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A B S T R A C T   

Background: Urban environments are characterised by many factors that may influence children’s lifestyle and 
increase the risk of childhood obesity, but multiple urban exposures have scarcely been studied. 
Objective: We evaluated the association between multiple urban exposures and childhood obesity outcomes and 
weight-related behaviours. 
Methods: We conducted a cross-sectional study including 2213 children aged 9–12 years in Sabadell, Spain. We 
estimated ambient air pollution, green spaces, built and food environment, road traffic and road traffic noise at 
residential addresses through a total of 28 exposure variables in various buffers. Childhood obesity outcomes 
included body mass index (BMI), waist circumference and body fat. Weight-related behaviours included diet (fast 
food and sugar-sweetened beverage consumption), physical activity, sedentary behaviour, sleep duration and 
well-being. Associations between exposures (urban environment) and outcomes (obesity and behaviours) were 
estimated in single and multiple-exposure regression models and in a hierarchical clustering on principal com-
ponents (HCPC) analysis. 
Results: Forty percent of children were overweight or obese. In single exposure models, very few associations 
were observed between the urban exposures and obesity outcomes or weight-related behaviours after correction 
for multiple testing. In multiple exposure models, PMcoarse, denser unhealthy food environment and land use mix 
were statistically significant associated with childhood obesity outcomes (e.g 17.7 facilities/km2 increase of 
unhealthy food environment (OR overweight/obesity status) = 1.20 [95% CI: 1.01; 1.44]). Cluster analysis 
identified 5 clusters of urban exposures. Compared to the most neutral cluster, the cluster with high air pollution, 
road traffic, and road noise levels was associated with a higher BMI and higher odds of overweight and obesity (β 
(zBMI) = 0.17, [95% CI: 0.01, 0.17]; OR (overweight/obesity) = 1.36, [95% CI: 0.99, 1.85]); the clusters were 
not associated with the weight-related behaviours. 
Conclusions: This systematic study of many exposures in the urban environment suggests that an exposure pattern 
characterised by higher levels of ambient air pollution, road traffic and road traffic noise is associated with 
increased childhood obesity risk and that PMcoarse, land use mix and food environment are separately associated 
with obesity risk. These findings require follow-up in longitudinal studies and different settings.   
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1. Introduction 

Increasing trends of childhood obesity seem to have plateaued or 
even slightly decreased in high-income countries in the last decade, but 
levels are still alarmingly high, especially in Spain which has the second 
highest prevalence levels of childhood obesity in Europe ((NCD-RisC), 
2017; de Bont et al., 2020a; WHO, 2018). Childhood obesity has been 
associated with type 2 diabetes mellitus, hypertension, obstructive sleep 
apnoea, dyslipidemia and mental health problems (Kumar and Kelly, 
2017). Excessive weight status is a consequence of a chronic imbalance 
between excessive energy intake and/or reduced energy expenditure 
(Kipping et al., 2008; Trasande et al., 2010). The interaction of genetics, 
lifestyle behaviours and environmental exposures are likely to 
contribute to this imbalance (Kipping et al., 2008; Trasande et al., 2010). 
Additionally, the rapid growth of urban areas worldwide has greatly 
increased the levels of environmental stressors such as higher levels of 
air pollution, noise and lack of green spaces. This increasing degree of 
global urbanisation can influence personal behaviours of urban resi-
dents, such as physical activity levels and sedentary behaviour (Nieu-
wenhuijsen, 2016), and ultimately contribute to the energy imbalance 
(Gascon et al., 2016; Nieuwenhuijsen, 2016). 

A number of studies have recently reported associations between 
increased levels of air pollution, road traffic, and traffic noise, and 
increased childhood growth and obesity (Christensen et al., 2016; de 
Bont et al., 2020b, 2019; Jerrett et al., 2010; Wang et al., 2020; Weyde 
et al., 2018). Increased levels of green spaces, access to facilities, more 
diversity of land use, and more walkable areas have been reported to be 
protective against obesity in children (de Bont et al., 2020b; Feng et al., 
2010; Frank et al., 2019; Luo et al., 2020; Renalds et al., 2010). Most of 
these studies have reported single-exposure associations and have not 
systematically assessed associations for many urban exposures. To the 
best of our knowledge there have been only two studies that assessed the 
associations between multiple urban exposures and childhood obesity 
(Bloemsma et al., 2019; Vrijheid et al., 2020). The identification of 
combinations of exposures in urban environment that are more likely to 
be associated with childhood obesity may help policymakers and urban 
planners to identify which exposure clusters need to be addressed in 
order to make cities healthier and more liveable (Nieuwenhuijsen and 
Khreis, 2018) 

The mechanisms underlying the effects of the multiple urban expo-
sures and childhood obesity are still poorly understood. Air pollution 
may disrupt molecular mechanisms known to underlie obesity patho-
genesis (Sun et al., 2009; Xu et al., 2010). Noise has been associated with 
stress hormones and sleep deprivation, which are associated with 
physical development in childhood, increasing the risk of overweight in 
children (Münzel et al., 2017; Nielsen et al., 2011; Pervanidou and 
Chrousos, 2011). Green spaces, built environment factors and road 
traffic may partly determine the levels of air pollution and noise and in 
turn affect the levels of obesity (Frank et al., 2019; Nieuwenhuijsen, 
2016). Further, the urban environment may influence several weight- 
related behaviours including well established obesity risk factors such 
as diet, physical activity, sedentary behaviour, sleep duration and well- 
being (Kumar and Kelly, 2017). Poorer well-being may not be consid-
ered a direct weight-related behaviour, but poor mental health is asso-
ciated with obesity and changes in diet and physical activity may be 
responsible for this (Liem et al., 2008). Better understanding of the as-
sociations between urban exposures with weight-related behaviours is 
important for the development of future community-level health pro-
motion programs to improve healthy behaviours in the city, but there 
are only few studies on this in children. For instance, in adolescents and 
in adults, increasing levels of air pollution have been associated with 
increased fast food consumption and with decreased levels of physical 
activity (Chen et al., 2019; Wang et al., 2020), whereas higher green 
space exposure has been associated with increased levels of physical 
activity and improved quantity of sleep (Luo et al., 2020; Shin et al., 
2020). 

The aim of this study is to systematically evaluate the association of 
multiple urban exposures (air pollution, green spaces, built and food 
environment, road traffic, and road traffic noise) and their patterns, with 
childhood obesity outcomes and weight-related behaviours. 

2. Methods 

2.1. Study design and study population 

We conducted a cross-sectional school-based study between October 
2017 and January 2019 in the city of Sabadell, Spain (approximately 
200,000 inhabitants) within the ECHOCAT (Urban built environment 
and childhood obesity in Catalonia) project. We aimed to recruit all 
children in the 4th, 5th and 6th year of primary school (between 9 and 
12 years old) in Sabadell. Of the 37 Sabadell primary schools that were 
contacted, 30 schools agreed to join the study. Out of all children and 
their families contacted at these schools (n = 3542), 1970 (56%) agreed 
to participate. Participating schools were similar to the remaining 
schools in Sabadell in terms of urban exposure levels (i.e NO2 levels 
[38.1 versus 39.8 μg/m3, Kruskal-Wallis test, p = 0.54)], except for noise 
levels (60.1 versus 63.0 dB(A), p = 0.02). Additionally, we included 
children participating in the longitudinal INMA (INfancia y Medio 
Ambiente, Environment and Childhood) Sabadell birth-cohort study. In 
INMA, 778 pregnant women were recruited in the first trimester of 
pregnancy between 2004 and 2006, and were followed from then on-
wards (Guxens et al., 2012). In this study, we included the INMA chil-
dren who participated in the follow-up visit at age 10–12 and attended 
Sabadell primary schools in the 4th, 5th and 6th years (n = 481) during 
the same period of the ECHOCAT study. Similar protocols for data 
collection, outcome assessment and exposure assessment were used in 
ECHOCAT and INMA. In both studies, all parents or tutors/guardians 
signed a consent form and the studies were approved by the Clinical 
Research Ethical Committee (ECHOCAT N◦ = 2016/6635/I, INMA N◦ =

2016/6708/I) of the IMIM-Parc de Salut MAR, Barcelona, Spain. 

2.2. Childhood obesity outcomes 

Child anthropometric measurements (height, weight, waist circum-
ference and body fat percentage) were measured following the same 
standardized protocol in ECHOCAT and INMA at schools. All measure-
ments were taken without shoes and in light clothing by specially 
trained personnel. Child height (nearest 0.1 cm) and weight (nearest 0.1 
kg) were used to calculate age-and-sex specific BMI z-scores (zBMI, in 
standard deviation units) following the World Health Organization 
Growth Reference (de Onis et al., 2007). Children with a zBMI higher 
than +1 were defined as overweight including obesity, and children 
below this cut off were considered normal weight, including under-
weight. We focused on children with overweight rather than only chil-
dren with obesity because the large number of children that have excess 
weight and are known to be at an increased risk of multiple adverse 
health outcomes. Additionally, waist circumference (nearest 0.1 cm) 
was measured at the high point of the iliac crest and with minimal 
respiration using an inelastic tape (model 201; SECA, Hamburg, Ger-
many). Percentage body fat was measured using bioelectrical impedance 
analyses (TANITA DC-360 and Bodystat 1500 instruments were used in 
ECHOCAT and INMA, respectively). For INMA we calculated body fat 
percentage using validated bioimpedance formulas as these are vali-
dated for the Bodystat instrument (Clasey et al., 2011). For ECHOCAT 
we used the body fat percentage values directly obtained from the 
TANITA instrument (McCarthy et al., 2006), because the Clasey equa-
tion is not validated for this instrument. The values from the TANITA 
were highly correlated with the values from the Clasey equation 
(Pearson correlation rs = 0.94). Finally, we obtained waist circumfer-
ence and body fat percentage z-scores by calculating standardized re-
siduals from a regression model of waist circumference and body fat 
percentage as dependent variable, with age, sex and study (ECHOCAT, 
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INMA) as predictors (Eisenmann, 2008). Overall, the outcomes were 
highly correlated with each other, zBMI and waist circumference z- 
scores had a Pearson correlation of 0.86, and zBMI and body fat per-
centage z-scores of 0.79. Therefore, we decided to keep zBMI and 
overweight/obesity status (normal weight vs overweight/obesity) as our 
main outcome, and waist circumference and body fat percentage z- 
scores as sensitivity analyses. zBMI, waist circumference and bio-
impedance measures are considered as markers of adiposity, intra- 
abdominal obesity and body composition, respectively (Moreno et al., 
2011). 

2.3. Weight-related behaviours 

Weight-related behaviours including diet, physical activity, seden-
tary behaviour, and sleeping duration were collected from parents 
through questionnaires. Psychological well-being was collected directly 
from the children. 

Data about dietary intake and dietary behaviours were obtained 
through a specific questionnaire and a modified version of a validated 
food-frequency questionnaire (FFQ) (Vioque et al., 2019). The food 
frequency questionnaire referred to the child intake in the previous year, 
and it was completed by the parents, and the responses were trans-
formed to times/week of intake. We selected two items as indicators of 
unhealthy diet: fast food consumption in restaurants and consumption of 
sugar-sweetened beverages. The fast food consumption in fast food 
restaurants was obtained from this question “How often does your child 
eat fast food (eg. burger, french fries, hot dogs, pizza) in fast food res-
taurants?”. From the FFQ we obtained the sugar-sweetened beverage 
consumption. Both variables were categorised (<1 time/week, ≥1 
times/week) as studies suggests that more frequent users (more than 
once weekly) are at higher risk (Tambalis et al., 2018). 

Minutes of physical activity per week were obtained through an 
adapted version of the Children’s Leisure Activities Study Survey 
(CLASS) (Telford et al., 2005, 2004). We summed the total amount of 
time (in hours) of all physical activities performed in an average week. 
Additionally, we summed the total amount of time spent in vigorous 
physical activity hours/week. Since almost all activities had a metabolic 
equivalent of task (MET) score higher than 3, this can be considered as 
the total time spent in moderate-to-vigorous activity. Vigorous physical 
activity was defined as activities with a score higher than 6 obtained 
from of the Butte and Ridley compendium (Butte et al., 2018; Ridley 
et al., 2008). The physical activity variables were only obtained for the 
children participating in the ECHOCAT study. 

Sedentary behaviour was obtained from self-reported information on 
screen time. Total screen time (hours/week) was calculated by summing 
the total duration of television and computer time in hours per week. 
Both television and computer duration was calculated as: total televi-
sion/computer time = 5 × weekday television/computer time duration 
+ 2 × weekend television/computer time duration. 

Sleep duration (in hours/night) was calculated by subtracting the 
time the child woke up with the time the child went to bed and actually 
turned off the light during weekdays. 

Psychological well-being was obtained through the KIDSCREEN-27 
questionnaire that evaluates the health-related quality of life (Robitail 
et al., 2007). KIDSCREEN-27 questionnaire consists of 27 items related 
to physical well-being (5-item), psychological well-being (7-item), au-
tonomy and parent relations (7-item), social support and peers (4-item), 
and school environment (4-item). We calculated the total score 
following the KIDSCREEN protocol (Robitail et al., 2007), by summing 
up all item responses (certain items were reversed according to the 
protocol). Lower values indicated poorer health-related quality of life. 

2.4. Exposure assessment: the urban environment 

A wide range of urban environment exposures were estimated using 
geographic information system (GIS) platforms, using protocols 

developed for the HELIX project (Nieuwenhuijsen et al., 2019; Robinson 
et al., 2018; Vrijheid et al., 2020). We estimated the urban environment 
in the following exposure groups: ambient air pollution, green spaces, 
built environment, food environment, road traffic, and road traffic 
noise. Data sources and time points are specified in Table 1. The expo-
sures were estimated at the geocoded residential address of the children 
and were averaged over the year before the clinical examination. 

The assessment of ambient air pollution included nitrogen dioxide 
(NO2), nitrogen oxides (NOx), particulate matter (PM) with an aero-
dynamic diameter of less than 10 μm (PM10) and of less than 2.5 μm 
(PM2.5), PM between 2.5 μm and 10 μm (PMcoarse), and absorbance of 
PM2.5 (PMabs) filters. We based the air pollution exposure assessments 
on the land-use regression (LUR) modelling approach developed in the 
European Study of Cohorts for Air Pollution Effects (ESCAPE) frame-
work (Beelen et al., 2013; Eeftens et al., 2012). Following the ESCAPE 
guidelines, we applied temporal adjustment for the exposure level to 
each pollutant by combining the LUR spatial estimates at the geocoded 
address of the child and data obtained from the background routine 
monitoring stations in Sabadell. Specifically, we used the ratio of the 
concentration of the background monitor of each day of the study period 
and the annual average during 2009 (year of sampling campaign). We 
used the Catalunya model that (R2) 62–76%% of the annual variation 
levels of the air pollutants in 2009. 

For green spaces, we included green space availability and accessi-
bility indicators. We followed the Positive health Effects of the Natural 
Outdoor Environment in Typical Populations in Different Regions in 
Europe (PHENOTYPE) study (Nieuwenhuijsen et al., 2014) to estimate 
the surrounding greenness (trees, shrubs, and parks) with the Normal-
ized Difference Vegetation Index (NDVI). We obtained satellite data 
derived from the Landsat 4–5 Thematic Mapper (TM) with 30 m × 30 m 
resolution. We selected images of 2017 according to the following 
criteria: i) cloud cover less than 10%, ii) Standard Terrain Correction 
(Level 1 T) and iii) greenest period of the year (May-August). We esti-
mated surrounding greenness within 100-m, 300-m, and 500-m buffers 
around each address. Additionally, we calculated the distance to the 
nearest major green spaces and the area of this space, considered as open 
areas more than 5000 m2. Finally, we created a dichotomous variable to 
evaluate whether a major green space was available or not within a 
buffer of 300 m (approximately within 15 min’ walk for children). 

We calculated multiple built environmental factors from topological 
maps obtained from the municipality of Sabadell or from Europe-wide 
sources including NAVTEQ and Urban Atlas (Copernicus, 2020; HERE 
Global B.V., 2017). Population density was calculated as the number of 
inhabitants per square kilometres surrounding the children’s home 
address (from 100 m × 100 m raster). Connectivity density was calcu-
lated as the number of street intersections inside 100-m and 300-m 
buffers, divided by the area (km2) of each buffer. Two facility indexes 
were calculated: a) facility density was calculated as the number of fa-
cilities present divided by the area of the 300-m buffer: and b) Facility 
richness index was calculated as the number of different facilities types 
present divided by the maximum potential number of facility types 
specified, in a buffer of 300-m, giving a score of 0 to 1. Facilities 
included businesses, community services, educational institutions, 
entertainment, financial institutions, hospitals, parks and recreation, 
restaurants, shopping, and transport. Land use mix was obtained 
through the Shannon’s Evenness Index (SEI). SEI was calculated by 
multiplying each proportion of land use type by its logarithm and 
dividing the sum of all land use type products by the logarithm of the 
total possible land use types within 300-m buffer. We developed an in-
dicator of walkability, adapted from previous walkability indices 
(Duncan et al., 2011; Frank et al., 2006), calculated as the mean of the 
deciles of population density, connectivity density, facility richness 
index, and land use SEI within 300-m buffers, giving a walkability score 
ranging from 0 to 1. The accessibility of public transportation was 
measured by public bus transport lines and the amount of bus stops 
inside 100-m, 300-m, and 500-m buffers, divided by the buffer area. 
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We created an unhealthy food environment index based on the 
NAVTEQ database (Copernicus, 2020). This indicator equals the number 
of unhealthy facilities present divided by the area of the 300-m buffer 
(number of facilities/km2). Among the 100 different subcategories of 
facilities in the NAVTEQ database we selected the subcategories related 
to unhealthy food (petrol/gasoline Station, bar or pub, coffee shop, 
restaurant, convenience store, shopping malls). Higher values indicate 
more availability of different unhealthy facilities. 

Road traffic indicators were calculated from traffic road network 
maps following the ESCAPE protocol (Beelen et al., 2013; Eeftens et al., 
2012). We estimated the following indicators: traffic load on all roads, 
traffic load on the major road within 100 m, traffic density on nearest 
road, and inverse distance to nearest major road. 

Road traffic noise levels were derived from noise maps produced in 
each local municipality (including Sabadell) under the European Noise 
Directive (European Commission, 2002). We obtained two road traffic 
noise variables: a) Lden was calculated as the annual average sound 
pressure level of a 24-h periods (day, evening, night); and b) Ln was 
calculated as the annual average sound pressure level of the night 
period. 

2.5. Covariates 

Information on parental sociodemographic factors were collected by 
children’s parents through questionnaires. Covariate information 
included parental education (primary education or lower, secondary 
education, university education or higher), occupation (employed, 
others), country of birth (both parents native, none or one native par-
ents), maternal household economy (living comfortably, doing alright, 
just about getting by, finding it quite/very difficult), maternal smoking 
status (non-smoker, ex-smoker, smoker), maternal BMI (kg/m2), and the 
number of siblings (no siblings, 1 sibling, ≥2 siblings). Additionally, we 
estimated a deprivation index to account for area-level SES (Ministry of 
Public Works, 2015). The deprivation index was estimated at census 
track and was based on 5 socioeconomic indicators: % of unemployed 
population, % of unemployed youth population, % of eventual 

employment, % of unqualified employed persons and % of population 
without studies. The deprivation index was stratified in quintiles based 
on the Spanish population, where the lowest quintiles are the children 
living in the less deprived areas. Data was obtained from the Spanish 
Statistical office of 2001 (Instituto Nacional de Estadística, 2001). 

2.6. Statistical analyses 

2.6.1. Multiple imputations 
Before imputation of missing values, we transformed all skewed 

exposures, weight-related behaviours and covariate variables to achieve 
normality; variables were categorized if normality was not achieved. We 
applied chained equations to impute all exposures, weight-related be-
haviours and covariate missing values (White et al., 2011). Physical 
activity was imputed for the whole INMA study sample. We imputed 20 
datasets and we restricted the number of predictors in the imputation 
models to fewer than 25 variables while ensuring that all outcomes were 
considered as predictors (van Buuren, 2018). After imputation, we 
standardized all continuous exposure variables by the interquartile 
range (IQR). The following exposures were categorized below and above 
the median because they did not achieve normality for imputation: 
straight line distance to a green space, area of the nearest green space, 
population density, bus stops (100 m, 300 m and 500 m buffer). Traffic 
load in the nearest major road was categorized in three categories 
(values equal to 0, below and above the median). We further categorized 
the well-being outcome for imputation; we created a dichotomous var-
iable with children below and above the median KIDSCREEN score 
(poorer vs. better well-being). In the analyses described below, results 
from each imputed dataset were combined using Rubin’s rules. 

2.6.2. Statistical models 
For descriptive purposes, we first explored the associations between 

weight-related behaviours (fast food consumption in restaurants, sugar- 
sweetened beverage consumption, total and vigorous physical activity 
duration, screen time, sleep duration and psychological well-being) with 
the dichotomous outcome overweight/obesity status (normal weight vs. 

Table 1 
Data source and time period of the exposure assessment.  

Exposure 
Group 

Exposure variables Units Source Time period 

Air pollution NO2/NOx/PM2.5/PM10/PMcoarse/PMabs µg/m3 (for PMabs = 10− 5 m− 1) ESCAPE LUR 2009  

Green spaces NDVI (buffers of 100, 300 and 500 m) 0 to 1 Landsat 4–5 TM 2017 
Straight line distance to nearest major spaces* m Urban atlas 2012 
Distance and size of closest major space* m Urban atlas 2012 
Is there a major space within 300 m? yes/no Urban atlas 2012  

Built environment Population density* people/km2 GHSL 2015 
Street connectivity (buffers 100 and 300 m)* intersections/km2 NAVTEQ 2012 
Land use Shannon’s Evenness Index (within 300 m) 0 to 1 Urban atlas 2012 
Facility density (within 300 m) Facilities/km2 NAVTEQ 2012 
Walkability index (within 300 m) 0 to 1 GHSL, NAVTEQ, Urban atlas 2012–2015 
Accessibility (bus stops with buffers of 100, 300 and 500 m)* n◦ bus stops/km2 Sabadell municipality 2014  

Food environment Unhealthy food environment Unhealthy facilities/km2 NAVTEQ 2012  

Road traffic Traffic load all roads (within 100 m) vehicles/day m GENCAT 2007 
Traffic load in the nearest major road (within 100 m)* vehicles/day m GENCAT 2007 
Traffic density vehicles/day GENCAT 2007 
Inverse distance nearest road m− 1 NAVTEQ 2012  

Road traffic noise Lden and Ln dB(A) GENCAT 2012 

Abbreviations: ESCAPE, European Study of Cohorts for Air Pollution Effects; ESM2p5m, European Settlement Map 2017; GENCAT, Generalitat of Catalonia; GHSL, 
Global Human Settlement Layer; LUR, Land Use Regression; Lden, annual average of day, evening and night noise levels; Ln, annual average night noise levels; Navteq: 
ESRI Street Map for Mobile Navteq 2012; NDVI, Normalized Difference Vegetation Index; NO2, nitrogen dioxide; NOx, nitrogen oxides; PM2.5, particulate matter with 
an aerodynamic diameter of less than 2.5 μm; PM10, particulate matter with an aerodynamic diameter of less than 10 μm; PMcoarse, particulate matter with an 
aerodynamic diameter of between 2.5 than 10 μm; PM2.5abs, absorbance of PM2.5 filters; TM, Thematic Mapper. 

* The following exposures were categorized below and above the median because they did not achieve normality for imputation: straight line distance to a green 
space, area of the nearest green space, population density, bus stops (100 m, 300 m and 500 m buffer). Road traffic load in the nearest major road was categorized in 
three categories (0-values equal to 0, 1-below the median, 2-above the median). 
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overweight/obesity) by using a logistic regression models adjusting for 
study, age, sex, maternal education, and area-level SES. Then, we per-
formed generalised additive models (GAMs) with the R package ‘mgcv’ 
to assess departures from linearity in the relationship between selected 
urban exposure and each outcome (we selected the urban exposures 
included for the multiple exposure models below). Because almost all 
GAMs showed evidence of linearity as indicated by effective degrees of 
freedom close to 1 (Figure S2/S3), we modelled all exposure variables as 
continuous variables in subsequent analyses, assuming linear associa-
tions. Next, to assess the associations between the urban exposures and 
childhood obesity outcomes and weight-related behaviours, we applied 
linear regression models for the continuous outcome variables (zBMI, 
waist circumference and body fat percentages z-scores, total and 
vigorous physical activity, screen time and sleep duration) and logistic 
regression models for the dichotomous outcome variables (overweight/ 
obesity status, fast food consumption, sugar-sweetened beverage con-
sumption, and psychological well-being). We applied a three stage an-
alyses strategy in the following order: an exposure wide association 
study (ExWAS) to screen all exposure-outcome associations, a multiple 
exposure model to evaluate possible confounding between the multiple 
urban exposures, and a hierarchical clustering on principal components 
(HCPC) analyses to capture patterns of the urban environment. 

2.6.3. Single exposure analysis 
We applied an ExWAS analyses to screen all possible individual 

exposure-outcome associations (Agier et al., 2016). This model relies on 
independent regression models to estimate the association between each 
exposure variable with each outcome, adjusting for potential con-
founders (see Section 2.6.6). We corrected the p-values thresholds to 
account for multiple hypothesis testing using a family-wise error rate 
correction (5% divided by the effective number of tests) (Li et al., 2012). 
The multiple testing corrected p-value threshold was 0.003. 

2.6.4. Multiple exposure models 
We applied multiple exposure models to evaluate the stability of the 

exposure-health associations by assessing possible confounding between 
the urban exposures. We selected one indicator within each exposure 
group which are the most common indicators in the literature: NO2 (air 
pollution), NDVI + 300 m (green spaces), land use mix (built environ-
ment), unhealthy food environment, traffic density, and Lden (road 
traffic noise). Further, we added any other exposure that was significant 
at the p-value 0.05 level in the single exposure analysis. We selected the 
confounders for each urban exposure individually in the directed acyclic 
graphs (DAG) (Figure S1). In this DAG, green spaces, built environment 
factors, food environment, and road traffic are part of the urban design 
and may determine the levels of air pollution and road traffic noise in the 
city, and may thus be on the causal pathway between the urban design 
indicators and childhood obesity outcomes. Hence, the urban design 
indicators can be considered mutual confounders between each other, 
and are considered confounders between air pollution, road traffic noise 
and the childhood obesity outcomes and weight-related behaviours. Air 
pollution and road traffic noise are also considered as mutual con-
founders. In addition to our DAG-based multiple exposure models, we 
also constructed one model with all exposures together, recognising that 
the DAGs may be based on unverifiable assumptions. 

2.6.5. Hierarchical clustering on principal components (HCPC) 
We applied a HCPC analyses to classify children into clusters with 

similar urban exposures patterns. We performed the HCPC analyses on a 
reduced exposure dataset including only the continuous exposure vari-
ables (N = 20). Previously, a study in Sabadell found that children from 
higher area-level SES were associated with higher levels of air pollution, 
noise, traffic, and lower levels of green spaces (Robinson et al., 2018). 
Thus, SES may play an important role in the association between the 
urban exposure patterns and childhood obesity outcomes and weight- 
related behaviours. We therefore standardized all exposure variables 

by the mean within each quintile of the deprivation index before 
running the HCPC; Thus, the standardized exposures explore gradients 
in the particular exposure among individuals with a similar deprivation 
index. 

We applied first a principal component analyses (PCA) to reduce the 
dimension of the data and selected the number of components that 
explained at least 80% of the variance in the data. We then applied an 
ascending hierarchical classification (AHC) to identify clusters of 
exposure based on the components obtained from the PCA. We applied 
AHC after the PCA, rather than directly to the original dataset, because 
the PCA removes noise in the data and results in more stable clustering 
analysis (Husson et al., 2017). We selected the numbers of clusters by 
applying the Ward’s criterion based on the decomposition of the total 
inertia (i.e., total variance) in between- and within-group variance. The 
Ward’s method consists in aggregating two clusters such that the growth 
of the within-inertia, characterizing the homogeneity of a cluster, is 
minimum (Husson et al., 2017) (supplemental Figure S4). The identified 
clusters were used in the regression models as an independent variable. 

2.6.6. Confounder selection 
All above models were adjusted for a common set of confounders. We 

selected the potential confounders based on the DAG to minimize 
overadjustment bias (Figure S1). The following variables were identi-
fied: study design, parental education, paternal occupation, and parental 
country of birth, maternal household economy, maternal smoking sta-
tus, maternal BMI, the number of siblings, and area-level SES. 

2.6.7. Sensitivity analyses 
We performed sensitivity analyses to assess the robustness of our 

results based on our single exposure models: (a) in order to evaluate the 
role of SES in the associations between urban exposures and zBMI, we 
evaluated how the removal of individual- and area-level SES variables 
affected the main effect estimates; (b) to evaluate the effect of stan-
dardizing the urban exposures by SES, we evaluated the associations 
between the standardized continuous exposures and zBMI; and, (c) the 
models with zBMI as an outcome were additionally adjusted for physical 
activity and diet consumption, whereas the models with weight-related 
behaviours as outcome were adjusted for zBMI. We did not include these 
in the main models as they may act as mediators of some exposures 
rather than as confounders. (d) As children spend a large amount of time 
at schools, we evaluated the associations between the urban exposures 
estimated at the schools and zBMI. The exposures at schools were only 
available for the ECHOCAT children. (e) Gender differences may exist in 
the use of the urban environment and in weight-related behaviours; we 
evaluated the effect modification of sex by introducing an interaction 
term into the model and evaluating the p-value for interaction with the 
likelihood ratio test. For this sensitivity analysis, we applied single 
exposure associations selecting one urban indicator within each expo-
sure group. (f) to evaluate the quality of the imputation, we compared 
the distribution of the covariates in the imputed and non-imputed 
dataset, and we repeated the single exposure analyses using zBMI as 
an outcome only in the complete case dataset. 

3. Results 

3.1. Study population 

The study population included 2213 children, 1732 (78.3%) from 
ECHOCAT and 481 (21.7%) from INMA (Figure S5). Children from both 
studies had similar overweight and obesity levels, and showed similar 
weight-related behaviours (Table S1). The INMA study included more 
boys, children that were slightly older, and parents with slightly lower 
SES levels, than the ECHOCAT study. The children from both studies 
were on average 10.8 years old at baseline and 52.1% were girls 
(Table 2). The prevalence of overweight including obesity was 39.9%. 
Boys were more likely to have overweight/obesity than girls (42.2% vs. 
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Table 2 
Characteristics of the included study population by overweight/obesity status 
(N = 2213).   

Normal 
weight 
[N = 1340 
(60.6%)] 

Overweight/ 
obesity 
[N = 873 
(39.6%)] 

Odds 
Ratio1 

(95CI) 

Missing 
rate 

Study design    0 (0.00%) 
ECHOCAT 1057 

(61.0%) 
675 (39.0%) ref  

INMA 283 
(58.8%) 

198 (41.2%) 1.07 
(0.86; 
1.33)  

Age at baseline, years 10.8 (0.8) 10.7 (0.8) 0.94 
(0.83; 
1.07) 

0 (0.00%) 

Sex    0 (0.00%) 
Male 613 

(57.8%) 
447 (42.2%) ref  

Female 727 
(63.1%) 

426 (36.9%) 0.80 
(0.67; 
0.95)  

Anthropometric 
measures:     

Age-sex zBMI score, SD − 0.1 (0.8) 1.8 (0.6) – 0 (0.00%) 
Waist circumference z- 

score, SD 
− 0.7 
[− 0.9; 
− 0.3] 

0.8 [0.3;1.5] – 7 (0.32%) 

Body fat (%) z-score, SD − 0.6 
[− 1.0; 
− 0.2] 

0.8 [0.4;1.4] – 7 (0.32%) 

Weight-related 
behaviours:     

Fast food consumption 
in restaurants, 
category    

380 
(17.2%) 

<1 times/week 999 
(62.2%) 

607 (37.8%) ref  

≥1 times/week 118 
(52.0%) 

109 (48.0%) 1.43 
(1.08; 
1.89)  

Sugar-sweetened 
beverage 
consumption, 
category    

135 
(6.10%) 

<1 times/week 816 
(62.6%) 

487 (37.4%) ref  

≥1 times/week 447 
(57.7%) 

328 (42.3%) 1.14 
(0.94; 
1.37)  

Physical activity 
duration, hours/week 

13.5 [9.5; 
18.8] 

13.0 [8.9; 
19.2] 

1.00 
(0.98; 
1.01) 

626 
(28.3%) 

Vigorous physical 
activity duration, 
hours/week 

7.5 [4.0; 
11.5] 

7.0 [4.0; 
11.5] 

0.99 
(0.97; 
1.00) 

621 
(28.1%) 

Screen time, hours/ 
week 

11.2 [7.3; 
16.3] 

13.0 [8.8; 
18.5] 

1.02 
(1.01; 
1.03) 

172 
(7.8%) 

Sleep duration during 
weekdays, hours/day 

9.6 (0.6) 9.5 (0.6) 0.81 
(0.70; 
0.93 

160 
(7.2%) 

Kidscreen-27 well- 
being, category     
Poorer well-being 600 

(56.1%) 
469 (43.9%) ref 9 (0.4%) 

Better well-being 734 
(64.7%) 

401 (35.3%) 0.72 
(0.60; 
0.85)  

Socioeconomic 
characteristics:     

Area socioeconomic 
status, quintiles    

0 (0.0%) 

First (least deprived) 645 
(68.7%) 

294 (31.3%) ref  

Second 199 
(55.1%) 

162 (44.9%)   

Table 2 (continued )  

Normal 
weight 
[N = 1340 
(60.6%)] 

Overweight/ 
obesity 
[N = 873 
(39.6%)] 

Odds 
Ratio1 

(95CI) 

Missing 
rate 

1.65 
(1.28; 
2.13) 

Third 287 
(56.5%) 

221 (43.5%) 1.54 
(1.22; 
1.93)  

Fourth 166 
(51.9%) 

154 (48.1%) 1.76 
(1.34; 
2.31)  

Fifth (most deprived) 43 (50.6%) 42 (49.4%) 1.90 
(1.20; 
3.00)  

Mother occupation, %    127 
(5.7%) 

Employed 1034 
(61.8%) 

638 (38.2%) ref  

Other 232 
(56.0%) 

182 (44.0%) 1.03 
(0.82; 
1.31)  

Mother education, %    61 (2.8%) 
Primary education or 
lower 

177 
(54.0%) 

151 (46.0%) ref  

Secondary education 567 
(56.5%) 

436 (43.5%) 0.99 
(0.76; 
1.28)  

University education 
or higher 

559 
(68.1%) 

262 (31.9%) 0.69 
(0.52; 
0.92)  

Maternal household 
economy, %    

178 
(8.0%) 

Living comfortably 246 
(66.1%) 

126 (33.9%) ref  

Doing alright 543 
(62.6%) 

325 (37.4%) 0.98 
(0.75; 
1.27)  

Just about getting by 369 
(57.6%) 

272 (42.4%) 1.09 
(0.82; 
1.46)  

Find it quite/very 
difficult 

81 (52.6%) 73 (47.4%) 1.28 
(0.85; 
1.94)  

Mother BMI, kg/m2 23.0 [21.1; 
25.2] 

24.7 [22.2; 
28.1] 

1.60 
(1.44; 
1.78) 

185 
(8.4%) 

Maternal smoking    168 
(7.6%) 

Non-smoker 554 
(63.1%) 

324 (36.9%) ref  

Ex-smoker 408 
(60.3%) 

269 (39.7%) 1.11 
(0.9; 
1.37)  

Smoker 285 
(58.2%) 

205 (41.8%) 1.13 
(0.9; 
1.43)  

Parental country of 
birth, %    

383 
(17.3%) 

Both parents native 928 
(61.7%) 

577 (38.3%) ref  

None or one native 
parents 

183 
(56.3%) 

142 (43.7%) 1.09 
(0.85; 
1.38)  

Father occupation, %    236 
(10.7%) 

Employed 1071 
(62.2%) 

650 (37.8%) ref  

Other 132 
(51.6%) 

124 (48.4%) 1.38 
(1.05; 
1.82)  

Father education, %    208 
(9.4%) 

Primary education or 
lower 

211 
(52.9%) 

188 (47.1%) ref  

Secondary education 425 (40.9%)  

(continued on next page) 
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36.9%). Further, we observed that higher consumption to fast food 
restaurants and increased levels of screen time were associated with a 
higher odds of overweight or obesity (odds ratio (OR) [high vs. low fast 
food in restaurants consumption] = 1.43, [95% confidence interval (CI): 
1.08, 1.89]; OR [for each 1 h/week increase in screen time] = 1.02, [95 
%CI: 1.01, 1.03]). Increased sleep duration during weekdays and better 
well-being were associated with a lower odds of overweight or obesity 
(OR [for each 1 h/day increase in sleep duration during weekdays] =
0.81, [95 %CI: 0.70, 0.93]; OR (better vs. poorer well-being) = 0.72, [95 
%CI: 0.60, 0.85]). Higher maternal BMI, and lower parental individual 
and area level SES were associated with higher levels of overweight/ 
obesity (Table 2). 

3.2. Exposure levels and distributions 

Distributions of the urban exposures are shown in Table S2. We 
observed a clear gradient in the distribution of the urban exposures 
across the area-level SES quintiles (Table S2). In comparison with chil-
dren living in the least deprived area, children living in the most 
deprived area were exposed to lower levels of air pollution, facility 
density, traffic load and road traffic noise, and to higher levels of green 
spaces, connectivity within 100-m, and land use mix. Pearson correla-
tions (rs) of all continuous environmental factors are shown in Figure S6. 
Air pollution exposures were negatively correlated with green spaces 
exposures (rs ranging from − 0.4 to − 0.7) and positively with most built 
environmental factors (rs = − 0.0 to +0.4), unhealthy food environment 
(rs = +0.2 to +0.3), road traffic indicators (rs = +0.0 to 0.5), and road 
traffic noise (rs =+0.3 to +0.5). Green spaces exposures were negatively 
correlated with built environmental factors (rs = − 0.0 to − 0.6), food 
environment (rs = − 0.3 to − 0.4), road traffic indicators (rs = − 0.0 to 
− 0.2) and road traffic noise (rs = − 0.1 to − 0.2). Overall, built envi-
ronmental factors showed weak or moderate positive correlations with 
each other, and positively correlations with unhealthy food environment 
(rs = +0.2 to +0.4). Road traffic indicators was positively correlated 
with road traffic noise levels (rs = +0.0 to +0.4). 

3.3. Single and multiple exposure associations with childhood obesity 
outcomes 

In single exposure models, only PMcoarse was associated with an in-
crease in child zBMI score at a p < 0.05 level (beta (β) = 0.05per 1.8 µg/ 

m3 increase in PMcoarse; 95% CI: 0.00, 0.10) (Fig. 1 and S7, and 
Table S3), but this association did not pass the multiple testing corrected 
p-value threshold of 0.003. There were some tendencies for proximity 
and size of green spaces and higher density of bus stops in 500 m to be 
associated with lower zBMI (β (proximity green spaces) = − 0.04, [95% 
CI: − 0.14, 0.06]; β (size green spaces) = − 0.07, [95% CI: − 0.17, 0.03]; 
β (bus stops + 500 m) = − 0.07, [95% CI: − 0.17, 0.03];) and the 
different air pollutants, unhealthy food environment and road traffic 
noise with higher zBMI [(β (PM10) = 0.03, [95% CI: − 0.02, 0.09]; (β 
(food environment) = 0.04, [95% CI: − 0.04, 0.11]; β (Lden) = 0.06, 
[95% CI: − 0.00, 0.12])], but none passed the 0.05p-value (Fig. 1 and S7, 
and Table S3). We did not observe a clear trend for NDVI, built envi-
ronment factors and road traffic. Similar findings were obtained using 
the dichotomous overweight/obesity status variable, and for waist 
circumference and body fat percentage z-score (Fig. 1 and S7, Table S3). 

In the multiple exposure models, we observed that the effect esti-
mates for zBMI and overweight/obesity status remained mostly similar 
after adjusting by other urban exposures (Fig. 2). PMcoarse remained 
associated with zBMI after adjusting for multiple exposures (beta (β) =
0.06 per 1.8 µg/m3 increase in PMcoarse; 95% CI: 0.00, 0.12) (Fig. 2). 
Notable, the associations between land use mix and unhealthy food 
environment and overweight/obesity status became stronger and sta-
tistically significant at a p-value level of 0.05 (0.2 units increase of land 
use mix (OR) = 1.30 [95% CI: 1.01; 1.69]; and 17.7 facilities/km2 in-
crease of unhealthy food environment (OR) = 1.20 [95% CI: 1.01; 1.44]) 
(Fig. 2). Unhealthy food environment also showed associations with 
waist circumference z-scores (β = 0.09 [95% CI: 0.01; 0.17]) and zBMI 
(borderline statistical significance; β = 0.09 [95% CI: − 0.01; 0.18]) in 
the multiple exposure models. Estimates from models evaluating all 
exposures together (Fig. 2) were essentially the same as those from the 
multiple exposure models. 

3.4. Single and multiple exposure associations with weight-related 
behaviours 

None of the associations between urban exposures and weight- 
related behaviours were statistically significant after correction for 
multiple testing (Figure S8a/S8b/S9 and Table S4). However, some as-
sociations were observed at p < 0.05 level related with sugar-sweetened 
beverage consumption: greater density of bus stops and traffic on major 
roads were associated with a higher odds of drinking sugar-sweetened 
beverages, and NDVI with a lower odds. In the multiple exposure 
models, the effect estimates of the weight-related behaviours remained 
mostly similar to those in the single exposure analyses. However, some 
associations became statistically significant at a p-value level of 0.05 
(Figure S10): land use mix was associated with an increase in screen 
time use (β = 1.25 h/wk; 95% CI: 0.22, 2.27), and NO2 exposure was 
associated with poorer well-being (OR = 0.82, [95% CI: 0.70, 0.96]). 
Full multiple exposure models including all exposures together 
(Figure S10) were essentially the same as those from the multiple 
exposure models. 

3.5. Cluster analyses 

After standardizing the urban exposures by area-level SES, we ob-
tained 5 different patterns of the urban environment in the cluster an-
alyses (Fig. 3). Cluster 1 represented very high levels of green spaces and 
lower levels of air pollution, built environment characteristics, road 
traffic and road traffic noise levels. Cluster 2 was similar to cluster 1, but 
the exposure levels were closer to the overall mean. Cluster 3 repre-
sented approximately the overall mean of all the exposures and was 
considered as our reference category. In figure S11, we specified the 
deviation of each urban exposure concentration level compared with 
cluster 3. Cluster 4 represented higher levels of built environmental 
factors such as facility density and unhealthy food density. Finally, 
cluster 5 represented very high levels of air pollution, road traffic and 

Table 2 (continued )  

Normal 
weight 
[N = 1340 
(60.6%)] 

Overweight/ 
obesity 
[N = 873 
(39.6%)] 

Odds 
Ratio1 

(95CI) 

Missing 
rate 

614 
(59.1%) 

0.89 
(0.68; 
1.16) 

University education 
or higher 

395 
(69.7%) 

172 (30.3%) 0.71 
(0.51; 
0.98)  

Siblings, %    159 
(7.2%) 

No siblings 269 
(55.3%) 

217 (44.7%) ref  

1 Sibling 766 
(62.8%) 

453 (37.2%) 0.78 
(0.62; 
0.98)  

≥2 Siblings 217 
(62.2%) 

132 (37.8%) 0.78 
(0.58; 
1.04)  

Values are mean (Standard deviation (SD)) for continuous normal distributed 
variables, median (interquartile range) for continuous non-normal distributed 
variables, and percentage for categorical variables. 

1 logistic regression was assessed individually for each variable adjusting by 
study design, sex, age, maternal education and area-level SES. 
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road traffic noise. Both cluster 4 and 5 had slightly lower levels of green 
spaces than cluster 1 and 2 but similar to cluster 3. We observed that 
cluster 5 was associated with higher zBMI and higher odds of overweight 
or obesity (β = 0.17, [95% CI: 0.01, 0.34]; OR (borderline statistical 
significance overweight/obesity vs. normal weight) = 1.36, [95% CI: 
0.99, 1.85]), in comparison with cluster 3 (Table 3). We did not observe 
any significant associations between the different clusters and the 
weight-related behaviours (Table 3) 

3.6. Sensitivity analyses 

The effects estimates changed substantially after adjusting for SES 
variables, especially when we added area-level SES in the models 
(Table S5). We further observed that standardizing or adjusting by area- 
level SES did not change the results of the single exposure analyses 
(Table S6). Finally, we observed no changes in the effect estimates for 
zBMI after adjusting by diet (fast food and sugar-sweetened beverage 
consumption) or physical activity (Table S7), nor did we observe 
changes in the effect estimates of the weight-related behaviours after 
adjusting by zBMI (results not shown). Most of the effect estimates 

between the urban exposures estimated around schools and zBMI in the 
ECHOCAT children remained similar in direction as in the main ana-
lyses, with the exception of a higher level of connectivity around schools 
associated with a lower zBMI (Table S8). Child sex did not modify the 
associations between the multiple urban exposures and childhood 
obesity outcomes and weigh-related behaviours (Table S9). We observed 
similar distribution of the covariates in the non-imputed and imputed 
dataset (Table S10), and in the complete case-analyses the associations 
did not change notably (Table S11). 

4. Discussion 

In this study we evaluated systematically the associations between 
multiple urban exposures and childhood obesity outcomes and weight- 
related behaviours. We found weight-related behaviours, such as con-
sumption of fast food in restaurants, screen-time, and sleep duration, to 
be associated with childhood overweight/obesity. In single and multiple 
exposure models there were few associations between urban environ-
ment exposures and the obesity outcomes or the weight-related behav-
iours. Exceptions were an association between higher PMcoarse levels and 

Fig. 1. Association between the urban environment and childhood obesity outcomes in single-exposure ExWAS model (N = 2213). Beta estimates and ORs for all 
exposures are shown in Table S3. Note: beta coefficient for change in zBMI and OR for overweight/obesity status is compared with reference category (normal 
weight) for the categorical variables. For continuous variables, beta estimates and OR are calculated per interquartile range increase in exposure. Models were 
adjusted by study design, maternal and paternal education, paternal occupation, occupation, and parental country of birth, maternal household economy, maternal 
smoking status, maternal BMI, the number of siblings, and area-level SES. Abbreviations: Lden, annual average of day, evening and night noise levels; Ln, annual 
average night noise levels; NDVI, Normalized Difference Vegetation Index; NO2, nitrogen dioxide; NOx, nitrogen oxides; PM2.5, particulate matter with an aero-
dynamic diameter of less than 2.5 μm; PM10, particulate matter with an aerodynamic diameter of less than 10 μm; PMcoarse, particulate matter with an aerodynamic 
diameter of between 2.5 than 10 μm; PM2.5abs, absorbance of PM2.5 filters; age-and-sex body mass index z-score, zBMI. 
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higher zBMI in the single exposure model (which did not pass the 
multiple testing threshold), and associations between increased 
PMcoarse, land use mix and denser unhealthy food environment and 
several obesity outcomes in multiple exposure models. On the other 
hand, a combination of urban exposure of high levels of air pollution, 
road traffic, and road traffic noise was associated with increased zBMI 
and higher odds of overweight and obesity. 

4.1. Urban environment and health 

This study evaluated in three complementary steps the associations 
between multiple exposures and childhood obesity and weight-related 
behaviours. It allowed us to systematically report associations with all 
exposures, to adjust for multiple exposures, and to evaluate patters of 
multiple exposures. In fact, this is the first study to identify urban 
exposure patterns that may influence childhood obesity outcomes. We 
observed that an urban area with high levels of air pollution, road traffic, 
and road traffic noise may be associated with childhood obesity risk. In 
the single and multiple exposure we only observed few statistically 
significant associations, but the effect estimates for air pollution and 
noise were similar in magnitude and in direction to our results from the 

cluster analysis and to previous studies (Christensen et al., 2016; de Bont 
et al., 2019; Jerrett et al., 2010; Wang et al., 2020; Weyde et al., 2018). 
We found little evidence of associations between green space exposure 
variables and zBMI, whereas the literature shows largely inconclusive 
results (Luo et al., 2020). In single and multiple exposure models we may 
not have had enough power to detect single associations. Further, when 
we address each exposure in isolation we may actually capture other 
aspects of the urban environment; for example, it is not clear how much 
of the association of air pollution might be due to the actual air pollution 
concentration, or due to the effect of other highly correlated exposures. 
This may be overcome to some extent by the multiple exposure models 
(various exposures in one model), but in these models only a limited 
number of not too highly correlated exposures can be included due to co- 
linearity problems. In our multiple exposure models the associations 
between land use mix and unhealthy food environment and overweight/ 
obesity status became stronger and statistically significant. This in-
dicates that these associations were influenced by confounding effects of 
the other urban exposures. In fact, not adjusting for other urban expo-
sures may have obscured true effects in previous studies. By applying the 
cluster analysis, we are more likely to capture the urban environment as 
a whole, which may be another powerful way to examine multiple urban 

Fig. 2. Associations between urban environment and childhood obesity outcomes in multiple exposure models (N = 2213). Beta estimates for change in zBMI, waist 
circumference and body fat (%) z-scores, and OR for overweight/obesity status are compared with reference category (normal weight) for the categorical variables. 
The beta estimates and OR are calculated per interquartile range increase in exposure. Abbreviations: Lden, annual average of day, evening and night noise levels; 
Lden, annual average day-evening-night noise levels; NDVI, Normalized Difference Vegetation Index; NO2, nitrogen dioxide; age-and-sex body mass index z-score, 
zBMI. Multiple exposure models for NO2, PMcoarse and Lden were adjusted for NO2, NDVI, land use mix, unhealthy food environment, road traffic density, Lden, 
design, maternal and paternal education, paternal occupation, occupation, and parental country of birth, maternal household economy, maternal smoking status, 
maternal BMI, the number of siblings, and area-level SES. Multiple exposure models for NDVI + 300 m, land use mix, unhealthy food environment and traffic density 
were adjusted for NDVI, land use mix, unhealthy food environment, road traffic density, design, maternal and paternal education, paternal occupation, occupation, 
and parental country of birth, maternal household economy, maternal smoking status, maternal BMI, the number of siblings, and area-level SES. Full multiple 
exposure model (including all exposures simultaneously): NO2 or PMcoarse, NDVI, land use mix, unhealthy food environment, road traffic density, Lden, design, 
maternal and paternal education, paternal occupation, occupation, and parental country of birth, maternal household economy, maternal smoking status, maternal 
BMI, the number of siblings, and area-level SES. 
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exposures with health. The fact that we only observe associations in 
cluster 5 and not in cluster 1 and 4 could be because the combination of 
exposures may neutralize the positive or negative effect of the individual 
exposures in the single and multiple exposure models. In addition, 
cluster 5, which has consistently higher levels of air pollution, road 
traffic and road traffic noise, and not many neutralizing exposures 
(average concentrations of green spaces and built environment factors), 
we actually observe an association with zBMI. A limitation of the cluster 
analysis is that it does not identify which of the exposures in each cluster 
are more likely to impact on childhood obesity. Overall, the results of the 
different models are important from a policy maker point of view, 
because long-term solutions to the childhood obesity epidemic may be 
achieved by modifying some specific aspects of the urban environment, 
and our results indicate that these should be focused on reducing levels 
of air pollution, road traffic and road traffic noise. 

The mechanisms underlying the effects of the multiple urban expo-
sures and childhood obesity are still poorly understood. Experimental 
studies in mice have found that air pollution may interfere with obesity 
pathogenesis at a molecular level inducing inflammation/oxidative 
stress, hormone disruption, and visceral adiposity (Sun et al., 2009; Xu 
et al., 2010). Noise could influence sleep deprivation and increase stress 
hormones, which are associated with physical development in child-
hood, increasing the risk of overweight in children (Münzel et al., 2017; 
Nielsen et al., 2011; Pervanidou and Chrousos, 2011). Increased access 
to unhealthy food environment may increase the consumption of fast- 
food consumption and increase caloric intake which is a known risk 
factor of childhood obesity (Townshend and Lake, 2016). Finally, con-
trary to what we expected, we observed that increased levels of land use 
mix were associated with increased levels of childhood obesity in the 
multiple exposure models. Our exposure assessment may not have 
captured well the different land uses in more densely populated areas, as 
these were categorized only as residential areas. It is only in the outskirts 
of the city that we found more diverse land uses, but these areas are 
more deprived and with less access to facilities, which may explain why 
we observed increased risk of childhood obesity. 

4.2. Weight-related behaviours 

It is well-known that weight-related behaviours have an important 
impact on the development of childhood obesity (Kumar and Kelly, 
2017; Moreno et al., 2011; Woo Baidal et al., 2016). We observed that 
higher consumption to fast food restaurants and more screen time were 
associated with higher odds of overweight and obesity, whereas longer 
sleep duration during weekdays and better well-being were associated 
with lower odds of overweight and obesity. Childhood obesity is a direct 
consequence of a chronic imbalance between caloric intake and energy 
expenditure (Kipping et al., 2008; Trasande et al., 2010). Thus, 
increased consumption of fast food may contribute to increased caloric 
intake. Increased screen time may influence on a reduction of the energy 
expenditure creating a positive energy balance and increase weight gain 
(Mitchell and Byun, 2014). Short sleep duration has been associated 
with obesity in children (Hanlon et al., 2019). This association may be 
explained through multiple pathways including decrease of energy 
expenditure, increase appetite, and hormonal and neuroendocrine 
changes that would cause weight gain (Hanlon et al., 2019). Most of the 
pathways between poor mental health and obesity may go through 
increased appetite, and less time spent for physical activity (Liem et al., 
2008). 

We did not observe consistent associations between the urban ex-
posures and weight-related behaviours. There are several possible ex-
planations for this. The weight-related behaviours were self-reported by 
the parents, which could have introduced misclassification and recall 
bias. However, we did observe associations in the expected direction 
between the weight-related behaviours and overweight/obesity status, 
which makes it less likely that recall bias explains the lack of association. 
A more likely explanation is that the assessment of the behaviours in our 
study may not be context-specific in the urban environment where the 
behaviour occurs. The sole presence of green spaces and unhealthy food 
facilities does not necessarily imply increased physical activity or high 
fat caloric diet consumption, respectively. For example, green spaces 
and built environmental factors may increase physical activity and 
reduce levels of obesity through active commuting and recreational 
walking, and not through the leisure sport activities that were reported 

Fig. 3. Description of the clusters obtained from 
the hierarchical clustering on principal compo-
nents analyses. The bars represent the deviation 
of the mean concentration of each urban expo-
sure level in each cluster of the whole study 
population being 0. Red bars correspond to 
exposure levels above the mean in each specific 
cluster, whereas green bars correspond to expo-
sure levels below the mean. All the exposures 
were previously conditioned on area-level socio-
economic status. Abbreviations: Lden, annual 
average of day, evening and night noise levels; 
Lden, annual average night noise levels; NDVI, 
Normalized Difference Vegetation Index; NO2, 
nitrogen dioxide; NOx, nitrogen oxides; PM2.5, 
particulate matter with an aerodynamic diameter 
of less than 2.5 μm; PM10, particulate matter with 
an aerodynamic diameter of less than 10 μm; 
PMcoarse, particulate matter with an aerodynamic 
diameter of between 2.5 than 10 μm; PM2.5abs, 
absorbance of PM2.5 filters. (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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in our questionnaire. Future studies, incorporating more detailed ques-
tions on context-specific behaviours and real-time monitoring (e.g. of 
physical activity through accelerometers), would be needed to disen-
tangle this. Furthermore, our main analysis focused on exposures at the 
residential address whereas other urban settings such as the school 
environment or the daily travel patterns are likely to have an impact on 
weight-related behaviours in children. However, our sensitivity analyses 
showed very similar associations with zBMI when using school instead 
of home exposures. Finally, for some combinations of exposures and 
weight-related behaviours there may not be much previous evidence of a 
direct associations. However, rather than omitting some of these com-
binations from our analyses, we chose to show all results as an explor-
atory, or “screening” analysis in the single exposure models, also 
because all these exposures were used to build the clusters. 

4.3. Socioeconomic status 

Socioeconomic status plays an important role in the associations 
between the urban environment and childhood obesity outcomes. In this 
study, children living in more deprived areas had higher rates of over-
weight and obesity, and were exposed to lower levels of air pollution, 
road traffic, road traffic noise and higher levels of green spaces. In Spain, 
lower SES areas have been consistently associated with increased levels 

of childhood obesity (de Bont et al., 2020a; Moreno et al., 2011), but the 
role of SES in urban environment studies is not clear and likely to vary 
by location (Hajat et al., 2015). In the US, people living in deprived areas 
have been reported to be exposed to higher levels of air pollution, 
whereas in European settings this is less consistent, showing that envi-
ronmental inequality may not always be negative in direction (Hajat 
et al., 2015). A recent study, including 9 urban areas from 6 existing 
birth-cohort studies across Europe, including INMA Sabadell, reported 
that the association between SES and urban exposures varied between 
locations, with some showing more harmful exposures in lower and 
other in higher SES classes (both at individual and area level) (Robinson 
et al., 2018). In our study setting it seems that families with high SES 
prioritize living closer to the city centre of the urban area with higher 
levels of air pollution and less green spaces, rather than choosing to live 
in more environmentally “healthier” areas. Thus, the confounding effect 
by SES in the associations between the urban environment and weight- 
related outcomes was a special concern in our study. Therefore, we 
included many individual-level and area-level SES variables to minimize 
the potential impact of confounding by SES. Our sensitivity analysis 
showed that especially area SES had a large impact on effect estimates, 
and thus it is indeed important to adjust at both levels in these types of 
studies. However, we cannot fully rule out residual socioeconomic 
confounding, as SES is a complex construct and there may be compo-
nents that are not captured in our variables. In the hierarchical clus-
tering on principal components analysis we used SES standardised 
exposures. This avoided both the influence of the units of measurements 
(as recommended for principal component analysis (Gibson et al., 2019; 
Jollife and Cadima, 2016)) and the variance by SES, and minimized 
residual confounding by SES. 

4.4. Strengths and limitations 

This study has a number of strengths. First, we included multiple 
exposures in the urban environment, examined different childhood 
obesity outcomes (BMI, waist circumference and body fat percentage) 
and multiple behaviours (diet, physical activity, sedentary behaviour, 
sleep and well-being), allowing a comprehensive assessment of many 
weight-related outcomes. Second, we applied a statistical approach with 
three complementary steps that has several advantages in comparison 
with previous studies: (i) in the single exposure analyses we corrected 
the p-value for multiple testing which reduce false-positive results; (ii) in 
the multiple and all exposure models we accounted for confounding 
between urban exposures which are highly correlated; (iii) in the cluster 
analyses we evaluated urban exposure patterns that may have an impact 
on childhood obesity risk and weight-related behaviours. 

As a limitation, our cross-sectional design may have limited causal 
inference between the urban exposures and childhood obesity and 
weight-related behaviours. This is especially a concern for the inter-
pretation of the associations between weight-related behaviours and the 
odds of overweight and obesity, whereby the obesity status may have 
influenced in the change of the child behaviour (e.g. children with 
obesity may sleep less or have poorer mental health than normal weight 
children). We expect that reverse causality is less of a concern for the 
associations between urban exposures and obesity, as obesity status is 
unlikely to have influenced these exposures. However, as mentioned 
before, residential self-selection may have influenced our results as 
children with higher obesity levels (from lower SES areas) are more 
likely to live in less polluted and greener areas, which may have 
underestimated the association between urban exposures and childhood 
obesity. Studies with longitudinal follow-up are required to shed light on 
this. In addition, we were able to include many exposures related to the 
urban environment, but we could not include all and did not cover 
factors such as light at night, type and quality of green spaces, and blue 
spaces. Lastly, our study population was somewhat selective: schools 
that participated were more likely to be from less deprived areas than 
schools that did not (80% of the included school are located in the 1st 

Table 3 
Associations between urban environment clusters and childhood obesity out-
comes and weight-related behaviours.  

Outcome Cluster 1 
N = 138 
(6.2%) 

Cluster 2 
N = 610 
(27.5%) 

Cluster 4 
N = 539 
(24.6%) 

Cluster 5 
N = 237 
(10.7%) 

Anthropometric 
measures     

Age-sex zBMI score, beta 
(95% CI) 

0.03 
(− 0.17; 
0.24) 

0.04 
(− 0.09; 
0.16) 

0.08 
(− 0.05; 
0.21) 

0.17 
(0.01; 
0.34) 

Overweight/obesity 
status, OR (95% CI) 

0.99 (0.67; 
1.47) 

1.02 (0.80; 
1.30) 

1.10 (0.86; 
1.41) 

1.36 (0.99; 
1.85) 

Waist circumference z- 
score, beta (95% CI) 

0.06 
(− 0.11; 
0.24) 

0.03 
(− 0.07; 
0.14) 

0.06 
(− 0.05; 
0.17) 

0.12 
(− 0.02; 
0.26) 

Body fat (%) z-score, beta 
(95% CI) 

0.06 
(− 0.12; 
0.24) 

0.02 
(− 0.09; 
0.13) 

0.09 
(− 0.02; 
0.20) 

0.11 
(− 0.03; 
0.26)  

Weight related 
behaviours:     

Fast food consumption in 
restaurants, OR (95% 
CI) 

0.80 (0.43; 
1.49) 

0.90 (0.63; 
1.28) 

0.84 (0.57; 
1.23) 

1.02 (0.64; 
1.60) 

Sugar-sweetened 
beverage consumption, 
OR (95% CI) 

1.10 (0.74; 
1.63) 

1.05 (0.83; 
1.34) 

1.20 (0.93; 
1.54) 

1.27 (0.93; 
1.74) 

Physical activity 
duration, beta (95% 
CI) 

− 0.82 
(− 2.48; 
0.84) 

− 0.68 
(− 1.81; 
0.44) 

0.41 
(− 0.67; 
1.49) 

− 0.21 
(− 1.67; 
1.25) 

Vigorous physical 
activity duration, beta 
(95% CI) 

− 1.21 
(− 2.57; 
0.16) 

− 0.44 
(− 1.34; 
0.46) 

0.02 
(− 0.80; 
0.85) 

0.09 
(− 1.00; 
1.17) 

Screen time, beta (95% 
CI) 

− 1.37 
(− 2.99; 
0.24) 

1.00 (0.00; 
2.00) 

− 0.02 
(− 1.04; 
1.00) 

− 0.07 
(− 1.39; 
1.24) 

Sleep duration during 
weekdays, beta (95% 
CI) 

0.01 
(− 0.11; 
0.13) 

− 0.01 
(− 0.09; 
0.06) 

0.00 
(− 0.07; 
0.07) 

0.02 
(− 0.07; 
0.12) 

Well-being, OR (95% CI) 1.05 (0.72; 
1.53) 

0.87 (0.69; 
1.10) 

0.95 (0.75; 
1.20) 

0.78 (0.58; 
1.06) 

The beta estimates and OR for childhood obesity outcomes and weight related 
behaviours are compared with the reference category cluster 3 (N = 610 
[27.6%]). Models were adjusted by study design, maternal and paternal edu-
cation, paternal occupation, occupation, and parental country of birth, maternal 
household economy, maternal smoking status, maternal BMI, the number of 
siblings and area-level SES. 
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and 2nd quintiles of deprivation, for the excluded schools this is 50%), 
and within participating school’s children of lower socio-economic 
status may have been less likely to participate. This may have limited 
the generalisability of our results. However, as we observed similar 
childhood obesity levels in ECHOCAT, INMA and previous published 
studies in Catalonia (de Bont et al., 2020a), we consider that the sample 
is representative of the levels of childhood obesity in Catalonia, and 
further complex survey designs and sample weights were not applied. 

5. Conclusion 

This systematic study of many exposures in the urban environment 
suggests that an exposure pattern characterised by higher levels of 
ambient air pollution, road traffic and road traffic noise is associated 
with increased childhood obesity risk, and that PMcoarse, land use mix 
and food environment are separately associated with obesity risk. These 
findings require follow-up in longitudinal studies and different settings. 
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