?

b. The objective of clustering is not consistent with minimizing the forecasting errors at total level.

In other words, the objective of clustering is to minimize the dissimilarity among load time series,

which is independent of minimizing the forecasting errors [7].

Recently, a closed-loop clustering (CLC) algorithm has been proposed by Zhang and Li [7], which

has a unique feedback mechanism to solve the problem of mismatch between clustering and minimizing

forecasting errors. It should be noticed that this CLC algorithm still pay no attention to the first query

though it appropriately verifies and solves the second query.

As for the first query, we have known that a time series may be affected by various factors and different

time series in a hierarchy may exist divergence caused by extrinsic factors like geographical position and

customers’ habits. As pointed out by Zhang et al. [22], the sub-series decomposed by empirical mode

decomposition (EMD) [23] method has unique physical meanings which can affect the generation of time

series. Therefore, we hold an idea that decomposing complex load series in hierarchy into relatively simple

sub-series by EMD method is a way to verify and explain the first query. As a result, we can operate on

these decomposed sub-series instead of original complex load series. Therefore, we introduce EMD to this

study. It can decompose non-stationary signals as sums of zero-mean amplitude modulation components,

which are denoted as intrinsic mode functions (IMFs) and residuals [24, 25, 26]. In brief, EMD is an

appropriate way to decompose complex series into sub-series with simple patterns.

From the perspective of physical meaning, directly operating on load series is unsuitable because this

operation ignores the different generation conditions of load series in hierarchy. Therefore, operating on

decomposed sub-series may be an appropriate method because some sub-series of different load series

have similar patterns. As a result, this conjecture is demonstrated in the experiments in this study.

To sum up, hierarchical load forecasting (HLF) is an important task for power system dispatching,

electricity consumption and planning for management departments. Zhang et al. [22] improved the fore-

casting performance at total level in hierarchy by clustering all load series and they proposed a feedback

mechanism to optimize the clusters. Their method can commendably improve forecasting performance

of HLF. However, a more appropriate action is clustering features of load series instead of original series

because the inner features of different load series exist divergence, mainly due to the different generat-

ing conditions like geographical position and customers’ habits among all load time series. Therefore, we

introduce EMD algorithm to decompose original load series into sub-series containing different amplitude-

frequency characteristic. Then we cluster these sub-series instead of load series to improve the forecasting

performance. The experimental results suggest the proposed method can improve the forecasting perfor-

mance of HLF. This proposed algorithm can appropriately solve the problem that the load series cannot

be directly aggregated and can count the clusters tactfully and minimize the prediction errors.

Here, the main contributions in our paper can be summarized as:
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a. This paper proposes an iterative decompose-cluster-feedback algorithm, which is composed with a

decomposition part, clustering part and a feedback mechanism. The proposed algorithm introduces

EMD algorithm to decompose the load series into sub-series with simply patterns. Clustering on

these sub-series can avoid the problems caused by clustering original load series generated with

various conditions. For HLF, the proposed algorithm can generate hierarchical predictions and

improve the forecasting accuracy at total level of hierarchical structure of load series. The feedback

mechanism in our algorithm can unify the two goals to iteratively reduce the prediction errors

at total level of hierarchy though clustering and minimizing prediction errors are two different

objectives.

b. In the proposed iterative decompose-cluster-feedback algorithm, we apply a zero-crossing rate cri-

teria to classify the clustered series into three levels (low frequency, medium frequency and high

frequency), and then, the RR, ELM and SVR methods are applied to model low, medium and high

frequency series. For the clustered series with lower frequency or simpler patterns, we use RR and

ELM to generate appropriate forecasting models and the SVR is applied to model series with high

frequency or complex patterns.

c. In this study, we apply the proposed algorithm to generate predictions at a total level for three

load forecasting tasks. The final experiment results demonstrate the best forecasting performance

of the proposed algorithm among the comparison methods.

The remaining contents are organized as follows: Section 2 introduces the approaches involved in the

proposed algorithm. Section 3 shows the details of the proposed algorithm which is based on decomposi-

tion, clustering, and feedback mechanism. Section 4 shows the experimental results of two different tasks

and empirical analysis of the proposed algorithm and other benchmark models. Section 5 concludes our

study.

2. Background

2.1. Empirical mode decomposition

The Empirical mode decomposition (EMD) was proposed by Huang et al. [23] to adaptively de-

compose non-stationary signals as sums of zero-mean amplitude modulation frequency modulation com-

ponents [27]. Compared with wavelet decomposition approach, the most remarkable feature of EMD

approach is that it does not need any defined function as the base but can adaptively generate intrinsic

mode functions according to the non-stationary signal itself.

For a given non-stationary signal x(t), the mathematical expression of the decomposition result is

written as follows:

x(t) = mK(t) +

K∑
k=1

dk(t),
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where K is the defined initial clustering number, mK(t) represents the residual and the dk(t) are con-

strained to be zero-mean amplitude modulation and frequency modulation waveforms, which represent

the original signal can be expressed in different frequency bandwidth scales.

In this paper, EMD approach is applied to decompose load time series in hierarchy. According to

the characteristics of EMD method, the decomposed IMFs of each load time series can be arranged from

small to large in frequency.

2.2. K-means clustering algorithm

K-means clustering algorithm is the most popular unsupervised learning clustering algorithm and

has been widely used in various fields like label-free data grouping problem [28] and data dimension

reduction problem [29]. In this paper, this algorithm is applied for the initial time series clustering for

its advantages of simplicity and fast clustering speed, which is only for the initial clustering, while the

number of clusters would be adjusted in our new proposed algorithm.

Given a group of time series xi, i = 1, · · · , N , its idea is randomly determining L cluster centers. Then

these clustering centers are iterated with the objective of minimizing the following cost function:

J =

L∑
j=1

nj∑
i=1

|xj
i − Cj |,

where xj
i represents the time series which belongs to the cluster nj and Cj is the corresponding cluster

center. In the next iterative process, cluster centers are searched by the following formula:

Cj =
1

nj

nj∑
i=1

xi.

In general, there exists several weaknesses in the practical application of K-means algorithm, mainly

including the problem of uncertain cluster number L and poor initialization of cluster centres. However,

K-means algorithm is still used in our algorithm. The main reasons are that these weaknesses can be

remedied by the feedback mechanism because our algorithm can iteratively adjust and determine the best

clustering results, regardless of the initial clustering situation.

2.3. Ridge regression

Ridge regression (RR) algorithm [30] is an objective for ordinary linear regression models

y = ωTx,

which has weight parameters ω and inputs matrix x. Specifically, it has the following objective function,

min
ω

((y − ŷ)2 + λ

p∑
i=1

ω2
i ),

where y and ŷ are real observations and predictions respectively, λ is a hyperparameter and p is the

number of weight parameters.
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The weight parameter ω trained by RR function can be limited relatively small, which can reduce the

sensitivity to the noise of input variables. Typically, the larger the hyperparameter λ is, the smaller the

weight ω will become.

2.4. Extreme learning machine

ELM is a commonly used feed-forward neural network, which is proposed by Huang et al. [31]. The

advantage of ELM is that the weight parameters between input layer and hidden layer and bias in hidden

layer are randomly selected. In addition, the weight between hidden layer and output layer are obtained

by calculating a least square solution:

ω̂o = H†T,

where T represents the real observations and H† represents the generalized inverses matrix of output H

in hidden layer.

In brief, ELM has the characteristics of fast training speed and good generalization performance.

2.5. Support vector regression

SVR is a branch of SVM, which is a classic method for electricity demand forecasting [32, 33]. For

linear SVR, the model is optimized by maximizing the width of the interval band and the total loss.

Specify formula is as follows:

min
1

2
||ω||2

s.t.

{
|yi − (ωxi + b)| ≤ ϵ ∀i,

where ω and b are the parameters of linear models, ϵ controls the interval boundary.

For non-linear problem, SVR applies a “kernal trick” to map the features of the original samples to

higher dimensions. This method can help SVR solve the problems that cannot get a good regression

result by using the original sample features. The commonly used kernel functions include linear kernel,

polynomial kernel, Gaussian kernel, and Laplace kernel.

3. Iterative decompose-cluster-feedback stratagem

This paper proposed an iterative decompose-cluster-feedback algorithm for HLF, which can iteratively

determine the optimal clustering of the decomposed load time series and effectively improve the forecasting

accuracy of HLF. The detailed processes of the proposed stratagem are as follows.

3.1. Decomposition and clustering

Given N load time series Xi, i = 1, · · · , N , the first measure is to decompose these time series by

EMD approach. We can obtain a group of IMFs after decomposing and denote them as a set of sub-series
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x = {xk|k = 1, 2, · · · , h}. For all sub-series in x, we use K-means algorithm to obtain L initial clusters

nj(0):

nj(0) = {n0(0), n1(0), n2(0), · · · , nL(0)},

where L, j satisfy 1 ≤ L ≤ N , j = 1, 2, · · · , L, respectively. Then the decomposed sub-series set can be

specifically denoted as

x = {x(j)
k |k ∈ nj , j = 1, · · · , L},

where the constant h is assumed to be the total number of sub-series after decomposing. After that, we

can give all sub-series an initial membership C representing the cluster they belong to

M(0) = {M1(0),M2(0),M3(0), · · · ,Mh(0)}Th×1, (1)

where M(0) is a h×1 vector and represents the corresponding clusters of sub-series after initial clustering

measure.

Remark 1. It would be better to choose a proper larger number for the initial clusters L (but must be

smaller than N), because the prior information of clusters of the decomposed sub-series is unknown. In

our proposed algorithm, we combine all sub-series from a cluster together for training a model for the

cluster. Apparently, if the initial cluster number is smaller, some sub-series that should be in different

clusters would be clusters, which would decrease the variance of parameters in our forecasting model.

Thus, in practice, we empirically set a proper large initial cluster number. A large L can minimize this

risk as much as possible because finding the best clustering can be realized by the iterative feedback

mechanism in our algorithm. According to updating clustering membership in this proposed algorithm,

some redundant clusters would be eliminated during the modelling procedure, and the computing burden

would reduce along the training.

Remark 2. The k-means algorithm is used to obtain the initial clusters. More advanced clustering

algorithms can be employed for the initialization. The shortcoming of the k-means method is to determine

the number of clusters. However, according to the feedback mechanism, the membership of each cluster

and the number of the cluster are adaptively adopted in our training procedure. In other words, the

cluster is updated based on each sub-series forecasting error minimization criteria, then all the sub-series

in the same cluster would model again to generate a new forecasting model. The number of cluster and

the membership for each cluster are tuned during the iterative procedure. In practice, generally, a better

initial clustering method would optimize the algorithm flow and reduce our computational costs.

3.2. Classification for clusters

For the sub-series belong to a same cluster, we can assume that they have similar amplitude-frequency

characteristic and can aggregate them as a single series Sj(0). Then we can obtain a set S(0) = {Sj |j =

1, · · · , L}, where each element in S(0) represents a group of series belonging to a same cluster.
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Since the decomposed IMFs by EMD have two traits: a) The number of extreme points and zero

crossings must be equal or differ by no more than one; b) The upper envelope and the lower envelope are

locally symmetrical with respect to the time axis. Therefore, we introduce a definition rule to evaluate

the frequency levels of series [34]:

Zn =
nzero

M
, (2)

where Zn represents the frequency standard of series, nzero is the number of zero crossings for series and

M represents the size of samples.

In our algorithm, we divide the elements in S(0) into three types, i.e. low frequency level, medium

frequency level and high frequency level. In addition, we apply Ridge Regression (RR), Extreme Learning

Machine (ELM) and Support Vector Regression (SVR) to forecast the low frequency, medium frequency,

and high frequency respectively.

3.3. Feedback mechanism

Once we have the trained models for each cluster in nj(0) and they are noted as

F (0) = {Fn1(0)(S1(0)), Fn2(0)(S1(0)), · · · , FnL(0)(S1(0))},

the sub-series xk, h = 1, · · · , h are tested for the trained forecasting models. The fitness for sub-series xk

on Fnj(0) is denoted as σnj(0), which is specifically defined as

σ
nj(0)
k =

Q∑
q=1

|ynj(0),q − ŷnj(0),q|

where Q represents the size of forecasting samples, yq and ŷq are the real values of sub-series and the

predictions respectively. In fact, the fitness function is equivalent to MAE criterion. The fitness matrix

can be written as

E =


σ
n1(0)
1 σ

n2(0)
1 · · · σ

nL(0)
1

σ
n1(0)
2 σ

n2(0)
2 · · · σ

nL(0)
1

...
...

. . .
...

σ
n1(0)
h σ

n2(0)
h · · · σ

nL(0)
h


h×L

. (3)

For each row in E (i.e., a sub-series of xk), it returns the index of the minimum σ
nj(0)
k in the process

of feedback mechanism. Meanwhile, the new membership of this sub-series is updated by the index

returned, which means the cluster this sub-series belong to is also updated. The membership vector is

updated as follows

M(1) = {M1(1),M2(1),M3(1), · · · ,Mh(1)}, (4)

and the new clustering results can be expressed as

nj(1) = {n0(1), n1(1), n2(1), · · · , nL∗(1)}, (5)
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where L∗ ≤ L, and L∗ can gradually decrease until it converges to a constant. This means the cluster is

trimmed and merged. In this process, each sub-series is adjusted to minimize the forecasting errors of this

sub-series, which can achieve the objective of unifying clustering and minimizing the overall prediction

errors.

3.4. Iterative process

Once we have the re-assignment of the clusters and membership for all decomposed sub-series, the

sub-series in each cluster can be aggregated as a series individual repeatably, which can be adjusted as

S(1) = {Sj |j = 1, · · · , L∗}. Then, the formula (2) is also repeatably used to determine the levels of

series. With this process, the corresponding models for the series with different levels can be established

as F (1) = {Fn1(1)(S1(1)), Fn2(1)(S2(1)), · · · , FnL∗ (1)(SL∗(1))}.

The fitness function will be calculated again for all sub-series. Specifically, fitness values of all sub-

series are combined into a new fitness function matrix, which is in the form of formula (3). Then the

formula (4) and (5) can be updated by this matrix. In this way, our proposed algorithm can form a

closed-loop process and constantly look for the best clusters from the perspective of minimizing fore-

casting errors. An alternative understanding can be interpreted as that the objectives of clustering and

minimizing forecasting errors of sub-series at the total level in hierarchy are unified as a mutual objec-

tive. Furthermore, the proposed algorithm can adaptively obtain the optimal cluster number K∗ and the

corresponding clustering members for each cluster.

Remark 3. Clustering is to group objects according to the information found in data describing objects

and their relationships. The purpose is that the objects in a group are like each other (related), while

the objects in different groups are different (unrelated). However, the goal of minimizing prediction error

is not related to the goal of clustering, and the two goals belong to two types of tasks. In our study,

we use clustering algorithm to generate initial clusters because we want to aggregate the sub-sequences

which belong to a same model (i.e., have minimal error) and we assume the sub-sequences belong to

a same model may have similar patterns. As a result, we apply k-means algorithm to generate initial

clusters. In fact, in the feedback mechanism after the initial clustering, the goal of our algorithm is

changed as minimizing forecasting errors. This is consistent with the main objective of our algorithm,

i.e., minimizing the final prediction errors. Meanwhile, an important reason for using k-means algorithm

for initial clustering is to reduce the time cost. Apparently, removing the initial clustering link is more

in line with the process of finding the optimal solution.

Now, the flowchart of the proposed algorithm is shown in Figure 2, and corresponding training pro-

cedure is listed as follows:

Step 1: Decompose all load time series Xi, i = 1, · · · , N into a set of sub-series x = {xk|k = 1, 2, · · · , h}.

Step 2: Obtain initial clusters for the decomposed sub-series by K-means algorithm.
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Step 3: Aggregate the sub-series in same cluster and determine the levels of all aggregated series.

Step 4: Model different levels of series by using Ridge Regression, ELM and SVR methods.

Step 5: Calculate fitness function matrix (3) for all sub-series, according to all established models.

Step 6: Updated the membership vector (4) and clusters (5) based on the fitness function matrix.

Step 7: Repeat Steps 3-6 until the forecasting errors at total level converge or the clusters remain un-

changed.

Remark 4. Our proposed algorithm is modified from the closed-loop clustering algorithm by Zhang et al.

[22] where they state, theoretically the number of cluster change is less than 1 and the maximum number

of iterations is infinity where there would be no switches among clusters when the process terminated

and convergence is guaranteed, and they point out that the number of cluster change and the maximum

number can be adjusted by the user according to the data size and computation limits.

4. Case studies

In this paper, we applied the proposed iterative decompose-cluster-feedback algorithm for three real

forecasting tasks of HLF. The first task is making load forecasts of next 7 days for 12 regions in USA. This

task aims to provide prediction information at national level for management departments’ decisions.

The second one is making predictions for 180 distribution zone substations in Australia. This task

belongs to Short Term Load Forecasting (STLF) and is used to make short predictions for a region which

contains hundreds of distribution substation or customers. The last task is generating predictions for 370

customers’ electricity consumption at a total level. This task is to test and verify the performance of the

proposed method in terms of obtaining an overall prediction for entire customers in a region.

4.1. Evaluation criterion

To comprehensively evaluate the performance of experimental results, three evaluation criteria are

applied in our study:

RMSE =

√√√√ 1

Q

Q∑
i=1

(yi − ŷi)2,

MAE =
1

Q

Q∑
i=1

|yi − ŷi|,

and

MAPE =
100

Q

Q∑
i=1

|yi − ŷi|
yi

,

where Q represents the size of samples, yi and ŷi represent the observations and predictions, respectively.

The RMSE and MAE criteria are used to count the average errors between observations and predictions

and the MAPE criterion is used to evaluate the excellence of the model.
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Figure 2: The flowchart of the proposed algorithms.
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In addition to above three indicators, a FuzzyEn criterion in the reference of Chen et al. [35] is

applied to our study where FuzzyEn introduces fuzzy membership function and is used to measure the

probability of new patterns. The greater the measure value, the greater the probability of new patterns,

that is, the greater the complexity of series. This criterion is applied to evaluate the degree of complexity

of decomposed sub-series.

4.2. Comparison of methods

In order to show the performance of the algorithm proposed more clearly, some advanced comparison

methods are investigated:

a. Bottom-Up method: This method follows the idea of firstly forecasting solely and then aggregating

the predictions. For this type of method, we introduce a model named SVR-BU algorithm [36] as a

comparative model.

b. Top-Down method: Contrary to Bottom-Up method, this method follows a process of aggregating

firstly and then make predictions. For the aggregated load time series, we applied two methods to

construct contrastive models [8, 3]. The first is Multilayer Perceptron (MLP) regression and the second

is a novel method which consists of Long Short-Term Memory (LSTM) and Stochastic differential

equation (SDE) driven by Brownian motion. We denote them as TD-MLP and TD-LSTM-SDE,

respectively.

c. Cluster-based method: We use K-means algorithm to respectively cluster the load time series and

decomposed sub-series xk, k = 1, · · · , h in this method. The two classes in this method are denoted

as cluster and cluster-EMD. Next, the formula (2) is used to determine the levels of clusters. Then

each cluster is modeled according to its level after aggregating the sub-series belong to this cluster.

The final predictions are obtained by aggregating the predictions of all clusters.

d. Ensemble-based method: Following the measure of the study of Wang et al. [37], we conduct groups of

predictions with different initial clustering number of k-means approach. Then the total forecasts are

obtained by aggregating all groups of forecasts with weighted average method. Because this method is

based on cluster-based method, this method can be similarly divided into two categories corresponding

to cluster-based method, which are denoted as ensemble and ensemble-EMD.

e. In the study of Zhang and Li [7], they proposed a closed-loop cluster algorithm for HLF problem which

introduce a feedback mechanism. Therefore, we also compared our algorithm with their method.

f. Brégère and Huard [20] proposed a novel three-stage meta algorithm, which is conposed of three

steps (Generation, Aggregation and Projection) for hierarchical series. This algorithm is one of the

reconciling methods. We apply this algorithm to our experiments, and for convenience, we denote this

method as TSM algorithm in experiments.
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g. In Nystrup et al. [38]’s study, the authors proposed an algorithm for temporal hierarchies with auto-

correlation for load forecasting, which is a kind of reconciling method. We denote this algorithm as

THWA and compared it with our algorithm.

4.3. Task 1: Predictions for load series in USA

4.3.1. Dataset
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Figure 3: The figures for 12 load series from USA.

In this group of experiments, the electrical load series from 12 regions in United States are applied

to make predictions at total level. Specifically, these time series are from July 1, 2015, to April 2, 2021,

with a total of 2103 samples and all series have same time scale. Each sample is the sum of the electricity

load of corresponding region in one day. Each time series is divided into training set (70%) and test

set (30%). This group of load series are shown in Figure 3. Specific information can be obtained from

Energy Information Administration (EIA) and its URL is https://www.eia.gov/beta/.

4.3.2. Experimental configuration

The goal of the experiment is to obtain the total load forecast for the next 7 days based on the

total level of 12 load time series in the United States. As for the experiments, we aim to obtain the

load predictions of sum of the following 7 days at a total level of the 12 load time series in USA. The

prediction results obtained in this paper can provide guidance for the rational planning and application

of national electric energy. The most outstanding model in this task can provide better predictions for

management departments to make better decisions.

Details of this task are set as follows: Firstly, the initial number of clusters of the proposed algorithm

is set to 12, which is a moderate number in this task. Secondly, after trials for all sub-series, we set the
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Table 1: Experimental results on USA datasets

Method MAE(104)RMSE(104)MAPE(%)Improve(%)1

TD-MLP 238.16 297.83 3.3 69.7

TD-LSTM-SDE 244.63 320.67 3.4 70.6

SVR-BU 237.92 294.09 3.3 69.7

Cluster 233.84 287.92 3.3 69.7

Cluster-EMD 156.97 206.64 2.1 52.4

Ensemble 234.96 288.97 3.3 69.7

Ensemble-EMD 131.68 172.75 1.8 44.4

CLC 252.05 312.87 3.5 71.4

TSM 211.75 270.58 2.9 65.5

THWA 230.84 286.30 3.2 68.8

The proposed 73.23 92.14 1.0 None

1 The improvement by the proposed method in terms of MAPE.

a b c d e f g h i j k

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
AE

1e6

a b c d e f g h i j k

1.0

1.5

2.0

2.5

3.0

RM
SE

1e6

a b c d e f g h i j k

0.010

0.015

0.020

0.025

0.030

0.035

M
AP

E

Figure 4: The boxplot for results on USA data set. The corresponding models of these boxes are a: TD-MLP, b: TD-

LSTM-SDE, c: SVR-BU, d: Cluster, e: Cluster-EMD, f: Ensemble, g: Ensemble-EMD, h: CLC, i: TSM, j: THWA and k:

The proposed.
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Figure 5: The one-day ahead experimental results on first group of datasets of the proposed algorithm.

Figure 6: The clustering results on entropy values of the proposed algorithm on USA data set.
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Table 2: The constructed models and time consume of benchmark models in training process.

Method RR ELM SVR Constructed models Time(s)

TD-MLP 0 0 7 7 3

TD-LSTM-SDE - - - 7 369

SVR-BU 0 0 84 84 31.68

Cluster 0 35 28 63 122

Cluster-EMD 77 0 7 84 3

Ensemble 7 147 154 308 503

Ensemble-EMD 392 21 112 525 26

CLC 5 47 39 91 41

TSM - - - - 55

THWA - - - - 19

The proposed 124 7 103 234 510

modeling time1 0.0006 0.16 0.17 - -

1 The average modeling time for the RR, ELM and SVR model.

boundaries of zero-crossing rate as 50 and 150 separately for series between low frequency and medium

frequency and the series between medium frequency and high frequency. Finally, the maximum number

of iterations is set to 8 after a group of trials. As the number of initial clusters increases, the number of

iterations also increases.

4.3.3. Empirical analysis

In this section, we will compare and analyse the algorithm proposed in this paper and other methods

from the following aspects.

a. Comparisons among the models using EMD or not using EMD: In our study, we introduce the

EMD method to decompose the original 12 load time series and we hold the idea that it is better

to process the decomposed sub-series than to directly process the original load series because load

time series cannot be deal with directly for the different conditions for the production of different

load series. Table 1 shows the experimental results (i.e., the values of MAE, RMSE and MAPE

criterion) of the proposed algorithm and other comparative models. In all benchmark models, EMD

method is used in Cluster-EMD, Ensemble-EMD methods and the proposed algorithm. We can

find that the results of models using EMD are stably better than the same models without EMD

in terms of all the three criteria. According to the last column in Table 1, the Cluster-EMD and

Ensemble-EMD methods are about 32% better than their corresponding methods without EMD

(i.e., Cluster and Ensemble).

To evaluate the information complexity of sub-series, we apply FuzzyEn criterion in this task. We

calculate the values of FuzzyEn for all sub-series and show the final clustering results in Figure 6.

We can find that the sub-series whose FuzzyEn values are in a similar range are selected as a cluster

and the range of all clusters are arranged according to the rank of fuzzy entropy. In brief, our idea of
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decomposing load series into sub-series with simple patterns and clustering sub-series with similar

patterns can be elaborated in this part.

b. Comparisons among the proposed algorithm and other methods: We have obtained the conclusion

that the models using EMD (i.e., Cluster-EMD, Ensemble-EMD and the proposed algorithm) per-

form better than the models without EMD (i.e., BU, TD-MLP, TD-LSTM-SDE, Cluster, Ensemble,

CLC, TSM and THWA). According to the fourth, sixth and tenth rows in Table 1, the algorithm

proposed in this paper is the best method among all models using EMD. This result displays the

feedback mechanism in the proposed algorithm works and can improve the accuracy of predictions.

As shown in the fifth column of Table 1, the algorithm proposed in our study is more than 44.4%

better than all other methods, which is mainly improved by EMD and the feedback mechanism.

c. Analysis of the proposed algorithm: As shown in Figure 5, we can find the MAE, RMSE and

MAPE indexes gradually decrease with the increase of the number of feedback mechanisms. In

the two figures on the left side of Figure 5, these three indexes finally converge. Similarly, the

number of the clusters in Figure 5 also converges at similar time and the final clustering results

is shown in Figure 6. Therefore, we can conclude that the feedback mechanism can gradually

adjust the clusters of the decomposed sub-series. This represents that the decomposed sub-series

with different amplitude-frequency characteristics of each load time series converge to a constant

situation.

d. Analysis of the time cost of all methods: as shown in Table 2, we can find that the Ensemble and

the proposed method take the most time (503s and 510s). The constructed models constructed

by the method with EMD is much more than those method without EMD, which should make

the methods with EMD cost much more time in theoretically. However, the Cluster-EMD and

Ensemble-EMD methods cost less time than the Cluster and Ensemble methods, which is mainly

due to establishing an ELM and a SVR model need more time than establishing a RR model. As

for the proposed method, it needs to construct less models and half of them are RR models. The

reason for the most time cost of the proposed method is mainly due to the computing other than

the modeling part, which is a potential improving direction for the proposed method in the future.

4.4. Task 2: Predictions for load series in Australia

In this task, we do short term load predictions for 180 time series from Australian distribution substa-

tions. This task can provide load forecasting at total level for an area and can satisfy the power companies’

demand for accurate load forecasting. Here we set up the same comparison models and experiments as

in Task 1.

4.4.1. Dataset

The dataset in this task is from distribution zone substations in Australia. These time series have

same time scale, from June 25, 2019, to July 14, 2019, with total of 1920 samples. Each sample is the
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Table 3: Experimental results on Australia dataset

Method MAE(106)RMSE(106)MAPE(‰)Improve(% )1

TD-MLP 24.13 33.33 8.7 73.6

TD-LSTM-SDE 16.52 23.94 6.0 61.7

SVR-BU 17.93 23.44 4.2 42.9

Cluster 9.5 14.1 3.5 34.3

Cluster-EMD 12.0 17.5 4.3 46.5

Ensemble 9.5 13.95 3.4 32.4

Ensemble-EMD 10.52 15.44 3.8 39.5

CLC 9.5 14.0 3.4 32.4

TSM 14.09 18.71 5.2 55.8

THWA 10.76 15.87 3.8 39.4

The proposed 6.6 11.45 2.3 None

1 The improvement by the proposed method in terms of MAPE.

sum of load in 15 minutes. Each time series is divided into training set (70%) and test set (30%). Specific

information can be obtained from AUSGRID (https://www.ausgrid.com.au/).

4.4.2. Experimental configuration

The detailed goal of this task is to obtain single-step predictions of load series (i.e., 15 minutes in this

task) at the total level.

Details of all benchmark models are set as follows: Firstly, the initial number of clusters of the proposed

algorithm is set to 25, which is a moderate number in this task. Secondly, we also set the boundaries of

zero-crossing rate between low frequency and medium frequency and between medium frequency and high

frequency are 50 and 150 respectively, which is an appropriate setting for modelling different sub-series.

Finally, the maximum number of iterations is set to 15, of which the proposed algorithm can achieve

convergence. As the number of initial clusters increases, the number of iterations also should increase.

4.4.3. Empirical analysis

In this part, we would analyze the results of this group of experiments from similar aspects to the

first group of experiments.

a. Comparisons among the models using EMD or not using EMD: According to Table 3, different

from the results in the first group of experiments, we cannot find obvious improvement by EMD

in two pairs of methods: Cluster, Cluster-EMD and Ensemble, Ensemble-EMD. Considering the

case where the number of decomposed sub-series are large and the weakness of K-means method,

the main reason is the terrible clustering performance of K-means algorithm. Therefore, we can

obtain an inference that single EMD approach seems cannot improve the performance of forecasts

in some cases. However, this inference contradicts the conclusion in Task 1, where the EMD has

been proved to improve the forecasting performance at the total level in complex hierarchical load

forecasting. Observing the good results of the proposed algorithm in Table 3 and Figure 7, we can
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Figure 7: The boxplot for results on Australia data set. The corresponding models of these boxes are a: TD-MLP, b:

TD-LSTM-SDE, c: SVR-BU, d: Cluster, e: Cluster-EMD, f: Ensemble, g: Ensemble-EMD, h: CLC, i: TSM, j: THWA

and k: The proposed.

demonstrate the efficiency of the feedback mechanism for terrible clusters. This phenomenon also

proves that the feedback mechanism can solve the clustering problem caused by K-means method

when the number of decomposed sub-series is large and adjust clusters better.

As with task 1, we apply FuzzyEn criterion to evaluate the sub-series in this task. As shown in

Figure 10, we can find each cluster has a rough range of FuzzyEn values and the ranges of all

clusters are arranged. Moreover, considering the best performance of the proposed algorithm, we

can confirm the effects of applying EMD method.

b. Comparisons among the proposed algorithm and other methods: In this task, we can get an obvi-

ous conclusion that the two TD related methods (TD-MLP and TD-LSTM-SDE) have the worst

forecasting accuracy according to Table 3. The Ensemble and CLC method can improve the per-

formance slightly compared with the Cluster method. As shown in Figure 8, we can find that

the criterion of forecasts (MAE, RMSE and MAPE) only get a little better though the number

of clusters decreases gradually. The main reasons are that directly cluster the original load time

series can easily reach the limit of optimization. On the contrary, we can find that our algorithm

proposed in this study which use EMD method can break this limit and have better forecasts.

c. Analysis of the proposed algorithm: As shown in Figure 9, we can find that the performance (MAE,

RMSE and MAPE) of our proposed algorithm can decrease gradually and finally converge which

is same as the results in the first group of experiments. In both Figures 9 and 5, the criteria

(including MAE, RMSE and MAPE) exist fluctuation but the overall trend of them is declining.

Furthermore, the clustering performance can be seen in Figure 10 and the good clustering results

can demonstrate the effectiveness of our algorithm in terms of adjusting clusters. In brief, we can
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Figure 8: The expermental results on second group of datasets of CLC approach.
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Figure 9: The expermental results on second group of datasets of the proposed algorithm.
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Figure 10: The clustering results on entropy values of the proposed algorithm on Australia data set.

Table 4: The constructed models and time consume of benchmark models in training process.

Method RR ELM SVR Constructed models Time(s)

TD-MLP 0 0 1 1 6

TD-LSTM-SDE - - - 1 45

SVR-BU 0 0 180 180 29

Cluster 0 14 0 14 6

Cluster-EMD 615 674 180 1469 105

Ensemble 0 70 0 70 12

Ensemble-EMD 61 49 0 110 33

CLC 9 129 0 138 391

TSM - - - 180 215

THWA - - - 180 37

The proposed 34 38 58 130 4947

modeling time1 0.0006 0.09 0.11 - -

1 The average modeling time for the RR, ELM and SVR model.
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declare that our proposed algorithm can effectively improve the forecasting performance for HLF

with simple or complex hierarchy.

d. Analysis of the time cost of all methods: The results of all methods are shown in Table 4. we can

find that the CLC and the proposed method take the most time (391s and 4947s), which is mainly

due to the increase of time series in hierarchy. The proposed method takes the most time, which

is the same as Section 4.3 (Task 1) though the proposed method need not to construct too many

models. The main reason is mainly due to the computing in addition to modeling part.

4.5. Task 3: Predictions for electricity consumption of 370 customers

4.5.1. Dataset

In this task, we mainly focus on the forecasting performance and make electricity predictions at a

total level for a public electricity dataset with electricity consumption of 370 customers. Each time

series is from January 1, 2014, to December 31, 2014. We process the original minutely time se-

ries into hourly ones. The training set is from January 1, 2014, to December 17, 2014, and the

test set is from December 17, 2014, to December 31, 2014. The specific dataset can be obtained in

https//archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014.

4.5.2. Experimental configuration

The goal of this task is to obtain single-step predictions at total level for 370 electricity consumption

time series. The initial cluster of the proposed method is set to 25. The boundaries of zero-crossing rate

between low frequency and medium frequency and between medium frequency and high frequency are 20

and 200 after trials and errors, respectively. The number of iterations of the proposed method is set to

16.

4.5.3. Empirical analysis

Table 5: Experimental results on the electricity consumption of 370 customers

Method MAE(104)RMSE(104)MAPE(%)Improve(% )1

TD-MLP 5.55 7.00 7.9 67.1

TD-LSTM-SDE 4.17 5.78 5.4 51.9

SVR-BU 2.84 4.88 4.9 47.3

Cluster 2.64 4.52 4.5 42.2

Cluster-EMD 3.02 6.09 5.6 53.7

Ensemble 2.63 4.49 4.4 41.9

Ensemble-EMD 3.03 6.12 5.7 64.7

CLC 2.73 4.70 4.7 44.6

TSM 3.17 4.77 5.2 50.3

THWA 2.69 4.05 4.3 39.4

The proposed 1.63 2.17 2.6 None

1 The improvement by the proposed method in terms of MAPE.
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According to Table 5, we can find the TD-MLP and TD-LSTM-SDE method can only achieve the

worst performance in terms of the three criterion (MAE, RMSE and MAPE). For the three methods

using EMD, i.e., Cluster-EMD, Ensemble-EMD and the proposed method, the front two methods perform

worse than corresponding methods without EMD. However, the proposed method can achieve the best

performance among all methods. This phenomenon, which is the same as that in task 2, can suggest that

directly using EMD may not achieve a better prediction for a hierarchy with massive time-series. This can

be mainly attributed to the terrible initial clustering results of K-means and the mismatching between

clustering and minimizing prediction errors. However, the proposed method, which use the EMD and

feedback mechanism, can achieve a better forecasting performance. This proves the adjustment ability

of the feedback mechanism in adjusting the clustering results. Comparing the intervallic performance

between the proposed algorithm and Cluster-EMD and Ensemble-EMD, we can conclude that the terrible

initial clustering results are improved by the feedback mechanism. Meanwhile, the result of the proposed

algorithm achieving best performance in this task is consistent with that in task 1 and task 2.

4.6. General discussion

In this work, we focus on the application in hierarchical load forecasting, and we show our algorithm

can provide a highly accurate predictions compared with all considered benchmark models based on

experiments on three datasets. Furthermore, we experimentally validate the convergence of the proposed

algorithm. According to results from Figures 5 and 9 of the two tasks in our study, in terms of error index,

our algorithm finally converges. In terms of the final number of clusters, our algorithm also converges.

According to the final clusters of two tasks in Figures 6 and 10, we can conclude that the sub-sequences

which have similar information are clustered as a set. Overall, we can see that our proposed algorithm

converges according to our experiments.

5. Conclusion

In this paper, we have proposed a new decompose-cluster-feedback algorithm for hierarchical load

forecasting. An EMD method has been developed to decompose load time series in hierarchy into sub-

series with different amplitude-frequency characteristics in our algorithm, which can effectively improve

the final forecasting accuracy compared with directly clustering load time series in hierarchy. This idea

has been proved to be an effective approach to improve the performance of forecasts for HLF according

to the three tasks of making predictions for three groups of load series. Specifically, as mentioned before,

the clustering and minimizing forecasting errors at the total level are two different objectives which is

difficult for commonly used clustering methods to obtain good clustering results that help minimize the

prediction error at the same time. The results of three investigated tasks have proved that the feedback

mechanism in our algorithm can solve this problem above and iteratively determine the optimal clusters

of forecasts.
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One of the limitations for the proposed algorithm is mainly the increasing time cost because of the

EMD algorithm and the feedback mechanism in the proposed algorithm. In the future, a novel clustering

algorithm that can generate better initial clusters can be applied to this study because better clusters

can reduce the time cost of the proposed algorithm. Meanwhile, the three modeling approaches in

this study can be replaced by novel and better approaches that can generate more accurate forecasts

with less time cost. This study can be extended to other fields, like supermarket revenue forecasting

and wind turbine generation forecasting, etc. Moreover, the proposed algorithm focuses on electricity

demand forecasting with hierarchical structure. We consider the most general condition without bad or

missing data points. In practice, the presence of bad or missing data points would reduce the forecasting

performance of the proposed framework. For handling time series with outliers, some model-based,

density-based/dissimilarity-based, histogramming methods [39] can be effectively incorporated in our

algorithm to deal with outliers. In addition, some robust loss functions, like lncosh loss [40, 41] and

general loss [42], can be employed to train the algorithm. As for datasets with missing data points, some

modelling strategies can be used to impute the missing points; some advanced machine learning and

statistical modelling methods can be found in references of Che et al. [43] and Chao et al. [44]. Meanwhile,

according to the type of missing data mechanism, like missing completely at random (when the probability

that an individual value will be missing is dependent of observations), missing at random (when the

probability that an individual value will be missing is independent of missed observations), and missing

nonignorable (when the probability that an individual value will be missing depends on observations),

some corresponding modifications are potential in improving the forecasting performance [45]. Last, a

mathematical proof of the convergence of the procedure is very crucial but challenging. In our procedure,

the convergence of clustering can be guaranteed as proof by Pollard [46]. In our procedure, we define

the data error from the forecasting model for each cluster as the distance for clustering in the training

procedure. Our proposed procedure is like the EM algorithm, and it would be potential to explore the

convergence by following the work of Wu [47].
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