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a b s t r a c t

Energy efficiency is a critical issue in the management and operation of data centers, which form
the backbone of cloud computing. Virtual machine placement has a significant impact on the energy
efficiency of virtualized data centers. Among various methods to solve the virtual-machine placement
problem, the genetic algorithm has been well accepted for its quality of solution. However, it is com-
putationally demanding largely due to the complex form of fitness function, limiting its applications
in data centers. To enhance the computational efficiency of the genetic algorithm while maintaining
its quality of solution, a progressive-fidelity approach is developed in this paper for genetic-algorithm
computation. It starts with a low-fidelity genetic algorithm with a simple fitness function. Then, for
solution refinement, it switches to a medium-fidelity genetic algorithm with a more complicated
fitness function. Finally, it progresses to the fine tuning of solution through a high-fidelity genetic
algorithm with the energy consumption of data centers as fitness function. Heuristics are presented
for the adaptive switching of genetic-algorithm computation from low fidelity to medium fidelity and
finally to high fidelity. Experiments show that compared with the standard genetic algorithm of high
fidelity, our progressive-fidelity approach of genetic algorithm computation is 50% faster for large-scale
data centers while maintaining similar quality of solution in terms of the energy consumption of data
centers.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Data centers are the backbone of cloud computing. The in-
reasing availability of cloud services worldwide requires the
upport of a massive number of data centers. As a result, an in-
reasing demand for electricity becomes inevitable to power data
enters. This demand, just in the USA, was 73 billion KWh in the
ear 2020 [1]. At current energy efficiency levels, this dramatic
ncrease would require building 50 additional large power plants
ach year [2]. As a result, many countries, like U.S. and China, are
estricting the energy efficiency of newly-built data centers. Thus,
mproving the energy efficiency of data centers is critical to the
anagement and operation of data centers.
Among a few factors, consolidating virtual-machine (VM) to

hysical machines (PMs), which refers to the strategy of static
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VM placement and live migration, plays an important role in the
improvement of energy efficiency for large-scale data centers [3].
VM placement is often implemented statically, guaranteeing fine
energy efficiency and less live migration [4]. Recent reports reveal
that a significant energy saving of over 20% can be achieved from
improved VM placement for data centers [5]. As a large portion
of the energy cost of data centers is to power PMs [6], it is
beneficial to reduce their energy consumption through improved
VM placement strategy [7]. This motivates the research on power-
aware VM placement for reduced energy consumption in data
centers.

In the improvement of energy efficiency for data centers,
one of the existing solutions to VM placement is meta-heuristic
evolutionary computation such as the Genetic Algorithm (GA) [5].
GAs solve VM-placement problems well in terms of the en-
ergy efficiency of data centers. However, the standard GA for
VM placement is computationally intensive and runs too slowly,
particularly for large-scaled data centers. This drawback largely
limits its implementation in data centers.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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To overcome this drawback, GAs have been modified from
various perspectives for VM placement. Among these perspec-
tives, fitness function (FF) in GAs consumes a large amount of
computing resource and strongly affects the computing efficiency
of GAs. Thus, it is effective to simplify FFs for speeding up GAs’
computation. However, such a simplified FF may lead to a low-
fidelity energy-cost simulation. By the way, the term ‘fidelity’
in this paper refers to how a set of simulated data is close to
its real situation. For example, a set of low-fidelity, energy-cost,
and simulated data is not as close as a high-fidelity one to their
real energy consumption. Therefore, the solution based on a low-
fidelity simulation may imply deteriorated energy consumption
performance, though the relevant GA gets considerably acceler-
ated. It is still challenging to understand how to improve the
computational efficiency of GA while maintaining its quality of
solution in terms of the energy consumption of data centers.

In this paper, we report our significant acceleration of GA com-
putation, while maintaining energy saving, for energy-efficient
VM placement in data centers. The main contributions of this
paper include:

1. A progressive-fidelity approach is developed for speeding
up the GA computation for VM placement in data centers.
It starts from a low-fidelity but fast GA with a simple FF,
and then switches to a medium-fidelity GA, and finally
progresses to a high-fidelity GA with the original energy
consumption as FF.

2. Heuristics are presented for the adaptive switching of GA
computation in our progressive-fidelity approach.

Under typical scenarios of large-scale data centers, our approach
executes about 50% faster than the standard GA while maintain-
ing adequate energy efficiency of data centers.

The paper is organized as follows: Section 2 reviews related
work. Section 3 describes the VM-placement problem. Section 4
develops our progressive-fidelity approach. Simulation experi-
ments are conducted in Section 5. Finally, Section 6 gives the
conclusion of this paper.

2. Related work

This section reviews existing VM-placement solutions to
energy-aware virtual resource management in data centers, espe-
cially GAs. It starts with general VM placement before focusing on
the use of GAs for energy-efficient VM placement. Modifications
to GAs are also discussed. After that, research about simulation in
different fidelity levels is introduced. Finally, technical gaps are
identified that motivate the research presented in this paper.

2.1. Ordinary energy-aware VM-placement problem and basic solu-
tions

Theoretically, an optimal solution to the energy-optimization
problem of VM placement can be derived through an exhaustive
search. However, such optimization problems are non-
deterministic polynomial-time hard (NP-hard). They demand a
significant computing effort for an optimal solution when the
problem size is large. Consider placing 500 to 100 PMs in a small-
scale data center. The total number of combinations is 100500.
Assume 10 floating point operations are required for checking
each of these combinations for energy optimization. Then, a total
number of 101,001 floating-point operations will be executed for
an exhaustive search. If one of the fastest supercomputers in the
world, is used for the computation at its Linpack Performance
(Rmax) of 93, 014.6 Tflops, we would have to wait for more
than 3.4 × 10976 years for a global optimal solution! Thus, the
exhaustive search technique is not practically viable for solving
2

the energy-optimization problem, motivating various heuristic
strategies for VM placement.

FFD is commonly used for heuristic VM placement. It is ef-
fective in dealing with general bin-packing problems like virtual
resource management [8]. Recently, an advanced FFD algorithm
was implemented for VM placement [9]. Although it does not aim
to improve the energy efficiency of data centers, when PMs are
sorted in terms of energy efficiency, it can be easily adopted for
energy-efficient VM placement.

Similar to FFD, best-fit-decreasing (BFD) is another heuristic
algorithm effective in dealing with bin-packing problems. It has
been implemented in VM placement for energy optimization [10].
The implementation is based on a resource utilization ratio rather
than real utilization measures.

2.2. Existing meta-heuristic algorithms for VM placement

To save energy in cloud data centers, an energy-aware, virtual
resource-managing framework was introduced as a global con-
troller integrated with one or more algorithms [5]. An embryo
of such a framework was introduced in the early 2010s [5,11].
The framework concentrated on quality-of-service (QoS) and en-
ergy efficiency [5] for both VM placement and potential VM
migration [11]. Adopting best-fit-decreasing (BFD) as an sam-
ple algorithm, it evinced energy savings through improved VM
placement. More importantly, the framework demonstrated that
virtual resource management could be addressed through con-
strained optimization with clearly defined optimization objec-
tives and effective heuristic algorithms [12].

With meta-heuristics, GAs have also been investigated for
the optimized management of virtualized resources in data cen-
ters [13,14]. Searching a wider space than simple heuristics in
every step, GAs give higher-quality solutions than those simple
heuristics at the cost of increased execution time. To improve the
execution-time performance, the computational demands of GAs
have been trimmed while still maintaining the quality of their
solutions [15].

As another meta-heuristic method, Ant Colony Optimization
(ACO) algorithms have been investigated for multi-objective,
cloud-work flow scheduling [16]. Through an analysis of five
types of real-world work flows, the ACO algorithm has been
shown to outperform Particle Swarm Optimization (PSO) and
Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Recently,
ACO has also been investigated with a refined formulation and
new heuristics for energy-efficient VM placement [4]. As both
ACO and GAs belong to meta-heuristic methods, they share many
similar features. For example, with iterations of many genera-
tions, both ACO and GAs calculate a FF to evaluate whether or
not a solution has improved. Our work in this paper focuses
on GAs as a typical example of meta-heuristic optimization for
energy-efficient VM placement.

Another perspective, which is also relevant to energy ef-
ficiency of data centers, is VM consolidation. VM consolida-
tion is shown to save energy with the π-estimation bench-
mark program [17], with lots of VM migrations. However, such
energy-aware VM consolidation often changes the behaviors of
task-execution and VM operations. It needs to be considered
together with QoS and Service Level Agreements (SLAs). In this
paper, we do not consider VM consolidation directly. The num-
ber of VM migrations can be reduced through a profile-guided,
three-phase VM-placement framework [18].
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.3. Energy-aware VM placement and relevant GAs

Recently, the concept of energy-aware VM management has
een introduced in industrial practice. For example, Xen and
Mware have implemented sub-systems or functions in their PM
ypervisors for VM power control [19]. Xen’s hypervisor allows
witching between P-states (power-performance states) and C-
tates (central processing units’ (CPUs’) sleeping states). This is
eneficial to the energy efficiency of virtualized systems [20].
Mware’s vSphere (VMware ESXi) supports dynamic voltage and
requency scaling for energy efficiency or other performance
equirements. Moreover, vSphere has a subsystem called VMware
istributed Power Management (DPM) with a mechanism to
witch off idle servers according to the current monitoring result.
owever, none of these commercial systems implement GAs for
M management [19]. The significant time consumption of GAs
s an issue that limits its applications in real-world data centers.

In fundamental research, a GA is also adopted in a different
ayer from the VM-placement layer in the virtual resource man-
gement of data centers [1,21]. It is designed for profile-guided
pplication assignment to VMs. Similar to VM placement to PMs,
pplication assignment to VMs is also a type of bin-packing
roblems. The concepts of both profiles and the meta-heuristic
A help reduce the energy consumption of data centers. Thus,
he GA is a promising tool for energy optimization in data centers
hrough virtual resource management.

GAs strongly depend on probabilistic operations because of
heir probability-dependent components such as population, se-
ection, crossover, and mutation [22]. Thus. the results from GAs
re not stable enough to achieve a satisfactory solution within
ne shot. To eliminate non-stable results from GAs in researching
xperiments, the average of multiple GA runs, e.g., 50 runs in [23]
nd 100 runs in [24], is usually claimed as the GAs’ result. How-
ver, in real-world systems, it is not realistic to run GAs multiple
imes for a fine-tuned solution.

Another critical problem of GAs in VM placement, however, is
heir slow computation [25]. GAs execute much slower than any
imple heuristic algorithms, e.g., First-Fit Decreasing (FFD) [15,
6]. For a VM-placement problem with Nvm VMs, the computa-
ional complexity of FFD is O(Nvm logNvm) [26]. In comparison,
he computation of GA components, e.g., crossover and muta-
ion, across many generations for an energy-efficient data center
s extremely time-consuming. For its applications in real-world
cenarios of data centers, GAs need to be accelerated significantly.
Efforts have been made for decades to tune GAs [27,28]. One

eport [27] discussed the control parameters of GAs, such as
opulation size, crossover rate, mutation rate, generation gap,
caling window, and selection strategy. The settings of these
arameters were optimized for better quality of solution, leading
o an Adaptive GA (AGA) with strengthened crossover and muta-
ion [28]. This inspired us to conduct a deep investigation into
rossover and mutation for accelerating GA in energy-efficient
M placement.
A recent work on a GA for the virtual resource management

f data centers focuses on the computational performance [15].
o start up the GA computation, it uses the results from FFD
s an initial (feasible) solution. Then, it employs the concept of
ecrease-and-conquer to simplify the GA computation. With a
ood starting point, the method presented in this work improves
he execution-time performance of the GA.

For the same problem of energy-aware VM placement, a Hy-
rid Genetic Algorithm (HGA) was designed [29]. Incorporat-
ng GA with an infeasible solution-repairing procedure and local

ptimization, it runs faster than the standard GA.

3

2.4. Multi-fidelity technique for meta-heuristic algorithms

In recent years, the multi-fidelity technique has been in-
troduced to solve optimization problems with meta-heuristic
algorithms such as GA. It deploys data in different fidelity (high-
and low-fidelity) to enhance the accuracy of an optimization pro-
cess [30]. Currently, the multi-fidelity technique is often deployed
and localized according to the problem itself [31].

The multi-fidelity technique has also been applied to evo-
lutionary algorithms for overcoming the difficulty of expensive
computation requirements [32,33]. Integrating Blind Gaussian
process modeling and pre-screening, a multi-fidelity-based
framework is developed in [34] towards computationally expen-
sive optimization problems. It supports surrogate models and
core optimization algorithms. The framework has been applied
to an antenna array factor model, and accelerated computation of
the considered optimization. Though focusing more on modeling,
the framework has inspired us to use the multi-fidelity concept to
accelerate the GA computation for virtual resource management
problems.

In addition, multi-fidelity technique is also used by successive
approximate models in other industrial fields [35]. This work
implies neural network and NSGA-II-ANN to enhance the op-
timization results of iron ore induration process. Through the
successive combination of these two models, relevant computa-
tion time is significantly reduced while the quality of solutions
gets preserved. This inspires us to use the progressive fidelity idea
to save computational cost in this paper, however with multiple
fidelity models in GA only.

For GAs, Nain’s team [36] has also developed successive ap-
proximate models for multi-objective optimizations. This work
is also formed by nerual network and NSGA-II-ANN to accel-
erate the computational speed while maintaining the quality
of optimization results. In this work, the diagram of successive
procedure has been provided, and this encourages us to deploy
our GA-based multiple fidelity approach for VM placement.

So far, the multi-fidelity technique has paid more attention
to the full use of high- and low-fidelity data to gain greater
accuracy of optimization [37]. In this paper, we use the technique
differently in our GA. We have already utilized multiple FFs with
different levels of fidelity in GA for virtual resource management
problems. If we are able to deploy different FFs into a single run of
our GA computation, the integration of low-fidelity and medium-
fidelity FFs should accelerate the GA computation. Retaining a
high-fidelity FF in the GA computation benefits the quality of
solution.

2.5. Technical gaps and motivation

GAs have been applied to the VM-placement problem for
energy-efficient data centers. Efforts have been made to enhance
GAs’ quality of solution, particularly in optimizing GAs’ param-
eters and choosing a better initial feasible solution. When a
GA runs faster, an improved solution with more energy sav-
ings will be derived within a given period of time. However,
a deep understanding is yet to be developed about the impact
of different levels of fidelity on the energy saving performance
of data centers and the execution-time performance of the GA
computation. Such an understanding would enable further re-
search and development of a computationally efficient GA for
energy-efficient VM placement in data centers. Also, it is not clear
when to switch the GA computation from lower fidelity to higher
fidelity. These technical maps motivate our research in this paper
on a multi-fidelity approach for computational efficiency of our
GA while maintaining the quality of solution for energy-efficient

VM placement.
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Table 1
Symbols and notations.
α A constraint indicating the shape of PCPU
E Total power consumption of a data center
Ecur ,Ebest Current energy consumption and best energy

consumption, respectively
Icur , Ibest Current individual and best individual,

respectively
i, j Indices to indicate the ith VM and jth PM
k Index to indicate the kth time interval
Nvm,Napm The numbers of VMs and active PMs, respectively
Nslot The number of time slots
Ngen Total number of generations
Nmax Capped number of Ngen
Nt1 Capped number of successive generations without

improvement when implementing GA_Napm
Nt2 Capped number of successive generations without

improvement when implementing GA_T.E
Nt3 Capped number of successive generations without

improvement when implementing GA_E
nNapm Number of successive generations without

improvement when adapting GA_Napm
nNT .E Number of successive generations without

improvement when adapting GA_T.E
nNE Number of successive generations without

improvement when adapting GA_E
P Power
Ppm Power of a PM
T Time
Tk Time duration of the kth time slot
Texec Total execution time
upm CPU utilization of a PM
V , Vi The set of all VMs V =

⋃nV
i=1 Vi , and the ith VM,

respectively

3. Fitness functions in GA-based VM placement optimization

Before we get started with GAs, all of our symbols and nota-
ions are listed beneath in Table 1.

In the standard GA for energy-efficient VM placement in data
enters, the energy cost of a data center under a VM-placement
lan is the objective function to be minimized. In general, it
s calculated from a power model of CPU with respect to CPU
tilization. The CPU power model is formulated as [38]:

= P (max)
−

P (max)
− P (min)

exp
(
α ∗ ucpu

) (1)

where P (max) represents the maximum power when the CPU is
fully loaded (i.e., 100% utilization), P (min) is the minimum power
when the CPU is active but idle (i.e, 0% utilization), ucpu stands for
the CPU utilization, and α is a constant that defines the shape of
the power model curve. Different types of PMs (CPUs) have their
own P (max)s, P (min)s, and αs, respectively. In this paper, the P (max),
P (min), and α for a certain type of PM are assumed as constants.

For the energy efficiency of data centers, we aim to minimize
the total energy consumption E over a certain period of time,
subject to CPU and memory constraints. Consider placing Nvm

VMs to Napm active PMs. For the kth time slot with length tk, it
follows from Eq. (1) that the power of the jth PM in the time slot
is the following:

Ppm(j, k) = P (max)
pm (j)−

P (max)
pm (j)− P (min)

pm (j)
exp(αj ∗ upm(j, k))

(2)

Thus, our energy-efficient VM-placement problem, which has
been introduced in last section, is formulated as the following
4

constrained optimization problem over Nslot time slots:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
vm

E =
Nslot∑
k=1

Napm∑
j=1

Ppm(j, k) ∗ tk

s.t. upm(j, k) =
∑Npm

i=1 upm(i, j, k),
upm(i, j) ∈ {uv1 , uv2 , . . . , uvm},

0 ≤ ∀upm(j) ≤ 100%,

Memory constraints

(3)

here j = 1, 2, . . . ,Napm referring to the jth active PM, uv1 , uv2 ,

. . , uvm referring to the utilization of vth VMs, and uj standing
or the utilization of the jth PM. In this paper, we implement GAs
o solve this constrained optimization problem of VM placement.

When a GA is employed to solve this optimization problem,
n FF is defined for the GA computation. Different forms of FF
epresent different levels of GA fidelity, leading to different levels
f complexity. They also give different quality of solution.
In this paper, we consider three forms of FF for our GA com-

utation with high, medium, and low fidelity. Our progressive-
idelity GA computation is formed from an integration of these
hree forms of GA computation.

.1. Fitness function for high-fidelity GA

Using the original energy cost of a data center as FF, the
tandard GA for solving the constrained optimization problem in
3) is a high-fidelity GA. It is denoted as GA_E. Then, Ppm(j, k)
is calculated according to Eq. (2). More specifically, the FF is
designed as the constrained optimization for the set V =

⋃Nvm
i=1 vi

of VMs hosted in Napm active PMs over Nslot time slots. It is defined
as:

Energy-cost FF for GA_E :{
E =

∑Nslot
k=1

∑Napm
j=1 Ppm(j, k) ∗ tk,

Ppm(j, k) is calculated from (2).
(4)

3.2. Fitness function for medium-fidelity GA

To accelerate the GA computation for solving the optimization
(3), FF calculation, which is presented in Eq. (4), must be simpli-
fied. The core of Eq. (4) is the calculation of PPM (j, k) from Eq. (2).
Therefore, we simplify the FF of the standard GA through Tay-
lor’s expansion of the energy cost expression in Eq. (2). This
gives two forms of FF: a quadratic form and a linear form. The
corresponding GA computation is denoted by GA_T.E:

Quadratic FF for GA_T.E:⎧⎪⎪⎪⎨⎪⎪⎪⎩
T .E =

Nslot∑
k=1

Napm∑
j=1

Ppm(j, k) ∗ tk, (a)

Ppm(j, k) ≈ P (max)
pm (j)−

[
P (max)
pm (j)− P (min)

pm (j)
]

∗
[
1− α ∗ upm(j, k)+ 2 ∗ α ∗ u2

pm(j, k)
]

(b)

(5)

Linear FF for GA_T.E :⎧⎪⎪⎪⎨⎪⎪⎪⎩
T .E =

Nslot∑
k=1

Napm∑
j=1

Ppm(j, k) ∗ tk, (a)

Ppm(j, k) ≈ P (max)
pm (j)−

[
P (max)
pm (j)− P (min)

pm (j)
]

∗
[
1− α ∗ upm(j, k)

]
(b)

(6)

The computation of E in Eq. (4) and T .E in Eq. (6) can be
erived in quadratic complexity. This is illustrated in Algorithm
with two nested loops.
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Algorithm 1: FF Computation of E in Eq. (4) and T .E in Eq.
(6)

Input: A VM-placement plan including which PMs host
which VMs

Output: Fitness value E or T .E
Initialize: An empty PM utilization set

1 foreach PM in the given plan do
2 foreach VM in this PM do
3 Add the utilization of this VM to the located PM’s

utilization;
4 Calculate the energy cost of this PM using Eq. (4) for E

or Eq. (6) for T .E;
5 Add the energy consumption of this PM to this plan’s

fitness value;
6 return This plan’s fitness value E or T .E;

3.3. Fitness function for low-fidelity GA

Our recent studies [39] indicate that the energy consumption
f active PMs from an optimized VM placement plan is approxi-
ately characterized by the number of active PMs. Therefore, we
onsider using Napm as the alternative fitness for low-fidelity GA
omputation in energy-efficient VM placement. This is denoted
s GA_Napm:

Napm (7)

The corresponding procedure for fitness value computation is
given in Algorithm 2. As the evaluation of Napm in Eq. (7) is much
simpler than either T .E in Eq. (6) or E in Eq. (7), it is expected to
be much faster. It is, understandably, low-fidelity computation of
GA.
Algorithm 2: FF Computation of fitness Napm in Eq. (7) for
nergy-efficient VM placement
Input: A VM-placement plan, including the corresponding

PM list
Output: Fitness value Napm (as an indicator of E)
Initialize: An empty PM counter Napm

1 foreach Planned VM do
2 Update corresponding active PM status;
3 foreach PM on the PM list do
4 if PM utilization ̸= 0 then
5 Napm ← Napm + 1;

6 return Napm as this plan’s fitness value;

3.4. Quantitative comparisons of fitness functions

A set of experiments has been completed to check the per-
ormance of different FFs. All experiments are designed with
n input of 5365 tasks from Google’s Cluster Trace [40]. All
xperimental configuration follows the settings in Section 5. The
xperimental results are shown in Table 2.
It is seen from Table 2 that different FFs lead to different

erformance of GA. This is graphically summarized in Fig. 1.
nderstandably, the original FF E formulated in Eq. (4) for the
tandard GA results in the smallest Napm and best energy saving.
ut it costs the highest execution time and the most number of
enerations. In comparison, the FF Napm given in Eq. (7) makes
he GA run the fastest with the minimum number of generations.
ut it gives a higher Napm and slightly poorer energy saving
erformance (about 0.5% worse). The two Taylor’s expansions in
qs. (5) and (6) as FFs behave similarly. Their final GA results are
5

Table 2
Performance of GA using different FFs.
FF c

Avg. Napm Avg. #Gene Time Avg. T per Gene

GA_E 1099 569.0 590 1.037
GA_T.E.Q 1100.5 510.6 427 0.837
GA_T.E.L 1101.6 518.9 420 0.811
GA_Napm 1102 473.4 300 0.634

Fig. 1. The list of alternative FFs for GA.

between the FF E and FF Napm. Therefore, from now on, we will
use the simpler linear FF in Eq. (6) for medium-fidelity GA in our
further discussions.

4. Progressive-fidelity GA

From Eqs. (4) and (7), GA with Napm as FF has lower fidelity
than GA with the original E as FF. Its advantage is its fast com-
putation. This is because it calculates Eq. (7) by simply counting
the active PMs without the need of knowing the details of a
VM placement plan such as VM locations and energy cost of
each PM. It is seen from Table 2 that the acceleration of the
GA computation over the standard GA with E as FF is almost
60%. This is a significant speedup particularly for large-scale data
centers with the requirements of providing time-sensitive Quality
of Service (QoS).

However, with a lack of detailed information about the VM
placement plan, it is understandable that GA with Napm as FF has
relatively high chance of being trapped in a local minimum than
higher-fidelity GA with either T .E or E as FF. Therefore, it is

desirable to terminate GA_Napm at some stage, and then refine
the solution by employing a higher-fidelity GA such as GA_T .E
or GA_E. This motivates our research of developing a hybrid
approach for GA computation in energy-efficient VM placement.

The idea of hybridizing different FFs in GA computation has
been investigated [34]. Overall, we expect to make use of the
advantages of the GA under different levels of fidelity. Meanwhile,
the disadvantages , which may be caused by mixing different FFs,
should be overcome. Two objectives are considered:

• fast computation: i.e., the acceleration of GA computation;
and
• reliable solution: i.e., the convergence and quality of solu-

tion in terms of energy saving of data centers

From these two objectives, we start to develop our approach of
progressive-fidelity GA computation.

4.1. How to hybridize

Are traditional multi-fidelity approaches good enough? Tra-
itional multi-fidelity approaches do not apply multiple FFs for
he acceleration of GA computation. They do not calculate se-
ected FFs at a generation. Instead, they calculate all these FFs
n each of the GA generations, as shown in the upper diagram
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Fig. 2. GA computation with multiple FFs of different levels of fidelity.
f Fig. 2 for two FFs: FF1 and FF2. As a result, these approaches
o not speed up the GA computation, even slow it down. This
s conflicting with our objective of achieving faster GA compu-
ation. Therefore, traditional multi-fidelity approaches are not
ood for the scenarios investigated in this paper. In the following
aragraphs, we will discuss two new multi-fidelity approaches
nspired by the traditional one and relevant literature.

Is zipper fidelity good enough? According to the traditional
ulti-fidelity approach, we firstly designed the zipper-fidelity
pproach. ‘‘Zipper’’ refers to split different FFs in the traditional
ulti-fidelity approach into successive generations. Making use
f multiple FFs for different levels of fidelity, the zipper fidelity
ethod calculates only one FF in a generation of GA computation.
or two FFs, the middle diagram of Fig. 2 show the process of the
ipper fidelity method. FF1 and FF2 are switched back and forth
efore the whole GA computation is terminated.
To get some understanding how the zipper fidelity method be-

aves for energy-efficient VM placement in data centers, we have
mplemented the method with three FFs discussed previously: E,
.E, and Napm. Our tests on large-scale data centers show that the

method does achieve similar energy saving results to the standard
GA computation GA_Ewith E as its FF. However, it does not show
n obvious acceleration of the GA computation. Our analysis of
hese experimental results reveal that simple switches back and
orth among these FFs lead to difficulties in the adaptation of the
A computation to the VM placement plan generated from the
revious generation.
In general, a different FF may derive a different trend of indi-

iduals (VM placement plans). Some FF tends to stack huge VMs,
ut some other FF may trend to keep a balance among different
M sizes. As a result, conflicts arises. For example, e.g. FF1 may
lace one VM in a certain PM, but FF2 may suggest this VM to
e placed somewhere else. Therefore, GA needs to take a few
enerations to make individuals adapt a new FF. Such conflicts
an be caused by changing an FF to another one. Thus, zipper
idelity may lead the GA computation to fixing conflicts rather
han evolving the population. Consequently, it does not converge
ell and thus gives no obvious improvement in the speed of the
A computation.
Therefore, we propose progressive-fidelity GA computation.

he basic idea, inspired by Mitra and Majumder [35], is to run
he GA under a FF for a few generations. Then, we switch to
nother FF for some other generations. For each of the FFs we
ave selected, run the GA computation for multiple generations.
n this way, switching the GA computation from one FF to another
ill cause only minor or no conflicts in individuals.

.2. What to hybridize

We have conducted experiments for large-data center scenar-
os to demonstrate the characteristics of the three FFs discussed
6

Table 3
Performance of GA using different FFs (ver.2).
FF Computation Accuracy Fidelity Location

GA_E Slow Reliable High Final
GA_T .E Medium Medium Medium Mid-term
GA_Napm Fast Conservative Low Early

previously: E, T .E, and Napm. Qualitative results of the experi-
ments are summarized in Table 2. Qualitative comparisons are
tabulated in Table 3. From these results and discussions above,
we develop the following heuristics:

Heuristic 1: The FF E is reliable in results, and its simulation
results derives the highest fidelity. It guarantees an adequate
search space of GA and often converges with a better energy
saving than the other FFs. Thus, if we use E as an FF in the final
generations of the GA computation, the result will have good
quality. However, GA_E is slow and the computation of E itself
is also complex. This usually leads to more generations in the
GA computation. Thus, we should purposely limit the number of
generations for GA_E computation.

Heuristic 2: As GA_Napm with Napm as FF is computationally
light. It runs fast. Thus, we consider using GA_Napm in the ini-
tial stage of the problem solving for an acceleration of the GA
computation. However, GA_Napm has the lowest fidelity. It does
not guarantee a good quality of solution as E does. Therefore,
GA_Napm should not be used in the final stage of the overall GA
computation.

Heuristic 3: GA_T .E sits between GA_E and GA_Napm in both
computational speed and the quality of solution. It is a medium-
fidelity method for GA computation. Thus, we consider using
GA_T .E as a smooth connection between GA_E and GA_Napm. This
will achieve not only a relatively high speed but also a relatively
good quality in the overall GA computation.

From these heuristics, we now present our progressive-fidelity
approach for GA computation in VM placement of data cen-
ters. We start with a low-fidelity GA_Napm that uses a simple FF
Napm for fast computation. After some generations, we switch to
medium-fidelity GA_T .E that uses a slightly more complicated
FF T .E for solution refinement. Then, after some generations,
we fine-tune the solution by switching to the standard high-
fidelity GA_E with the energy consumption E as FF. Taking the
advantages of low-, medium-, and high-fidelity GA computation,
our progressive-fidelity approach is expected to be fast in GA
computation that gives reliable solution with good convergence
and quality. This meets our two objectives described earlier in
this section.

Combining our knowledge about ‘How’ and ‘what’ discussed
above, our progressive-fidelity GA computation is depicted in
Fig. 3.
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Fig. 3. Progressive-fidelity GA for energy-efficient VM placement in data centers.

4.3. When to switch

With our presented progressive-fidelity GA computation in
ig. 3, a remaining question is when to switch from one FF to
nother in the GA computation. A timing scheme for switching
Fs directly controls in which generation an FF starts to work,
nd in which generation the FF stops working. Therefore, it will
ffect the number of generations each FF consumes, impacting the
erformance of the overall GA computation.
‘When to switch’ is determined by the number of generations.

hus, we start our discussions with an FF’s termination, which
s mostly associated with the number of generations. A GA is
ormally designed to exit from its computation with either a
ixed termination or an adaptive termination.

A fixed termination terminates the GA computation after a
redefined number of generations. It is suitable for a GA compu-
ation task with a given deadline. However, it is understandable
hat GA with a fixed termination may not guarantee a converged
olution of good quality or will consume too many generations
fter a good quality of solution has already been achieved.
In comparison, an adaptive termination is more flexible and

opular. It terminates the GA computation when it is confident
o conclude that the derived solution does not show any fur-
her improvement. In practice, the number of generations is still
apped by a maximum allowable integer in order to avoid too
any iterations.
Our progressive fidelity approach inherits the foundation of

daptive termination, as ‘adaptive switching’. As shown in Fig. 3,
e start with GA_Napm, until it concludes that there are a few
uccessive generations with no observed improvement in its so-
utions. Then, we switch to GA_T .E. Similarly, GA_T .E is allowed
o continue until there are another number of successive no-
mprovement generations. Now we finally switch to GA_E. Same
o adaptive termination, GA_E terminates and derives the final
ptimized solution when it is confident to conclude that the
erived solution does not show any further improvement.
Typically, let integer Nmax denote the maximum number of

uccessive generations that a GA is still allowed to execute with
o observed improvement in its solution. We further use integer
ariables nNapm , nT .E, and nE to denote the current numbers of
uccessive generations that GA_Napm, GA_T .E, and GA_E have
already run without improvement in their solutions, respectively.
They are capped by Nt1,Nt2, and Nt3, respectively, i.e.,

N ≤ N , N ≤ N , N ≤ N . (8)
t1 max t2 max t3 max

7

Thus, we have the following adaptive switching or termination
rules in our progressive-fidelity computation of GA:⎧⎨⎩
Switch GA_Napm to GA_T .E after: nNapm = Nt1

Switch GA_T .E to GA_E after: nT .E = Nt2

Terminate GA_E after: nE = Nt3.

(9)

Accordingly, we switch from GA_Napm to GA_T .E when GA_Napm
finds no improvement within Nt1 successive generations, and
then switch from GA_T .E to GA_E when GA_T .E finds no im-
provement within Nt2 successive generations. Finally, GA_E ter-
minates when no improvement is concluded within Nt3 succes-
ive generations.
As GA_Napm aims at fast computation, we would not expect

oo many generations for no improvement. Similarly, GA_T .E
takes the GA_Napm solution for refinement. It should also not
waste too many generations without further improvement. Start-
ing from the GA_T .E solution, GA_E will fine tune the final solu-
tion. It is given more generations without improvement before its
termination. Therefore, we have the following general heuristics:

Nt1 ≤ Nt2 ≤ Nt3. (10)

More specifically, from the knowledge acquired through our
experiments, in order to accelerate the GA computation for a
solution of good quality in large-, medium-, and small-scaled data
centers, we suggest the following heuristics for tuning Nt1,Nt2,
nd Nt3:

t1 = ⌈Nmax ∗ 2%⌉ ∼ ⌈Nmax ∗ 8%⌉, (11)

t2 = ⌈Nmax ∗ 20%⌉ ∼ ⌈Nmax ∗ 40%⌉, (12)

t3 = Nmax, (13)

here ⌈·⌉ is the ceiling function that rounds up to the nearest
nteger. In our heuristics, Nt1 cannot go beyond 8% of Nmax. When
t1 goes beyond 8% of Nmax, GA_Napm has to consume over half
f entire GAs’ generations, which is too many for our progressive
A to derive a fine solution. Similarly, Nt2 cannot go beyond 40%
f Nmax to save enough generations for GA_E. For instance, for a
iven Nmax = 50, Nt1 and Nt2 are set in the ranges of 1 ∼ 4 and
0 ∼ 20, respectively, from our heuristics. Nt3 is set as Nmax. For
xample, Fig. 3 in a sample run where Nt1 for 1, Nt2 for 20, and
t3 for 50. It is clear that GAT .E is activated when solution starts
o converge, and GAE turns out when finally solution converges.
oreover, it will be seen later in our simulation experiments that
bigger value of Nt2 is beneficial for a larger scale of data centers.

.4. Implementation of our progressive-fidelity GA

Our progressive-fidelity computation of GA is implemented in
lgorithm 3 for energy-efficient VM placement in data centers. In
lgorithm 3, lines 1 to 3 calculate the settings of our progressive-
idelity GA, such as Ibest ,Ebest , and thresholds Nt1,Nt2 and Nt2
or switching or termination of GA. Then, the first WHILE loop
n lines 5 to 13 is the low-fidelity GA_Napm with Napm as its FF.
t terminates when nNapm reaches Nt1. In lines 15 through 23,
he second WHILE loop implements the medium-fidelity GA_T .E,
hich evolves the population using T .E until nT .E hits Nt2. After
hat, we switch to high-fidelity GA_E, which is implemented in
he third WHILE loop (lines 25 through 31) by using E as its FF.
fter all these three WHILE loops, line 32 of the Algorithm returns

best as the proposed plan.

. Simulation experiments

.1. Experimental design

We have conducted experiments to test our progressive-
idelity GA computation under typical scenarios for energy-
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Algorithm 3: Progressive-fidelity GA computation
Input: Incoming VMs and corresponding PM list
Output: A VM placement plan with least energy cost
Initialize: Form a population by a random VM placement

plan as the first generation;
nNapm ← 0; nT .E ← 0; nE ← 0;

1 Find the best individual Ibest in the initial generation;
2 Calculate corresponding Ebest and Napm−best ;
3 For given Nmax, calculate Nt1,Nt2, and Nt3 from Eqs. (11),

(12), and (13), respectively;
4 /* *** Phase 1: GA_Napm *** */;
5 while nNapm < Nt1 do
6 Evolve the population using the FF in Eq. (7);
7 Find the best individual Icur in current generation;
8 Calculate the corresponding Ecur and Napm−cur ;
9 if Napm−best > Napm−cur then

10 Nap−best ← Nap−cur ; Ibest ← Icur ;
11 Ebest ← Ecur ; nNapm ← 0;
12 else
13 nNapm ← nNapm + 1;

14 /* *** Phase 2: GA_T .E *** */;
15 while nT .E < Nt2 do
16 Evolve the population using the FF in Eq. (6);
17 Find Icur in current generation;
18 Calculate the corresponding Ecur ;
19 if Ebest > Ecur then
20 Ibest ← Icur ; Ebest ← Ecur ; nT .E ← 0;
21 else
22 nT .E ← nT .E + 1;

23 /* *** Phase 3: GA_E *** */;
24 while nE < Nt3 do
25 Evolve the population using the FF in Eq. (4);
26 Find Icur in current generation;
27 Calculate the corresponding Ecur ;
28 if Ebest > Ecur then
29 Ibest ← Icur ; Ebest ← Ecur ; nE ← 0;
30 else
31 nE ← nE + 1;

32 return Ibest ;

Table 4
Five types of FF switching patterns (Nmax = 50).
Setting Progressive-fidelity GA GA_Napm GA_E

P1 P2 P3 P4 P5

Nt1 1 4 1 50 Not applicable
Nt2 20 20 10 Not applicable Not applicable
Nt3 50 50 50 Not applicable 50

efficient VM placement in data centers. As shown in Table 4, five
switching patterns are considered in our experiments. Particu-
larly for our adaptive switching, Nt1 is assigned as 1 in P1 and P3,
ndicating that we immediately switch from GA_Napm to GA_T.E
hen our GA_Napm detects 1 generation with no improvement.
n the other hand, Nt1 is assigned as 4 in P2, indicating that
e switch from GA_Napm to GA_T.E when our GA_Napm detects
successive no-improvement generations. Nt2 and Nt3 follows

imilar design of Nt1, respectively.
For each experimental scenario, each individual, as well as the

inal solution, is a VM-placement plan, from which the corre-
ponding active PMs and energy consumption of the data center
an be obtained. In the calculation of the energy consumption
8

Algorithm 4: Fitness evaluation under the new data
structure from [24]

Input: A VM placement plan, including each VM’s
utilization and location

Output: The fitness value (energy consumption E )
Initialize: An empty PM utilization set

1 foreach VM in the given plan do
2 Add the utilization of this VM to the located PM’s

utilization;
3 foreach PM utilization in the PM utilization set do
4 if PM utilization ̸= 0 then
5 Calculate this PM’s energy consumption;
6 Add its energy consumption to this plan’s fitness

value;

7 return This plan’s fitness value;

Algorithm 5: Task assignment [18,24].
Input: All tasks (applications)
Output: A plan of application assignments to VMs
Initialize: An empty VM set

1 foreach task in all given tasks do
2 Assign this task to a VM of proper size;
3 Append this VM into the VM set;
4 Convert the VM set to the assignment plan;
5 return an application assignment plan;

of the data center, idle PMs are assumed to be powered off
to save energy. Other performance metrics or parameters, such
as the total number of generations (Ngen), are also retrieved or
stimated.
In our experiments, we take Google’s Cluster-Usage Traces [40]

s the input data set. The data set is considerably vast in size.
herefore, for demonstration, we have extracted a small part of
he data logs from the traces.

We have considered small-, medium-, and large-scale data
enters in our experiments. Our small-scale data input refers to
private, enterprise-level cloud data center running hundreds
f VMs on 100 PMs. Our medium-scale data input represents a
rivate, university-level cloud data center running about 2000
Ms on 300 to 600 PMs. Our large-scale data input simulates a
ector of a large, public cloud data center, which runs thousands
f VMs in over 1000 PMs. All three scales of data inputs are
xtracted from Google’s data set.
To speed up the computation of GA for the VM placement

roblem, a new data structure for individuals has been designed
o help reduce the (quadratic) complexity of traditional fitness
omputation in standard GA [24]. We use this new data structure
n our GA computation. The resulting process of fitness evaluation
s shown in Algorithm 4.

It is worth mentioning that Google’s data set only records
asks, not VMs. To use Google’s data set for VM-placement re-
earch, we need to assign these tasks to VMs before allocating
Ms to PMs. A task-assignment algorithm is given in Algorithm 5,
hich is a replicate of the work reported in [18,24,39]. It assigns
ach incoming task to a VM of proper size. Accordingly, the VMs
n our experiments are designed in fixed sizes, which are listed in
able 5. Fixing VM sizes is a common practice in the management
nd operation of data centers, such as Amazon’s cloud.
After all tasks are assigned to VMs, we execute our

rogressive-fidelity GA for VM placement to PMs. For some gen-
ral settings, we follow the standard, popular configurations for
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Table 5
Six types of VMs with respect to normalized CPU capacity in Google’s data set
[38] (maximum is 1).
VM type Huge Large Medium Normal Small Tiny

CPU capacity 0.45 0.30 0.15 0.10 0.045 0.015

GA computation. We set Nmax = 50, i.e., the GA under any single
fidelity will terminate when there are 50 generations without any
improvement in the solution. We deploy tournament selection
for GAs’ selection process. The population size is 64 individuals.
The uniform rate is 50%, referring to the chance where a gene
of the child inherits from one typical parent instead of another.
The mutation rate is 0.15%, referring to the chance where a gene
may mutate. In addition, we integrate the idea of the HGA [29] to
eliminate infeasible plans through our enhanced mutation in our
GAs. For example, in our crossover and mutation process, each
VM can be only placed to PMs with sufficient capacity.

To run the experiments, we have built an experimental envi-
ronment with Java. Our simulation experiments are conducted on
a desktop computer. The computer is equipped with Intel Core 2
Q6700, 3.4 GHz CPU, and 16 GB DDR4 2666 MHz RAM. It runs
Windows 10 Professional operating system.

5.2. Experimental results for large-scale data centers

The results of our experiments for a large-scale data center
are shown in Fig. 4. They show four performance metrics: (a)
the active number of PMs (Napm); (b) the energy consumption
of the data center (E); (c) the execution time Texec of the GA
computation; and (d) the total number of generation (Ngen).

In terms of the Napm performance shown in Fig. 4(a) for P1
hrough P5 It also shows the smallest upper whisker of 1102 PMs.
1 through P4 perform similarly for their average numbers of
ctive PMs (around 1102). However, P4 from the pure GA_Napm
hows the worst upper whisker of over 1110. Therefore, P1,
2, and P3 from our progressive-fidelity GA with our suggested
witching settings behave better than P4 from the pure GA_Napm.
t is also observed from Fig. 4(a) that from the perspective of
tandard deviation, in this large-scale data center scenario, P1 is
lightly better than P2, and P2 is slightly better than P3.
The good performance of P1 through P5 with respect to Napm

s reflected in the energy consumption performance E, which
s shown in Fig. 4(b). Understandably, P5 from the pure GA_E
ehaves the best, and P4 from the pure GA_Napm performs the
orst. P1, P2, and P3 from our progressive-fidelity GA with our
uggested switching settings show similar performance of av-
rage energy consumption in the data center. Considering the
tandard deviation, we conclude that in this large-scale data
enter scenario, we prefer P1 with a lower standard deviation to
2 and P3.
Let us have a look at the execution time Texec of the GA compu-

ation shown in Fig. 4(c). As we expected, among P1 through P5,
5 from the pure GA_E takes the longest time to get a converged
olution, while P4 from the pure GA_Napm has the fastest com-
utation. P1, P2 and P3 of our progressive-fidelity GA with our
uggested switching settings achieve a significant speedup over
5. For example, P1 runs about 60% faster than P5.
The performance with respect to execution time Texec can be

artially explained from the performance of the total number
f generations (Ngen). As shown in Fig. 4(d), P5 from the pure
A_E takes the largest number of generations for its solution to
onverge. In many runs of our experiments, it shows an occasion
f 1000 generations. In comparison, P1 through P3 from our
rogressive-fidelity GA require much fewer generations to get
converged solution. Particularly, for P1 that we prefer in this

arge-scale data center scenario, the number of generations is
elow 600 in all runs with the average well below 500.
9

5.3. Experimental results for medium-scale data centers

The results of our experiments for a medium-scale data center
are depicted in Fig. 5. The analysis of these results is similar to
that for the large-scale data center discussed above. Let us have
a look at the performance of Napm in Fig. 5(a) and E in Fig. 5(b).
Among P1 through P5, P5 from the pure GA_E behaves the best
with the smallest values of average Napm and average E. Except
P5, P1 performs the best overall with slightly worse performance
than P5 in Napm and E.

With regard to the performance of execution time Texec in
Fig. 5(c) and the number of generations Ngen in Fig. 5(d), P5
from the pure GA_E behaves the worst (for the best energy
consumption performance) as we anticipated. In comparison, P1
performs significantly better than P5. It executes about 70% faster
than P5, and requires much fewer generations than P5 to con-
verge. While P4 from pure GA_Napm runs even faster than P1 of
the progressive-fidelity GA, the quality of its solution is much
worse as shown in Fig. 5(b). Thus, overall we prefer P1 of the
progressive-fidelity GA to P4 of the pure GA_Napm. Noticeably,
P3 shows slightly worse performance than P1 is all these perfor-
mance metrics in this medium-scale data center scenario.

5.4. Experimental results for small-scale data centers

A small-scale data center runs a small number of VMs hosted
in much fewer PMs, e.g., around 100 PMs as we tested in our
experiments. With such small numbers of VMs and PMs, the
execution time performance is no longer critical as the standard
GA computation could terminate in a short period of time, e.g., a
few tens of seconds. As the degree of freedom for adjusting VM
placement is limited in the small number of PMs, the quality
of solution is expected to be good from different types of GA
computation.

The results of our experiments for a small-scale data center
are illustrated in Fig. 6. It is seen from Fig. 6(a) and (b) that all
five patterns P1 through P5 exhibit similar performance in active
PMs Napm and energy consumption E. A quantitative analysis
shows that the maximum difference among P1 through P5 is less
than 1 PM on average. Thus, there are no obvious differences
among these five patterns. The only exception is our observation
of outliers in P2 and P5, each of which has an occasion of 100 PM.
This is graphically demonstrated in Fig. 6(a) and (b).

The performance of execution time Texec and total number of
generations Ngen are summarized in Fig. 6(c) and (d), respectively.
The overall observation from these two figures is that on av-
erage, all five patterns P1 through P5 spend 40 to 50 s to get
a converged solution. All of them are acceptable in a real VM
placement planning. The differences in the execution time from
all of them are within a few seconds on average. This means that
P5 from the standard GA_E is not obviously worse than others in
the execution time performance due to its fewer generations, in
each of which precise energy consumption of the data center is
calculated. It is also observed that P4 from the pure GA_Napm has
the lowest execution time on average. It also gives an acceptable
solution of good quality as discussed above. Among P1, P2, and
P3 of our progressive-fidelity GA, P3 with a smaller Napm shows
slightly better performance in execution time in this small-scale
data center scenario.

5.5. Statistical analysis of results

For a deeper understanding of the progressive-fidelity GAs
presented in this paper, some quantitative simulation results are
summarized in Table 6, which has been partially visualized in pre-
vious subsections. We introduce our large-scaled experimental
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Fig. 4. Box plots of experimental results for a large-scale data center. Configuration of P1∼P5 is presented in Table 4.
Fig. 5. Box plots of experimental results for a medium-scale data center. Configuration of P1∼P5 is presented in Table 4.
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esults as the sample data of our statistical analysis. In Table 6,
Max.’ refers to the maximum value of the corresponding data,
Min.’ for the minimum value, ‘Avg.’ for the average value, and
S.D.’ for the standard deviation (SD), respectively.

It is seen from this table, and also shown previously in Fig. 4,
1 derives best SD in E and Napm, while performs well in Texec and
gen. On the other hand, P4, as GA_#PM in our previous research,
erives best computational efficiency in Texec , but due to its low
idelity, its SD is 25% worse than P1, both in E and Napm. P5, as
A_E in our previous research, derives finest energy-saving per-
ormance, but due to its high fidelity, its computational efficiency
s far inferior to other patterns. Therefore, P1 over-performs P4
nd P5, as GA_E and GA_#PM , indicating the feasibility of our
rogressive-fidelity approach.
10
To verify that the accelerated GA computation presented in
his paper with our new fitness function does not affect the
nergy efficiency of the VM-placement results, statistical tests are
onducted on the simulation results from our 5 patterns. The null
ypothesis of the statistical tests among P1 to P5 is:

0 : The energy efficiency from P1 to P5 has
no obvious difference.

he alternative hypothesis is that the results of energy efficiency
rom P1 to P5 are statistically different.

Two types of widely-used statistical tests [41,42] have been
onducted:

(1) two sample paired t-tests, and
(2) Wilcoxon’s signed-rank tests.
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Fig. 6. Box plots of experimental results for a small-scaled data center. Configuration of P1∼P5 is presented in Table 4.
Table 6
Featured results for GA_E and GA_#PM.
Performance Pattern Max. Min. Avg. S.D.

E (kWh) P1 238 235 236.3 0.66
P2 238 235 236.3 0.74
P3 238 234 236.2 0.83
P4 238 234 236.1 0.83
P5 237 234 235.8 0.85

Napm P1 1109 1094 1102.0 3.19
P2 1110 1094 1102.1 3.56
P3 1110 1092 1101.6 3.97
P4 1111 1091 1101.3 4.00
P5 1107 1089 1099.5 4.08

Texec (s) P1 492 274 350.1 45.47
P2 485 272 350.2 40.36
P3 515 275 348.1 47.47
P4 425 235 298.3 35.80
P5 970 410 560.9 103.29

Ngen P1 593 392 476.2 47.63
P2 601 380 464.5 41.81
P3 643 391 472.5 50.53
P4 653 374 474.5 56.31
P5 999 414 571.0 109.64

These tests are carried out because the performance results from
each of the two GA methods are evaluated using the same simu-
lated data. For all statistical tests, the significance level is 0.05. To
support the null hypothesis, it is required to have p-values greater
han the significance level, and Wilcoxon’s tests additionally re-
uire that w > Tcrit , where w stands for the minimum of the
ums of positive and negative ranks, and Tcrit is the critical value
n Wilcoxon’s tests.

Test samples in our statistical analysis are derived from the
uotient from P1 to P5. The quotient is denoted by δ. Test results
rom the t-tests and Wilcoxon’s tests are tabulated in Table 7.

It is seen from Table 7 that all p values are greater than
he significance level 0.05. Additionally, it is also observed from
he table that the relationship w > Tcrit holds in Wilcoxon’s
ests. Therefore, the results from both t-tests and Wilcoxon’s tests
upport the acceptance of the null hypothesis. Actually, they also
how that the numbers of generations (Ngen) from P1, P2, P3,
nd P4 are at least 21% more than which from P5. However,
11
Table 7
Results of t-tests and Wilcoxon’s signed rank tests with alpha level 0.05 for
large-scaled experiments by using δ calculated from the quotient from P1 to
P5.
Performance Scale δ t-tests Wilcoxon’s tests

t critical T p w Tcrit p

E P1 0.998 1.98 0.398 0.654 2391 1955 0.645
P2 0.998 1.98 −0.133 0.553 2350 1955 0.547
P3 0.998 1.98 −0.051 0.520 2608 1955 0.775
P4 0.998 1.98 0.083 0.533 2773 1955 0.394

Ngen P1 1.212 1.98 0.009 0.504 2285 1955 0.409
P2 1.241 1.98 −0.007 0.497 2301 1955 0.441
P3 1.222 1.98 0.017 0.507 2258 1955 0.359
P4 1.216 1.98 0.019 0.508 2304 1955 0.447

the numbers of generations among P1 to P4 have no statistical
difference. It is concluded that our progressive-fidelity GAs’ com-
putation does not affect the energy efficiency of the resulting VM
placement, while consuming similar computational resource as
which of the low-fidelity GA (as P4 or GA_#PM).

5.6. Further discussions

Practically in real data centers, VM-placement options have
more constraints than what we do in our simulation experi-
ments. One of these constraints is the threshold of GAs’ execution
time, also called ‘Pending Time’ in Google’s Cluster-usage Trace.
All tasks or VMs must be placed within a fixed pending time.
However, according to our experimental results, P5 has a strong
drawback as its long execution time, which may not meet the
threshold of pending time. For example, P5 derives an occasion
of 1000 generations and relevantly long execution time, which
exceeds our Nmax. As a result, P5 is not recommended in real data
center practices.

Moreover, another constraint is that an algorithm is executed
only once in each VM-placement option. In other words, we can-
not execute each algorithm 100 times for a statistical conclusion,
and then decide which solution is better. Thus, the solutions VM
placement have to be accurate and avoid bad ones. As a result,
the algorithm, which may derive greater standard deviation (SD)
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Fig. 7. Evolution of our progressive-fidelity P1, P2 and P3 (P1 is our suggested switching pattern).
or the worst solution, has to be aborted. Therefore, P4 is not
recommended in real data center practices either.

Besides P4 and P5, for the large-scale data center tested in
our experiments, the evolution of our progressive-fidelity P1,
P2 and P3 is plotted in Fig. 7. According to the convergence in
each pattern, only minor (P2 from GA_Napm to GA_T .E) or no
P1 and P3) conflicts occur when switching FFs. Minor or no
onflicts guarantee a smooth convergence along our progressive-
idelity algorithm. Let us take one more step forward. A smooth
onvergence both derives appreciate solutions (by GA_E) and
guaranteed execution time (by not wasting generations in con-
flicts).

In general, the larger the data center size, the more critical
the execution time performance becomes. We emphasize the
significance of the execution time performance by using a smaller
Nt1 and a larger Nt2 from our heuristics in Eqs. (11) and (12). In
our experiments for large-scale data centers, we have set Nt1 = 1
and Nt2 = 20 for P1, which we prefer to P2 and P3. In this setting,
Nt1 and Nt2 are 2% and 40% of Nmax = 50, respectively.

Finally, from our quantitative analysis of our experimental
results for large-scale data centers, we qualitatively rate GA_E,
GA_Napm and progressive-fidelity P1 in terms of E, Texec , and SD
performance in Table 6. Overall, our progressive-fidelity P1 is
recommended for large-scale data centers.

On the other hand, the progressive-fidelity approach pre-
sented in this paper is still based on GAs for offline and static
VM placements. We suggest future studies to enhance GAs with
our approach, in order to make it adaptive to online and highly
dynamic VM-placement scenarios. Moreover, multiple different
algorithms, in addition to FFs, is to be deployed according to
our progressive approach for VM placement in data centers. Last
but not least, there are some other structural parameters in
GAs, which may also affect GAs’ simulation or computational
performance. We suggest future studies to combine our approach
with these parameters, achieving greater performance.

6. Conclusion

A progressive-fidelity approach is presented in this paper for
GA computation of energy-efficient VM placement in large-scale
cloud data centers. Without sacrificing the quality of solution in
terms of energy savings in data centers, our approach is shown
to run about 50% faster than the traditional standard GA compu-
tation in VM placement. The acceleration of the GA computation
emanates from the integration and progressive evolution of low-
, medium-, and high-fidelity computation models in a unified
framework. Nevertheless, our approach also achieves improved
SD performance with similar energy-saving results. Heuristics
have been developed from our expensive experiments for the
progressive switching from low fidelity to medium fidelity, and
then from medium fidelity to high fidelity. As a result, the com-
putational efficiency of the GA computation is significantly en-
hanced.
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