Abstract

Objectives. The purpose of this study was to determine whether physical activity has a positive relationship with school engagement regardless of the presence or absence of a recess or lunch break before the classroom lesson.

Design. Data were collected over three ten-week periods: January-April 2014 (Time 1), October-December 2014 (Time 2), and April-June 2015 (Time 3).

Methods. A cohort of 2,194 adolescents (mean age = 13.40 years, SD = .73) wore an accelerometer during the hour before a mathematics lesson and completed a questionnaire following the mathematics lesson to assess school engagement in that lesson.

Results. Linear mixed models indicated that moderate-intensity activity before a mathematics lesson had a positive linear relationship with cognitive engagement ($\beta = .40, p < .05$). Recess breaks before a mathematics lesson had a negative relationship with overall, behavioural, emotional, and cognitive engagement ($\beta = -.18, p < .01$, $\beta = -.19, p < .01$, $\beta = -.13, p = .03$, and $\beta = -.13, p = .04$, respectively).

Conclusions. Promoting moderate-intensity activity prior to mathematics lessons could improve students’ cognitive engagement. Educators should be aware that students tend to demonstrate the lowest levels of school engagement after recess breaks.

Keywords. Physical activity; recess; lunch; breaks; school engagement
Introduction

Students who are actively engaged with school (i.e., actively participate in school activities, enjoy school, and are psychologically invested in school) are healthier than those who are less engaged \(^1,^2\). Engaged students are more likely to perform well academically \(^3\), successfully transition into post-school education, and complete post-school education \(^1\). An individual’s level of post-school education is associated with inequities across a number of health outcomes \(^4\). For example, post-school education is associated with lower levels of health risk behaviours such as tobacco smoking, illicit drug use, and high-risk alcohol consumption. Thus, school engagement could be a modifiable determinant of health in youth. As adolescents from low SES areas tend to display the lowest levels of school engagement \(^5\), identifying modifiable determinants for this group is a priority for parents, policy makers, and society.

Physical activity and school engagement

Increasing students’ physical activity may be one method of increasing school engagement, including behavioural engagement (e.g., active participation or time on-task), emotional engagement (e.g., enjoyment), and cognitive engagement (e.g., psychological investment). Owen, Parker, Van Zenden, MacMillan, Lonsdale \(^6\) conducted a systematic review and meta-analysis and concluded that physical activity breaks were an effective method of using physical activity to promote school engagement \((d = .55, 95\% \text{ CI} = .02, 1.06)\). A number of studies have reported that physical activity breaks during classroom lessons improved school engagement, specifically time on-task during the following classroom lesson e.g., \(^7,^8,^9\). However, one study found that physical activity breaks during classroom lessons had no effect on classroom behaviour \(d = -.001, p = .86;^9\). Another study found that physical activity during lunch breaks was positively associated with attention and concentration levels during the following classroom lesson \(r = .24, p = .008;^10\). However, as studies assessing the relationship between physical activity during breaks and school engagement have not objectively measured physical activity, it is currently unclear whether
physical activity is beneficial for school engagement over and above the presence or absence of a break.

Mechanisms of influence

No previous study has attempted to identify the mechanism underlying the possible relationship between physical activity and school engagement. One possible explanation is the novelty-arousal theory, which suggests that a shift in routine, such as a break, allows students to refocus, and improve attention and concentration. An alternate hypothesis relates to exercise-induced neurological changes, such as an increase in brain-derived neurotrophic factor (BDNF), which is responsible for the development of neurons associated with memory and learning.

However, it currently unclear whether the novelty-arousal theory or BDNF provide explanatory mechanisms underlying the relationship between physical activity and school engagement.

Close examination of the relationship between physical activity and school engagement could provide clarity about the underlying mechanism. The novelty-arousal theory posits that breaks provide a shift in routine and allow students to refocus, and improve attention and concentration. Therefore, if school engagement levels are highest after breaks, regardless of the amount of physical activity undertaken, the novelty-arousal theory could be an underlying mechanism. Alternatively, vigorous-intensity activity results in higher levels of BDNF production, compared to low and moderate activity. Thus, if vigorous-intensity activity is the most beneficial for school engagement, it is likely that BDNF is an underlying mechanism.

Purpose

The primary objective of this study is to determine whether accelerometer-assessed physical activity had a positive relationship with school engagement over and above the presence or absence of a break before the classroom lesson. The secondary objective of this study was to investigate whether BDNF or the novelty-arousal theory were mechanisms underlying this possible relationship.
Methods

A university Human Research Ethics Committee and Department of Education research application process granted approval for this study. Parents or guardians provided informed written consent, and students provided informed written assent. To increase the sample size, data was collected at three time points: January-April 2014 (Time 1), October-December 2014 (Time 2) when students were in Year 8, and April-June 2015 (Time 3) when students were in Year 9 of the Australian secondary school education system. At each time point, students wore an accelerometer during the hour before a mathematics lesson and responded to a questionnaire assessing their engagement after the mathematics lesson.

Year 8 students (mean age = 13.40 years, SD = .73 years) were recruited from 14 secondary schools located in the western Sydney region, Australia. Schools needed to be of relative socioeconomic disadvantage, as defined by a Socio-Economic Index for Areas (SEIFA) score <6, to be eligible to participate. Within these schools, all Year 8 students without any pre-existing injuries or illnesses were eligible to participate.

Accelerometers (Actigraph GT3X+) were used to measure physical activity during the one-hour period before a mathematics lesson. Accelerometers provide a valid measure of the frequency, duration, and intensity of physical activity in adolescents. Evenson, Catellier, Gill, Ondrak, McMurray cutpoints were used to define light (101 – 2295 counts per minute), moderate (2296 - 4011 counts per minute), vigorous (> 4012 counts per minute), and moderate-to-vigorous physical activity (MVPA; > 2296 counts per minute). These cutpoints have been shown to be the most accurate in adolescents. ActiLife software (Version 6, ActiGraph, LLC, Fort Walton Beach, FL) was used to filter out the one-hour period before the mathematics lesson. Physical activity during the hour before a mathematics lesson was assessed as the acute effects of physical activity tend to last one hour.

adapted version of the School Engagement Measure was used to assess current levels of behavioural, emotional, and cognitive engagement during the mathematics lesson. This adapted
version has shown strong internal consistency ($\alpha = .75$ to .91). The questionnaire is divided into three subscales designed to measure behavioural, cognitive, and emotional engagement and each item is rated on a five-point Likert scale.

Students indicated their age and sex, and responded to an adapted version of the Family Affluence Scale II to assess family level socioeconomic status. Alpha coefficients were used to assess the internal consistency of the adapted version of the Student Engagement in Mathematics Classroom Scale.

The relationship between physical activity and its outcomes tends to be complicated. e.g., linear or quadratic. In order to capture the potentially complicated relationship between physical activity and school engagement, we tested for linear and quadratic relationships using orthogonal polynomials. To test for these relationships, physical activity was examined in two ways: (i) categories based on previous literature and (ii) evenly distributed quantiles.

The categories of physical activity during the hour before mathematics were 0-10 minutes, 10-20 minutes, 20-30 minutes, and >30 minutes of activity. Two systematic reviews indicated that 10-20 minute bouts of physical activity appear to be most beneficial for attention scores and 20-30 minute bouts appear to be most beneficial for state mood. Therefore, we tested these two categories of physical activity, as well as less than 10 minutes and greater than 30 minutes.

We also examined the 10th, 25th, 50th, 75th, and 90th quantiles of physical activity. This allowed the examination of how the relationship between physical activity and mathematics engagement differs at different parts of the physical activity distribution.

Using both the category and quantile approach, we employed multilevel regression models to determine whether physical activity predicted mathematics engagement during the mathematics lesson over and above the presence or absence of a break before the classroom lesson (e.g., recess and lunch). The models consisted of repeated measures at level one, students at level two, classes at level three, and schools at level four. Model 1 examined the nature of the relationship between different activity intensities (sedentary behavior, light, MVPA, moderate, or vigorous intensity) and
mathematics engagement. Model 2 examined whether having a break before a classroom lesson predicted mathematics engagement in the following lesson. In Model 3 both activity and having a break before a classroom lesson were included as explanatory variables. The final model (Model 4) controlled for all covariates.

The percentage of missing data for covariates ranged from 3% (socioeconomic status) to 5% (age) and resulted from participants missing items and/or absenteeism. For participants who were missing one or more covariates we assigned imputed values using multiple imputation. We created five imputed datasets and combined the results to obtain the final estimates and standard errors of the linear mixed effects models.

Of the 2,194 students recruited, 1,202 provided physical activity and engagement data from at least one time point. This included 826 students at Time 1 (n = 449 boys and n = 376 girls), 673 students at Time 2 (n = 358 boys and n = 315 girls), and 520 students at Time 3 (n = 277 boys and n = 243 girls). Power analysis indicated that a sample size of 899 would be large enough to detect an effect size of .28 with 80% power and an alpha of 5%. This calculation was based on result of a meta-analysis that reported a small positive relationship between physical activity and school engagement.

Results

Descriptive statistics are displayed in Table 1. During the hour before mathematics, adolescents spent on average 1.66 minutes in vigorous-intensity activity, 2.81 minutes in moderate-intensity activity, 7.23 minutes in light intensity activity, and 48.17 minutes sedentary.

Results of linear mixed models (Model 4) examining the relationship between categories of vigorous and moderate intensity activity and mathematics engagement can be viewed in Tables 2 and 3, respectively. Complete results pertaining to linear mixed models for the relationship between categories and quantiles of physical activity and mathematics engagement can be viewed in the supplementary material (see supplementary material A, B, C, and D for results of Models 1-4 for
physical activity categories and supplementary material E, F, G and H for results of Models 1-4 for physical activity quantiles). There were no linear or quadratic relationships between MVPA and overall, behavioural, emotional, or cognitive mathematics engagement. Moderate-intensity activity had a positive linear relationship with cognitive mathematics engagement, as for every 1% increase in activity, there was a 0.40 unit increase in the cognitive engagement scale ($\beta = .40, p < .05$). However moderate intensity activity had no significant relationship with overall, behavioural, or emotional mathematics engagement.

Neither light- nor vigorous-intensity activity had a positive relationship with overall, behavioural, emotional, or cognitive mathematics engagement.

Recess breaks had a negative relationship with overall, behavioural, emotional, and cognitive mathematics engagement ($\beta = -.18, p < .01$, $\beta = -.19, p < .01$, $\beta = -.13, p = .03$, and $\beta = -.13, p = .04$, respectively) indicating that students were less engaged in lessons after recess, compared to lessons following other classroom lessons, PE lessons, lunch breaks, or the first lesson of the day. Similarly, lunch breaks had a negative relationship with cognitive mathematics engagement ($\beta = -.20, p < .01$), but no relationship with overall, behavioural, and emotional mathematics engagement ($\beta = -.06, \beta = .03$, and $\beta = .06$, respectively).

Discussion

The primary objective of this study was to determine whether physical activity had a positive relationship with school engagement. Overall, the results suggest that moderate-intensity activity had a positive linear relationship with cognitive engagement over and above the presence or absence of a break before the classroom lesson. The secondary objective of this study was to investigate potential mechanisms underlying the relationship between physical activity and school engagement. As vigorous-intensity activity was not the most beneficial intensity of activity for school engagement it is unlikely that BDNF is an underlying mechanism. Furthermore, as recess
breaks had a negative relationship with school engagement it seems the novelty-arousal theory also
does not explain this relationship.

Moderate-intensity activity had a positive linear relationship with cognitive engagement, but
not with overall, behavioural, or emotional engagement. This suggests that moderate-intensity
activity is positively associated with investment in learning and strategic learning skills, such as
problem solving, but not with active participation in classroom activities and enjoyment of
classroom lessons. Although the dimensions of school engagement are interrelated, they are
separate constructs and it is possible that different types of physical activity are beneficial for
different dimensions of school engagement. The majority of previous studies have found that
physical activity breaks from classroom lessons improved behavioural engagement e.g., 7, 8,
whereas, integrating physical activity into classroom lessons improved emotional engagement e.g.,
23, 24. Further research is needed that examines whether different types of physical activity have
different relationships with different dimensions of school engagement.

It is improbable that BDNF or the novelty-arousal theory was the mechanism underlying the
relationship between physical activity and school engagement. While vigorous-intensity activity
was not the most beneficial intensity of activity for school engagement, it is still crucial for a
number of physical and mental health benefits 25, 26. Although students demonstrated the lowest
levels of school engagement after recess breaks, these breaks are still important as they provide a
break from the rigours of academic challenges and contribute to cognitive, social, emotional, and
physical functioning 27. An alternate mechanism to BDNF or the novelty-arousal theory could be
positive affect or self-esteem 28. Research suggests that physical activity has a positive influence on
positive affect and self-esteem, which could lead to broadened cognitive and behavioral coping
strategies, such as problem solving 28. Future research is needed that examines whether positive
affect or self-esteem is the mechanism underlying the relationship.

While it appears that only bouts of moderate-intensity activity have a positive relationship
with school engagement in a subsequent lesson, it is possible that regular MVPA has a positive
long-term relationship with school engagement. A number of studies have found that regular, subjectively-measured MVPA has a positive relationship with school engagement e.g., \(^{29}\). Regular MVPA changes the structure and function of the brain by increasing the growth of nerve cells in the hippocampus, development of nerve connections, density of neural network, and brain tissue volume \(^{30}\). These physiological changes are linked to increased attention, information processing, coping strategies, and positive affect. Thus, regular MVPA could have a positive long-term relationship with school engagement. Future research is needed that examines the long-term relationship between regular accelerometer-assessed MVPA and school engagement.

This study has a number of strengths. Firstly, to the authors’ knowledge, this is the first study to examine whether physical activity had a positive relationship with school engagement over and above the presence or absence of a break before the classroom lesson. Secondly, this is the first study to use objective measures of physical activity to examine the relationship between physical activity and school engagement. Objective measures of physical activity are not influenced by social desirability and do not rely on youths’ abilities to recall behaviour and accurately estimate the frequency and intensity of physical activity \(^{14}\).

There are also some limitations to this study. Firstly, although physical activity was measured using an objective method, the low levels of MVPA (\(M = 4.47 \text{ mins}, \ SD = 4.53\)) during the hour before mathematics made it difficult to detect whether physical activity had a positive relationship with school engagement. At each time point, only 1% of students participated in more than 20 minutes of physical activity during the hour before the mathematics lesson. Secondly, while the measure of school engagement produced internally consistent scores (alphas ranged from .75 to .91), it is a subjective measure, which could be subject to social desirability. However, observational measures of school engagement also have problems, as they provide limited information on the quality of effort, participation, or thinking \(^{5}\). There are no observational measures of emotional engagement as it is an internal construct. Future research is needed that combines subjective and objective measures of school engagement to assess the relationship between physical
activity and school engagement. Thirdly, despite accelerometers providing a measure of the intensity of physical activity, there are also limitations. Accelerometers do not have the ability to measure swimming, cycling, or many strength training activities 14.

Despite the limitations of this study, there are also important implications. The results suggest that moderate-intensity activity is beneficial for cognitive mathematics engagement. Providing opportunities for moderate-intensity activity during the hour before a mathematics lesson could improve cognitive mathematics engagement in the following mathematics lesson. If policy makers and educators use this evidence and provide more opportunities for moderate-intensity activity during the hour before a mathematics lesson, young people could also receive a number of physical and mental health benefits 25, 26.

Students’ levels of school engagement are generally lowest following recess breaks. As such, educators need to be aware of these low levels after recess when constructing school subject timetables. Teachers also need to be aware that they might have trouble engaging students after recess breaks. Thus, teachers could plan the weekly lessons so that the most engaging lessons take place in the period after a recess break. This knowledge and lesson planning could reduce the need for teachers to manage troublesome classroom behavior and punish students, thus improving the student-teacher relationship and subsequently, improving school engagement.

Conclusion

Results from this study suggest that promoting moderate-intensity activity could provide benefits for cognitive mathematics engagement. Educators should be aware that students tend to demonstrate the lowest levels of school engagement after recess breaks.
Practical implications

- Moderate intensity activity before a mathematics lesson was beneficial for cognitive mathematics engagement in the following mathematics lesson.

- Physical activity interventions should consider the intensity of physical activity that they promote. Moderate intensity activity appears to be the most beneficial intensity for mathematics engagement.

- Educators and teachers need to be aware that levels of school engagement are generally lowest following recess breaks.

Acknowledgements

The data collected for this study was part of a project funded by a Discovery Project grant (Reference: DP160102625) from the Australian Research Council. The authors declare that there are no conflicts of interest associated with this study.
References

Table 1

Descriptive statistics of physical activity and school engagement

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Class ICC</th>
<th>School ICC</th>
<th>Alpha coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary minutes</td>
<td>48.17</td>
<td>7.84</td>
<td>0.09</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Light intensity minutes</td>
<td>7.23</td>
<td>4.46</td>
<td>0.08</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Moderate intensity minutes</td>
<td>2.81</td>
<td>2.84</td>
<td>0.06</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Vigorous intensity minutes</td>
<td>1.66</td>
<td>2.45</td>
<td>0.05</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Moderate-to-vigorous intensity minutes</td>
<td>4.47</td>
<td>4.53</td>
<td>0.07</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Behavioural engagement</td>
<td>4.05</td>
<td>0.73</td>
<td>0.07</td>
<td>0.02</td>
<td>.75</td>
</tr>
<tr>
<td>Emotional engagement</td>
<td>3.08</td>
<td>1.13</td>
<td>0.08</td>
<td>0.02</td>
<td>.91</td>
</tr>
<tr>
<td>Cognitive engagement</td>
<td>3.35</td>
<td>1.13</td>
<td>0.05</td>
<td>0.03</td>
<td>.85</td>
</tr>
<tr>
<td>Overall school engagement</td>
<td>3.50</td>
<td>0.81</td>
<td>0.08</td>
<td>0.03</td>
<td>.91</td>
</tr>
</tbody>
</table>

Note: ICC = Intraclass correlation coefficient.
Table 2

The effect of vigorous physical activity on mathematics engagement

<table>
<thead>
<tr>
<th></th>
<th>Overall engagement</th>
<th>Behavioural engagement</th>
<th>Emotional engagement</th>
<th>Cognitive engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate (SE)</td>
<td>Estimate (SE)</td>
<td>Estimate (SE)</td>
<td>Estimate (SE)</td>
</tr>
<tr>
<td>Intercept</td>
<td>.12 (.55)</td>
<td>-1.33* (.56)</td>
<td>.10 (.55)</td>
<td>1.02 (.55)</td>
</tr>
<tr>
<td>VPA during the hour before mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>.04 (.26)</td>
<td>.13 (.26)</td>
<td>-.09 (.26)</td>
<td>.02 (.26)</td>
</tr>
<tr>
<td>Quadratic</td>
<td>.03 (.26)</td>
<td>-.13 (.26)</td>
<td>.16 (.26)</td>
<td>.05 (.26)</td>
</tr>
<tr>
<td>Classroom lesson</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Recess</td>
<td>-.18** (.06)</td>
<td>-.20** (.07)</td>
<td>-.13* (.06)</td>
<td>-.13* (.06)</td>
</tr>
<tr>
<td>Lunch</td>
<td>-.07 (.07)</td>
<td>.02 (.07)</td>
<td>.06 (.07)</td>
<td>-.21** (.07)</td>
</tr>
<tr>
<td>Physical Education</td>
<td>-.04 (.12)</td>
<td>.02 (.13)</td>
<td>-.05 (.13)</td>
<td>-.03 (.13)</td>
</tr>
<tr>
<td>Before school</td>
<td>-.08 (.06)</td>
<td>-.01 (.07)</td>
<td>-.06 (.06)</td>
<td>-.10 (.06)</td>
</tr>
<tr>
<td>Age</td>
<td>-.03 (.03)</td>
<td>.09** (.03)</td>
<td>-.03 (.03)</td>
<td>-.10** (.03)</td>
</tr>
<tr>
<td>Sex (male = 1)</td>
<td>.01 (.05)</td>
<td>-.14** (.05)</td>
<td>.12* (.05)</td>
<td>-.01 (.05)</td>
</tr>
<tr>
<td>SES- family level</td>
<td>.03* (.01)</td>
<td>.04** (.01)</td>
<td>.02 (.01)</td>
<td>.02 (.01)</td>
</tr>
</tbody>
</table>

Note: SE = standard error; VPA = vigorous physical activity.
Table 3

The effect of moderate physical activity on mathematics engagement

<table>
<thead>
<tr>
<th></th>
<th>Overall engagement</th>
<th>Behavioural engagement</th>
<th>Emotional engagement</th>
<th>Cognitive engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate (SE)</td>
<td>Estimate (SE)</td>
<td>Estimate (SE)</td>
<td>Estimate (SE)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-.17 (.52)</td>
<td>-1.80** (.53)</td>
<td>-.20 (.52)</td>
<td>1.00 (.52)</td>
</tr>
<tr>
<td>MPA during the hour before mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>.31 (.18)</td>
<td>.24 (.19)</td>
<td>.11 (.19)</td>
<td>.40* (.19)</td>
</tr>
<tr>
<td>Quadratic</td>
<td>-.15 (.19)</td>
<td>-.09 (.20)</td>
<td>.06 (.20)</td>
<td>-.33 (.20)</td>
</tr>
<tr>
<td>Period before mathematics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classroom lesson</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Recess</td>
<td>-.18** (.06)</td>
<td>-.20** (.07)</td>
<td>-.13* (.06)</td>
<td>-.13* (.06)</td>
</tr>
<tr>
<td>Lunch</td>
<td>-.07 (.07)</td>
<td>.03 (.07)</td>
<td>.06 (.07)</td>
<td>-.21** (.07)</td>
</tr>
<tr>
<td>Physical Education</td>
<td>-.04 (.12)</td>
<td>.01 (.13)</td>
<td>-.05 (.13)</td>
<td>-.03 (.13)</td>
</tr>
<tr>
<td>Before school</td>
<td>-.07 (.06)</td>
<td>.00 (.07)</td>
<td>-.05 (.06)</td>
<td>-.09 (.06)</td>
</tr>
<tr>
<td>Age</td>
<td>-.03 (.03)</td>
<td>.09** (.03)</td>
<td>-.03 (.03)</td>
<td>-.10** (.03)</td>
</tr>
<tr>
<td>Sex (male = 1)</td>
<td>.01 (.05)</td>
<td>-.13** (.05)</td>
<td>.12* (.05)</td>
<td>-.01 (.05)</td>
</tr>
<tr>
<td>SES- family level</td>
<td>.03* (.01)</td>
<td>.04** (.01)</td>
<td>.02 (.01)</td>
<td>.02 (.01)</td>
</tr>
</tbody>
</table>

Note: SE = standard error; MPA = moderate physical activity.