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ABSTRACT
The Lyapunov Exponent (LyE) is a non-linear technique that analyses stability, which refers to the capacity 
of systems to mitigate environmental perturbations. Whether elite athletes have an optimised movement 
stability is contentious. There has been limited research exploring the differences in movement stability 
using the LyE between elite and novice athletes. The purpose of this study was to compare movement 
stability between novice and elite male cyclists across a 4000 m bout, using the LyE. Participants 
completed two sessions of cycling (familiarisation and testing). Inertial measurement units were attached 
to the head, thorax, pelvis and left and right shanks to measure segment accelerations. The LyE was 
calculated using five, 100 cycle intervals across the bout. Elite cyclists had greater segment movement 
instability compared to novices at the head and pelvis in the longitudinal and medio-lateral direction, 
thorax in the medio-lateral and anterior-posterior direction and medio-lateral shanks. Both novice and 
elite cyclists demonstrated increased head, thorax and pelvis movement instability across the bout. This 
increase in instability across the bout may demonstrate the impact of fatigue on movement stability. 
Future research needs to now examine movement stability in the velodrome and explore the correlation 
between movement stability and aerodynamic drag.

ARTICLE HISTORY 
Received 3 December 2023  
Accepted 14 March 2025 

KEYWORDS 
Movement variability; 
stability; Lyapunov 
Exponent; cycling

Introduction

Dynamic systems theory (DST) suggests that task, environment 
and organism constraints influence movement expression 
(Davids et al., 2006; Kurz & Stergiou, 2004; Magill & Anderson,  
2017). Thus, movement variability is considered normal and 
a function of health, allowing individuals to adapt to changing 
constraints (Davids et al., 2003; Newell & Corcos, 1993). 
Movement variability can be analysed using linear or non- 
linear methods (Harbourne & Stergiou, 2009; Stergiou & 
Decker, 2011).

Typically, linear methods have been used which focus on the 
magnitude of variability, by addressing how data is distributed 
about a mean with measures like standard deviation, coeffi
cient of variation and range (Bradshaw et al., 2009; Wheat & 
Glazier, 2006). In doing so, linear measures assume each mea
surement point, for instance in gait, each step, is independent 
of one another and occurs at discrete intervals (Stergiou, Buzzi, 
et al., 2004). In doing so, by distilling a continuous variable into 
one metric, a large amount of information is disregarded that 
could be useful in explaining the movement patterns that have 
emerged (Preatoni et al., 2013). Therefore, linear measures do 
not evaluate the underlying structure of variability. Another 
limitation of linear measures is they can only measure one of 
the temporal or spatial aspects of movement, whilst neglecting 

the other component (Longo et al., 2018). In contrast, non- 
linear measures do analyse the structure of variability, and 
assume that movement patterns arise from a deterministic 
origin and acknowledge the influence of external and internal 
perturbations on movement patterns. As such, non-linear mea
sures do evaluate the underlying structure of variability by 
examining variability across time and examine both spatial 
and temporal aspect of movement simultaneously (Longo 
et al., 2018; Smith et al., 2010; Stergiou, Buzzi, et al., 2004).

One of the more popular non-linear methods is the 
Lyapunov Exponent (LyE), which assesses local dynamic stabi
lity, the ability to attenuate local perturbations during cyclic 
movements (Abarbanel, 1996; Rosenstein et al., 1993; Wolf 
et al., 1985). It measures the divergence of neighbouring tra
jectories in a state space; the vector area where the dynamical 
system is defined (Mehdizadeh, 2019; Stergiou, Buzzi, et al.,  
2004). A larger, positive value signifies a greater variance in 
trajectories, indicating greater instability and conversely, 
a negative LyE indicates a stable system (Mehdizadeh, 2018; 
Stenum et al., 2014; Stergiou, Buzzi, et al., 2004). As such, lower 
values are desired, as it indicates greater stability. Primarily, LyE 
research has been limited to walking gait (Mehdizadeh, 2018), 
both in healthy and unhealthy individuals. Subsequently, 
research has applied the LyE to understand the factors that 
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impact walking, like disease (Myers et al., 2009; Ricaurte et al.,  
2020), injury (Stergiou, Moraiti, et al., 2004), aging (Mehdizadeh,  
2018) and secondary task performance (Hamacher et al., 2015) 
with seldom use in cycling (Winter et al., 2023).

The exact relationship between variability (linear measure) 
and stability (non-linear measure) is difficult to define (Longo 
et al., 2018) but typically, an increase in the magnitude of 
variability results in a decrease in stability (Smith et al., 2010). 
However, there exists instances where behaviours seem stable 
but exhibit high variability. For example, Dingwell and Marin 
(2006) found that at slower walking speeds, increased stability 
(decreased LyE values) was observed with an increase in mag
nitude of variability (standard deviation). Therefore, it can be 
inferred that the relationship between the magnitude of varia
bility and structure of variability, defined by stability, is context 
dependent; and that variability and stability represent different 
concepts (Longo et al., 2018). Additionally, variability is neither 
inherently “good” or “bad”. It has been suggested that 
a bandwidth of healthy variability exists, whereby if individuals 
are too variable, they possess instability and too little variability 
results in a rigid movement pattern (Stergiou & Decker, 2011). 
Within this healthy bandwidth, individuals can successfully 
navigate perturbations that may present.

According to DST, the neuromuscular system self-organises 
and selects the most efficient movement pattern to complete 
a task based on the contextual and environmental affordances, 
in order to effectively move (Kelso, 1984). However, 
a movement pattern that is efficient from a neuromuscular 
viewpoint, may not be the most optimal movement pattern 
to complete a task. The degree of stability required in a task is 
context dependent (Davids et al., 2006). Cycling may be an 
example where a high degree of stability is required.

To optimise cycling performance (cycle as fast as possible), 
cyclists must maximise their power output and reduce the 
aerodynamic drag that is experienced (Craig & Norton, 2001; 
Forte et al., 2020; Underwood, 2012). Riders have adopted the 
time trial (TT) position, which is a position characterised by an 
almost horizontal trunk position with one’s hands and elbows 
placed on the handlebars (Crouch et al., 2017; Kordi et al., 2019). 
Cyclists adopt this position to reduce the frontal area and 
subsequently aerodynamic drag (Blocken et al., 2019). 
Theoretically, an increase in movement instability (increase in 
LyE) could negatively impact a cyclists’ aerodynamic drag by 
increasing a cyclist’s frontal area and coefficient of drag 
(Underwood, 2012).

The force a cyclist generates must be applied effectively to 
the pedals because forces applied orthogonal to the crank arm 
are converted to crank torque and subsequently bicycle velo
city (Bini et al., 2013). Therefore, force should primarily be 
generated along the longitudinal and anterior-posterior axes 
(Bini & Carpes, 2014). This force and power production is dic
tated by the powers and moments that the cyclist produces at 
the lower body joints (Turpin & Watier, 2020). As such, 
decreased stability in the lower body and pelvis may alter 
power production, as could a decrease in trunk stability, as 
the trunk provides a stable support for the lower body to 
produce power (Elmer et al., 2011; Galindo-Martínez et al.,  
2021).

Currently, aerodynamics is assessed through wind-tunnels 
and computational fluid dynamics (CFD). Wind-tunnel testing 
provides a controlled, repeatable environment that mimics real 
world cycling conditions, but lack portability (Crouch et al.,  
2017). CFD requires complex mathematical modelling and is 
sensitive to numerous variables including the initial system 
conditions and turbulence models employed (Crouch et al.,  
2017; Debraux et al., 2011). As such, devising a technique that 
allows for portability to quantify aerodynamic drag would be 
invaluable to aid cycling performance.

LyE calculation has typically involved expensive optoelec
tronic measurement systems, which similar to methods that 
quantify aerodynamic drag, are lacking portability and 
require expertise to operate. Quantifying stability during 
cycling could be a valuable tool to understand performance 
by determining the body fluctuations of a cyclist, without 
direct assessment of drag and pedal force effectiveness. 
Examining differences in stability between elite and novice 
cyclists will further validate this method for analysing 
cycling performance.

This study aimed to compare the movement stability 
between elite and novice cyclists during the 4000 m time 
trial bout and determine if movement stability changed across 
the bout. It was hypothesised based on previous research on 
aerodynamics that novice cyclists will have decreased move
ment stability (higher LyE) at the head, trunk, pelvis and 
shanks segments compared to elite riders, as elite riders 
would be able to better constrain their movement 
(Underwood et al., 2011). It was also hypothesised that move
ment stability would decrease across the bout for all segments 
in both groups as it was predicted that it would be more 
difficult to maintain a rigid body position as the bout 
progressed.

Methods

Experimental overview

This study utilised a cohort study design following a similar 
experimental design as Winter et al. (2023). Participants com
pleted two, 4000 m cycling trials, one familiarisation and one 
for analysis. During familiarisation, the Wattbike Pro 
(Wattbike, Wattbike Pro, Nottingham, UK) was prepared 
according to the participants’ anthropometry. During the 
familiarisation trial, participants could alter the Wattbike 
resistance by adjusting the resistance lever to their prefer
ence. This was done to determine their desired resistance for 
the analysis session (Wattbike, 2015). This was kept constant 
to mitigate the effect of extraneous variables and was noted 
to aid with test replication and consistency. During the ana
lysis session, IMUs were attached to participants. To mitigate 
the effect of fatigue and delayed onset muscle soreness, 
a minimum of 48 hours rest was provided prior to the analy
sis session being performed session which was similar to 
other research (Jongerius et al., 2022) and to align with 
American College of Sports Medicine (2023) recommenda
tions. Testing took place at the University’s biomechanics 
laboratory.
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Participants

Two participant groups were recruited, elite and novice. 
A sample size of n = 12 was required as determined from 
a sample size calculation for an effect size of 0.35, alpha error 
of 0.05 and power of 0.8 with 2 groups and 5 measurements to 
have sufficient power to detect group x interval differences. Elite 
participants n = 15 (Mean ± SD, height (m), 1.85 ± 0.10, body 
mass (kg) 71.8 ± 6.5, age (yrs) 21.3 ± 3.6) were defined as those 
with maximal effort cycling experience, cycle a minimum of 120  
km per wk (minimum of 5 hrs/week) as per Decroix et al. (2016) 
recommendations, and have familiarity with the time trial (TT) 
position (knowledge and prior experience riding in it). Novice 
participants n = 36 (Mean ± SD, height (m) 1.79 ± 0.07 m, body 
mass (kg) 77.3 ± 9.4 kg, age (yrs) 25.6 ± 4.5 yrs) were those who 
did not meet the elite criteria. Novice participants had varying 
cycling experience, ranging from 0 to 160 km per week. All 
participants had to pass stage 1 of the Exercise and Sports 
Science Australia exercise pre-screen, be aged between 18 and 
35 yrs old, have prior maximal effort exercise experience and be 
injury free to their lower body for the previous 6 months to 
reduce the impact of injury on results and reduce injury risk. 
Ethics approval was obtained from the University’s Human 
Research Ethics Committee prior to data collection (protocol 
number 204,077).

Protocol

Prior to testing, participants signed a consent form to provide 
informed consent. Prior to the familirisation trial, height and 
body mass was measured using a wall mounted stadiometer 
(SECA 216, Seca, Brooklyn, New York, USA) and digital scales 
(TANITA DR-953 Inner Scan Tanita, Tokyo, Japan), respectively.

Familiarisation
Following determining the participants height and mass, 
they underwent a bike fit, which was performed by the 
primary researcher to tailor the Wattbike to their individual 
anthropometry. Participants, whether elite or novice with 
a pre-established bike fit were permitted to replicate this 
on the Wattbike themselves, otherwise one was performed 
by the primary researcher. In the bike fit, saddle height was 
set at the participants’ relative right knee flexion when at 25 
degrees in the 6 o’clock crank position. This was performed 
with a goniometer. The centre of the goniometer was placed 
on the lateral femoral condyle, with the lower and upper 
arm of the goniometer pointing towards the lateral malleo
lus of the ankle and greater trochanter, respectively. To aid 
in determining this position, reflective markers were placed 
on the lateral malleolus, lateral femoral condyle and greater 
trochanter on their right side. To provide a guideline in 
determining saddle/fore aft position, the knee over the 
pedal spindle method was applied. In this method, the 
fore/aft position is determined when the participants’ front 
knee is directly over the pedal spindle when the crank is 
positioned at the 3 o’clock position (Menard et al. 2016). This 
method was used as a guideline due to its lack of biome
chanical justification, and participants could change this if 
required. Following this, participants moved into the TT 

position, where their hands and elbows are placed on the 
handlebars whilst assuming an almost horizontal trunk posi
tion (Kordi et al., 2019). To replicate the TT position for the 
analysis session, handlebar height, reach and separation 
were noted (Bini et al., 2020; Brand et al., 2020). 
Participants wore their own cleats/footwear and were 
attached to E-148 pedals. A strap accessory was applied for 
participants who did not possess cleats so their feet could 
be secure within the pedals. During familiarisation, 
a Wattbike profile was created for participants to collect 
power and time data which were later exported for analysis. 
To aid in familiarity with wearing IMUs, an IMU was placed 
on the right shank (just below the tibial tuberosity) during 
the familiarisation trial.

Analysis setup
Prior to the participants arrival, the Wattbike saddle height and 
fore/aft position and handlebar height was configured to their 
bike fit specifications. Participants wore tight, non-reflective 
clothing. Blue Trident IMUs (IMeasureU, Blue Trident, VICON, 
Oxford, UK) were attached to the participants’ head (middle of 
the forehead), thorax (midline between the bottom of the 
sternum and the sternum notch), pelvis (between the posterior 
superior iliac spines), and one on the left and right shank (just 
below the tibial tuberosity), similar to other studies (de Jong 
et al., 2020; Lau & Tong, 2008; Tan et al., 2019), as seen in 
Figure 1. To ensure the IMUs remained fixated on the partici
pant throughout the testing session, double-sided tape as well 
as strapping tape were applied over the IMUs. IMUs captured 
segment acceleration at 1200 hz longitudinal, medio-lateral 
(M-L) and anterior-posterior (A-P) accelerations were defined 
as X, Y and Z, respectively. Reflective markers were placed on 
the Wattbike’s crank and pedal on the left and right side to 
determine when a pedal revolution was completed.

Figure 1. Placement of IMUs on the participant.
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Cycling trial
Participants warmed up by cycling for 5 mins at a self- 
selected, resistance and cadence with a 5 s maximal intensity 
effort at the end (Glaister et al., 2015; Hibbert et al., 2017; 
Nakamura et al., 2020). Following a 3 min rest, the near max
imal 4000 m cycling trial began. To mimic the push start in 
individual pursuit cycling, for the first 200 m, participants were 
out of the saddle, after which they assumed the TT position. 
Participants fixated their gaze on a piece of yellow tape that 
was 2 m in front of the Wattbike to better simulate a time trial 
bout (Figure 2). To aid in participants riding at a maximal 
intensity, verbal encouragement was provided. Following 
completion of the cycling trial, rate of perceived exertion 
(RPE) was assessed using the 1–10 RPE scale (Borg, 1998), to 
gauge participants subjective intensity.

To mitigate the effect of blood pooling and fatigue, at the 
completion of the cycling trial, participants cycled at low inten
sity for 3 mins, after which they could either statically stretch 
their lower body muscles or ‘massage’ their lower body with 
a foam roller (Seeley et al., 2021).

Data analysis

Cycling performance variables
Total time (mm:ss), mean power output (W) and cadence (rpm) 
were exported from Wattbike Expert (Wattbike Expert Ver 
2.60.20). Within Microsoft Excel (Microsoft Corporation, WA, 
USA) power output and cadence was calculated at five inter
vals. This was done by separating the time values into five 
intervals, and power output was then averaged across these 
five intervals. The data corresponding to first 200 m was dis
regarded from analysis because it was not used in LyE 
calculation.

LyE
IMU data was exported from VICON Nexus. In Visual3D, start (TT 
position assumption) and end (completion of the trial) events 
were defined using the reflective markers attached to the 
Wattbike pedals. The first 200 m of the trial (where the partici
pant was out of the time trial position), was disregarded 
because large shifts in position can affect stability results as 

calculated by the LyE. Filtering can negatively impact the ability 
to capture system instability by potentially removing ‘real’ 
fluctuations that occur, thus changing the dynamics of the 
systems (Raffalt et al., 2020). Therefore, IMU data was not 
filtered. A custom MATLAB code (The MathWorks, Inc., Natick, 
MA, USA) was written to calculate the LyE. Cycles were split into 
five, 100 cycle intervals; however, due to the differing times and 
resistances the participants rode at, instances occurred where 
100 cycles could not be defined for the 5th interval. In these 
instances, the last pedal cycle was used to define the end point. 
Individual embedding dimension, m (number of successive 
points in the dynamical system) and time delay, τ (an integer 
determining how many data points are included for analysis) 
were defined for each variable in each interval, using the global 
false nearest neighbours method (Kennel et al., 1992) and 
determining the first minimum of the average mutual informa
tion function (Fraser & Swinney, 1986), respectively. 
Head m ranged from 3 to 4 and τ from 5 to 10. Thorax m was 
4 across all axes and intervals and τ ranged from 7 to 10. 
Pelvis m and τ were 4 and 10 across all axes and intervals, 
respectively. Left and right shank m was consistently 4 across 
all axes and intervals, but τ ranged from 7 to 10 at the left shank 
and was consistently 10 at the right shank. Minimum and 
maximum m and τ for each segment axis and interval are 
reported in Tables S1–S3 in the supplementary materials. 
Following state space reconstruction, the LyE was calculated 
using the (Rosenstein et al., 1993) algorithm.

Statistical analysis

Statistical analysis was conducted using SPSS (v28, IBM Corp, 
New York, NY, USA). Box plots were used to determine if outliers 
existed. If after review, outliers were present, they were checked 
for errors and if no errors were found, the data was included for 
analysis. DST suggests that individuals can exhibit unique varia
bility/stability and patterns of movement emerge based on the 
specific environmental, task and organism constraints (Davids 
et al., 2003). As such, removing an ‘outlier’ would not represent 
the data sample. Data was normally distributed as determined by 
a Shapiro and Wilk (1965) ‘goodness of fit’ and normality test. An 
independent samples t-test was conducted to compare bout 
completion time with an alpha set at 0.05. A linear mixed model 
with an alpha set at 0.05 was used to compare the effects of 
group (elite vs. novice) and intervals (1–5) during the cycling bout. 
If significant main effect differences were found, the least squared 
differences post hoc test was utilised, with an alpha set at 0.05.

Results

Due to the amount of data, tables are located within the 
supplementary materials and figures are used in text. Table S4 
and S5 (located in the supplementary materials) contains the 
cycling performance variables and LyEs at each interval for each 
segment, respectively.

Cycling performance variables

Elite cyclists completed the 4000 m bout in less time than 
novices (6.27 mm:ss vs. 5.11 mm:ss; p < 0.001). Power (W) was 

Figure 2. Sagittal and frontal view of the participant in TT position.
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greater (p < 0.001) in elite cyclists compared to novices in all 5 
intervals (Figure 3). Novice cyclists power decreased (p < 0.001) 
in intervals 2–5 from interval 1 but increased (p < 0.05) from 
intervals 3 (p = 0.030) and 4 (p = 0.032), to interval 5 (Figure 3). 
Similarly, elite cyclists power decreased (p < 0.001) in intervals 
2–5 from interval 1 and from interval 2–4 (p = 0.050) (Figure 3). 
Cadence (RPM) was greater (p < 0.001) in elite cyclists com
pared to novices in all 5 intervals (Figure 3). Novice cyclists 
cadence decreased (p < 0.001) in intervals 2–5 from interval 1 
and decreased from intervals 3 (p < 0.004) and 4 (p < 0.006) to 
5. Similarly, elite cyclists cadence decreased (p < 0.001–0.018) in 
intervals 2–5 from interval 1. Elite participants and novice 
cyclists reported an average RPE of 9.17 and 8.83, respectively, 
suggesting that both groups rode at near maximal intensities 
during the 4 km bouts.

LyE

Head
Longitudinal head (Figure 5(a)) and M-L (Figure 5(b)) LyE 
increased from interval 1 vs. intervals 2–5 (p = < 0.001–0.045), 
from interval 2 vs. intervals 3–5 (p = < 0.001–0.06) and from 
interval 4 vs 5 (p = < 0.001–0.006) for both novice and elite 
cyclists, respectively. Both Longitudinal (Figure 5(a)) and 
M-L (Figure 5(b)) head LyE increased from interval 3 vs. 4 
(p = < 0.001–0.013) in novice cyclists. Elite cyclists had greater 
(p < 0.024) M-L head LyE than novice cyclists in interval 5 
(Figure 5(b)) and greater (p < 0.001) longitudinal acceleration in 
all intervals (Figure 5(a)).

Thorax
In both novice and elite cyclists, thorax M-L LyE (Figure 5(e)) 
increased (p = < 0.001–0.003) from interval 1 vs. intervals 2–5, 
from interval 2 & 3 vs. intervals 4 and 5 (p = < 0.001–0.017) and 

from interval 4 vs. 5 (p < 0.001). Additionally, novice cyclists 
M-L LyE (Figure 5(e)) increased from interval 2 vs. 3 (p = 0.018). 
Both novice and elite cyclists A-P thorax LyE increased (p < 0.05) 
from interval 1 vs. intervals 2–5 (p = < 0.001–0.033) and from 
intervals 2 vs. intervals 4 and 5 (p = < 0.001–0.021), and from 
interval 3 vs. 5 (p < 0.001). Elite cyclists also increased (p < 0.05) 
in LyE from interval 4 vs. 5 (p = 0.041), and novice cyclists 
increased (p < 0.05) from interval 3 vs. 4 (p = 0.010). Elite cyclists 
had greater (p < 0.05) M-L (p < 0.001 - Figure 5(e)) and A-P thorax 
(p = < 0.001–0.004) -Figure 4(f)) LyE than novice cyclists in all 
intervals.

Pelvis
Pelvis longitudinal LyE (Figure 5(g)) decreased (p < 0.05) from 
interval 1 vs. intervals 2–4 (p = < 0.001–0.005) but increased 
(p = 0.032) from interval 3 vs. 5 in novice cyclists. Conversely, 
elite cyclists increased in longitudinal pelvis LyE from intervals 2 
(p = 0.018) and 3 (p = 0.011) vs. interval 5. M-L pelvis LyE 
(Figure 5(h)) increased (p < 0.05) from interval 1 vs. 5 
(p < 0.001) and from interval 2 vs. 4 in novice cyclists 
(p = 0.014). In both novice and elite cyclists, M-L pelvis LyE 
increased (p < 0.05) from intervals 2–4 vs. interval 5 
(p = < 0.001–0.025). Elite cyclists had greater (p < 0.05) longitu
dinal (p = < 0.001–0.05 - Figure 5(g)) and M-L (p < 0.001 - 
Figure 5(h)) pelvis LyE than novice cyclists in all intervals.

Shank
M-L right shank (Figure 6(b)) increased from interval 1 vs. 5 
(p = 0.022) in elite cyclists. Elite cyclists had greater 
M-L right shank LyE (p = 0.007–0.022) than novice cyclists 
in all intervals. In novice cyclists, M-L left shank LyE 
(Figure 6(e)) decreased from interval 1 vs. intervals 2 (p =  
0.036) and 3 (p = 0.030) whereas in elite cyclists, M-L left 
shank LyE increased from interval 1 vs. intervals 2–5 (p = < 

Figure 3. Power output for novice and elite participants across the 5 intervals. (a) p < 0.05 vs interval 1; (b) p < 0.05 vs. interval 2; (c) p < 0.05 vs. interval 3; (d) p < 0.05 
vs. interval 4, † p < 0.05 vs. Elite.
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Figure 4. Cadence for novice and elite participants across the 5 intervals. (a) p < 0.05 vs interval 1; (c) p < 0.05 vs. interval 3; (d) p < 0.05 vs. interval 4, † p < 0.05 vs. Elite.

Figure 5. Head, thorax, pelvis movement LyE for novice and elite participant across the 5 intervals (X – longitudinal axis; Y - medio-lateral axis; Z – anterior-posterior 
axis). (a) p < 0.05 vs interval 1; (b) p < 0.05 vs. interval 2; (c) p < 0.05 vs. interval 3; (d) p < 0.05 vs. interval 4, †p < 0.05 vs. Elite
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0.001–0.028). Elite cyclists exhibited greater M-L left shank 
LyE than novice cyclists from intervals 2–5 
(p = 0.002 to 0.005).

Discussion

This study aimed to investigate whether differences in move
ment stability existed between elite and novice cyclists and if 
movement stability changed during a 4000 m cycling bout. It 
was expected that elite cyclists would exhibit increased stabi
lity, indicated by a reduced LyE at all segments due to their 
greater cycling experience and greater ability to constrain their 
movement. The hypothesis was not supported. Elite cyclists 
exhibited increased head, thorax, pelvis and shank movement 
instability compared to novices. Additionally, it was hypothe
sised that movement stability would increase across the inter
vals in both groups. A consistent increase in head and thorax 
movement instability occurred across the bout whilst pelvis 
(besides M-L pelvis acceleration) and shank movement stability 
remained consistent. Therefore, the hypothesis was supported.

As expected, elite cyclists exhibited higher power outputs 
across the bout, culminating in quicker bout completion than 
novices. Both novices and elite cyclists exhibited the same 
pattern in power, peaking in the first interval and decreasing 
across the bout, but slightly increasing from internal 4 to 5, 
potentially highlighting the impact of fatigue. The increase in 
power output at the end of the bout could be a result of a shift 

in pacing strategy as participants neared exercise completion. 
This may have occurred because participants were not blinded 
to the distance they had travelled (St Clair Gibson et al., 2006).

Longitudinal and M-L head, and M-L and A-P thorax move
ment instability, respectively, increased across the bout, high
lighting the potential impact of fatigue in both novice and elite 
cyclists. Elite cyclists demonstrated greater head and thorax 
movement instability than their novice counterparts. 
Therefore, the initial hypothesis that was made that elite 
cyclists would exhibit improved stability was not supported. It 
was initially thought that head and thorax movement stability 
should be increased to minimise the potential negative impact 
on aerodynamic drag by increasing a cyclist’s frontal area 
(Underwood et al., 2011). Similarly, the M-L left shank and 
M-L and longitudinal right shank movement instability was 
higher in elite cyclists than novices. Similar to the head and 
thorax, it was initially theorised that an increased lower body 
shift, particularly in the M-L direction, would hinder a cyclists 
ability to produce effective pedal force and subsequently 
reduce power output. As such, it was thought that elite cyclists 
would constrain their lower body instability. However, the 
results obtained do not support this.

The increase in instability that occurred in elite cyclists 
compared to their novice counterparts is likely due to the 
environment where the testing took place. In accordance 
with DST, environmental constraints influence movement 
patterns. Cowin et al. (2022) suggested that sporting tasks 
should be assessed within ecologically valid domains 

Figure 6. Left and right shank LyE values for novice and elite participants across the 5 intervals (X – longitudinal axis; Y - medio-lateral axis; Z – anterior-posterior axis). 
ap < 0.05 vs interval 1, †p < 0.05 vs. Elite.
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because removing tasks from their original setting can lead 
to different movement patterns being exhibited. 
Commensurate with this idea, ergometers are stationary 
and do not permit side to side movement, thus possessing 
different constraints to a regular bicycle, which could impact 
the movement patterns of a cyclist and subsequently perfor
mance (Wilkinson & Lichtwark, 2021; Wilkinson et al., 2020). 
As such, because testing occurred in a research laboratory on 
a Wattbike where aerodynamic drag has no impact on per
formance, rather than a velodrome where drag is a factor, 
elite cyclists may have cycled differently. Elite cyclists who 
are aware that drag was not an influencing factor on power 
output may have solely focused on power expression with
out concern for their drag profile. This may have resulted in 
them consistently exhibiting greater movement instability by 
shifting their upper and lower body positioning to attempt to 
shift greater body weight to the pedals (Sayers & Tweddle,  
2012; Wilkinson & Kram, 2021). To confirm this, further 
research should be conducted in a velodrome to determine 
the impact of environment on movement stability. If differ
ences are present in the LyE between the laboratory and 
velodrome condition, then the impact of environment is 
highlighted. Additionally, future research is required to be 
undertaken in wind tunnels to confirm the effect of increased 
movement instability on aerodynamic drag prior to this 
method being implemented in practice and competition as 
currently, definitive conclusions cannot be made regarding 
its effect. Furthermore, future studies should address the 
reliability of the LyE in elite cyclists which has yet to be 
addressed, to determine if changes in movement stability 
that were observed would consistently exist across sessions 
in elite cyclists. This study, based on the principles of DST 
allowed the participants to self-select their resistance and 
cadence so they better adopted their natural cycling pattern.

The differences in LyE that exists between novices and elite 
cyclists could be due to the differences in power and cadence. 
Potentially, the overall increase in instability at the head, thorax 
and M-L left shank and M-L and longitudinal right shank could 
have been due to the increase in cadence and power expres
sion. Participants in this study could cycle at their preferred 
cadence and to allow for more ‘normal’ movement patterns to 
emerge and were instructed to complete the bout as fast as 
possible. Cadence (or steps per minute in running) and power 
has typically been controlled for in studies using the LyE and 
little research has assessed its impact on the LyE. Russell and 
Haworth (2014) concluded that walking at a preferred stride 
frequency elicited lower LyE values, however the impact of 
cadence on running or cycling has not been assessed. 
Mehdizadeh, Arshi et al. (2016) concluded that running speed 
did not affect the LyE when running above or below preferred 
running speeds; however, the speeds at which these individuals 
were running were not at their maximum, unlike the partici
pants in this study who cycled at a maximum intensity. 
Conversely, Look et al. (2013) found that LyE values increased 
as speed increased in running; however, only 8 strides were 
captured. Future research needs to control for cadence and 
power at multiple rates riding in the same position to better 
elucidate the impact of cadence and power on the LyE in 
cycling. Further investigation could analyse the affect of 

different resistance in movement stability as quantified by the 
LyE, given that resistance, like cadence effects how power is 
expressed (Zameziati et al., 2006). This study confirmed that 
increases in instability occurred across a bout, which occurred 
as power output decreased, suggesting that instability 
increases as one fatigues. However, further research is required 
to better elucidate potential performance links to drag and 
power before this method is applied in training and competi
tion scenarios.

Conclusion

This study was the first to the authors’ knowledge that has 
examined differences in elite and novices movement instability 
during a cycling bout using IMUs. Increased movement instabil
ity was reported at the head, thorax, pelvis and shanks in elite 
cyclists compared to novices. Additionally, it was shown that 
both novice and elite cyclists increase their head and thorax 
movement instability across a bout, without altering pelvis and 
shank stability, which may have detrimental effects on aero
dynamic drag in a velodrome environment. However, prior to 
capturing movement instability in training and competition 
scenarios via the LyE, future research should investigate the 
relationship between the LyE and aerodynamic drag in wind- 
tunnels and the impact of environment on movement stability 
calculated with the LyE, to better determine the practicality of 
the method.
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