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ABSTRACT 

 

The principle of training specificity dictates that adaptations to exercise training 

are specific to the mode, frequency, and duration of exercise performed, and result in 

distinct and divergent skeletal muscle phenotypes. Strength-based training promotes 

skeletal muscle hypertrophy and maximal force-generating capacity while endurance-

based training improves skeletal muscle oxidative capacity and cardiorespiratory 

fitness. Previous research has suggested the capacity of skeletal muscle to adapt to 

strength and endurance training when performed simultaneously (i.e., concurrent 

exercise training) appears to be limited and results in blunted resistance-based 

adaptations compared to resistance training alone – a phenomenon referred to as the 

‘interference effect.’  

The molecular basis of skeletal muscle adaptation to exercise training involves 

the propagation of numerous mechanical and chemical stimuli through signalling 

cascades that ultimately results in an increase in an array of exercise-induced proteins 

and increases in maximal enzyme activities. The nature of these alterations is specific 

to the frequency, intensity, volume, and type of metabolic demands placed upon the 

muscle during exercise. Given the divergent stimuli associated with endurance- and 

resistance-based exercise, it has been hypothesised that antagonistic molecular signals 

may underlie the adaptive interference observed with concurrent training. In order to 

circumvent this effect, strategies have focused on altering the proximity of training 

sessions (i.e., same day versus alternate day training) and training variables (i.e., 

frequency, volume, mode). Additionally, optimising post-exercise nutrition (i.e., 

dietary protein) has been proposed as a potential variable that may promote anabolic 

signalling and prevent the interference effect.  
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To determine whether these training strategies in association with a high protein 

diet (2 g•kg-1•d-1) can attenuate the ‘interference effect,’ 32 recreationally active males 

(age: 25±5 y; body mass index: 24±3 kgm-2; mean ± standard deviation) performed 

12 wk of either isolated resistance (RES; n=10) or endurance (END; n=10) training (3 

sessions•wk-1), or concurrent resistance and endurance (CET; n=12) training (6 

sessions•wk-1). Maximal strength, maximal aerobic capacity, peak power, body 

composition, and muscle architecture were assessed throughout the intervention. To 

explore molecular responses that may underpin any impaired adaptation after 

concurrent exercise training, satellite cells and myonuclei were assessed by 

immunohistochemistry from skeletal muscle biopsy samples. In addition, exploratory 

transcriptomics was performed from a subset of participants from each training 

condition.  

The results from the investigations undertaken for this thesis demonstrate that 

– despite efforts to circumvent the ‘interference effect’ by implementing recommended 

strategies of alternate day training, minimising exercise volume, and increasing dietary 

protein intake – maximal anaerobic power development was attenuated following 12 

wk of concurrent exercise training.  Myofibre hypertrophy increased to the same 

magnitude in all training modalities without changes to satellite cell content, suggesting 

that satellite cell content does not limit the magnitude of hypertrophy achieved during 

concurrent training. Conversely, myonuclear content displayed strong associations with 

the degree of myofibre hypertrophy. Transcriptome-wide analysis revealed that 

concurrent exercise training augments gene sets related to plasma membrane structures 

while suppressing those related to regulation of messenger ribonucleic acid (mRNA) 

processing and protein degradation, which may contribute to the ‘interference effect’ 

in myofibre hypertrophy. Additionally, considerable overlap of gene sets enriched for 
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terms related to extracellular matrix remodelling were observed amongst concurrent 

exercise training and isolated endurance cycle training, which may underlie 

attenuations in maximal anaerobic power outputs observed following concurrent 

training. Collectively, these reveal that the current recommendations to maximise 

muscle hypertrophy with concurrent training do not result in augmented hypertrophic 

responses compared to single-mode training, and cannot be explained by satellite cell 

content or inhibition of anabolic gene programs. These findings underpin future 

investigations of molecular pathways that have not been considered in the context of 

concurrent training adaptations. 

 

Keywords: Concurrent exercise training, resistance training, endurance training, 

skeletal muscle, satellite cells, myogenesis, transcriptome 
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“Strength does not come from winning. Your struggles develop your strengths. When 

you go through hardships and decide not to surrender, that is strength.” 

 
 

Arnold Schwarzenegger, bodybuilder, actor, and philosopher (1947– ) 
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CHAPTER 1 
 
  INTRODUCTION AND OVERVIEW 

 
 
 

 

This chapter has been adapted from the following published review: 

 

 

Baubak Shamim, John A. Hawley, and Donny M. Camera. Protein Availability and 

Satellite Cell Dynamics in Skeletal Muscle. Sports Medicine. Sports Medicine. 2018 

Jun;48(6):1329-1343.  
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1.1 Introduction 

 Skeletal muscle is a remarkably plastic tissue that is capable of altering its 

morphological and metabolic characteristics in response to perturbations to cellular 

homeostasis. The phenotypic flexibility of skeletal muscle observed in response to 

exercise training involves the transduction of a multitude of mechanical and chemical 

stimuli through cell signalling cascades that alter gene expression, protein content, and 

enzyme activity (Egan & Zierath, 2013). The nature and magnitude of these changes 

are specific to the frequency, intensity, volume, and type of metabolic demands placed 

upon the muscle during exercise (Baar, 2014a).  

Exercise can broadly be classified as either ‘strength-based’ resistance training 

or ‘aerobic-based’ endurance training. Resistance-type exercise (e.g., weightlifting) 

promotes skeletal muscle hypertrophy, and increases strength, and anaerobic power 

(McDonagh & Davies, 1984a). Conversely, endurance-type exercise (e.g., cycling) 

promotes an oxidative phenotype through mitochondrial biogenesis, increasing 

maximal oxygen uptake and improving metabolic flexibility (Holloszy & Coyle, 1984). 

Though these adaptations are distinct, the fundamental basis of the adaptive process is 

similar between the different modes of exercise. Skeletal muscle contractions during a 

single bout of exercise stimulate signalling cascades that function to activate or inhibit 

numerous proteins through post-translational modifications. These signals are 

transmitted to the nucleus and converge upon transcription factors to initiate the rapid 

replication of specific deoxyribonucleic acid (DNA) gene sequences, enabling the 

transcription of messenger ribonucleic acids (mRNA). In concert, signals are relayed to 

ribosomes and translational regulatory proteins to facilitate translation of mRNAs into 

polypeptides to create new proteins (Perry et al., 2010). Thus, when exercise bouts are 

repeated over time, the cumulative transcriptional and translational responses to each 
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bout of exercise results in functional adaptations that defend against future disturbances 

to homeostasis, ultimately improving physical capacity. 

 Many sports require a combination of strength and endurance adaptations to 

improve athletic performance (Nader, 2006). Furthermore, a combination of resistance-

based and endurance-based exercise training is prescribed as a strategy to combat 

numerous diseases and improve longevity (Ruiz et al., 2008; Pedersen & Saltin, 2015). 

As such, training programs often incorporate both modes of exercise, which is referred 

to as concurrent training. Concurrent training amplifies endurance capacity (Hickson et 

al., 1988), but reduces the ability to develop muscular strength (Hickson, 1980) (Figure 

1.1). The inhibition of resistance-based adaptations resulting from concurrent training 

has been termed the ‘interference effect’ and has been a topic of considerable debate 

(Nader, 2006; Wilson et al., 2012; Hamilton & Philp, 2013; Baar, 2014a; Fyfe et al., 

2014; Perez-Schindler et al., 2015; Varela-Sanz et al., 2016; Murach & Bagley, 2016; 

Coffey & Hawley, 2017; Doma et al., 2017; Fyfe & Loenneke, 2017; Eddens et al., 

2018; Berryman et al., 2018; Hughes et al., 2018).  
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Figure 1.1 The concurrent training ‘interference effect’ to strength gains (reprinted from 

(Hickson, 1980), with permission). The figure depicts weekly change to one-repetition 

maximum squat in participants over 10 wk of resistance training alone (S), endurance training 

alone (E), or concurrent resistance and endurance training (S+E).  

 

 Since the seminal findings of Dr. Robert Hickson published in 1980 (Hickson, 

1980), the results of numerous studies have demonstrated an interference in the 

development of hypertrophy, strength, and power with concurrent training compared to 

when resistance training is undertaken in isolation (Craig et al., 1991; Hennessy & 

Watson, 1994; Kraemer et al., 1995; Dolezal & Potteiger, 1998; Bell et al., 2000; 

Häkkinen et al., 2003; Wilson et al., 2012; Mikkola et al., 2012; Fyfe et al., 2016a; 

Terzis et al., 2016; Tomiya et al., 2017; Fyfe et al., 2018). Others, however, have failed 

to replicate these findings (Sale et al., 1990; de Souza et al., 2013; Lundberg et al., 

2013, 2014; Kazior et al., 2016; Laird et al., 2016; Ferrari et al., 2016; Villareal et al., 

2017; Petré et al., 2018). Still, the mechanism(s) underlying the ‘interference effect’ 

remain to be elucidated.  
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1.2 Adaptations to resistance exercise training 

Resistance exercise is characterised by intermittent, near-maximal contractions 

against an external load that presents significant tensile challenges to the working 

muscle and surrounding structures, with the aim of improving cross-sectional area 

(CSA), tissue tolerance to load, and maximal force output (McDonagh & Davies, 

1984a). It was assumed that the initial increases in strength following progressive 

resistance exercise were predominantly due to motor learning (i.e., muscle activation 

level) (Lorme & Watkins, 1951), with muscle hypertrophy occurring only after 3-5 

weeks (wk) of training (Moritani & deVries, 1979). However, recent evidence has 

suggested that morphological changes also contribute to early resistance exercise-

induced strength gains (Brook et al., 2015). Using a unilateral resistance exercise 

training program, previously untrained young, healthy males undertook six wk of 

resistance training. Following only three wk of training, increases in muscle thickness, 

pennation angle, and fascicle length of the vastus lateralis were evident along with 

improvements in one-repetition maximum (1RM) and isometric maximum voluntary 

contraction (MVC) (Brook et al., 2015). Accordingly, strength gains in response to 

resistance exercise training are a product of adaptations to both morphological and 

neural factors.  

 

1.2.1 Molecular basis of resistance exercise training adaptations 

In response to resistance exercise, rates of muscle protein synthesis (MPS) are 

elevated above basal levels for up to 48 h (Phillips et al., 1997). When resistance 

exercise-induced elevations in MPS exceed muscle protein breakdown (MPB) over 

several weeks/months, there is an accretion of myofibrillar proteins resulting in muscle 

hypertrophy (Moore et al., 2009b; Wilkinson et al., 2014). Initiation of MPS begins 



 

 6 

with heightened translational signalling, which is predominantly controlled by 

activation of the serine (Ser)/threonine (Thr) protein kinase, mechanistic/mammalian 

target of rapamycin, mTOR (Bodine et al., 2001). mTOR exists within two complexes: 

complex 1 (mTORC1) and complex 2 (mTORC2). Though both complexes share the 

catalytic mTOR subunit, only mTORC1 contains the regulatory-associated protein of 

mTOR (raptor), which identifies substrates for mTORC1 by binding to target of 

rapamycin (TOR) signalling motifs on downstream targets such as the translational 

mediators, 70-kDa ribosomal protein S6 kinase 1 (p70S6K1) and eukaryotic initiation 

factor 4E (eIF4E) binding protein 1 (4E-BP1) (Schalm & Blenis, 2002). These proteins 

mediate the assembly of the translation preinitiation complex in order to foster efficient 

protein synthesis (Holz et al., 2005). Additionally, mTORC1 contains the inhibitory 

proline-rich Akt substrate of 40 kDa (PRAS40), which is dissociated from raptor 

through direct Akt/protein kinase B (PKB)-mediated phosphorylation (Sancak et al., 

2007). These features allow mTORC1 to integrate inputs from intra- and extracellular 

cues, such as growth factors, amino acids, energy levels, stress, and oxygen, to 

orchestrate protein synthesis or autophagy (Laplante & Sabatini, 2012) (Figure 1.2).  
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Figure 1.2 Intra- and extracellular inputs converging upon mechanistic/mammalian target of 

rapamycin complex 1 (mTORC1) that result in activation or inhibition. 

 

Many of the signals that affect mTORC1 function converge on the upstream 

regulator tuberous sclerosis complex 1/2 (TSC1/2), which consists of the heterodimer 

tuberous sclerosis 1 (TSC1) and tuberous sclerosis 2 (TSC2), and Tre2-Bub2-Cdc16 

(TBC) 1 domain family, member 7 (TBC1D7) subunit (Dibble et al., 2012) (Figure 

1.3). Mechanical loading in the form of resistance exercise stimulates phosphorylation 

of TSC2, resulting in mTORC1 activation (Jacobs et al., 2013). Notably, the degree of 

load-induced phosphorylation of the downstream mTORC1 substrates p70S6K1 (Baar 

& Esser, 1999; Terzis et al., 2008) and 4E-BP1 (Mitchell et al., 2014) is closely 

correlated to skeletal muscle hypertrophy.  
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Figure 1.3 Mechanical load-induced mechanistic/mammalian target of rapamycin complex 1 

(mTORC1) activation in skeletal muscle. The upstream regulator tuberous sclerosis TSC2 

negatively regulates mTORC1 by acting as a guanosine triphosphate hydrolase (GTPase)-

activating protein (GAP) for the Ras homolog enriched in brain (Rheb) GTPase. This converts 

Rheb into its inactive guanosine diphosphate (GDP)-bound state, and prevents it binding to the 

mTOR kinase domain and activating the complex (Inoki et al., 2003a; Tee et al., 2003). 

Conversely, mechanical loading, in the form of resistance exercise stimulates phosphorylation 

of TSC2, resulting in movement of TSC2 away from Rheb allowing mTORC1 activation 

(Jacobs et al., 2013). Subsequently, protein translation is initiated by the downstream mTORC1 

substrates, p70S6K1 (Baar & Esser, 1999; Terzis et al., 2008) and 4E-BP1 (Mitchell et al., 

2014), resulting in increased muscle protein synthesis. Arrows denote signalling event. Pi 

denotes phosphorylation. 
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Administration of the macrolide drug, rapamycin, abolishes acute increases in 

MPS following resistance exercise (Drummond et al., 2009), indicating that the initial 

surge in translational activity following exercise is mTORC1-dependent. However, 

several mTORC1-independent mechanisms can also stimulate MPS (West et al., 2016) 

(Figure 1.4). In this regard, changes in myofibre CSA following eight wk of training 

are positively correlated with increased expression of ribosomal RNA (rRNA) and 

activation of ribosome biogenesis regulatory factors (e.g. UBF and transcription 

initiation factor-1A (TIF-1A)) (Figueiredo et al., 2015). In support of this premise, it 

has been demonstrated that the magnitude of hypertrophy following four wk of 

resistance training is related to c-Myc protein content (Stec et al., 2016). Collectively, 

it appears that translational capacity, in addition to translational activity, is an important 

mediator of resistance-training induced hypertrophy. Nevertheless, skeletal muscle 

hypertrophy is an intricately regulated process and requires several multifaceted events 

in order to occur. Thus, the degree of hypertrophy over a training regime cannot simply 

be interpreted by acute post-exercise elevations in MPS or intramuscular signalling 

alone (Mitchell et al., 2014; Nader et al., 2014; Fyfe et al., 2016b). Accordingly, using 

advanced high-throughput techniques, such as RNA sequencing, to delineate additional 

mechanisms contributing to MPS may be necessary to appreciate the complexity of 

factors regulating exercise-induced hypertrophy.  
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Figure 1.4 Activation of muscle protein synthesis (MPS) through mechanistic/mammalian 

target of rapamycin complex 1 (mTORC1)-independent pathways in skeletal muscle. Several 

mTORC1-independent mechanisms, such as activation of translation elongation family 

member, eukaryotic elongation factor 2 (eEF2) and regulators of ribosome biogenesis (e.g. 

upstream binding factor (UBF) and c-Myc) can also stimulate MPS following mechanical 

loading in skeletal muscle (West et al., 2016). Arrows denote signalling event. Pi denotes 

phosphorylation. 

 

1.2.2 Neuromuscular basis of resistance exercise training adaptations 

While it is well recognised that lean body mass (LBM) and skeletal muscle CSA 

positively correlate with maximal strength (Maughan et al., 1983), strength is not 

predictive of muscle CSA (Maughan et al., 1983). This seemingly paradoxical 

relationship is likely due to the many neural factors that are involved in the development 

of strength gains in response to resistance exercise training, such as appropriate motor 
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unit recruitment (Sale, 1987, 1988) and movement specificity (Dankel et al., 2017). 

Based on Henneman’s size principle of motor unit recruitment, motor neurons, and the 

myofibres they innervate, are sequentially recruited according to size and the amount 

of force generation required (Henneman et al., 1965). Thus, performing an isometric 

contraction at a submaximal intensity (e.g., 20% of MVC) will recruit less muscle than 

a near maximal contraction (e.g., 80% of MVC) (Alkner et al., 2000). However, when 

performing numerous repetitive submaximal contractions to fatigue, such as those 

performed over multiple sets of moderate intensity resistance exercise, additional 

larger, higher-threshold motor units are recruited to support force production 

(Fuglevand et al., 1993; Conwit et al., 2000). In this manner, near maximal motor unit 

recruitment can be achieved when using submaximal loads (Fallentin et al., 1993).  

Although training to volitional failure with lower percentages of 1RM loads 

may incrementally recruit additional motor units and elicit similar degrees of muscle 

hypertrophy as higher percentages of 1RM, superior improvements in strength and rate 

of torque development have been observed when training with higher percentages of 

1RM (Mitchell et al., 2012; Ogasawara et al., 2013; Schoenfeld et al., 2015; Jenkins et 

al., 2015, 2016b, 2016a). Furthermore, equivalent changes in 1RM strength and surface 

electromyogram (EMG) amplitude have been observed following eight wk of low 

volume, high load (~1RM) compared to high volume, moderate load (~8-12RM) 

resistance training (Mattocks et al., 2017). These changes occurred in the absence of 

muscle hypertrophy, indicating that peak motor unit recruitment and training-induced 

changes in muscle size alone are not required for increases in muscle strength. 

However, the rate of torque development appears to correlate with and explain up to 

~80% of the variance in MVC (Andersen & Aagaard, 2006), suggesting that 



 

 12 

adaptations to time-dependent contractile properties may effect maximal strength 

output more than changes in muscle CSA.  

In summary, resistance-based exercise activates mTORC1-dependent and 

independent signalling pathways that increase rates of MPS. When resistance exercise 

training is repeated over weeks/months, muscle hypertrophy occurs as a result of a net-

positive balance between rates of MPS and MPB, which is largely attributable to the 

accrual of myofibrillar proteins within the sarcomere. Manipulating training variables 

such as total work volume (Terzis et al., 2010; Burd et al., 2010b, 2010a) and between-

set rest interval (McKendry et al., 2016) alters the magnitude of downstream mTORC1 

signalling, which may promote hypertrophic responses. Additionally, resistance 

training promotes strength gains, which rely not only on muscle hypertrophy, but also 

neural adaptations that coordinate the rate of motor unit recruitment to generate force. 

Thus, while repeated contractions against submaximal loads can develop substantial 

strength, training with loads closer to an individual’s 1RM appears to produce greater 

strength gains and may be necessary to maximise neural adaptations. Therefore, when 

designing resistance exercise training programs, training variables such as intensity, 

volume, time under tension, and inter-set rest interval must be strategically, and 

specifically, manipulated to maximise muscle strength and hypertrophy. 

 

1.3 Adaptations to endurance exercise training 

Endurance exercise is typically characterised by prolonged, continuous or 

repeated bouts of submaximal contractions that present significant cellular 

perturbations within the working muscle, with the overall aim of improving substrate 

delivery, economy of motion, oxygen uptake (VO2) and lactate threshold (Holloszy & 

Booth, 1976; Holloszy & Coyle, 1984). These adaptations are primarily a product of a 
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preferential post-exercise increase in mitochondrial protein synthesis (Wilkinson et al., 

2008), and appear to be regulated, in large part, by the transcriptional coactivator, 

peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) (Wu 

et al., 1999). Immediately after endurance exercise, PGC-1α is activated and binds to 

nuclear respiratory factor 1 (NRF-1) and 2 (NRF-2) to facilitate mitochondrial 

biogenesis (Baar et al., 2002; Pilegaard et al., 2003), and further stimulate its own 

transcription through an autoregulatory loop (Handschin et al., 2003).  

 

1.3.1 Molecular basis of endurance exercise training adaptations 

PGC-1α exists in several isoforms, which are transcriptionally regulated 

through multiple tissue-specific promoter regions (Chinsomboon et al., 2009). Whereas 

the canonical promoter is ubiquitously active and gives rise to PGC-1α1, a distinct 

alternative promoter in skeletal muscle gives rise to PGC-1α2 and is largely activated 

after endurance exercise in rodents (Baar et al., 2002; Chinsomboon et al., 2009) and 

humans (Norrbom et al., 2011). Briefly, the alternative promoter consists of a 3',5'-

cyclic adenosine monophosphate (cAMP) response element (CRE), two myocyte 

enhancing factor 2 (MEF2) binding sites (Akimoto et al., 2004), and an enhancer box 

(Ebox) (Irrcher et al., 2009), which allows for transcriptional control of PGC-1α2 by a 

number of exercise-induced stimuli including energy stress, calcium, and reactive 

oxygen species (ROS) (Baar, 2014b) (Figure 1.5). 
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Figure 1.5 (p. 14) Endurance exercise-induced signalling cascades leading to enhanced 

oxidative capacity in skeletal muscle. During endurance exercise, the high frequency of 

muscular contractions results in fluxes in intracellular calcium ion (Ca2+) concentrations, which 

activates Ca2+/Calmodulin-dependent protein kinase II (CaMKII). When activated, CaMKII 

signalling activates MEF2 and CRE to promote proliferator-activated receptor gamma 

coactivator 1 alpha (PGC-1α) 2 (PGC-1α2) gene expression and subsequently mitochondrial 

biogenesis (Wu et al., 2002). The accumulation of reactive oxygen species (ROS) produced by 

mitochondria and other metabolic enzymes during endurance exercise can also increase PGC-

1α2 gene expression (Irrcher et al., 2009). As adenosine triphosphate (ATP) is broken down to 

facilitate the metabolic demands of endurance exercise, a decrease in the energy charge of the 

cell (ADP/AMP:ATP) activates the 5’ adenosine monophosphate-activated protein kinase 

(AMPK) (Oakhill et al., 2011). When activated, AMPK directly phosphorylates PGC-1α 

thereby increasing PGC-1α-dependent induction of the PGC-1α promoter (Jäger et al., 2007). 

As the intensity of endurance exercise increases, glycogen utilisation increases, which 

stimulates further PGC-1α phosphorylation through AMPK (Philp et al., 2013) and p38 

mitogen-activated protein kinase (p38 MAPK) (Puigserver et al., 2001). The tumour suppressor 

protein p53 also regulates mitochondrial function and biogenesis by increasing mitochondrial 

transcription factor A (Tfam) mRNA and protein expression as well as mitochondrial DNA 

(mtDNA) content independently of PGC-1α (Park et al., 2009). Arrows denote signalling event. 

Pi denotes phosphorylation.  
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In skeletal muscle, Ca2+/Calmodulin-dependent protein kinase II (CaMKII) is 

rapidly activated by fluxes in intracellular calcium ion (Ca2+) concentrations in an 

intensity-dependent manner and this activation is largely sustained during continuous 

exercise (Rose et al., 2006). When activated, CaMKII signalling activates MEF2 and 

CRE to promote PGC-1α2 gene expression and mitochondrial biogenesis (Wu et al., 

2002). In addition, ROS accumulation during endurance exercise stimulates binding of 

the transcription factor upstream stimulatory factor 1 (USF-1) to the Ebox site within 

the alternate promoter to increase PGC-1α2 gene expression (Irrcher et al., 2009).  

Posttranslational regulation of PGC-1α2 activity is modulated by 

phosphorylation and acetylation, through interactions with 5’ adenosine 

monophosphate-activated protein kinase (AMPK) (Jäger et al., 2007), p38 mitogen-

activated protein kinase (p38 MAPK) (Puigserver et al., 2001), and acetyltransferases  

Endurance exercise also reduces the interaction between PGC-1α and the histone 

acetyltransferase GCN5, resulting in deacetylation of PGC-1α further promoting 

mitochondrial biogenesis (Philp et al., 2011). 

Previous reports indicate that p53Ser15 is a downstream substrate of both AMPK 

(Jones et al., 2005) and p38 (She et al., 2001). Acute muscle contractions in mice 

mimicking endurance exercise stimulates p53 phosphorylation in concert with 

increased activation of AMPK and p38 (Saleem et al., 2009). Following endurance 

exercise in p53 knockout (KO) mice, mitochondrial transcription factor A (Tfam) 

mRNA and protein expression as well as mitochondrial DNA (mtDNA) content was 

significantly lower compared to exercised wild type (WT) mice (Park et al., 2009). 

Notably, the KO mice displayed no difference in the expression of PGC-1α, NRF-1, or 

NRF-2 compared to WT mice (Park et al., 2009), suggesting the actions of p53 on 

mitochondrial biogenesis are independent of PGC-1α, and rely on modulating Tfam to 
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regulate mtDNA transcription. In turn, the increased transcription of mtDNA-encoded 

proteins may assist in coordinating structural changes, such as those arising during 

fusion and fission, which alter mitochondrial morphology and quality (Youle & van der 

Bliek, 2012). However, KO of p53 does not inhibit mitochondrial biogenesis following 

~6-8 wk of voluntary wheel running in mice (Saleem et al., 2009), indicating that p53 

signalling likely works in parallel with other mechanisms. 

Endurance exercise-induced mitochondrial biogenesis is affected by the 

intensity of exercise (Burgomaster et al., 2005, 2008; Gibala et al., 2006; Egan et al., 

2010), as well as nutrient availability during exercise (Psilander et al., 2012; Lane et 

al., 2015). While performing moderate-intensity, continuous training (MICT) results in 

improvements in oxidative capacity (Holloszy & Booth, 1976; Holloszy & Coyle, 

1984), high-intensity interval training (HIIT) appears to result in similar adaptations as 

MICT when the same (Bartlett et al., 2012; Fyfe et al., 2016a) or less (Gibala et al., 

2006; Burgomaster et al., 2008) absolute volume of work is performed. Furthermore, 

performing six sessions of HIIT over 2 wk elicits a greater increase in mitochondrial 

content compared to MICT when work matched (MacInnis et al., 2016). As the 

molecular pathways associated with aerobic adaptations are sensitive to energy stress, 

exercising at higher intensities induces large metabolic perturbations that activate 

signalling cascades that converge on PGC-1α to facilitate mitochondrial biogenesis 

(Fiorenza et al., 2018).  

In summary, endurance exercise improves oxidative capacity through enhanced 

mitochondrial biogenesis. At the molecular level, a number of cellular pathways exist 

which converge on PGC-1α and p53 to promote mitochondrial biogenesis. Given that 

mitochondrial associated pathways are sensitive to cellular energy stress, manipulating 

the intensity of endurance exercise can influence the degree to which these pathways 
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are activated, along with the magnitude of subsequent gene expression. Accordingly, 

when designing endurance training programs, factors such as intensity and duration of 

training sessions need to be taken into consideration to ensure a sufficient metabolic 

stress is introduced to maximally stimulate mitochondrial biogenesis.  

 

1.4 Adaptations to concurrent exercise training 

 In 1980, Dr. Robert Hickson examined the specificity of training adaptations to 

concurrent training versus isolated resistance and endurance training. After 10 wk of 

concurrent, heavy resistance and high-intensity endurance training, improvements in 

1RM strength were attenuated in individuals undertaking concurrent training versus 

those undertaking only resistance training (Hickson, 1980). From these findings, It was 

concluded that endurance exercise undertaken in the same training regimen as 

resistance exercise ‘interferes’ with maximal gains in strength compared to resistance 

training alone (Hickson, 1980). This phenomenon has since been termed the 

‘interference effect’ of concurrent training and has been a topic of considerable debate. 

While the disparate findings mentioned previously may be attributed to divergent 

variables between studies such as the volume, frequency, and intensity of training, as 

well as the duration of interventions, training status of participants, and modes of 

exercise being employed (Coffey & Hawley, 2017), the underlying mechanism(s) of 

the ‘interference effect’ have, to date, remained elusive.  
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1.4.1 The ‘molecular interference’ theory 

 It has recently been hypothesised that the interference effect is a product of 

antagonistic molecular signalling events that manifest from divergent exercise stimuli 

(Nader, 2006; Hawley, 2009; Hamilton & Philp, 2013; Baar, 2014a; Perez-Schindler et 

al., 2015; Coffey & Hawley, 2017). The basis for this theory revolves around the 

interaction between two key intracellular signalling mediators: mTORC1 and AMPK 

(Figure 1.6).  
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Figure 1.6 Proposed mechanism by which the activity of mechanistic/mammalian target of 

rapamycin complex 1 (mTORC1) is suppressed by 5’ adenosine monophosphate-activated 

protein kinase (AMPK) and tuberous sclerosis complex 1/2 (TSC1/2), resulting in the 

‘interference effect’. In response to energy stress or hypoxia, AMPK phosphorylates tuberous 

sclerosis complex 2 (TSC2) and enhances its GTPase-activating protein (GAP) activity upon 

Rheb, causing mTORC1 inhibition (Inoki et al., 2003b). Additionally, AMPK is able to directly 

phosphorylate raptorSer722 and raptorSer792 residues, which induces 14-3-3 protein binding and 

allosteric inhibition of mTORC1 (Gwinn et al., 2008). Consequently, AMPK activation 

suppresses translational initiation and muscle protein synthesis (MPS) (Bolster et al., 2002). 

Accordingly, phosphorylation of AMPKThr172 is negatively correlated with overload-induced 

myofibre hypertrophy (Thomson & Gordon, 2005) and may underlie the ‘interference effect’. 

Arrows denote signalling event. Pi denotes phosphorylation. 
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To identify the specific signalling events induced by resistance and endurance 

training, Atherton and colleagues (2005) electrically stimulated excised rat muscles at 

high (60 × 3 s, 100 Hz) or low frequencies (3 h, 10 Hz) to mimic resistance and 

endurance exercise, respectively. The results demonstrated that stimulations resembling 

resistance exercise exclusively induced activation of the protein kinase B (PKB)-TSC2-

mTOR signalling cascade and its downstream translational regulators. Conversely, 

stimulations mimicking endurance exercise selectively activated AMPK-PGC-1α 

signalling and suppressed downstream regulators of translation initiation and 

elongation. Based on these observations, the authors proposed the existence of an 

‘AMPK-PKB switch’ that acts as a mechanism to mediate the specificity of training 

adaptations (Atherton et al., 2005). Indeed, in vivo treatment with the AMPK activator 

5-aminoimidazole-4-carboxamide-1-4-ribofuranoside (AICAR) prior to resistance 

exercise attenuates downstream mTORC1 signalling to p70S6K1, 4E-BP1, and eEF2 

in rodent muscle (Thomson et al., 2008), suggesting simultaneous activation of the 

AMPK and mTORC1 signalling cascades is incompatible. 

Since the phosphorylation of mTORC1 substrates following resistance exercise 

is associated with skeletal muscle hypertrophy (Baar & Esser, 1999; Terzis et al., 2008) 

and AMPK is activated in response to endurance exercise (Winder & Hardie, 1996), it 

seems plausible to suggest that the reductions in hypertrophy, and associated strength 

adaptations observed after concurrent training may be explained through a mechanism 

involving interactions between mTORC1 and AMPK. However, attenuations in 

translation initiation signalling (using p70S6K1Thr389 as a proxy) have been observed 

when high-intensity cycling is performed either prior to, or following resistance 

exercise (Coffey et al., 2009a) despite no differences in AMPKThr172, TSC2Thr1462, and 

mTORSer2448 phosphorylation. While AMPKThr172 phosphorylation is correlated to 
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AMPKα2 catalytic subunit activity (Park et al., 2002), it does not appear to be an 

accurate surrogate for AMPK kinase activity (Chen et al., 2003). Additionally, 

TSC2Thr1462 is a downstream target of Akt (Manning et al., 2002) whereas TSC2Ser1345 

and TSC2Ser1387 are AMPK phosphorylation motifs (Inoki et al., 2003b). Furthermore, 

AMPK can also directly phosphorylate mTORThr2446 preventing Akt/PKB 

phosphorylation of mTORSer2448 (Cheng et al., 2004). Given the similar 

phosphorylation pattern of mTORC1 and AMPK regardless of contraction mode 

(Coffey et al., 2009a), these observations suggest that acute signalling responses, alone, 

can not fully explain the ‘interference effect’.  

In contrast to the observations of Coffey and colleagues (2009a), resistance 

exercise alone has been shown to simultaneously induces both AMPKα2 activity and 

mTORSer2448 phosphorylation, without inhibiting MPS 1 h post-exercise (Dreyer et al., 

2006). Similarly, a single bout of high-intensity cycling results in phosphorylation of 

mTORSer2448 and downstream signalling to regulators of translation initiation, p70S6K1 

and 4E-BP1, and elongation, eEF2, despite TSC2Ser1387 phosphorylation and an absence 

of AktSer473 phosphorylation (Apró et al., 2015). When the cycling was followed 

immediately by resistance exercise, no inhibitory effects of AMPKα2 activity were 

observed on mTORC1 signalling, p70S6K1 kinase activity, or MPS compared to 

resistance exercise performed in isolation (Apró et al., 2015). Thus, it appears that 

exercise-induced AMPK activity alone does not prohibit activation of mTORC1, 

suggesting that other molecular signals contribute to the inhibition of anabolic 

signalling following concurrent exercise. While the underlying molecular pathways 

mediating the specificity of training adaptations are undoubtedly complex, further work 

is required to evaluate a wider scope of potential molecular mechanisms involved in 

the ‘interference effect’. 
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1.4.2 The ‘acute fatigue’ hypothesis 

An alternative hypothesis to explain the ‘interference effect’ focuses on residual 

muscular fatigue from endurance exercise performed prior to resistance exercise, 

referred to as the ‘acute fatigue hypothesis’ (Craig et al., 1991). Due to residual fatigue 

from endurance exercise, the amount and intensity of work that can be performed in a 

subsequent resistance exercise session is decreased, resulting in compromised strength 

adaptations (Craig et al., 1991; Leveritt & Abernethy, 1999) (Figure 1.7).  

 

 

Figure 1.7 Proposed mechanism by which residual fatigue accumulated during concurrent 

training causes resistance training to be performed at suboptimal power and work levels, 

resulting in the ‘interference effect’. 
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Previous work has demonstrated that 10 wk of concurrent training results in 

similar increases in lean body mass (LBM), but not strength, as resistance training alone 

(Craig et al., 1991). Despite observing similar increases in LBM, the authors proposed 

that residual fatigue from the additional volume of work performed during the 

endurance component of concurrent training may compromise the work completed 

during strength training, resulting in less stimulus to the working muscles and reduced 

strength gains. Likewise, residual fatigue also appears to compromise peak power 

output following concurrent training. Using a five wk unilateral training program, 

Lundberg and colleagues (2014) demonstrated that endurance exercise immediately 

preceding a bout of resistance exercise compromises peak power. In this model, one 

leg completed 45 min of single-legged cycling, followed by 15 min of rest and a bout 

of resistance exercise comprising four sets of seven maximal knee extensions. The 

contralateral leg was subjected only to an identical bout of resistance exercise. In the 

leg that completed the preceding bout of endurance cycling, peak power during 

resistance exercise was ~20% lower (Lundberg et al., 2014). Despite the leg that 

undertook concurrent training exhibiting greater changes in magnetic resonance 

imaging-derived muscle volume and similar increases in MVC compared to the 

resistance training only leg, peak concentric torque was compromised (Lundberg et al., 

2014).  

These findings suggest that training at lower power outputs may affect 

adaptations to peak power production. In this regard, a ~40 min bout of endurance 

exercise reduces the total work performed during a subsequent bout of resistance 

exercise for up to 8 h (Sporer & Wenger, 2003). However, isokinetic, isometric, and 

isotonic strength does not appear to be affected with recovery periods greater than 8 h 

(Leveritt et al., 2000).  
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Further investigation into the duration of recovery required between concurrent 

training sessions required to maximise adaptations over seven wk of training suggests 

that a minimum of 6 h is needed to achieve similar gains in strength as resistance 

training alone, but up to 24 h is required to achieve similar responses in torque 

production (Robineau et al., 2016). Notably, torque production after severely damaging 

muscle contractions appears to be diminished for up to 96 h post-exercise, despite 

measures of strength recovering by 48 h (Gibala et al., 1995). Moreover, myofibrillar 

disruption to the Z-disc is present for up to 48 h after contraction-induced muscle 

damage (Gibala et al., 1995). The authors also observed signs of fibre regeneration 

associated with areas of myofibrillar damage (Gibala et al., 1995), including ‘satellite-

like’ cells - myogenic precursor cells which assist in myofibre regeneration (Brack & 

Rando, 2012).  

 

1.5 The contribution of satellite sells to skeletal muscle hypertrophy 

The regenerative capacity of skeletal muscle is dependent on an undifferentiated 

niche of myogenic specific precursor cells, referred to as satellite cells. In adult skeletal 

muscle, satellite cells exist in a quiescent state and are located between the sarcolemma 

and basal lamina (Mauro, 1961). Classically, they are activated in response to muscle 

damage, such as mechanical stress caused by exercise (Crameri et al., 2004; Dreyer et 

al., 2006; Babcock et al., 2012; Joanisse et al., 2013; Snijders et al., 2014a; Farup et 

al., 2014a). Once activated, satellite cells proliferate and differentiate in order to 

contribute to the repair of existing muscle fibres through the formation of new 

myonuclei, a process known as myogenesis (Blaauw & Reggiani, 2014). In turn, the 

addition of new myonuclei increases the transcriptional capacity of the fibre to support 

further hypertrophy (Figure 1.8).  
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Figure 1.8 Schematic of myogenesis assisted hypertrophy in response to exercise-induced 

mechanical stress in myofibres. In adult skeletal muscle, satellite cells exist in a quiescent state 

at rest. Following mechanical stress (such as exercise), satellite cells transition into an active 

state. Upon activation, satellite cells can either proliferate to increase the contents of the satellite 

cell pool, or return to quiescence. Following proliferation, satellite cells may continue along the 

path of myogenic commitment and differentiate into myoblasts that will fuse with an existing 

myofibre, or return to quiescence to replenish the satellite cell pool. The generation and addition 

of myonuclei, known as myogenesis, is a process that is believed to help support myofibre 

hypertrophy in response to exercise.  
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Evidence for the requirement for satellite cells in supporting overload 

hypertrophy is equivocal. McCarthy and colleagues (McCarthy et al., 2011) 

demonstrated that in a novel mouse strain developed to deplete >90% of satellite cells, 

short-term (two wk) mechanical overload-induced hypertrophy was not blunted 

compared to wild type mice, suggesting satellite cells are not required for load-induced 

hypertrophy. In contrast, results from other investigations show that satellite cell 

depletion effectively attenuates muscle fibre hypertrophy over both short (two wk) 

(Egner et al., 2016) and long-term (eight wk) (Fry et al., 2014a) overload. While the 

notion that satellite cells are required to facilitate muscle growth responses is a topic of 

considerable debate (Petrella et al., 2006, 2008; Verdijk et al., 2009, 2014; Bellamy et 

al., 2014; Dirks et al., 2017; Reidy et al., 2017b; McCarthy et al., 2017; Karlsen et al., 

2015; Murach et al., 2017), current evidence indicates that the presence and activation 

of satellite cells are obligatory for supporting training-induced adaptations.    

 

1.5.1 Satellite cell activity in response to exercise 

In human skeletal muscle, the activation of satellite cells following resistance 

exercise is well established (Kadi et al., 2004; Olsen et al., 2006; Verdijk et al., 2007; 

Petrella et al., 2008; Verdijk et al., 2009; Mackey et al., 2011; Snijders et al., 2012; 

Babcock et al., 2012; Snijders et al., 2014b, 2014a; Fry et al., 2014b; Bellamy et al., 

2014; Farup et al., 2014a; Snijders et al., 2016; Nederveen et al., 2017; Reidy et al., 

2017b). Though less predominant, unaccustomed aerobic training can result in muscle 

hypertrophy, which is accompanied by increases in both satellite cell and myonuclear 

content (Fry et al., 2014b; McKenzie et al., 2016). Furthermore, recent evidence 

suggests a contribution of satellite cells to muscle fibre remodelling in the absence of 

hypertrophy following endurance training (Joanisse et al., 2013, 2015). Notably, 
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satellite cell proliferation has been shown to be impaired following acute concurrent 

exercise in young healthy men (Babcock et al., 2012). In turn, it has been proposed that 

the potential for myofibre hypertrophy in response to chronic concurrent exercise 

training may be limited by satellite cell content (Babcock et al., 2012).  

The activation of satellite cells is influenced by the delivery of growth factors 

to muscle such as insulin-like growth factor-1 (IGF-1), hepatocyte growth factor 

(HGF), and the myokine interleukin 6 (IL-6) (McKay et al., 2008, 2009; Nederveen et 

al., 2016, 2017). Changes to the concentrations of circulating cytokines or growth 

factors can induce satellite cell activation (Conboy et al., 2005; Merritt et al., 2013; 

Corrick et al., 2015; Rodgers et al., 2017). However, information on the effect of 

nutrient delivery, specifically amino acids from dietary protein consumption, on 

satellite cell activation, is lacking. This is surprising considering the numerous studies 

demonstrating the stimulatory effects of protein ingestion on muscle hypertrophy with 

exercise (Cermak et al., 2012; Morton et al., 2018) and the purported roles of satellite 

cells to promote muscle hypertrophy. Given in vitro findings showing that leucine 

availability can promote myocyte proliferation and differentiation (Averous et al., 

2012; Chen et al., 2013; Dai et al., 2015; Duan et al., 2017), dietary protein ingestion 

in conjunction with exercise may provide an additional stimulus to rescue satellite cell 

proliferation following concurrent exercise and promote myofibre hypertrophy. 
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1.5.2 The impact of protein ingestion on satellite cell responses to exercise 

Dietary protein availability is critical for providing amino acids to facilitate 

skeletal muscle repair and regeneration during recovery from exercise. Accordingly, 

adequate protein needs to be consumed to facilitate the synthesis of new proteins during 

the immediate (2-3 h) post-exercise recovery period, which provides the basis for both 

resistance and endurance training-induced adaptations in skeletal muscle (Moore et al., 

2009b; Breen et al., 2011; Camera et al., 2015). Moreover, the addition of new satellite 

cell-derived nuclei through exercise-induced myonuclear turnover is essential to the 

continued contribution of genetic information for protein synthesis (Burd & De Lisio, 

2017). Several interrelated factors including the dose (Moore et al., 2009a), type (Tang 

et al., 2009), timing (Res et al., 2012) and distribution (Morton et al., 2015; Areta et 

al., 2013) of protein ingestion directly impact the anabolic effects of post-exercise 

protein ingestion. An in-depth discussion of these factors is beyond the scope of this 

review and readers are referred to several comprehensive reviews on this topic (Phillips 

& van Loon, 2011; Moore et al., 2014; Phillips, 2016).  

Recently, Rodgers and colleagues (Rodgers et al., 2014) demonstrated that the 

leucine sensitive mTORC1 controls the transition of satellite cells between a quiescent 

and an initial ‘alert’ phase of the cell cycle in mice. This finding is noteworthy as 

subsequent investigations have demonstrated that mTORC1 signalling is rapidly 

activated during skeletal muscle regeneration (Jash et al., 2014) and is not only required 

for the adaptive transition of cell cycle phases, but obligatory for satellite cell 

proliferation, differentiation, and overall skeletal muscle regeneration (Han et al., 2008; 

Zhang et al., 2015). Given the ability of leucine to both activate mTORC1 directly 

(Sancak et al., 2008) and promote proliferation and differentiation in vitro through an 

mTORC1-MyoD cascade (Dai et al., 2015), protein ingestion in conjunction with an 
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appropriate exercise stimulus may provide an additional signal to promote satellite cell 

activation in vivo (Figure 1.9). However, few studies to date have investigated the 

interaction between protein supplementation and satellite cell activity in human skeletal 

muscle. Specifically, whether increased protein availability during a chronic concurrent 

training program can rescue the inhibition of satellite cell activity previously observed 

after a single bout is unknown. Thus, it seems that factors contributing to the time-

course of myofibre repair may deserve further consideration to fully understand the 

‘interference effect’.  
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Figure 1.9 Schematic of the potential mechanistic underpinning for satellite cell stimulation by 

resistance exercise, endurance exercise, and protein ingestion, as well as the expression pattern 

of associated transcription factors based on evidence presented from in vitro and murine 

models. Following a bout of resistance exercise, mechanical stress activates the mechanistic 

target of rapamycin complex 1 (mTORC1), which, in turn, promotes the transition of satellite 

cells from a quiescent state into an active state. Upon activation, satellite cells can either 

continue along the path of myogenic commitment to proliferate into myoblasts, or return to 

quiescence and self–renew to maintain the satellite cell pool. Metabolic stress caused by 

endurance exercise stimulates the activity of the transcriptional coactivator peroxisome 

proliferator–activated receptor–γ coactivator 1α (PGC–1α), which can promote the 

proliferation of satellite cells. Protein/branch chained amino acid (BCAA) supplementation 

may enhance both proliferation and differentiation of satellite cells. Though the mechanisms 

are not fully understood, potential pathways of satellite cell modulation through protein/BCAA 

supplementation have been included as dashed arrows. Myogenic regulatory factor expressions 

are present in higher levels (green) through specific stages and become suppressed (red) as the 

myogenic process advances as depicted by the shift from green to red in representative 

expression bars. Solid black arrows indicate increases/activation of downstream target proteins/ 

processes. 
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1.5.3 A multi-perspective approach to prevent the ‘interference effect’  

Given the complexity of the mechanisms contributing to myofibre repair and 

underlying adaptations to both endurance and resistance exercise training, it seems 

appropriate that a multi-perspective approach is taken in an attempt to avoid the 

‘interference effect’. Theoretical, literature-based practical recommendations to 

prevent or reduce the interference to resistance-based adaptations have been formulated 

around several concurrent training variables (Murach & Bagley, 2016) in order to 

minimise fatigue and any potential antagonistic cell signalling that may influence the 

underlying mechanistic basis for such an effect (Baar, 2014a). However, exploration of 

a broader range of cell signalling pathways through next-generation sequencing 

technology may reveal previously undetected gene expression networks and molecular 

transducers involved in the ‘interference effect’. 

 

1.6 –Omics-based approaches for profiling skeletal muscle responses to exercise 

Advances in biotechnology and computational biology have led to a new era of 

integrative, high-throughput molecular biology. Global approaches of measuring 

families of cellular molecules, such as nucleic acids, proteins, and intermediary 

metabolites, have been termed ‘-omic’ technologies. With these constantly evolving  –

omics-based tools, the ability to characterise and assess most, if not all, of the members 

of a family of molecules or biochemical pathways in a single analysis has resulted in a 

dramatic increase in knowledge about the molecular responses and cross-talk that occur 

following a given stimulus. Through advanced computational methods, known as 

bioinformatics, large-scale biological data sets can be used to generate ‘molecular 

maps’ of complex physiological responses by assimilating known molecular interaction 

networks from in vivo and in vitro data to create predictive in silico models. This pursuit 
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to provide comprehensive computational models of biological systems has led to the 

establishment of multiple international consortia providing publicly available –omics 

data repositories and annotations of functional classification schemes, allowing direct, 

comparable descriptions of homologous traits across phylogenic classes.   

Since mapping the euchromatic sequence of the human genome (International 

Human Genome Sequencing Consortium, 2004), several technological innovations in 

high-throughput nucleic acid sequencing have rapidly increased the rate and 

accessibility of sequencing workflows. Next-generation sequencing (NGS) technology 

has prevailed as a massively paralleled ‘sequencing-by-synthesis’ approach. Early 

‘sequencing-after-synthesis’ technology required fragmentation of DNA segments that 

were separately sequenced and assembled thereafter. For example, Sanger sequencing 

required selective incorporation of 2',3' dideoxynucleotides chain-terminating 

inhibitors of DNA polymerase during replication to create DNA fragments before 

sequencing (Sanger et al., 1977). Similarly, whole genome shotgun sequencing 

required DNA to be broken randomly into numerous smaller DNA fragments, then 

sequencing these small portions of the genome and overlapping ends of target DNA 

segments to assemble a continuous sequence a posteriori (Staden, 1979). In contrast to 

‘sequencing-after-synthesis’ technology, NGS allows the automated sequencing of 

multiple fragments of the entire genome simultaneously (Margulies et al., 2005). 

Briefly, NGS entails monitoring real-time de novo DNA biosynthesis whereby a DNA-

template, bound to a ‘barcoded’ adaptor bead is loaded into a microwell on a 

microfabricated reactor flow cell (‘chip’). Next, sequential and repetitive emulsions of 

the four nucleotide bases, adenine, guanine, cytosine, and thymine are run over the chip, 

and DNA complementary to template strands are synthesised by polymerase chain 

reaction. As polymerisation occurs, a detector senses either light-emitting reactions in 
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the presence of fluorescently labelled nucleotides, or changes in pH by the release of 

hydrogen ions during the formation of covalent bonds as a deoxyribonucleoside 

triphosphate (dNTP) is incorporated into the DNA strand.  

Recently, emphasis has shifted to better understanding the functional genome 

and considerable focus has been directed towards gene products, specifically 

ribonucleic acid (RNA) species. Prior to NGS, wide-scale gene expression studies 

relied on hybridisation-based microarrays that required an a priori knowledge of 

predetermined sequences. Transcriptomics, the analysis of RNA transcripts, has turned 

to NGS-based methods, such as RNA sequencing (RNA-Seq), to interrogate sequences 

with a non-biased approach. This gives researchers the ability to record alternative 

splicing events, post-transcriptional modifications, and non-coding transcripts. As 

RNA-Seq is based on NGS, it requires the reverse transcription of RNA to 

complementary DNA (cDNA) prior to sequencing. The arising sequence features can 

then be aligned to the sequence of a reference genome to reconstruct which genomic 

regions were being transcribed and annotate which genes are being expressed. In this 

manner, measuring genome-wide gene expression (i.e., mRNA) is possible and has 

become a popular tool in characterizing skeletal muscle responses to exercise 

(Timmons et al., 2006, 2010; Keller et al., 2010; Timmons, 2011; Rowlands et al., 

2011; Phillips et al., 2013; Thalacker-Mercer et al., 2013; Ghosh et al., 2013; Lundberg 

et al., 2016; Robinson et al., 2017; Laker et al., 2017; Timmons et al., 2018a; Damas 

et al., 2018b; Popov et al., 2019; Agudelo et al., 2019). An example workflow for 

implementing RNA-Seq technology into a clinical exercise investigation is shown in 

Figure 1.10. 



 

 35 

 

Figure 1.10 Workflow of study employing RNA sequencing technology.  
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Any observable phenotype is the final product of genes interacting with 

environmental/epigenetic stimuli that give rise to intermediate RNA species, which 

subsequently instigates an alteration to the level, localization, and activity of proteins. 

On this basis, phosphoproteomics – the quantitative study of global protein 

phosphorylation – has recently been employed to provide a direct representation of the 

signalling events mediating exercise adaptations (Hoffman et al., 2015; Potts et al., 

2017). Technological demands and complexity aside, proteomics is not without 

limitations and interpretation of the results requires the careful consideration of several 

caveats. First, turnover of many cellular proteins occur in less than two days, and a large 

proportion of the proteome has half-lives relatively close to this timeframe (Cambridge 

et al., 2011). Moreover, proteins with known or predicted phosphorylation sites have 

significantly higher rates of turnover compared to proteins without such sites 

(Cambridge et al., 2011). Likewise, only a small amount of kinase phosphorylation is 

needed to stimulate protein synthesis (Crozier et al., 2005). Thus, in the absence of 

direct evidence for physiological adaptations to repeated bouts of training, interpreting 

the degree to which acute proteome-wide phosphorylation events align with exercise 

training-induced phenotypes is limited (Hoffman et al., 2015; Potts et al., 2017).  

Given observations that divergent exercise modes can produce similar AMPK 

and mTORC1 signalling patterns (Dreyer et al., 2006; Camera et al., 2010; Apró et al., 

2015), assigning their seemingly equivocal, acute activity to discrete phenotypes is 

likely to be too simplistic of an approach to appreciate training adaptations. Recent 

evidence demonstrates that altered transcription levels of genes associated with 

mitochondrial (Egan et al., 2013), myogenic (Andersen & Gruschy‐Knudsen, 2018), 

and structural (Karlsen et al., 2019) proteins can be detected up to 96 h post-exercise. 

Despite poor correlations between steady-state protein and mRNA levels, a high 
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correlation exists between changes in transcript levels and protein in response to a 

stimulus, albeit with a proportionality compressed response at the level of the proteome 

compared to transcriptome (Bonaldi et al., 2008). Thus, examination of the 

transcriptome may reveal previously overlooked clues about latent, functional 

biological processes that are more reflective of the phenotypes associated with 

structural and metabolic alterations accompanying training disciplines. For this reason, 

it has been suggested that examining contraction-induced gene expression networks 

may identify unique ‘molecular signatures’ underlying physiological adaptations to 

different modes of exercise training (Timmons, 2011).  

 

1.6.1 Skeletal muscle transcriptomic responses to concurrent exercise 

Both resistance (Damas et al., 2018b) and endurance-based (Keller et al., 2010) 

exercise have pronounced effects on transcriptome-wide gene expression, which may 

ultimately determine training adaptation (Timmons et al., 2010). To date, only two 

studies have characterised skeletal muscle transcriptomic responses to concurrent 

exercise in humans (Lundberg et al., 2016; Robinson et al., 2017). The first 

investigation (Lundberg et al., 2016) explored the effects of concurrent exercise on 

transcriptomic responses to an acute bout of exhaustive aerobic exercise followed 

immediately by resistance exercise. Using a unilateral leg model, ten moderately trained 

young (~26 y) men performed 45 min of isolated and dynamic knee extensions on a 

modified cycle-ergometer with one leg, followed by 15 min of rest, and then performed 

four sets of seven maximal knee extensions on an isoinertial flywheel ergometer in both 

legs. Biopsies from the vastus lateralis were obtained from both legs 3 h after resistance 

exercise, and gene expression profiles of the two exercise modes were quantified using 

microarray technology. Differentially expressed genes (DEG) were estimated by 
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pairwise significance analysis of microarrays (SAM) (Tusher et al., 2001). Gene 

ontology (GO) enrichment for biological functions of DEG sets was assessed on the 

Database for Annotation, Visualization, and Integrated Discovery (DAVID) (Dennis et 

al., 2003). Further Ingenuity Pathway Analysis (IPA) of predicted upstream regulators 

(Krämer et al., 2014) was performed to determine regulatory molecules of gene 

expression networks.  

Among the enriched biological functions identified by DAVID following 

concurrent exercise, the most highly up-regulated processes were related to 

carbohydrate metabolism, while the most down-regulated processes were related to 

angiogenesis, transmembrane receptor signalling, and skeletal muscle tissue 

development (Lundberg et al., 2016). Notably, IPA upstream regulator analysis 

revealed greater activation of mTOR and v-myc avian myelocytomatosis viral 

oncogene homolog (MYC), a transcription factor involved in cell proliferation, with a 

concomitant increase in DEG related to AMPK following concurrent exercise. 

However, there are several challenges when translating molecular responses observed 

during the initial period after acute exercise to distinct long-term training adaptations. 

First, there is a clear disconnect between transcriptomic changes following acute 

exercise and subsequent adaptations to chronic training (Phillips et al., 2013). 

Similarly, the acute biopsy sampling time point may produce nonspecific 

transcriptional responses that are not reflective of differing physiological loads 

(Timmons, 2011). Nevertheless, the findings of Lundberg and colleagues (2016) 

illustrate that acute concurrent exercise stimulates a transcriptional profile initiating the 

expression of genes that are generally thought to have antagonistic roles. 

The second investigation (Robinson et al., 2017) utilised a parallel groups 

design to assess transcriptomic responses to 12 wk of endurance, resistance, or 
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concurrent training in both young (~25 y) and older (~70 y) males and females. Briefly, 

participants in the endurance only group performed high-intensity interval training (> 

90% peak oxygen uptake [VO2peak]) on an electronically braked cycle ergometer 3 

dwk-1 and moderate intensity treadmill (70% VO2peak) walking 2 dwk-1. Participants 

in the resistance only group performed 60 min of lower body exercises 2 dwk-1 and 

upper body exercises 2 dwk-1. Participants in the concurrent training group performed 

30 min of moderate intensity cycling (70% VO2peak) 5 dwk-1 followed by 30 min of 

resistance exercise on 4 dwk-1 split between upper and lower body exercises each 

performed 2 dwk-1. Strength (leg press 1RM), aerobic capacity (VO2peak), and fat free 

mass (FFM) by dual-energy X-ray absorptiometry (DXA) were assessed pre- and post-

intervention. Biopsies from the vastus lateralis were obtained pre-intervention and 72 

h following the last exercise bout of the 12 wk program to determine gene expression 

profiles of the three training modes by RNA-Seq. DEGs were analysed by edgeR 

(Robinson et al., 2010), GO enrichment determined by Gene Set Enrichment Analysis 

(GSEA) (Subramanian et al., 2005), and predicted upstream regulators of DEG were 

determined by IPA.  

Following the 12 wk training intervention, 1RM increased in the resistance and 

concurrent training groups, VO2peak increased in the endurance and concurrent training 

groups, and FFM increased in all three training groups (Robinson et al., 2017). GSEA 

and IPA revealed that gene sets and transcriptional regulators related to angiogenesis 

were up-regulated after all training protocols, but GO terms unique to concurrent 

training were not identified. Similarly, statistical contrasts between training condition 

and time were not made for 1RM, VO2peak, or FFM, making it unclear if there were 

differences in the magnitude of change for these variables. In addition, the concurrent 

training group underwent a 12 wk sedentary period prior to the training intervention, 
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which may have affected subsequent training responses (Fisher et al., 2017; Seaborne 

et al., 2018). Furthermore, the endurance and resistance components of the concurrent 

training program were not matched to that of the endurance or resistance training 

groups, making direct comparisons between training modalities challenging.  

While the findings of Lundberg and colleagues (2016) and Robinson and 

colleagues (2017) have provided an innovative approach to profiling transcriptome-

wide molecular responses to concurrent exercise, several questions remain unanswered:  

1. What are the effects of alternate day concurrent training when resistance and 

endurance training loads are matched to isolated resistance or endurance 

training? 

2. Are there enriched gene sets that are unique to concurrent training that may 

explain the ‘interference effect’?  

 

1.7 Objectives and scope of the thesis 

 This thesis describes a series of investigations into the ‘interference effect’ from 

indices of exercise performance and skeletal muscle morphology to transcriptome-wide 

molecular responses following a period of chronic concurrent training. Chapter 2 

describes a study that determined whether modulating training variables and closely 

monitoring nutrient intake, based on current, literature-based recommendations, can 

attenuate the ‘interference effect’. Specifically, the study was designed to test the 

hypothesis that implementing longer recovery periods (i.e., 6-24 h) between exercise 

sessions, minimising endurance frequency to ≤ 3 dwk-1, integrating cycling rather than 

running as the endurance exercise mode (to minimise muscle damage) and 

incorporating a high protein diet over 12 wk of concurrent training would result in 

unimpaired adaptations to a) maximal strength, hypertrophy, and power, compared to 
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resistance training and b) maximal aerobic capacity compared to endurance training. 

Chapter 3 describes a study which determined whether changes to satellite cell content 

following 12 wk of concurrent training underlie the ‘interference effect’. Myofibre 

hypertrophy and indices of myogenesis were measured to test the hypothesis that 

limited hypertrophic potential with concurrent training can be explained by increases 

in satellite cell content being the same as isolated endurance and resistance training, 

despite performing a greater volume of work. Chapter 4 describes an exploratory study 

in which alterations to gene expression patterns were determined following 12 wk of 

concurrent training. Whole-transcriptome gene expression was measured in an attempt 

to unravel potential gene sets that underpin limitations in exercise adaptations following 

concurrent training.   
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CHAPTER 2 
 

ADAPTATIONS TO CONCURRENT TRAINING IN COMBINATION 
WITH HIGH PROTEIN AVAILABILITY: A COMPARATIVE TRIAL IN 

HEALTHY, RECREATIONALLY ACTIVE MEN 
 

 
 

This chapter has been adapted from the following published article: 

 

Baubak Shamim, Brooke L. Devlin, Ryan G. Timmins, Paul Tofari, Connor Lee Dow, 

Vernon G. Coffey, John A. Hawley, and Donny M. Camera. Adaptations to Concurrent 

Training in Combination with High Protein Availability: A Comparative Trial in 

Healthy, Recreationally Active Men. Sports Medicine. 2018 Dec;48(12):2869-2883. 
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2.1 Abstract 

This study implemented a high protein diet (2 g•kg-1•d-1) throughout 12-wk of 

concurrent exercise training to determine whether interferences to adaptation in muscle 

hypertrophy, strength, and power could be attenuated compared to resistance training 

alone. Thirty-two recreationally active males (age: 25±5 y, body mass index: 24±3 

kgm-2; mean±SD) performed 12-wk of either isolated resistance (RES; n=10) or 

endurance (END; n=10) training (3 sessions•w-1), or concurrent resistance and 

endurance (CET; n=12) training (6 sessions•w-1). Maximal strength (1RM), body 

composition, and power were assessed pre- and post-intervention. Leg press 1RM 

increased ~24 ± 13% and ~33 ± 16% in CET and RES from PRE-to-POST (P<0.001), 

with no difference between groups. Total lean mass increased ~4% in both CET and 

RES from PRE-to-POST (P<0.001). Ultrasound estimated vastus lateralis volume 

increased ~15% in CET and ~11% in RES from PRE-to-POST (P<0.001), with no 

difference between groups. Wingate peak power relative to body mass displayed a trend 

(P = 0.053) to be greater in RES (12.5±1.6 W•kg-1) than both CET (10.8±1.7 W•kg-1) 

and END (10.9±1.8 W•kg BM-1) at POST. Absolute VO2peak increased 6.9% in CET 

and 12% in END from PRE-to-POST (P<0.05), with no difference between groups. 

Despite high protein availability, select measures of anaerobic power-based 

adaptations, but not muscle strength or hypertrophy, appear susceptible to “interference 

effects” with CET and should be closely monitored throughout training macro-cycles. 

This trial was registered with the Australian-New Zealand Clinical Trials Registry 

(ACTRN12617001229369). 
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2.2 Key Points 

1. Little consideration has been given to the role of increased protein availability 

to facilitate anabolic adaptations to concurrent training.  

2. Concurrent training combined with a high protein diet does not impair gains in 

maximal strength, countermovement jump, squat jump, VO2peak, lean mass, or 

muscle architectural changes compared to resistance or endurance training 

alone. 

3. Despite optimal protein intake strategies, select measures of anaerobic power 

are compromised during a concurrent training block and should be monitored 

carefully. 
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2.3 Introduction 

The simultaneous development of strength, power, and endurance adaptations 

is an attribute required by many athletes, particularly those involved in team sports 

(Nader, 2006). Both muscular strength and cardiorespiratory fitness have been 

associated with lower declines in muscle function, chronic metabolic diseases, and all-

cause mortality (Ruiz et al., 2008; Pedersen & Saltin, 2015). Incorporating both 

resistance- and endurance-based exercise into training programs, termed concurrent 

training, is therefore common practice in both athletic (Baker, 2001; Argus et al., 2010) 

and clinical populations (Atashak et al., 2016; Bassi et al., 2016; Robinson et al., 2017). 

Further, World Health Organization global recommendations for physical activity for 

overall health and well-being in adults stipulate the performance of a combination of 

both resistance and endurance type exercises to improve cardiovascular and muscular 

fitness (World Health Organization, 2010). 

The principle of training specificity dictates that adaptations to chronic training 

are specific to the mode of exercise performed and result in distinct and divergent 

skeletal muscle phenotypes (Hawley et al., 2014). For example, endurance training 

improves skeletal muscle oxidative capacity and whole-body maximal oxygen uptake, 

leading to a more fatigue-resistant muscle (Holloszy & Coyle, 1984; Hawley, 2002). 

Conversely, strength training develops maximal force-generating capacity and skeletal 

muscle hypertrophy (McDonagh & Davies, 1984b). Given these vastly divergent 

adaptations, the simultaneous development of muscular endurance and strength/power 

with concurrent training presents a high degree of complexity in exercise prescription 

(Coffey & Hawley, 2017). Indeed, findings from multiple studies demonstrate 

‘interference’ in the magnitude of increase in hypertrophy, strength and power with 

concurrent training compared to resistance training undertaken in isolation (Hickson, 
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1980; Craig et al., 1991; Hennessy & Watson, 1994; Kraemer et al., 1995; Dolezal & 

Potteiger, 1998; Bell et al., 2000; Häkkinen et al., 2003; Mikkola et al., 2012; Fyfe et 

al., 2016a, 2018), although these observations are not unequivocal (Sale et al., 1990; 

de Souza et al., 2013; Lundberg et al., 2013, 2014).  

Theoretical recommendations to prevent or reduce interference to strength 

adaptations have been formulated based on existing literature regarding concurrent 

training variables (Wilson et al., 2012; Murach & Bagley, 2016), nutrition (Perez-

Schindler et al., 2015), and molecular biology (Hawley, 2009; Baar, 2014a; Coffey & 

Hawley, 2017). It has been suggested that maximal strength and hypertrophy with 

concurrent training can be attained through implementing longer recovery periods (i.e., 

6-24 h) between exercise sessions, minimising endurance frequency to ≤3 days per 

week, integrating cycling rather than running as the endurance exercise mode (to 

minimise muscle damage) and incorporating post-exercise nutritional strategies 

(Murach & Bagley, 2016). With regard to nutrition, little consideration has been given 

to the role of increased protein availability to facilitate adaptations to concurrent 

training. It has previously been shown (Camera et al., 2015) that protein ingestion 

following a single bout of concurrent exercise increased rates of muscle protein 

synthesis to similar levels observed when protein was ingested following resistance 

exercise (Moore et al., 2009b). Considering the importance for dietary protein to 

promote muscle growth and remodelling (Cermak et al., 2012; Morton et al., 2018) 

increased protein availability around concurrent training has the potential to reduce the 

interference effect of endurance exercise on skeletal muscle hypertrophy. Accordingly, 

a high protein diet and other strategies were implemented to reduce the interference 

effect on maximal muscle strength, hypertrophy and power following 12 wk of 

concurrent training compared to resistance training alone.  It was hypothesised that 
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concurrent training under these conditions would result in no differences to the degree 

of adaptations made to a) maximal strength, hypertrophy, and power, compared to 

resistance training and b) maximal aerobic capacity compared to endurance training. 

 

2.4 Methods 

2.4.1 Participants 

Thirty-two young, healthy, recreationally active males (Table 2.1) who had not 

participated in a structured exercise program for ≥6 months preceding the study 

volunteered to participate. Participants were deemed healthy and eligible to participate 

based on their responses to a cardiovascular risk-factor questionnaire. The experimental 

procedures and risks associated with the study were explained to all participants prior 

to providing written informed consent. The study was approved by the Australian 

Catholic University Human Research Ethics Committee and was carried out in 

accordance with the standards set by the latest revision of the Declaration of Helsinki. 

This trial was registered with the Australian New Zealand Clinical Trials Registry 

(ACTRN12617001229369). 

 

 

 

 

 

 

 

 

 



 

 48 

Table 2.1 Participant characteristics.  

Values are presented as means ± SD. a = P < 0.05 from PRE. Abbreviations: BMI, body mass 

index; CET, concurrent exercise training; RES, resistance training; END, endurance training. 

 

2.4.2 Experimental design 

An overview of the study protocol is shown in Figure 2.1. The study employed 

a parallel groups design where participants were stratified according to lean body mass 

(LBM) and allocated to either a resistance only (RES; n = 10), endurance only (END; 

n = 10), or concurrent resistance and endurance exercise training (CET; n = 12) group 

for 12-wk. For the duration of the intervention, all participants consumed a high protein 

diet (2 g•kg-1•d-1). Participants first completed three preliminary testing days: on the 

first visit, body composition was assessed by whole-body dual-energy X-ray 

absorptiometry (DXA) and B-mode ultrasound to measure vastus lateralis (VL) 

architecture; on the second visit, participants performed tests for maximal aerobic 

capacity (VO2peak) and anaerobic power (Wingate) as well as familiarisation of strength 

and jump performance measurements; on the third visit, participants completed an 

isometric mid-thigh pull, countermovement and squat jump, followed by 1-repetition 

maximum (1RM) testing. At this visit, participants also met with the study dietitian for 

an initial consultation to discuss food preferences as well as target protein and energy 

intakes prior to commencing the training intervention. Measurements of 1RM and 

VO2peak were repeated at the end of week 6 to adjust training loads. At the end of week 

12, participants were re-tested for VO2peak, Wingate, 1RM, isometric strength, and 
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power in the same order as baseline. All testing and training sessions were completed 

in the strength and performance lab under direct supervision of the same member of the 

research team.  

 

 

Figure 2.1 Schematic overview of study timeline.   
 

2.4.3 Exercise training 

For the duration of the intervention, participants in the RES and END group 

performed three non-consecutive days of training each week. Participants in the CET 

group trained 6 d•wk-1 and performed identical resistance and endurance programs on 

alternating days as those in the RES and END groups, respectively. This training pattern 

was implemented in the CET group based on current recommendations to perform 

resistance and endurance exercise on alternating days to maximise the potential for 

lower-body strength development (Eddens et al., 2018; Murlasits et al., 2018) and 

lengthen recovery time between sessions to minimise any potential interference 

between training modalities (Baar, 2014a; Murach & Bagley, 2016). All training 

programs were periodised to progressively modify the volume and intensity of training 
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in order to provide an appropriate overload stimulus. Specific details of each training 

regime are described subsequently. Participants were encouraged to complete the 

designated training programs in their entirety with financial incentives provided for all 

three groups for largest pre- to post-intervention increases in 1RM (CET and RES) and 

VO2peak (CET and END) (Torrens et al., 2016). 

 

2.4.4 VO2peak testing 

VO2peak was determined during an incremental test to volitional fatigue on a 

Lode cycle ergometer (Excalibur sport, Lode, The Netherlands) (Hawley & Noakes, 

1992). Throughout the maximal test, participants breathed through a mouthpiece 

attached to a metabolic cart (TrueOne® 2400, Parvomedics, USA) to determine O2 

consumption. Maximum aerobic power (MAP) was determined as previously described 

(Hawley & Noakes, 1992) and was assessed prior to training, at the end of week 6, and 

upon completion of the 12-wk training intervention. The MAP from pre-training and 

week 6 were used to prescribe loads for the endurance training. 

 

2.4.5 Strength testing 

Maximal strength was determined through 1RM for plate-loaded 45o incline leg 

press, bilateral knee extension, and bench press. Participants were demonstrated proper 

lifting technique prior to engaging in 1RM testing. Briefly, participants warmed up at 

a self-selected load for each movement until reaching a rating of perceived exertion 

(RPE) of ~8, using a Borg Category Ratio 10 scale (Borg & Borg, 2013), for a single 

repetition. Thereafter, a series of single repetitions were attempted, with 5 min 

recovery, until the maximal load possible for one repetition with full range of motion 

was determined. For the leg press, full range of motion was established as beginning 
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with the knees in full extension (0o), performing 90o of knee flexion, and returning to 

full knee extension. For the knee extension, full range of motion was established as 

beginning with the knees in 90o of flexion and extending to full extension. For bench 

press, full range of motion was established as beginning with the arms in full elbow 

extension, lowering the barbell to the position of the chest until momentum has been 

terminated, and returning to full elbow extension. Participants were instructed to 

maintain contact of the head, shoulders, and buttocks with the bench and feet planted 

on the ground throughout the entire movement. The 1RM’s from pre-training and week 

6 were used to prescribe training loads for the resistance-training program.  

Maximal lower-body isometric strength (N and N•kg-1) was measured prior to, 

and upon completion of the 12-wk intervention using an isometric mid-thigh pull 

(IMTP) as previously described (Tofari et al., 2017). All data was collected on a force 

plate sampling at 600 Hz (400 Series Force Plate, Fitness Technologies, Australia) and 

analysed using proprietary software (Ballistic Measurement System, Fitness 

Technology, Australia). 

 

2.4.6 Power testing 

Performance tests were conducted prior to, and upon completion of the 12-wk 

intervention to determine maximal anaerobic power output. Detailed descriptions of 

each measurement can be found in Appendix A. 

 

2.4.7 Body composition 

Total lean mass, as well as leg and upper-body lean mass, and fat mass were 

estimated by DXA (GE Lunar iDXA Pro, GE Healthcare; software: Encore 2009, 
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version 16) pre-intervention, after weeks 4 and 8 of exercise training, and post-

intervention following best practice guidelines (Nana et al., 2015). 

 

2.4.8 Architectural assessment of vastus lateralis 

Segmental muscle thickness, pennation angle, fascicle length and volume 

changes of the VL were assessed utilising B-mode ultrasound at baseline, after weeks 

2, 4, 8, and post-intervention (Appendix A).  

 

2.4.9 Resistance training 

Resistance training consisted of whole body exercises with a focus on the leg 

press, knee extension and bench press movements, with these exercises performed at 

an intensity of ~60-98% of 1RM. All exercises were separated by a 3-min between-set 

recovery period. If the participant was unable to achieve the prescribed number of 

repetitions, the weight was lowered by ~5-10% for the following set to uphold the 

repetition scheme. All sessions were preceded by a standardised warm up for the lower- 

or upper-body, respective of the training session. Progressive overload was applied by 

periodically manipulating the number of sets, repetitions, and relative intensity of load 

throughout the 12-wk program. A detailed outline of the resistance-training program 

can be found in Appendix A (Table A.1). 

 

2.4.10 Endurance training 

Endurance cycle training was performed on Lode cycle ergometers and 

consisted of a mixture of a hill simulation ride of varying intensity (25-110% of MAP), 

moderate-intensity continuous training at 50% MAP, moderate-intensity interval 
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training at 70% MAP, and high-intensity interval training at 100% MAP. Moderate-

intensity intervals were separated by a 60 second recovery period at ~40% MAP, to 

establish a 2.5:1 or 5:1 work-to-rest ratio. High-intensity intervals were separated by 

20-60 s recovery periods, completed at ~40% MAP, to establish a 1:5, 1:2, or 1:1 work-

to-rest ratio. All cycling sessions were preceded by 3–5 min of cycling at ≤50 W. Heart 

rate (HR), energy expenditure (EE), and RPE were collected at the end of each cycling 

stage. Progressive overload was applied by manipulating the number of intervals and 

relative intensity of load throughout the 12-wk program. A detailed outline of the 

endurance-training program can be found in Appendix A (Tables A.2A-A.2B). 

 

2.4.11 Diet 

A free-living, high-protein (2 g•kg-1•d-1) eating plan was implemented over the 

12-wk intervention. Participants attended consultations with an Accredited Practicing 

Dietitian on a fortnightly basis and were provided with guidelines to reach protein and 

energy targets, including the distribution of protein intake throughout the day across 4-

6 meals (Areta et al., 2013; Loenneke et al., 2016) and the consumption of ~20-30 g of 

protein prior to sleep to maximise potential for muscle protein synthesis (Moore et al., 

2009a; Snijders et al., 2015b; Trommelen et al., 2018). All participants were provided 

with ~34 g of whey protein (Pure Warrior 100% WPI, Swisse™, Australia) to be 

consumed upon cessation of every training session (Macnaughton et al., 2016) and 

given a whey protein supplement (Whey Protein Concentrate, Bulk Nutrients, 

Australia) to consume as needed throughout the 12-wk intervention.  

Food records were kept daily by participants throughout the 12-wk intervention 

using mobile phone applications Easy Diet Diary (Xyris Software Pty Ltd, Australia, 

for participants with iPhones®, Apple Inc., USA; n = 20) and MyFitnessPal 
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(MyFitnessPal Inc., USA, for participants with Android-based devices, Google Inc., 

USA; n = 12). All dietary intake data was analysed using FoodWorks 8© (Xyris 

Software Pty Ltd, Australia) to ensure the same food database was used for all analysis. 

Diet records were analysed for energy (kJ•kg-1), protein, carbohydrate, and fat (g•kg-1 

for all macronutrients) to provide a daily average for the entire 12-wk intervention. 

Complete dietary methods are detailed within the Appendix A. 

 

2.4.12 Statistical analysis 

An a priori power calculation (G*Power Version 3.1) using a F-test, repeated 

measures, within-between interaction ANOVA revealed 30 participants were needed to 

detect a medium effect (Cohen’s f = 0.25) with a significance level of α = 0.05 and 80% 

power for change in lean body mass as measured by DXA (Faul et al., 2009). Baseline 

characteristics and mean training variables (RPE, HR, time to complete set, training 

time, rest interval, and between session rest) were analysed by one-way ANOVA 

(group). Strength, performance, VO2peak, body composition, training volume, and diet 

data were analysed by two-way ANOVA (group x time) with repeated measures. Where 

ANOVA revealed significance, P ≤ 0.05, a Student-Newman-Keuls post hoc test was 

conducted for pairwise multiple comparisons (SigmaPlot 12, Systat Software Inc., 

USA). When normality (Shapiro-Wilk) was violated, a nonparametric Kruskal-Wallis 

test was performed to determine differences between conditions where statistical 

significance differed from ANOVA (CMJ height and distal VL muscle thickness; SPSS 

v25, IBM, USA). All data are expressed as mean ± SD. 
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2.5 Results 

2.5.1 Participant characteristics 

There were no differences between groups in baseline characteristics for height, 

BM, BMI, or age (Table 2.1). There was a main effect for time for change in BM (P < 

0.001). BM increased from PRE to POST by 3.9% in CET, 4.3% in RES, and 2.7% in 

END (P < 0.001). There was a main effect for time for change in BMI (P < 0.001). BMI 

increased from PRE to POST by 3.9% in CET, 4.4% in RES, and 2.7% in END (P < 

0.001; Table 2.1). 

 

2.5.2 Body composition 

There was a main effect for time for change in total LBM (P < 0.001). Total 

LBM increased from PRE to POST by 3.8% in CET, 3.8% in RES, and 2.9% in END 

(P < 0.001). There was a main effect for time for change in LLM (P < 0.001). LLM 

increased from PRE to POST by 5.4% in CET, 6% in RES, and 5.2% in END. There 

was a main effect for time for change in ULM (P < 0.001). ULM increased from PRE 

to POST by 2.9% in CET and 2.8% in RES (P < 0.01). Additionally, a main effect for 

time was observed for changes in fat mass (P = 0.009). Fat mass increased from PRE 

to POST by 9.5% in RES (P = 0.037; Table 2.2). 
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Table 2.2 Change in body composition throughout the 12 week training intervention as 

measured by dual-energy X-ray absorptiometry (DXA).  

          
    Time 

Measure   PRE WK4 WK8 POST 
Total Lean Mass (kg)   

 
 

 CET 58.4 ± 6.34 59.8 ± 6.48a 60.6 ± 6.68ab 60.6 ± 6.46ab 
 RES 59.6 ± 6.71 60.9 ± 6.48a 61.6 ± 6.63a 61.9 ± 6.6ab 
 END 58.9 ± 5.45 60.0 ± 5.74a 60.0 ± 5.2a 60.6 ± 5.02a 
Leg Lean Mass (kg)   

 
 

 CET 20.7 ± 2.78 21.5 ± 2.79a 21.8 ± 2.78a 21.8 ± 2.72a 
 RES 20.6 ± 2.36 21.5 ± 2.29a 21.5 ± 2.34a 21.8 ± 2.17a 
 END 20.8 ± 2.28 21.6 ± 2.47a 21.5 ± 2.27a 21.9 ± 2.38ac 
Upper Lean Mass (kg)   

 
 

 CET 34.8 ± 3.68 34.9 ± 3.76a 35.4 ± 3.97a 35.3 ± 3.82a 
 RES 35.5 ± 4.34 35.9 ± 4.27 36.5 ± 4.39a 36.5 ± 4.48a 
 END 34.6 ± 3.37 34.9 ± 3.58 35.1 ± 3.24 35.2 ± 2.97 
Fat Mass (kg)   

 
 

 CET 15.4 ± 6.67 15.3 ± 6.61 15.7 ± 6.37 16.2 ± 5.76 
 RES 13.2 ± 5.84 13.6 ± 5.79 13.8 ± 5.95 14.3 ± 6.17a 
  END 17.9 ± 6.36 18.2 ± 6.24 18.2 ± 6.19 18.4 ± 6.06 

Values are presented as means ± SD. a = P < 0.05 from PRE. b = P < 0.05 from WK4. c = P < 

0.05 from WK8. Abbreviations: CET, concurrent exercise training; RES, resistance training; 

END, endurance training. 

 

2.5.3 Vastus lateralis architecture 

There was a main effect for time (P < 0.001) and a trend for a group by time 

interaction (P = 0.051) for change in proximal VL muscle thickness. Proximal VL 

muscle thickness increased from PRE to POST by 14.9% in CET, 15.7% in RES, and 

5.8% with END (P < 0.01). Proximal VL thickness at POST was greater in CET and 

RES compared to END (P < 0.05). There was an interaction for group by time for 

change in midpoint VL muscle thickness (P < 0.001). Midpoint VL muscle thickness 

increased from PRE to POST by 17.5% in CET, 13.7% in RES, and 9.8% in END (P < 

0.001). Midpoint VL thickness at POST was greater in CET and RES compared to END 
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(P < 0.05). Distal VL muscle thickness did not change (P = 0.054; Appendix B, Table 

B.1).  

There was a main effect for time for change in proximal VL pennation angle (P 

< 0.001). Proximal VL pennation angle increased from PRE to POST by 17.2% in CET, 

15.8% in RES, and 15.4% in END (P < 0.001). There was a main effect for time for 

change in midpoint VL pennation angle (P < 0.001). Midpoint VL pennation angle 

increased from PRE to POST by 12.4% in CET, 12.2% in RES, and 13.9% in END (P 

< 0.001). There was a main effect for time for change in distal VL pennation angle (P 

< 0.001). Distal VL pennation angle increased from PRE to POST by 12.3% in CET, 

19% in RES, and 13.5% in END (P ≤ 0.005; Appendix B, Table B.1). There was a 

main effect for group for change in proximal VL fascicle length (P < 0.001).  Proximal 

VL fascicle length decreased from PRE to POST by 6.3% in END (P = 0.024). Proximal 

VL fascicle length was significantly greater at POST in CET (9.3 ± 0.8 cm) compared 

to END (8.5 ± 0.6 cm; P = 0.036). There was a main effect for group for change in 

midpoint VL fascicle length (P = 0.004). Midpoint VL fascicle length was greater at 

PRE in CET (9 ± 0.9 cm) and RES (8.9 ± 0.8 cm) compared to END (8.3 ± 0.9 cm; P 

< 0.05). Midpoint VL fascicle length was also greater at POST in CET (9.5 ± 0.5 cm) 

and RES (9.1 ± 0.5 cm) compared to END (8.1 ± 0.6 cm; P < 0.01). There was a main 

effect for time for change in distal VL fascicle length (P = 0.031). Distal VL fascicle 

length increased from PRE to POST by 10.4% in CET (P = 0.024; Appendix B, Table 

B.1).   

There was a main effect for time (P < 0.001) and a trend (P = 0.051) for a group 

by time interaction for changes in approximated VL muscle volume. Estimated VL 

muscle volume increased from PRE to POST by 15.3% in CET, 11.4% in RES, and 

7.8% in END (P < 0.001; Appendix B, Table B.1). 
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2.5.4 Strength 

There was an interaction for group by time for change in absolute (P < 0.001) 

and relative to BM (P < 0.001) leg press 1RM. Absolute leg press 1RM increased in 

CET by 16.4% from PRE to WK6, 6.4% from WK6 to POST, and 23.7% from PRE to 

POST (P < 0.01). For RES, leg press 1RM increased 21.2% from PRE to WK6, 9.9% 

from WK6 to POST, and 33.4% from PRE to POST (P ≤ 0.001; Figure 2.2A). Relative 

leg press 1RM was greater at POST in both CET (3.9 ± 0.6 kg•kg BM-1) and RES (3.9 

± 0.5 kg•kg BM-1) compared to END (3.2 ± 0.6 kg•kg BM-1; P = 0.05; Figure 2.2B). 

 There was an interaction for group by time for change in absolute (P < 0.001) 

and relative to BM (P < 0.001) knee extension 1RM. Absolute knee extension 1RM 

increased in CET by 24.7% from PRE to WK6, 18.7% from WK6 to POST, and 48.7% 

from PRE to POST (P < 0.001). For RES, knee extension 1RM increased 32.2% from 

PRE to WK6, 12.7% from WK6 to POST, and 49.4% from PRE to POST (P ≤ 0.001). 

Knee extension 1RM was also greater at POST in both CET (159 ± 29 kg) and RES 

(157 ± 25 kg) compared to END (126 ± 21 kg; P < 0.05). Knee extension 1RM 

increased 12.5% from PRE to POST in END (P = 0.024; Figure 2.2C); however, 

relative to BM, knee extension 1RM remained unchanged from PRE to POST in END 

(P = 0.122; Figure 2.2D). 

 There was an interaction for group by time for change in absolute (P < 0.001) 

and relative to BM (P < 0.001) bench press 1RM. Absolute bench press 1RM increased 

in CET by 5.6% from PRE to WK6, 4.6% from WK6 to POST, and 10.4% from PRE 

to POST (P < 0.05). For RES, bench press 1RM increased 6% from PRE to WK6, 4.9% 

from WK6 to POST, and 11.3% from PRE to POST (P < 0.01; Figure 2.2E). Relative 

bench press 1RM for CET trended towards an increase at WK6 (P = 0.055), and 

increased from both PRE and WK6 by POST (P < 0.05; Figure 2.2F). 
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Figure 2.2 Changes to 1-repetition maximum (1RM) strength throughout the 12 week 

intervention for absolute (panels A-C) and relative (panels D-F) leg press, knee extension, and 

bench press (END, n = 9). Values are presented as individual data with group mean. a = P < 

0.05 from PRE. b = P < 0.05 from WK6. ǂ = P < 0.05 from END at time point. Abbreviations: 

CET, concurrent exercise training; RES, resistance training; END, endurance training. 

 

 There was an interaction for group by time for change in IMTP peak force (P = 

0.045). IMTP peak force increased from PRE to POST by 10.1% in CET and 9.6% in 

RES (P < 0.01; Appendix B, Figure B.1). There was main effect for time for change 

in IMTP peak force relative to BM (P = 0.045). Relative IMTP increased from PRE to 

POST by 6.8% in CET and 6% in RES (P < 0.05; Appendix B, Figure B.1). 

 



 

 60 

2.5.5 Power testing 

There was an interaction for group by time for change in CMJ peak velocity (P 

= 0.021).  CMJ peak velocity increased from PRE to POST by 3% in CET and 2.3% in 

RES (P < 0.05; Figure 2.3A). CMJ peak velocity at POST was greater in RES (2.95 ± 

0.17 m•s-1) compared to END (2.68 ± 0.27 m•s-1; P = 0.027). CMJ height did not change 

(P = 0.089; Figure 2.3B). There was an interaction for group by time for change in 

CMJ peak power (P = 0.047). CMJ peak power increased from PRE to POST by 5.6% 

in CET and 7% in RES (P < 0.05; Figure 2.3C). There was an interaction for group by 

time for change in CMJ peak power relative to BM (P = 0.047); however, post hoc 

analysis revealed no changes to CMJ relative peak power across all groups (Figure 

2.3D).  

 There was a main effect for time for changes in SJ peak velocity (P = 0.006).  

SJ peak velocity increased from PRE to POST by 2.9% in CET and 3.8% in RES (P < 

0.05; Figure 2.3E). SJ peak velocity at POST was greater in RES (2.78 ± 0.23 m•s-1) 

compared to END (2.51 ± 0.23 m•s-1; P = 0.037). There was an interaction for group 

by time for change in SJ height (P = 0.047). SJ height increased from PRE to POST by 

6.6% in CET and 7.6% in RES (P < 0.05; Figure 2.3F). SJ height at POST was greater 

in CET (37.3 ± 4.86 cm) and RES (39.6 ± 6.77 cm) compared to END (32.2 ± 6.09 cm; 

P < 0.05). There was an interaction for group by time for change in SJ peak power (P 

= 0.005).  SJ peak power increased from PRE to POST by 6.4% in CET and 11.4% in 

RES (P < 0.01; Figure 2.3G). There was an interaction for group by time for change 

in SJ peak power relative to BM (P = 0.012). SJ relative peak power increased from 

PRE to POST by 3.6% in CET and 7.7% in RES (P < 0.05; Figure 2.3H). SJ relative 

peak power was greater at POST in RES (53.4 ± 7.16 W•kg BM-1) compared to END 

(45.7 ± 6.9 W•kg BM-1; P = 0.047).  
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Figure 2.3 Change to countermovement jump (CMJ) and squat jump (SJ). Per cent changes 

from PRE to POST for CMJ are presented for A) peak velocity, B) height, C) peak power, and 

D) relative peak power. Per cent changes from PRE to POST for SJ are presented for E) peak 

velocity, F) height, G) peak power, and H) relative peak power. Values are presented as 

individual data with group mean ± SD. a = P < 0.05 from PRE. ǂ = P < 0.05 from END at POST. 

Abbreviations: CET, concurrent exercise training; RES, resistance training; END, endurance 

training. 
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2.5.6 VO2peak 

There was an interaction for group by time for change in absolute (P < 0.001) 

and relative to BM (P < 0.001) VO2peak. Absolute VO2peak (L•min-1) increased in CET 

by 9.1% from PRE to WK6, and 6.9% from PRE to POST (P < 0.05). For END, 

absolute VO2peak increased 10.6% from PRE to WK6, and 12% from PRE to POST (P 

< 0.001); however, there was no difference between CET and END at POST (P = 0.208; 

Figure 2.4A). Relative VO2peak in CET increased by 6.9% from PRE to WK6 (P = 

0.029), but did not change from PRE to POST (P = 0.272). For RES, relative VO2peak 

decreased 4.8% from PRE to POST (P = 0.016). In contrast, relative VO2peak increased 

in END by 9.1% from PRE to WK6, and 9.8% from PRE to POST (P < 0.005); 

however, there was no difference between CET and END at POST (P = 0.415; Figure 

2.4B).  

There was an interaction for group by time for change in absolute (P < 0.001) 

and relative to BM (P < 0.001) MAP. Absolute MAP increased in CET by 5.3% from 

PRE to WK6, 8.5% from WK6 to POST, and 14% from PRE to POST (P < 0.05). For 

RES, absolute MAP decreased by 4.5% from PRE to POST (P = 0.015). For END, 

absolute MAP increased 13.6% from PRE to WK6, and 16.4% from PRE to POST (P 

< 0.001); however, there was no difference between CET and END at POST (P = 0.605; 

Figure 2.4C). Relative MAP increased in CET by 7.1% from WK6 to POST (P = 

0.002), and 9.8% from PRE to POST (P < 0.001). For RES, relative MAP decreased by 

8.4% from PRE to POST (P < 0.001). For END, relative MAP increased by 11.2% from 

PRE to WK6 (P < 0.001), and 13.5% from PRE to POST (P < 0.001); however, there 

was no difference between CET and END at POST (P = 0.830; Figure 2.4D). 
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Figure 2.4 Changes to A) absolute and B) relative peak aerobic capacity (VO2peak) as well as 

C) absolute and D) relative maximum aerobic power throughout the 12-week intervention. 

Values are presented as individual data with group mean. a = P < 0.05 from PRE. b = P < 0.05 

from WK6. Abbreviations: CET, concurrent exercise training; RES, resistance training; END, 

endurance training. 

 

2.5.7 Wingate indices 

There was main effect for time (P < 0.001), but not group (P = 0.487) for 

training-induced change in Wingate peak power. Wingate peak power increased from 

PRE to POST by 14% in RES and 7.2% in END (P < 0.05) while there was no change 

in CET (P = 0.115; Figure 2.5A). A main effect for time (P = 0.001) and a trend for 

group (P = 0.053) was observed for change in Wingate peak power when expressed 

relative to BM. Wingate relative peak power increased from PRE to POST by 9.8% in 

RES (P = 0.002). Wingate relative peak power at POST was greater in RES (12.5 ± 1.6 

W•kg BM-1; P < 0.05) compared to both CET (10.8 ± 0.8 W•kg BM-1) and END (10.9 

± 1.8 W•kg BM-1; Figure 2.5B).  
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Figure 2.5 Change to A) absolute and B) relative peak power as measured during the Wingate 

test. Values are presented as per cent change from PRE to POST and presented as individual 

data with group mean ± SD (RES, n = 9; END, n = 9). a = P < 0.05 from PRE. ǂ = P < 0.05 

from END at POST. * = P < 0.05 from CET at POST. Abbreviations: CET, concurrent exercise 

training; RES, resistance training; END, endurance training. 

 

2.5.8 Training volume and variables 

There was main effect for time for change in resistance training volume (P < 

0.001); however post hoc analysis revealed no difference) between CET and RES 

across the training intervention (P = 0.385; Appendix B, Table B.2). Similarly, one-

way ANOVA revealed no differences between CET and RES for average time to 

complete set (P = 0.564), between-set rest interval (P = 0.915), or RPE (P = 0.838; 

Appendix B, Figure B.2). There was main effect for time for change in endurance 

training volume (P < 0.001); however, post hoc analysis revealed no difference between 
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CET and END across the training intervention (P = 0.708; Appendix B, Table B.2). 

One-way ANOVA revealed no difference in average training hours (P = 0.488) or HR 

(P = 0.222) between CET and END across the training intervention. However, average 

RPE was 10% higher in CET compared to END (P < 0.001). Recovery time between 

sessions (Appendix B, Figure B.2) was significantly less in CET (23.6 h; P < 0.001) 

compared to both RES (47.7 h) and END (48 h). 

 

2.5.9 Diet 

There was main effect for time (P = 0.005) and group (P = 0.026) for change in 

energy intake. Energy intake was significantly greater at baseline in RES (~11,300 kJ) 

compared to END (~8,780 kJ; P = 0.007). Average daily energy intake during training 

increased from baseline by 12.5% in CET and 20.1% in END (P < 0.05). There was no 

difference in energy intake across conditions during the training intervention (CET = 

~11,400 kJ; RES = ~11,700 kJ; END = ~10,600 kJ; P = 0.348). There was main effect 

for time (P < 0.001) and group (P = 0.046) for change in protein intake. Protein intake 

was significantly greater at baseline in CET (1.6 g•kg-1•d-1;) and RES (1.7 g•kg-1•d-1) 

compared to END (1.3 g•kg-1•d-1: P < 0.05). Average daily protein intake during 

training increased from baseline by 40.6% in CET, 26.3% in RES, and 61.7% in END 

(P < 0.005). Carbohydrate intake was greater at baseline in RES (4.1 g•kg-1•d-1; P = 

0.044) than END (3.1 g•kg-1•d-1); however, no effect for group (P = 0.072), time (P = 

0.6), or group by time (P = 0.116) was observed. There was a main effect for group for 

fat intake (P = 0.004). Fat intake was significantly greater at baseline in RES (1.5 g•kg-

1•d-1; P < 0.05) compared to both CET (1.1 g•kg-1•d-1) and END (1 g•kg-1•d-1; Table 

2.3).  
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Table 2.3 Average dietary intake at baseline and daily throughout the 12 wk training 

intervention.  
  Time  
  Baseline Training  

Energy (kJ.d-1)    

 CET 10200 ± 2360 11400 ± 1490a  
 RES 11300 ± 1780ǂ 11700 ± 1360  
 END 8780 ± 1900 10600 ± 1630a  
Protein (g.kg-1.d-1)    
 CET 1.6 ± 0.51ǂ 2.2 ± 0.17a  
 RES 1.7 ± 0.47ǂ 2.1 ± 0.17a  
 END 1.3 ± 0.48 2.0 ± 0.13a  
Carbohydrate (g.kg-1.d-1)    
 CET 3.5 ± 0.81 3.8 ± 1.00  
 RES 4.1 ± 1.04ǂ 3.6 ± 0.65  
 END 3.1 ± 0.88 3.0 ± 0.63  
Fat (g.kg-1.d-1)    
 CET 1.1 ± 0.28 1.2 ± 0.34  
 RES   1.5 ± 0.4*ǂ 1.5 ± 0.25  
 END 1.0 ± 0.32 1.2 ± 0.3  

Values are presented as means ± SD. a = P < 0.05 from Baseline. ǂ = P < 0.05 from 

END at time point. * = P < 0.05 from CET at time point. Abbreviations: CET, 

concurrent exercise training; RES, resistance training; END, endurance training. 

 

2.6 Discussion 

This is the first investigation to compare the effects of long-term (i.e., 12 wk) 

concurrent training in combination with a high protein diet on a broad range of 

adaptations in skeletal muscle. The data show that concurrent resistance and endurance 

training when performed 3 d•wk-1 on alternate days, in combination with a high protein 

availability, does not impair gains in maximal strength, lean mass, or aerobic capacity 

compared to resistance training alone. In contrast, concurrent training may attenuate 

specific lower-body developments to maximal anaerobic power output compared to 

resistance training alone and should be closely monitored. These findings provide novel 

information for practitioners for prescribing evidence-based recommendations for 
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concurrent training strategies capable of maximising strength, hypertrophy, and aerobic 

adaptation responses. 

The concurrent training ‘interference effect’ in strength and power adaptations 

was first observed by Hickson (Hickson, 1980). Since that seminal study, numerous 

investigations (Kraemer et al., 1995; Dolezal & Potteiger, 1998; Bell et al., 2000; 

Häkkinen et al., 2003; Mikkola et al., 2012; Fyfe et al., 2016a) have confirmed 

observations of compromised strength gains when strength and endurance training are 

undertaken concurrently. In contrast, others (McCarthy et al., 2002; Balabinis et al., 

2003; Ahtiainen et al., 2009; Hendrickson et al., 2010; Lundberg et al., 2013; Laird et 

al., 2016; Tomiya et al., 2017) have reported little or no impairments to strength when 

undertaking concurrent training. Such disparities may be attributed a number of factors 

including volume, intensity, and frequency of sessions, as well as training status of 

participants, modes of exercise being employed, and duration of intervention (Coffey 

& Hawley, 2017). Indeed, the duration of many studies is less than the 8-wk time point 

at which the interference effect was first observed (Balabinis et al., 2003; Lundberg et 

al., 2013). It has been proposed that maximal muscle growth with concurrent training 

can be achieved by implementing appropriate recovery periods (i.e., 6-24 h) between 

exercise sessions, incorporating post-exercise nutritional strategies, minimising 

endurance/aerobic exercise to 2-3 d•wk-1, and integrating cycling compared to running 

as the endurance exercise mode (Baar, 2014a; Perez-Schindler et al., 2015; Murach & 

Bagley, 2016). To address some of these issues and determine whether they might 

reduce the interference effect, a comprehensive study protocol in which, for the first 

time in a concurrent training paradigm, the aforementioned recommendations along 

with a ‘high’ protein diet were incorporated over a 12-wk training intervention to 
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determine whether interferences in muscle strength, power and hypertrophy could be 

offset by following these guidelines.  

The first major finding of this work was that muscle strength and hypertrophy 

with CET were not compromised compared to RES alone. The lack of ‘interference’ 

effect was likely due to several interrelated factors implemented in the training 

intervention. Firstly, the CET group performed resistance and endurance sessions on 

alternate days to allow a minimum of ~24 h recovery between bouts. Both proximity 

(Craig et al., 1991; Sporer & Wenger, 2003; Robineau et al., 2016) and order (Okamoto 

et al., 2007; Cadore et al., 2013; Pinto et al., 2015) of endurance and resistance 

exercises performed during a concurrent training program can compromise muscle 

activation and force development, which can hinder the intensity and effort at which 

subsequent resistance exercise is performed, leading to reduced dynamic strength gains 

(Eddens et al., 2018). Increasing the recovery time or performing individual modes of 

exercise on separate days altogether (Sale et al., 1990; Bentley et al., 1998, 2000; 

Leveritt et al., 2000; Sporer & Wenger, 2003; Robineau et al., 2016) alleviates residual 

fatigue and prevents impairments to force development. These findings provide 

supporting evidence of the importance within a concurrent program of performing 

divergent modes of exercise on alternate days to promote strength adaptations.  

The volume of endurance exercise performed can also impact strength 

adaptations (Wernbom et al., 2007). Findings from a meta-analysis of 21 studies 

revealed a positive association between duration (length of session) and frequency 

(days per week) of endurance exercise and the degree of interference to strength gains 

(Wilson et al., 2012). However, concurrent training incorporating work-matched 

moderate-intensity continuous (MICT) or high-intensity interval training (HIT) 

attenuates lower-body strength by a similar magnitude (Fyfe et al., 2016a), indicating 
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that training intensity may not mediate interferences to maximal strength. In the current 

study, endurance training consisted of a combination of MICT and HIT cycling, with 

sessions lasting, on average, ~30 min, for 3 d•wk-1. This combination, which 

significantly increased VO2peak, effectively circumvented any interference to strength 

development over 12 wk of concurrent training. In this regard, the increase in absolute 

VO2peak observed with CET is in line with previous literature (Hickson, 1980; Hickson 

et al., 1988; Häkkinen et al., 2003; Chtara et al., 2005; Rønnestad et al., 2010; Mikkola 

et al., 2012; Cadore et al., 2013; Silva et al., 2014; Fyfe et al., 2016a). However, relative 

VO2peak was only increased from baseline at WK6 in CET, while END demonstrated 

improvements from baseline at both WK6 and POST. As both CET and END 

performed the same volume of cycling, and increased BM similarly throughout the 

intervention, it is unclear why an increase in relative VO2peak was not observed at POST 

in CET. Notably, CET displayed a higher average RPE during training, perhaps 

indicating a greater degree of residual fatigue. Nonetheless, both absolute and relative 

MAP increased from WK6 to POST in CET, which was not observed in END. 

Incorporating strength training into an endurance program can improve time to 

exhaustion and time trial performance (Hickson et al., 1988; Chtara et al., 2005; 

Mikkola et al., 2012; Beattie et al., 2014; Vikmoen et al., 2017). In agreement, the 

increase in MAP from WK6 to POST with CET, but not END, highlights the benefit of 

incorporating resistance exercises to an endurance program for enhancing aerobic 

performance.  

 Given the disparities between training regimens and juxtaposition of between-

mode recovery amongst studies, it is difficult to attribute the underlying cause of 

blunted hypertrophy previously observed with concurrent training (Kraemer et al., 

1995; Bell et al., 2000; Rønnestad et al., 2012a; Fyfe et al., 2016a, 2018). One variable 
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that may partially explain diminished hypertrophy with concurrent training is post-

exercise protein feeding. Skeletal muscle hypertrophy occurs as a result of repeated and 

cumulative increases in rates of muscle protein synthesis (MPS) after exercise and 

ingestion of dietary proteins (Moore et al., 2012; Areta et al., 2013; Camera et al., 

2015). Previous investigations have shown protein ingestion following a single bout of 

concurrent exercise increases acute rates of MPS, while simultaneously attenuating 

markers of muscle catabolism, compared to a placebo control (Camera et al., 2015). 

Given the importance for dietary protein to enhance muscle growth and remodelling 

processes, insufficient protein intake around concurrent training sessions may not have 

maximally stimulated MPS, resulting in the attenuated muscle hypertrophy observed 

previously (Kraemer et al., 1995; Bell et al., 2000; Rønnestad et al., 2012a; Fyfe et al., 

2016a, 2018). While such a hypothesis is attractive, it is acknowledged that without a 

placebo comparison, the degree to which protein supplementation facilitated lean mass 

increases observed in the current investigation can only be speculated. Furthermore, 

cycling performed in isolation has been shown to induce leg muscle hypertrophy 

(Konopka & Harber, 2014), so to what extent protein supplementation influenced the 

similar post-intervention increase in leg lean mass observed in END compared to CET 

and RES is unclear.  

In contrast to muscle strength and hypertrophy responses, improvements to 

aspects of muscle power, determined by relative Wingate peak power output, showed 

a tendency to decrease with CET compared to RES. Previous studies report maximal 

power output may be more susceptible to impaired development with concurrent 

training (Kraemer et al., 1995; Häkkinen et al., 2003; Chtara et al., 2008; Wilson et al., 

2012; Fyfe et al., 2016a). Compromised power output after concurrent training may be 

due to impaired rate of force development (Dudley & Djamil, 1985; Häkkinen et al., 
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2003; Rønnestad et al., 2012a; Mikkola et al., 2012; Fyfe et al., 2016a) or changes to 

fibre type (Kazior et al., 2016) and shortening velocity (Linari et al., 2004). Force 

development relies on neural components (e.g., axonal conduction velocity) and 

myofibre size (Henneman, 1957; Bawa et al., 1984), as well as structural properties 

(e.g., dystrophin) to transfer force across joints (Hughes et al., 2017). During muscular 

contraction, force is transferred from the muscle to tendon both longitudinally (Huxley 

& Niedergerke, 1954) as a result of sarcomere shortening and laterally (Street, 1983) 

via the extracellular matrix (ECM). Resistance training increases collagen synthesis in 

the ECM and tendon (Miller et al., 2005), which, over time, increases tendon cross-

sectional area (Kongsgaard et al., 2007; Rønnestad et al., 2012b) and stiffness (Couppé 

et al., 2008). Increases in tendon stiffness are associated with greater torque production 

and athletic performance (Watsford et al., 2010). Notably, such adaptations to 

connective tissue appear to be impaired with concurrent training (Rønnestad et al., 

2012b), and may be a source of diminished capacity to generate force rapidly. Similarly, 

concurrent training can alter fibre type distribution (Kazior et al., 2016), which may 

result in changes to power development, as optimal shortening velocity and stretch-

dependent force differs between fibre types (Linari et al., 2004), Given the similar 

architectural changes between CET and RES in the present study, it is possible that 

CET impaired resistance training-induced adaptations to connective tissue and fibre 

type distribution, resulting in compromised power outputs.   

In contrast to changes in relative Wingate peak power, other measures of power 

such as the CMJ and SJ were not impaired with CET. This anomaly may be explained 

by differences in neuromuscular activation between tests. Unlike the single CMJ or SJ, 

the 30-s all-out Wingate requires coordination of repetitive high-force contractions of 

antagonistic muscles of the contralateral leg (Driss & Vandewalle, 2013). Given the 



 

 72 

greater frequency and total volume of exercise, it is possible that Wingate performance 

may have been attenuated with CET as a function of accumulated fatigue and 

compromised neuromuscular coordination of repeated high-force contractions. As 

power producing-capacity is a hallmark of athletic performance (Watsford et al., 2010), 

future studies incorporating electromyography on multiple muscle groups are needed 

to monitor fatigue and alterations to neural drive with concurrent training. It should also 

be noted that the current study may be underpowered to detect appreciable changes in 

power output as power calculations were based on lean mass change as the primary 

outcome measure.  

Several limitations in the present study are acknowledged. First, without a 

placebo comparison, limited inferences can be made on whether similar increases in 

lean mass and strength were due to protein supplementation per se or other factors (i.e., 

between-session recovery, resistance training program, etc.). Future studies combining 

concurrent training with protein or placebo supplementation are needed to determine 

the capacity of protein to directly combat interferences to lean mass and strength. 

Second, alternate modes of endurance training (i.e., cycling versus running) were not 

compared. Given the need for sport specific conditioning, future investigations 

comparing the incorporation of cycling or running in a concurrent training program are 

needed to identify if both modalities can be equally compatible with strength training. 

Finally, it is acknowledged that concurrent training bouts cannot always be performed 

on alternating days; particularly with team sports which often train twice per day (Jones 

et al., 2017). Future studies comparing shorter recovery (i.e., 6-8 h) between sessions 

in trained athletes are therefore required to optimise adaptations to the demands of same 

day concurrent training. Similarly, the higher training load associated with concurrent 

training may increase risk of overtraining and have detrimental impacts on performance 
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outcomes and rates of injury (Gabbett, 2016). It is presently unclear whether matching 

the weekly hours of training between concurrent and single-mode training (i.e., 3 h•wk-

1) can produce similar degrees of adaptation.  

 

2.7 Conclusion 

In conclusion, this is the first investigation to determine the effects of chronic 

concurrent training in combination with a high protein diet on adaptations to muscle 

strength, aerobic capacity, and maximal power output, as well as lean mass and 

architectural changes in skeletal muscle. These findings demonstrate that concurrent 

resistance and endurance training, each performed 3 d•wk-1, in the face of a high protein 

diet, did not impair gains in maximal strength, CMJ, SJ, VO2peak, lean mass or muscle 

architectural changes compared to resistance training alone. However, concurrent 

training does attenuate improvements to select aspects of lower-body maximal 

anaerobic power output compared to resistance training, demonstrating a susceptibility 

in adaptation responses in this paradigm despite recommended optimal protein intake 

strategies.  

 

2.8 Practical Applications 

These findings provide support for theoretical recommendations for 

practitioners prescribing concurrent training strategies capable of maximising strength, 

hypertrophy and aerobic adaptation responses. First, perform resistance training and 

endurance training on alternate days to provide sufficient recovery/rest between modes 

of exercise such that residual fatigue does not limit session intensity (Eddens et al., 

2018). Second, ensure an adequate intake and even distribution of high quality proteins 

throughout the day, with particular emphasis on intake around exercise (Loenneke et 
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al., 2016). Third, limiting endurance training (where possible) to ~30 min per session 

performed 3 d•wk-1 is sufficient to improve aerobic performance without compromising 

maximal dynamic strength (Wilson et al., 2012). 

 

Acknowledgements 

The authors gratefully acknowledge the efforts and dedication of the 

participants. The authors would like to thank Mr. Ken Ballhause of Adaptive Human 

Performance, Australia for his assistance and expertise in designing the cycling 

program. The authors gratefully acknowledge Mr. William Meldrum, Mr. John Waters, 

Mr. Andres Castillo and the Australian Catholic University Exercise Science placement 

students who assisted in the supervision and instruction of exercise testing and training 

sessions. The authors wish to also thank Swisse Wellness Pty Ltd, Australia and Bulk 

Nutrients Pty Ltd, Australia for the generous gift of whey protein; Chobani LLC, 

Australia and Jalna Dairy Foods Pty Ltd, Australia for the generous supply of yoghurt; 

and the Almond Board of Australia for the gift of dry roasted almonds for this study for 

this study. 

 

Author Contributions 

B. Shamim, V.G. Coffey, J.A. Hawley, and D.M. Camera designed the study; 

B. Devlin performed all DXA scans, dietary consults, and dietary analyses; B. Shamim, 

R.G. Timmins, P. Tofari, and D.M. Camera conducted all exercise and performance 

testing; B. Shamim, C. Lee Dow, and D.M. Camera supervised all exercise training 

sessions; B. Shamim, R.G. Timmins, P. Tofari, and D.M. Camera performed all data 

and statistical analysis; B. Shamim and D.M. Camera wrote the manuscript; all authors 

approved the manuscript before submission.  



 

 75 

 

Compliance with Ethical Standards 

Funding 

  This work was supported by an ACURF Grant awarded to D.M. Camera 

(36331).  

Conflicts of Interest 

Baubak Shamim, Brooke L. Devlin, Ryan G. Timmins, Paul Tofari, Connor Lee 

Dow, Vernon G. Coffey, John A. Hawley, and Donny M. Camera declare no conflicts 

of interest. 

  



 

 76 

CHAPTER 3 
 

MYOFIBRE HYPERTROPHY IN THE ABSENCE OF CHANGES TO 
SATELLITE CELL CONTENT FOLLOWING CONCURRENT EXERCISE 

TRAINING IN YOUNG HEALTHY MEN   
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3.1 Abstract 

Increases in satellite cell content support myofibre hypertrophy and are 

influenced by exercise mode. Changes in satellite cell and myonuclear content were 

determined following a period of combined resistance and endurance exercise training 

(concurrent training, CET) in 32 recreationally active males (age: 25±5 y; body mass 

index: 24±3 kg•m-2; mean±SD) who undertook 12-wk of either isolated (3 d•w-1) 

resistance (RES; n=10), endurance (END; n=10), or alternate day (6 d•w-1) concurrent 

(CET, n=12) training. Vastus lateralis muscle biopsies were obtained pre-intervention 

and after 2, 8, and 12 wk of training to determine fibre type-specific cross-sectional 

area (CSA), satellite cell content (Pax7+DAPI+), and myonuclei (DAPI+) using 

immunofluorescence microscopy. After 12 wk, myofibre CSA increased in all training 

conditions in type II (P = 0.0149) and mixed fibres (P = 0.0102), with no difference 

between conditions. Satellite cell content remained unchanged in both type I and type 

II fibres after training. Significant correlations were observed between increases in fibre 

type-specific myonuclear content and CSA of Type I (r = 0.63, P < 0.0001), Type II (r 

= 0.69, P < 0.0001), and mixed fibres (r = 0.72, P < 0.0001). Resistance, endurance, 

and concurrent training induce similar myofibre hypertrophy in the absence of satellite 

cell and myonuclear pool expansion. These findings suggest that satellite cell content 

does not limit the magnitude of hypertrophy at least during the first 12 wk of concurrent 

training, and that individuals with more myonuclear content displayed greater myofibre 

hypertrophy.  
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3.2 Introduction 

The combination of resistance- and endurance-based exercise training, or 

‘concurrent exercise training’, is undertaken by individuals participating in a wide array 

of sports to improve muscular strength and aerobic capacity (Nader, 2006). It has 

recently been proposed that the potential for myofibre hypertrophy in response to 

chronic concurrent exercise training may be limited by satellite cell content (Babcock 

et al., 2012). Satellite cells are myogenic precursor cells that reside between the 

sarcolemma and basal lamina (Mauro, 1961). In adult skeletal muscle, satellite cells 

exist in a quiescent state and are activated in response to various stimuli, such as 

exercise-induced mechanical stress and growth factors (Snijders et al., 2015a). Once 

activated, satellite cells can differentiate to form new myonuclei and increase 

transcriptional capacity through a process known as myogenesis, or return to 

quiescence to replenish the satellite cell pool through self-renewal (Kadi et al., 2005). 

As myonuclei are post-mitotic, the addition of new myonuclei to support fibre 

adaptations is dependent on the differentiation of satellite cells. It has been hypothesised 

that a myonucleus has control over a finite amount of cytoplasm, referred to as the 

myonuclear domain (Cheek, 1985). In turn, accretion of myonuclei with exercise 

training is assumed to accommodate the increased demands for transcriptional activity 

and synthesis of new proteins to support hypertrophy (Cheek, 1985; Allen et al., 1999) 

only when the myonuclear domain exceeds a threshold of ~2,250 μm2 (Petrella et al., 

2006, 2008) or a ~26% increase in myofibre cross-sectional area occurs (Kadi et al., 

2004). Moreover, both satellite cell (Petrella et al., 2008; Verdijk et al., 2014; Moore 

et al., 2018) and myonuclear (Petrella et al., 2006, 2008) content have been shown to 

positively correlate with changes in myofibre cross-sectional area, suggesting an 

important relationship between myogenesis and myofibre hypertrophy.  
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Increases in satellite cell content are detectable for up to eight days and peak 

approximately three days post-exercise (Snijders et al., 2015a). The degree of satellite 

cell activation and proliferation appears to be influenced by the mode of exercise 

performed. Evidence of satellite cell proliferation following resistance exercise is well 

documented (Crameri et al., 2004, 2007; Babcock et al., 2012; Snijders et al., 2014a; 

Farup et al., 2014; Nederveen et al., 2015, 2017; Reidy et al., 2017a; Damas et al., 

2018a; Pugh et al., 2018). Conversely, the capacity for acute endurance exercise to 

expand the satellite cell pool is less apparent (Snijders et al., 2011; Babcock et al., 2012; 

Nederveen et al., 2015), and may be dependent on exercise mode (Mackey et al., 2007) 

or intensity (Nederveen et al., 2015; McKenzie et al., 2016). Nonetheless, 

augmentations in satellite cell content have been reported following prolonged 

endurance training both in the presence (Charifi et al., 2003; Verney et al., 2008; 

Murach et al., 2016) and absence (Joanisse et al., 2013) of myofibre hypertrophy.  

Following a single bout of unilateral concurrent exercise, Babcock and 

colleagues (2012) demonstrated that satellite cell proliferation was impaired compared 

to resistance exercise performed alone in the contralateral leg in young, healthy males. 

Based on this observation, the authors hypothesised that concurrent exercise impairs 

satellite cell responses and may contribute to limitations in myofibre hypertrophy 

observed with chronic concurrent exercise training. However, baseline satellite cell 

content prior to exercise was elevated in the concurrent exercise leg compared to the 

resistance exercise only leg. Thus, the stable satellite cell content in response to 

concurrent exercise may have been indicative of a reduced need for proliferation rather 

than an inhibition of satellite cell activation per se. Recently, Pugh and colleagues 

(2018) demonstrated that a single bout of concurrent or resistance exercise result in 

comparable increases in satellite cell content in sedentary, overweight and obese, 
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middle-aged individuals, suggesting that concurrent exercise does not prevent satellite 

cell expansion if a high intensity endurance exercise stimulus is provided. Still, to date, 

no studies have directly investigated the effect of chronic concurrent exercise training 

on changes in satellite cell content compared to isolated resistance or endurance 

training. 

As satellite cell content appears to be associated with changes in myofibre cross-

sectional area (Petrella et al., 2008; Verdijk et al., 2014; Moore et al., 2018), and 

performing a greater volume of work during concurrent exercise does not result in 

greater satellite cell proliferation compared to resistance exercise (Babcock et al., 2012; 

Pugh et al., 2018), the aim of the present investigation was to evaluate whether changes 

in fibre type-specific satellite cell abundance can explain limitations in the magnitude 

of hypertrophy achieved during concurrent training. Given the higher training volume 

completed over 12 wk of concurrent training resulted in similar lean mass gains as 

isolated resistance and endurance training despite implementing the recommended 

strategies to maximise hypertrophic potential (Shamim et al., 2018b), it was 

hypothesised that concurrent training would result in similar increases to satellite cell 

content compared to isolated resistance or endurance training.  

 

3.3 Methods 

3.3.1 Experimental overview 

Using a parallel-groups design, participants were stratified according to lean 

body mass and allocated to either a resistance only (RES; n = 10), endurance only 

(END; n = 10) or concurrent resistance and endurance exercise training (CET; n = 12) 

group for 12 wk. Measures of maximal strength, aerobic capacity, and anaerobic power, 

as well as body composition were performed pre- and post-intervention and have been 
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previously reported (Shamim et al., 2018b; Timmins et al., 2020). Resting skeletal 

muscle biopsies were taken from the vastus lateralis at baseline (pre-intervention), and 

after 2, 8, and 12 wk of training. The study was approved by the Australian Catholic 

University Human Research Ethics Committee and was carried out in accordance with 

the latest revision of the Declaration of Helsinki. This trial was registered with the 

Australian New Zealand Clinical Trials Registry (ACTRN12617001229369). 

 

3.3.2 Participants 

Thirty-two young, healthy, recreationally active males (age: 25±5 y, body mass 

index: 24±3 kg•m-2; mean±SD) who had not participated in a structured exercise 

program for ≥6 months preceding the study volunteered to participate. Participants were 

deemed healthy and eligible to participate based on their responses to a cardiovascular 

risk-factor questionnaire. All experimental procedures and risks associated with the 

study were explained to participants prior to providing written informed consent.  

 

3.3.3 Exercise training 

 A detailed outline of the training programs has been reported elsewhere 

(Shamim et al., 2018b). Briefly, for the duration of the intervention, participants in the 

RES and END group performed three non-consecutive days of training each week. 

Participants in the CET group trained 6 d•wk-1 and performed identical resistance and 

endurance programs on alternating days as those in the RES and END groups, 

respectively. All training sessions were performed under the supervision of a member 

of the research team. Resistance training consisted of whole-body exercises with a focus 

on the leg press, knee extension and bench press movements, with these exercises 

performed at an intensity of ~60-98% of 1RM. If a participant was unable to achieve 
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the prescribed number of repetitions, the weight was lowered by ~5-10% for the 

following set to uphold the repetition scheme. Endurance cycle training was performed 

on Lode cycle ergometers and consisted of a mixture of a hill simulation ride of varying 

intensity (25-110% of maximum aerobic power (MAP), moderate-intensity continuous 

training at 50% MAP, moderate-intensity interval training at 70% MAP, and high-

intensity interval training at 100% MAP. Moderate-intensity intervals were separated 

by a 60 second recovery period at ~40% MAP, to establish a 2.5:1 or 5:1 work-to-rest 

ratio. High-intensity intervals were separated by 20-60 s recovery periods, completed 

at ~40% MAP, to establish a 1:5, 1:2, or 1:1 work-to-rest ratio. All sessions were 

preceded by a standardised warm up for the respective training modality. Progressive 

overload was applied by periodically manipulating the number of sets and repetitions 

(resistance training), number of intervals (endurance training), and relative intensity of 

load the 12-wk program.  

 

3.3.4 Diets 

 A free-living, high-protein (2 g•kg-1•d-1) eating plan was implemented over the 

12-wk intervention. Participants completed daily food records and attended 

consultations with an Accredited Practicing Dietitian on a fortnightly basis to monitor 

protein and energy intakes. All participants consumed ~34 g of whey protein upon 

cessation of every training session to promote muscle protein synthesis (Macnaughton 

et al., 2016). Diet records were analysed for energy (kJ•kg-1), protein, carbohydrate, 

and fat (g•kg-1 for all macronutrients) to provide a daily average for the entire 12-wk 

intervention. Daily averages of the these dietary parameters have been previously 

published (Shamim et al., 2018b).  
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Figure 3.1 Schematic overview of study timeline and detailed vastus lateralis muscle biopsy 

sampling times following endurance (END), resistance (RES), or concurrent (CET) training.  

 

3.3.5 Skeletal muscle biopsy 

Resting skeletal muscle biopsies were taken after an overnight fast pre-

intervention and 72 h after the last exercise session of weeks 2, 8, and 12 from the 

vastus lateralis using a Bergstrom needle modified for manual suction under local 

anaesthesia (2% Xylocaine). Biopsies in the CET condition were taken 72 h after 

resistance exercise to determine the effects of endurance exercise performed on 

alternate days on satellite cell expansion (Figure 3.1). Samples were immediately 

frozen in liquid nitrogen or embedded in optimum cutting temperature compound 

(Scigen) and frozen in liquid nitrogen-cooled isopentane. Samples were stored at -80oC 

for subsequent analysis. 
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3.3.6 Immunohistochemistry 

Muscle cross-sections (7 μm) were stained for cross-sectional area (CSA), fibre 

type, myonuclei, and satellite cells. Cross-sections were fixed in 2% formaldehyde, 

washed, blocked for 90 min (1X phosphate-buffered saline (PBS) containing 2% bovine 

serum albumin (BSA), 5% fetal bovine serum (FBS), 0.2% Triton X-100, 2% goat 

serum (GS), and 0.02% NaN3), and then incubated overnight at 4oC in primary 

antibodies for Pax7 (1:4, DSHB) and laminin (1:250, ab11575, Abcam). Sections were 

washed, then incubated for 2 h in secondary antibodies for Alexa Fluor 488 (#A32731) 

and 594 (#A11032; Invitrogen). Sections were re-fixed, washed, blocked for 2 h (5% 

GS containing 0.01% Triton x-100 and 0.05% NaN3), and then incubated in primary 

antibody for MHCI (1:4, A.4.951, DSHB) overnight at 4oC. Sections were washed then 

incubated for 2 h in secondary antibody (Alexa Fluor 488, #A11029, Invitrogen), nuclei 

were labelled with 4’,6-diamidino-2-phenylindole (DAPI, 1:20,000, Life 

Technologies), and cover slips affixed with ProLong™ Diamond Antifade Mountant 

(Invitrogen).  

Staining for fibre CSA and fibre-typing was undertaken following fixation by 

blocking sections for 2 h (5% GS containing 0.01% Triton X-100 and 0.05% NaN3), 

then incubating in primary antibodies for MHCI and laminin overnight at 4oC. Sections 

were washed, incubated in appropriate secondary antibodies, washed again, and then 

affixed with cover slips. As an antibody for MHCIIa was not used, fibres that were 

negative for MHCI are referred to as MHCII, which includes MHCIIa and MHCIIx 

fibre types (Babcock et al., 2012). 

All antibodies were diluted in 1% BSA, and secondary antibodies diluted 1:500. 

Images were observed under an EVOS™ FL Auto 2 microscope (Invitrogen) at 20X 

(nuclei) and 10X (CSA) objectives. An average of 218 ± 30 (90 ± 31 Type I, 128 ± 35 
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Type II) and 230 ± 44 (98 ± 24 Type I, 132 ± 38 Type II) fibres were assessed per 

participant at each time point for CSA and satellite cell enumeration, respectively. 

Peripheral muscle fibres that displayed irregular edge staining patterns or disrupted cell 

membranes and longitudinal fibres (circularity < 0.6) were excluded from analyses. 

Images were analysed using ImageJ-Fiji. 

 

3.3.7 Statistical analysis 

 Linear mixed-effect (LME) model, fit by restricted maximum likelihood 

estimate with random intercept for subject was used to test the effect of training 

condition on myofibre CSA, myofibre-type distribution, myonuclear number, and 

satellite cell content. Interactions for training condition × time were tested by the same 

LME. Where LME revealed significance, a Bonferroni post hoc test for pair-wise 

comparisons was performed. The relationships between baseline satellite cell content 

and change in fibre CSA as well as change in myonuclear content and change in fibre 

CSA were determined by calculating Pearson correlation coefficients (r). Statistical 

significance was set at P < 0.05. Data are presented as mean ± standard deviation. 

Statistical analysis was performed using R (v3.5.2).  

 

3.4 Results 

3.4.1 Fibre cross-sectional area and distribution 

Following the 12 wk training intervention, there was a main effect of condition 

(P = 0.0317), but not time or condition by time for an increase in Type I fibre CSA. 

However, when corrected for multiple comparisons, post hoc analysis revealed no 

significant differences in Type I fibre CSA for condition (Figure 3.2A). Only a main 
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effect of time (P = 0.0474), but not condition or condition by time was observed for an 

increase in Type II fibre CSA after the different training modalities. Post hoc analysis 

revealed an increase in Type II fibre CSA at Wk12 compared to Pre (P = 0.0149; Figure 

3.2B). Similarly, when the mean CSA of both Type I and II fibres was assessed, there 

was a main effect of time (P = 0.0487), but no main effect for condition or condition 

by time. Post hoc analysis revealed an increase in mixed fibres CSA at Wk12 compared 

to Pre (P = 0.0102; Figure 3.2C).  

Fibre-type distribution was unaffected by the training intervention, and 

displayed no main effect of condition, time or condition by time (Figure 3.3A-B).  
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Figure 3.2 Changes to myosin heavy chain type I (A), myosin heavy chain type II (B), and 

mixed (C) myofibre cross-sectional area (CSA) in response to endurance (END; n = 10), 

resistance (RES; n = 10), or concurrent (CET; n = 12) training. a = significantly different from 

Pre time point (P < 0.05). Values are presented as mean ± standard deviation.  
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Figure 3.3 Changes to type I (A) and type II (B) fibre distribution in response to endurance 

(END; n = 10), resistance (RES; n = 10), or concurrent (CET; n = 12) training. Values are 

presented as mean ± standard deviation.  

 

 

 

 

 

 

 



 

 89 

3.4.2 Satellite cell content 

Satellite cells were determined as staining positive for both DAPI and Pax7 and 

having a location between the basal lamina and the plasma membrane of myofibres (see 

Figure 3.4 for representative stain). In response to 12 wk of exercise training there was 

no main effect of condition, time or condition by time for change in Type I satellite cell 

content (Figure 3.5A). Similarly, there was no main effect of condition, time or 

condition by time for change in Type II satellite cell content (Figure 3.5B). There was 

no main effect of condition, time or condition by time for change in mixed fibre-type 

satellite cell content (Figure 3.5C). 

       

 

Figure 3.4 Representative image of a myosin heavy chain (MHC) I/Laminin/Pax7/DAPI stain 

of a muscle cross-section (A). Channel view of Pax7/DAPI (B), MHCI/Laminin/DAPI (C), and 

MHCI/Laminin/Pax7 (D).  
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3.4.3 Myonuclear content and domain 

In response to training, there was a main effect of time (P = 0.044), but not 

condition or condition by time for an increase in Type I myonuclear content. Post hoc 

analysis revealed that myonuclear content was greater at Wk8 compared to Wk2 (P = 

0.0031) and Wk12 (P = 0.0410; Figure 3.5D). Conversely, training did not alter Type 

II myonuclear content as no main effect of condition, time or condition by time was 

observed (Figure 3.5E). When the mean myonuclear content of both Type I and II 

fibres was assessed, a main effect of time (P = 0.0302), and condition by time (P = 

0.0350), but not condition was observed. Post hoc analysis revealed mixed fibre 

myonuclear content was greater at Wk8 (2.25 ± 0.679 DAPI+/Fibre) compared to Wk2 

(1.85 ± 0.532 DAPI+/Fibre; P = 0.0297; Figure 3.5F).  
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Figure 3.5 Fibre type-specific satellite cell (A-C) and myonuclear (D-F) expansion in response 

to endurance (END, n = 10), resistance (RES; n = 10), or concurrent (CET; n = 12) training. 

Change in myosin heavy chain type I (A), myosin heavy chain type II (B), and mixed (C) 

myofibre satellite cell content. Change in myosin heavy chain type I (D), myosin heavy chain 

type II (E), and mixed (F) myofibre myonuclear content. b = significantly different from week 

2 time point (P < 0.05). c = significantly different from week 8 time point (P < 0.05). Values 

are presented as mean ± standard deviation.  

 

 



 

 92 

Despite an increase in Type I myonuclear content, no main effect of condition, 

time or condition by time was seen for Type I myonuclear domain. Conversely, Type 

II myonuclear domain increased in response to training as a main effect of time (P = 

0.0341), but not condition or condition by time. However, when corrected for multiple 

comparisons, post hoc analysis revealed no significant differences in Type II 

myonuclear domain with time. Likewise, when the mean myonuclear domain of both 

Type I and II fibres was assessed, no main effect of condition, time or condition by time 

was present (data not shown).  

 

3.4.4 Pearson’s correlation coefficients of muscle characteristics 

There were significant correlations between increases in fibre type-specific 

myonuclear content and increases in fibre CSA for Type I (r = 0.63, P < 0.0001; Figure 

3.6A), Type II (r = 0.69, P < 0.0001; Figure 3.6B), and mixed fibres (r = 0.72, P < 

0.0001; Figure 3.6C). There was no relationship between pre-intervention fibre type-

specific satellite cell content and increases in fibre CSA for Type I (r = -0.073, P = 

0.69; Figure 3.6D), Type II (r = 0.048, P = 0.8; Figure 3.6E), or mixed fibres (r = -

0.08, P = 0.66; Figure 3.6F). There was no relationship between change in fibre type-

specific satellite cell content and increase in fibre CSA for Type I (r = 0.22, P = 0.23; 

Figure 3.7A), Type II (r = 0.24, P = 0.19; Figure 3.7B), or mixed fibres (r = 0.23, P = 

0.22; Figure 3.7C).  
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Figure 3.6 Pearson correlation coefficients (r) showing the relationship between fibre type-

specific changes in cross-sectional area (CSA) and myonuclear content (A-C) and fibre type-

specific changes in CSA and pre-intervention baseline satellite cell content (D-F). Statistical 

significance was set at P < 0.05. Abbreviations: CET, concurrent training; END, endurance 

training; RES, resistance training.  
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Figure 3.7 Pearson correlation coefficients (r) showing the relationship between fibre type-

specific changes in cross-sectional area (CSA) and changes in satellite cell content (A-C). 

Statistical significance was set at P < 0.05. Abbreviations: CET, concurrent training; END, 

endurance training; RES, resistance training.  
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3.5 Discussion 

The aim of the present investigation was to evaluate whether the magnitude 

of muscle hypertrophy achieved during concurrent training is affected by 

time-dependent changes in fibre type-specific satellite cell abundance. In 

response to 12 wk of endurance, resistance, and concurrent training, fibre CSA 

and myonuclear content are increased without a concomitant change in total 

satellite cell content. These results were contrary to the original research 

hypothesis given that it has been suggested that modulating concurrent training 

variables in association with protein availability may augment muscle 

hypertrophy compared to resistance training alone (Murach & Bagley, 2016).  In 

the present study, Type II and mixed myofibre CSA hypertrophy increased over 

the duration of the training intervention for all training conditions. However, 

despite implementing recommendations to maximise hypertrophy with 

concurrent training (Murach & Bagley, 2016), no differences in the 

magnitude of myofibre hypertrophy achieved were observed between the 

different training interventions.  

Previous reports of augmented hypertrophy (e.g. increased myofibre CSA) 

with concurrent training compared to resistance training alone have been without 

optimal nutritional support, and have been of shorter duration (Lundberg et al., 2013; 

Kazior et al., 2016). However, longer training interventions (i.e., ≥ 20 wk), have also 

failed to observe any differences in myofibre CSA hypertrophy compared to 

resistance training (Sale et al., 1990; Häkkinen et al., 2003). Therefore, it is possible 

that variance in the magnitude of myofibre hypertrophy observed with 

concurrent training between previous work (Sale et al., 1990; Häkkinen et al., 2003; 

Lundberg et al., 2013; Kazior et al., 2016) and the present study are due to differences 

in the length of the intervention or nutritional support provided. Accordingly, while 

the findings in the present study 
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support the recent recommendations for concurrent exercise training prescription to 

promote hypertrophy (Murach & Bagley, 2016), they do not appear to facilitate an 

augmented hypertrophic response compared to resistance or endurance training over 12 

wk at the myofibre CSA level.  

It is unclear why the greater volume of work completed by participants in the 

concurrent training group did not induce a greater increase in myofibre CSA, especially 

as it has been hypothesised that the potential for myofibre hypertrophy to occur with 

chronic concurrent training may be limited by satellite cells (Babcock et al., 2012). 

Evidence for impaired satellite cell responses with concurrent exercise compared to 

resistance exercise alone has been observed when a bout of moderate intensity 

resistance exercise is followed immediately by moderate intensity continuous cycling 

in young, healthy males (Babcock et al., 2012). However, performing moderate 

intensity resistance exercise followed immediately by high-intensity interval cycling 

results in an increase in Type I fibre satellite cell content comparable to resistance 

exercise alone in sedentary, overweight and obese, middle-aged individuals (Pugh et 

al., 2018).  

In the present study, both moderate intensity continuous and high intensity 

interval cycling was implemented and resulted in little difference in satellite cell content 

between CET and RES over the intervention. Contrary to the initial hypothesis, no 

increase in satellite cell content was observed in response to any training modality. 

While differences in exercise intensity, training status of participants, and baseline 

satellite cell content may partially explain disparities in satellite cell expansion 

previously observed with concurrent exercise (Babcock et al., 2012; Pugh et al., 2018), 

it is difficult to reconcile why no increase in satellite cell content was observed in 

response to either resistance or endurance training alone. Given the hypertrophy 
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observed in Type II and mixed fibre CSA in the absence of myonuclear addition, it is 

possible that the existing myonuclei were able to support the degree of hypertrophy 

achieved and that expansion of the satellite cell pool to promote myogenesis was not 

needed. While the current findings demonstrate that concurrent training does not result 

in an additive expansion in satellite cell numbers compared to isolated endurance or 

resistance training, without having observed an increase in satellite cell content in 

response to endurance or resistance training alone, the possibility that concurrent 

training impairs satellite cell expansion cannot be rejected, and deserves further 

investigation. 

In addition to the lack of satellite cell pool expansion, activation of fibre type-

specific satellite cells has also been shown to be limited by concurrent exercise 

compared to resistance exercise (Pugh et al., 2018). As satellite cell activation can 

generate both progeny for self-renewal of the satellite cell pool and myogenic 

precursors to undergo terminal differentiation (Kuang et al., 2007), a blunted response 

may underlie limited satellite cell expansion previously observed following concurrent 

exercise (Babcock et al., 2012; Pugh et al., 2018). While there appears to be little or no 

satellite cell activation 96 h after a bout of concurrent exercise (Babcock et al., 2012; 

Pugh et al., 2018), increases in satellite cell activation have been observed 9 h after a 

single bout of concurrent exercise in young, healthy males (Snijders et al., 2012). Given 

the transient nature of satellite cell activation (Snijders et al., 2015a), it is possible the 

absence of active satellite cells at 96 h after concurrent exercise previously reported 

(Babcock et al., 2012; Pugh et al., 2018) may be due to post-exercise biopsy timing. 

Though satellite cell activation was not directly assessed in the present study, a stable 

number of satellite cells and increased number of myonuclei was observed after eight 

weeks in Type I fibres in all training conditions. Therefore, satellite cell activation and 
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proliferation appear to have occurred in order to maintain a stable satellite cell pool.  

Furthermore, training-induced increases in myonuclear content in response to 

concurrent training were not different from isolated endurance or resistance training 

and occurred without fibre-type specific hypertrophy. Accordingly, concurrent training 

does not prevent satellite cell differentiation and myonuclear accretion. Collectively, 

these observations suggest that chronic concurrent training does not inhibit satellite cell 

activation or myogenesis.  

Myonuclear content may regulate the capacity for myofibre hypertrophy 

(Petrella et al., 2006, 2008). According to the myonuclear domain theory, a single 

myonucleus can only provide sufficient transcriptional capacity over a finite amount of 

cytoplasm (Cheek, 1985; Allen et al., 1999). During periods of extensive myofibre 

hypertrophy, increases in myofibre CSA are accompanied by an increase in cell 

volume, which results in a strain on the myonuclear domain (i.e., μm2 fibre 

area/myonucleus). In turn, myofibre hypertrophy can occur as a result of increasing the 

size of existing myonuclear domains or by increasing the absolute number of domains 

within the myofibre (Edgerton & Roy, 1991; Kadi & Thornell, 2000). While it has been 

hypothesised that myonuclear addition only occurs when myofibre hypertrophy 

exceeds a relative magnitude (~26%) (Kadi et al., 2004) or the myonuclear domain 

exceeds an absolute ‘ceiling’ (~2,250 μm2) (Petrella et al., 2006, 2008), the concept of 

a universal myonuclear threshold has been challenged (Conceição et al., 2018). In the 

present study, the average Type II and mixed fibre-type hypertrophy observed was 

~15% and ~13%, respectively, which occurred in the absence of myonuclear addition 

or an expansion in the myonuclear domain. Indeed, this observation alone would be in 

agreement with the notion that a ~26% increase in CSA is needed to evoke myonuclear 

addition (Kadi et al., 2004). However, when considered with the increased myonuclear 
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number in the absence of hypertrophy in Type I fibres observed in the present study, 

the current data do not support the rationale that hypertrophy must exceed a relative 

threshold to permit myonuclear addition. Likewise, the hypertrophy observed in Type 

II fibres occurred without a prior increase in myonuclear domain and demonstrates that 

changes in myonuclear domain size do not precede myofibre hypertrophy. These 

findings are supported by previous work demonstrating that myofibre hypertrophy in 

response to 12 wk of resistance training occurs without prior changes in myonuclear 

domain size in young, healthy men (Snijders et al., 2016). While the average Type II 

myonuclear domain (~4,200 μm2) in the present study greatly exceeds the suggested 

theoretical myonuclear domain ‘ceiling’ (Petrella et al., 2006, 2008), this value is 

comparable to previous reports (Karlsen et al., 2015). Collectively, these observations 

highlight that the myonuclear domain does not limit increases to myonuclear content, 

and does not appear to be a limiting factor in the degree of myofibre hypertrophy 

achieved with concurrent training.  

While there is considerable debate around the notion that satellite cells are 

required to facilitate overload-induced myofibre hypertrophy (Petrella et al., 2006, 

2008; Verdijk et al., 2009, 2014; Bellamy et al., 2014; Dirks et al., 2017; Reidy et al., 

2017b; McCarthy et al., 2017; Karlsen et al., 2015; Murach et al., 2017), current 

evidence indicates that a positive correlation exists between satellite cell-mediated 

myonuclear accumulation and myofibre hypertrophy (Petrella et al., 2006, 2008; 

Verdijk et al., 2010, 2014; Bellamy et al., 2014; Reidy et al., 2017b). In accordance, 

higher baseline satellite cell content has been associated with a greater magnitude of 

myofibre hypertrophy achieved after a period of resistance training (Petrella et al., 

2008). In the current study, there was no relationship between baseline satellite cell 

content and increases in Type I, Type II, or mixed myofibre CSA. However, a positive 
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correlation was observed for increases in fibre type-specific myonuclear content and 

increases in myofibre CSA (Figure 3.5). These observations are consistent with 

previous works (Petrella et al., 2006, 2008; Verdijk et al., 2010, 2014; Bellamy et al., 

2014; Reidy et al., 2017b) demonstrating that increases in myonuclear number are 

tightly coupled to increases in myofibre CSA. Collectively, these findings illustrate that 

myonuclear content, rather than satellite cells, is more likely related to limitations in 

the degree of myofibre hypertrophy achieved in following a concurrent training 

intervention.  

There are several limitations in present study that need to be acknowledged. 

First, biopsies were collected 48 h after the last bout of endurance exercise in the CET 

condition. As the number of satellite cells has been shown to peak ~72 h after exercise 

(Snijders et al., 2015a), consideration must be given to discrepancies in biopsy 

sampling time between CET and END conditions. Likewise, whether a prior bout of 

resistance exercise alters satellite cell and/or myonuclear content 72 h after endurance 

exercise in CET cannot be determined from the selected biopsy sampling time. Next, it 

is unclear whether training altered satellite cell activation. It has recently been shown 

that chronic resistance training enhances the activation of satellite cells in response to 

an acute bout of exercise (Nederveen et al., 2017). Future investigations assessing 

markers of satellite cell activation (i.e., MyoD, Myf5, Myogenin) are required to 

understand if chronic concurrent training alters satellite cell activation in response to 

an acute exercise stimulus. Finally, dietary protein (Shamim et al., 2018c) and other 

nutrients (Tachtsis et al., 2018; Shamim et al., 2018a) have been suggested to enhance 

satellite cell responses and promote exercise adaptations in skeletal muscle. However, 

without the inclusion of a placebo control, it is unclear if consuming a higher protein 

intake affected myogenesis throughout the course of the training intervention.    
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 In conclusion, this is the first investigation to assess changes in satellite cell and 

myonuclear content following a period of chronic concurrent exercise training 

compared to isolated resistance and endurance training. The findings demonstrate that 

resistance, endurance, and concurrent training induce myofibre hypertrophy in the 

absence of expansion to the satellite cell and myonuclear pools. Implementing 

strategies to maximise hypertrophic potential with chronic concurrent training did not 

result in augmented myofibre hypertrophy, satellite cell pool expansion, or myonuclear 

accretion compared to endurance or resistance training alone. Likewise, myonuclear 

domain size remains stable throughout chronic endurance, resistance, and concurrent 

training, and, as such, does not appear to be a critical mediator in myonuclear accretion 

or limit the degree of hypertrophy achieved with concurrent training. The current data 

suggest that changes in myonuclear content are not prerequisite to changes in myofibre 

hypertrophy, but do appear to be associated with the magnitude of myofibre 

hypertrophy achieved in young, healthy males.  
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CHAPTER 4 
 

SKELETAL MUSCLE TRANSCRIPTOMIC RESPONSES TO CHRONIC 
CONCURRENT EXERCISE TRAINING  
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4.1 Abstract 

Combining resistance and endurance exercises in a training program 

(concurrent training) attenuates gains in muscle hypertrophy, strength, and power 

compared to when resistance training is undertaken alone.  In order to understand which 

gene programs underpin adaptations to different training modes, skeletal muscle 

transcriptomic responses were explored following 12 wk endurance, resistance, and 

concurrent training in samples from eighteen (n = 6 per group) young, healthy male 

participants. Gene expression related to plasma membrane structures was enriched 

while gene expression related to regulation of mRNA processing and protein 

degradation was suppressed with concurrent training. Considerable overlap of gene 

expression related to extracellular matrix remodelling was observed between 

concurrent and endurance training. This is the first comparison of unique and 

overlapping gene sets enriched following chronic resistance, endurance, and concurrent 

training, and identifies known pathways with potential roles underpinning the 

limitations to adaptations made from concurrent exercise training.  
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4.2 Introduction 

The molecular basis of skeletal muscle adaptations to exercise involves 

increased expression and/or activity of key proteins, mediated by an array of signalling 

events regulating pre- and post-transcriptional processes, protein translation, post-

translational modifications, and intracellular localisation of proteins (Hawley et al., 

2014). Given the divergent stimuli associated with endurance- and resistance-based 

exercise, there are a variety of signalling kinases and downstream pathways/targets 

activated in response to each modality (Egan et al., 2016). Adaptations to exercise 

training are hypothesised to result from the culmination of transient increases in mRNA 

transcripts encoding for various proteins after each successive exercise bout (Perry et 

al., 2010). These repeated surges in mRNA abundance appear to be essential to drive 

the intracellular adaptive response to exercise training (Perry et al., 2010). However, 

when endurance- and resistance-based training modalities are combined (concurrent 

training), there are impairments to resistance-based adaptations (Hickson, 1980; Craig 

et al., 1991; Hennessy & Watson, 1994; Kraemer et al., 1995; Dolezal & Potteiger, 

1998; Bell et al., 2000; Häkkinen et al., 2003; Rønnestad et al., 2012a; Mikkola et al., 

2012; Fyfe et al., 2016a, 2018), a phenomenon known as the ‘interference effect’.  

The incompatibility of competing molecular signals following divergent 

exercise stimuli has been hypothesised to underlie the interference observed with 

concurrent training (Nader, 2006; Hawley, 2009; Hamilton & Philp, 2013; Baar, 2014a; 

Perez-Schindler et al., 2015; Coffey & Hawley, 2017). Strategies focused on promoting 

anabolic intracellular signalling recommend that modifying training variables (i.e., 

recovery period between exercise modes) and nutrition (i.e., post-exercise protein) may 

prevent the interference effect (Nader, 2006; Hawley, 2009; Hamilton & Philp, 2013; 
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Baar, 2014a; Camera et al., 2015; Perez-Schindler et al., 2015; Murach & Bagley, 

2016; Coffey & Hawley, 2017). The bases for these recommendations are centred on 

the discrete induction of two intracellular signalling mediators: mammalian target of 

rapamycin complex 1 (mTORC1) and 5’ adenosine monophosphate-activated protein 

kinase (AMPK). Resistance-based exercise activates canonical mTORC1 signalling, 

stimulating protein synthesis and cell growth, while endurance-based exercise primarily 

activates AMPK signalling, promoting mitochondrial biogenesis and modifying 

substrate utilisation (Hawley et al., 2014). However, a single bout of endurance exercise 

followed immediately by resistance exercise stimulates mTORC1 signalling to the 

same magnitude as resistance exercise alone, while simultaneously activating AMPK 

(Apró et al., 2015), suggesting that exercise-induced AMPK does not prohibit 

activation of mTORC1. Furthermore, chronic concurrent training increases markers of 

translational capacity (i.e., ribosome content), independent of mTORC1 signalling or 

myofibre hypertrophy (Fyfe et al., 2018). Given the complexity of molecular networks 

involved in contraction-induced training responses (Egan & Zierath, 2013; Coffey & 

Hawley, 2017), a binary relationship between exercise modality and molecular 

pathways is unlikely. Instead, it is probable that numerous interdependent pathways are 

responsible for eliciting any interference effect.   

From a molecular perspective, it is obvious that training adaptation is a 

consequence of accumulation of specific proteins, with the gene expression initiating 

these changes in protein content crucial to any subsequent adaptation. Hence, 

contraction-induced perturbations at the level of the transcriptional machinery may 

provide a unique ‘molecular signature’ to help identify mechanisms underpinning 

divergent training adaptations (Camera et al., 2010). To date, transcriptome-wide 

analysis of unique metabolic pathways in skeletal muscle has only been evaluated 
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following a single bout of concurrent exercise (Lundberg et al., 2016). However, there 

is a clear disconnect between transcriptomic changes following acute exercise and 

subsequent adaptations to chronic training (Phillips et al., 2013). Therefore the primary 

aim of this study was to explore skeletal muscle transcriptomic responses to a program 

of chronic concurrent training and discover whether changes in global gene expression 

reveal a molecular foundation for limited degree of hypertrophy observed with 

concurrent exercise training. 

 

4.3 Methods 

4.3.1 Experimental overview 

The present work is a part of a larger study (Shamim et al., 2018b), that used a 

parallel-groups design whereby participants were stratified according to lean body mass 

(LBM) and allocated to either a resistance only (RES), endurance only (END) or 

concurrent resistance and endurance exercise training (CET) group for 12 wk. Measures 

of maximal strength, aerobic capacity, and anaerobic power, as well as body 

composition were performed pre- and post-intervention. Resting biopsies (vastus 

lateralis) were taken pre-intervention, after 2 and 8 wk of training, and post-

intervention. For the duration of the intervention, all participants consumed a high-

protein diet (2 g•kg-1•d-1) to maximise gains in muscle mass. The study was approved 

by the Australian Catholic University Human Research Ethics Committee and was 

carried out in accordance with the latest revision of the Declaration of Helsinki. This 

trial was registered with the Australian New Zealand Clinical Trials Registry 

(ACTRN12617001229369). 
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4.3.2 Participants 

A subset of 18 participants (n = 6 per group) data were used for the current 

analysis. As the central purpose of the primary study was to assess changes in lean 

mass, six participants from each condition were selected to match the baseline leg lean 

mass to that of the full participant cohort (Shamim et al., 2018b). 

 

4.3.3 Training intervention 

The training intervention has been described elsewhere (Shamim et al., 2018b). 

In brief, participants in the RES and END groups performed training 3 d•wk-1, while 

the CET group trained 6 d•wk-1, alternating between resistance and endurance training 

each day. The resistance and endurance components of the training regime were 

matched between CET and RES, and CET and END, respectively. 

 

4.3.4 Muscle biopsy 

Resting skeletal muscle biopsies from the vastus lateralis were taken pre-

intervention and 72 h after the last exercise session of weeks 2, 8, and 12. Biopsies in 

the CET condition were taken 72 h after resistance exercise to determine the effect of 

endurance exercise performed on alternate days on the muscle transcriptional profile. 

Samples were immediately frozen in liquid nitrogen and stored at -80oC for subsequent 

analysis.  

 

4.3.5 mRNA sequencing 

Total RNA was isolated from ~40 mg of skeletal muscle using a commercially 

available kit (mirVana™ PARIS™, Invitrogen) according to manufacturer’s protocol. 
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RNA was eluted in PCR grade water. The RNA Integrity Number (RIN) was 

determined by automated electrophoresis (2100 Bioanalyzer™, Agilent Technologies). 

Average RIN value for all samples was 8.3 ± 0.6. Concentration of RNA was 

determined by fluorometric quantification using Qubit™ RNA HS Assay (Invitrogen). 

Single- and double-stranded DNA, as well as oligodeoxy-ribonucleotides containing a 

5’-phosphate, were digested by Amplification Grade DNase I (Invitrogen) treatment 

according to manufacturer’s protocol. Following DNase treatment, the concentration of 

RNA samples was adjusted to 50 ngµL-1.  

RNA libraries were prepared for sequencing using the Ion AmpliSeq™ 

Transcriptome Human Gene Expression Kit (Life Technologies), following the 

manufacturer’s recommendations. Briefly, 50 ng of total RNA was reverse-transcribed 

to generate first strand cDNA using SuperScript™ VILO™ (Invitrogen) reverse 

transcriptase and random primers. Following reverse transcription, target genes were 

amplified using Ion AmpliSeq™ Transcriptome Human Gene Expression Core Panel. 

After target amplification, primer sequences were partially digested and amplicons 

were phosphorylated. The amplicons were then ligated to unique Ion Xpress™ 

barcodes (Life Technologies) and the resulting constructs were purified using 

Agencourt™ AMPure™ XP Magnetic Beads (Beckman Coulter). Libraries were 

quantified by qPCR against a standard curve of E. Coli DH10B (Life Technologies) 

and normalized to 100 pM. Six libraries were pooled equally and 25 μL of the pooled 

mixture was used on one Ion 540™ Chip (Life Technologies) for template preparation 

using the Ion Chef™ Instrument (Life Technologies).  

Ion semiconductor sequencing was performed on the Ion S5 XL system (Life 

Technologies). Read alignment was mapped back to target sequences of reference 

genome GRCh37.hg19 using the Tmap package for Torrent Suite™ software v5.8 (Life 
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Technologies) with default parameters. The resulting mapped read counts were used 

for subsequent bioinformatics analysis, and raw FASTQ files deposited in the Gene 

Expression Omnibus (#GSE137832). 

 

4.3.6 Real-time PCR 

Real-time PCR was carried out for selected mRNA targets using TaqMan™ 

probes and primers on the same RNA extract used for sequencing as previously reported 

(Camera et al., 2017). Additionally, RNA was isolated from ~20 mg of skeletal muscle 

(using the aforementioned protocol) available for an additional 12 participants who 

completed the intervention (Shamim et al., 2018b). Purity of RNA was determined by 

assessing the 260:280 ratio using a NanoDrop 2000 spectrophotometer (ThermoFisher). 

Quantification of RNA concentration, DNase treatment, and reverse transcription of 20 

ng of RNA were performed as described above.  

Quantification of mRNA, in duplicate, was performed using a CFX96 Touch™ 

Real-Time PCR Detection System (Bio-Rad Laboratories). TaqMan™ Gene 

Expression Master Mix in combination with TaqMan™-FAM™ reporter dye labelled 

probes for secreted protein acidic and rich in cysteine (SPARC; Hs00234160_m1) and 

collagen, type IV, alpha 1 (COL4A1; Hs00266237_m1; Applied Biosystems) were used 

in a final reaction volume of 20 μL. Target gene expression relative to reference genes, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Hs02786624_g1) and 18S 

ribosomal RNA (18S; Hs99999901_s1), was calculated using 2-ΔΔCt method (Livak & 

Schmittgen, 2001). 
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4.3.7 Bioinformatics 

Differentially expressed genes (DEG) between individual training conditions 

were obtained by analysing read counts using R/Bioconductor package DESeq2 

(v1.22.2) by applying regularised log transformation (Love et al., 2014). DEG were 

identified as surpassing a false discovery rate (FDR) corrected q-value of ≤ 0.05 and 

subsequently considered for further analysis. Ingenuity Pathway Analysis (IPA; 

Qiagen) software was used for prediction of upstream regulators of DEG. Functional 

gene ontology (GO) terms from the Molecular Signature Database (v6.2) were 

determined using Gene Set Enrichment Analysis (GSEA) from ranked gene lists 

(Subramanian et al., 2005). Analysis included GO sets with an FDR-corrected q-value 

≤ 0.05. Intersecting GO terms between experimental conditions were visualized using 

the UpSetR package (Lex et al., 2014). 

 

4.3.8 Statistical analysis 

Statistical analysis was performed using the nlme package on R (v3.5.2). Linear 

mixed-effect (LME) model, fit by restricted maximum likelihood estimate with random 

intercept for subject was used to test the effect of training condition on mRNA 

abundance measured by qPCR. Interactions for training condition × time were tested 

by the same LME.  Where LME revealed significance, a Fisher’s Least Significant 

Difference post hoc test for pair-wise comparisons was performed. Statistical 

significance was set at p ≤ 0.05. Unless otherwise stated, data are presented as mean ± 

standard deviation of n = 6 per training intervention.  
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4.4 Results 

4.4.1 Global gene expression responses to chronic exercise training 

RNA sequencing was performed on pre- and post-intervention skeletal muscle 

biopsies. Principal component analysis revealed that the transcriptional profile across 

conditions shared considerable overlap (Figure 4.1A). Among all training conditions, 

CET induced the largest change in DEG, with 284 transcripts differentially expressed, 

versus 168 in END, and none for RES (Figure 4.1B). Of the DEG observed, 216 and 

100 were unique to CET and END, respectively. Direction of change favoured 

upregulation, with CET and END displaying 197 and 103 increased transcripts, 

respectively, while 87 and 65 transcripts decreased, respectively (Figure 4.1C). 

Upstream regulator analysis of DEG identified major transcriptional regulators of 

myogenesis, such as Myc, hypoxia-inducible factor-1α, and myogenic determination 

protein 1, as well as growth factors, including transforming growth factor beta 1, 

fibroblast growth factors 1 and 2, and vascular endothelial growth factor (Figure 4.1D). 
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Figure 4.1 Differentially expressed gene and predicted upstream regulator analysis. Principal 

component analysis of individual samples designated by experimental condition (A). Venn 

diagram of unique and overlapping differentially expressed genes (B). Volcano plots of 

differentially expressed genes in individual experimental conditions (C). Ingenuity Pathway 

Analysis of predicted upstream regulators of differentially expressed genes composed of 

growth factors and transcription regulators (D). 
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To determine whether modulation of muscle gene transcripts following training 

contributed to the observed changes in metabolic phenotypes reported in Chapter 2, a 

gene set enrichment analysis (GSEA) was performed to assess potential gene sets 

contributing to distinct training phenotypes. Gene transcript changes were rank-ordered 

from most increased to decreased. Gene Ontology (GO) process annotations displayed 

the greatest enrichment in CET and END (Figure 4.2), with the most significant 

enrichment for terms associated with increased extracellular matrix (ECM) remodelling 

and angiogenesis and decreased ribosome biogenesis (Figure 4.3A-B). Gene sets 

unique to CET were most prominently upregulated for plasma membrane structures and 

downregulated relating to regulation of mRNA processing and protein degradation 

(Figure 4.4A-B).  

 

Figure 4.2 UpSet plot of the number of gene sets derived from gene set enrichment analysis 

(GSEA) that were common or exclusive between experimental conditions. Gene ontology terms 

for molecular function, biological process, and cell component were determined using GSEA 

software to search the Molecular Signature Database for enriched gene sets using the ranked 

gene list. Only gene sets with a false discovery rate (FDR) q-value of ≤ 0.05 were included. 

The FDR q-value was computed by using 1000 random permutations of the gene set. 
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Figure 4.3 Top 20 enriched gene ontology terms up- (A) and down- (B) regulated overlapping 

between concurrent exercise training (CET) and endurance training (END). Gene ontology 

terms for molecular function, biological process, and cell component were determined using 

Gene Set Enrichment Analysis (GSEA) software to search the Molecular Signature Database 

for enriched gene sets using the ranked gene list. Size indicates the number of genes in the gene 

set. Only gene sets with a false discovery rate (FDR) q-value of ≤ 0.05 were included. The FDR 

q-value was computed by using 1000 random permutations of the gene set. 
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Figure 4.4 Top 20 enriched gene ontology terms up- (A) and down- (B) regulated unique to 

concurrent exercise training (CET). Gene ontology terms for molecular function, biological 

process, and cell component were determined using Gene Set Enrichment Analysis (GSEA) 

software to search the Molecular Signature Database for enriched gene sets using the ranked 

gene list. Size indicates the number of genes in the gene set. Only gene sets with a false 

discovery rate (FDR) q-value of ≤ 0.05 were included. The FDR q-value was computed by 

using 1000 random permutations of the gene set. 
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4.4.2 Targeted gene expression responses to chronic exercise training 

Given the greatest degree of enrichment was observed in the GO extracellular 

structure organisation set (Figure 4.3A), targeted gene expression of members within 

this gene set, SPARC and COL4A1, was performed to confirm RNA sequencing results. 

These genes were differentially expressed in a consistent manner in both RNA 

sequencing and qPCR analyses (Figure 4.5A-C). Gene expression of SPARC and 

COL4A1 measured in RNA extracts that were also used for RNA sequencing 

demonstrated an increased expression analogous to that reported by RNA sequencing, 

albeit non-significant (Figure 4.5B). However, when RNA extracts from the larger 

cohort of available participant samples were included (n = 30), SPARC and COL4A1 

were both found to be significantly differentially expressed from Pre to Post 

intervention. Specifically, SPARC expression was significantly increased in CET (p = 

0.012) and END (p < 0.001), while COL4A1 was substantially increased in CET (p = 

0.067) and END (p < 0.001; Figure 4.5C). 
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Figure 4.5 Targeted gene expression of members within top up-regulated gene set enrichment 

analysis annotation. Heat maps illustrating top 25 differentially expressed genes within the GO 

Extracellular Structure Organisation set for concurrent (CET), endurance (END), and resistance 

(RES) training (A). Gene expression of SPARC and COL4A1 by qPCR from muscle of 

participants used for RNA sequencing (n = 6, 6, and 6 for CET, END, and RES, respectively) 

(B) and muscle from additional study participants (n = 11, 9, and 10 for CET, END, and RES, 

respectively) (C). Data are presented as mean ± standard deviation. a = p < 0.05 from Pre; * = 

p < 0.05 from CET; + = p < 0.05 from RES. 
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4.5 Discussion 

The extent to which temporal changes in mRNA abundance patterns were 

associated with skeletal muscle adaptations to three different exercise training protocols 

was investigated using transcriptomics. The main finding was that concurrent training 

augments gene sets related to plasma membrane structures while suppressing those 

related to regulation of mRNA processing and protein degradation. Additionally, 

considerable overlap of gene sets enriched for terms related to ECM remodelling were 

observed in CET and END, which may underlie attenuations in maximal anaerobic 

power outputs. This study provides the first comparison of unique and overlapping gene 

sets enriched following chronic resistance, endurance, and concurrent training. 

Both resistance (Damas et al., 2018b) and endurance (Keller et al., 2010) 

exercise have pronounced effects on transcriptome-wide gene expression, which may 

ultimately determine training adaptations (Timmons et al., 2010). Previous work has 

demonstrated that a single bout of exhaustive aerobic exercise preceding resistance 

exercise augments the expression of genes with putative roles in oxidative metabolism, 

while concomitantly suppressing genes involved in regulating skeletal muscle tissue 

development (Lundberg et al., 2016). Recently, Robinson and colleagues (Robinson et 

al., 2017) demonstrated that 12 wk of resistance, endurance, or concurrent training in 

both young and older males and females upregulates a common subset of genes 

involved in angiogenesis 72 h after exercise. In the present study, a similar overlap of 

terms related to angiogenesis was observed amongst CET and END, but not RES. The 

reasons for the disparity in resistance exercise-induced gene expression between the 

two investigations is unclear, but may, in part, be due to differences in exercise volume, 

which has been shown to affect intracellular signalling (Burd et al., 2010a). Similarly, 

differences in proximity (i.e., same-day versus alternate-day training) and order (i.e., 
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endurance before resistance versus resistance before endurance) of exercise between 

concurrent training protocols makes direct comparison to previous work difficult.  

In the present study, CET provoked a unique transcriptional profile with 

increased gene sets related to plasma membrane receptors. This finding is in contrast to 

previous observations of attenuated transcripts related to transmembrane receptors and 

mechanosensing measured after an acute bout of combined aerobic and resistance 

exercise (Lundberg et al., 2016). Mechanotransduction involves the conversion of force 

applied across a cell membrane to biochemical signals that result in changes to gene 

expression, protein function, and cell architecture (Vogel & Sheetz, 2006). Acute 

concurrent exercise results in similar levels of phosphorylation of mechanosensitive 

transmembrane proteins, such as α7β1-integrin and focal adhesion kinase, compared to 

resistance exercise (Hansson et al., 2019). However, downstream mechanically-

sensitive transcriptional co-activators involved in cell growth and remodelling are 

active several days following mechanical overload (Goodman et al., 2015). Previous 

microarray data suggest genes encoding for integrins are enriched up to 48 h following 

contraction-induced damage to protect myofibres from subsequent perturbations 

(Hyldahl et al., 2015). Therefore, the enrichment of plasma membrane receptor genes 

following concurrent training observed in the current study suggests activation of 

remodelling processes to repair and stabilise the cell membrane for effective signal 

transduction.  

Increased enrichment for gene sets related to substrate utilisation, as previously 

seen immediately following a bout of concurrent exercise (Lundberg et al., 2016), was 

not observed in the present study. It is likely that acute transcriptomic responses to 

concurrent exercise are more reflective of transient metabolic perturbation, whereas 

myofibre remodelling predominates when energetic stress has subsided. In this regard, 
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these findings provide a new perspective and additional context for consideration when 

interpreting transcriptomic responses to concurrent exercise, and illustrate that transient 

pathways activated immediately after exercise alone may not be completely 

representative of chronic concurrent training adaptations.  

In the current study, CET suppressed gene sets related to mRNA processing and 

protein degradation. Increasing mRNA stability allows cells to adjust mRNA content, 

without altering transcription, permitting rapid responses to internal and external 

stimuli. Numerous mRNA surveillance pathways coordinate stabilisation and 

posttranscriptional degradation (e.g., noncoding RNAs, processing bodies, stress 

granules, nonsense-mediated decay). MicroRNAs, small noncoding RNA species 

which target mRNA for degradation, are one regulatory mechanism known to be 

modulated by both nutrition (Camera et al., 2016) and exercise (Fyfe et al., 2016b). 

Concurrent exercise has been reported to modulate the expression of select microRNAs 

to promote a more ‘anabolic’ environment within skeletal muscle (Fyfe et al., 2016b). 

Similarly, concurrent training decreases basal transcript levels of E3 ubiquitin ligases, 

MuRF-1 and Atrogin-1 (Fernandez-Gonzalo et al., 2013). The reduction in transcripts 

related to ubiquitin processes observed in CET is therefore in agreement with previous 

findings (Fernandez-Gonzalo et al., 2013).  

It has been suggested that acute concurrent exercise increases the expression of 

genes involved in muscle breakdown, and may diminish hypertrophic responses (Apró 

et al., 2015). The present transcriptomic analyses do not support such a hypothesis. 

Instead, it seems reasonable to suggest that concurrent training downregulates 

degradation pathways, allowing enhanced transcriptional and translational efficiency 

as a mechanism to expedite protein accretion. When considered with the observed 

transcript enrichment for plasma membrane receptors, these observations suggest the 
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high frequency and volume of contractile stimuli sustained when undertaking 

concurrent training suppresses degradation pathways during latent recovery to promote 

cellular remodelling. However, the mechanisms that determine RNA stability and gene 

expression are complex and not well understood. Future studies may look towards non-

coding transcriptomes (Timmons et al., 2018a) to fully appreciate RNA regulation 

networks in the context of training-induced skeletal muscle adaptations.  

In the current study, upregulation of gene sets associated with ECM remodelling 

in CET and END may provide insight into the impaired development of maximal 

anaerobic power previously observed following concurrent training (Kraemer et al., 

1995; Häkkinen et al., 2003; Chtara et al., 2008; Wilson et al., 2012; Fyfe et al., 2016a; 

Shamim et al., 2018b). During muscle contraction, force is transmitted to tendons 

longitudinally (Huxley & Niedergerke, 1954), along sarcomeres via the myotendinous 

junction, and laterally (Street, 1983) across costameres via the ECM (Pardo et al., 1983; 

Danowski et al., 1992). Strength training stimulates collagen synthesis in the ECM and 

tendon (Miller et al., 2005), which increases tendon hypertrophy (Kongsgaard et al., 

2007; Rønnestad et al., 2012b) and stiffness (Couppé et al., 2008). Increased stiffness 

of these structures results in higher rates of force development and transfer (Hughes et 

al., 2015) and is positively associated with power output and squat jump performance 

(Bojsen-Møller et al., 2005). Previous work suggests that concurrent training 

compromises adaptations to connective tissue (Rønnestad et al., 2012b) and therefore 

may limit improvements to maximal power output (Fyfe et al., 2016a). Consistent with 

this hypothesis, in the current study attenuations to anaerobic power development in 

both the CET and END groups were observed (Shamim et al., 2018b), despite attempts 

to circumvent the interference effect by implementing recommended strategies of 
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alternate day training, minimising exercise volume, and increasing dietary protein 

intake (Murach & Bagley, 2016). 

Given the similar morphological changes of myofibres between the different 

training interventions (Chapter 3), it is possible that endurance-based contractile 

stimuli result in alterations to connective tissue that attenuate maximal power 

generating capacity, despite the inclusion of higher intensity (100-110% of maximal 

aerobic power) training stimuli. In support of this notion, cycle ergometer training has 

been shown to increase the expression of SPARC and COL4A1 (Riedl et al., 2010), 

indicating that ECM genes are responsive to endurance training. When considered with 

the enrichment for terms related to angiogenesis, it is likely that remodelling of the 

ECM is occurring to facilitate branching of the microvascular network in response to 

endurance exercise. While alterations to mechanical properties of the ECM, such as 

decreasing density and stiffness, promote angiogenesis (Bauer et al., 2009), these 

adaptations may compromise improvements to force transfer and power output. In this 

regard, such observations prompt further investigation of structural changes to the ECM 

that contribute to force transfer within the paradigm of concurrent training.  

It is unclear why there were no DEG in the RES group. While the precise 

turnover time of mRNA following exercise is equivocal (Yang et al., 2005; Louis et 

al., 2007; Rowlands et al., 2011; Egan et al., 2013; Neubauer et al., 2014; Andersen & 

Gruschy‐Knudsen, 2018; Karlsen et al., 2019), changes in gene expression have been 

observed up to 4 days after a single bout of maximal effort resistance exercise in 

sedentary young men (Andersen & Gruschy‐Knudsen, 2018). However, given 

participants in the present study were trained for 12 wk, it is possible that the resistance 

exercise protocol was not strenuous enough to elicit such a latent gene expression 
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response. Future work exploring the time-course of transcriptional responses in trained 

individuals is needed to appreciate how chronic training affects mRNA turnover. 

Limitations within the present study are acknowledged. First, alternative 

splicing was not captured in the present analysis, and as such, previously characterised 

isoforms that are exercise mode-specific (Ruas et al., 2012) may have been overlooked. 

Second, as the primary intention of the study was to provide a characterisation of the 

concurrent training transcriptome signature, protein-abundance of target genes was not 

assessed. Although the degree of correlation between changes in transcript levels and 

corresponding proteins remains contentious (Liu et al., 2016), transcriptomics analysis 

can be used as a tool to predict protein copy numbers per cell and may serve as a proxy 

for protein changes (Edfors et al., 2016). Nevertheless, future validation and cross-

examination utilising multi-omics approaches (e.g., epigenomics, proteomics, etc.) may 

potentially reveal further significant information related to mechanisms underlying the 

interference effect. 

 

4.6 Conclusion 

This work provides the first characterisation of skeletal muscle transcriptomic 

responses to chronic concurrent training. The current findings reveal several unique and 

intersecting gene sets that may contribute to interferences in hypertrophy and power-

based adaptations. Specifically, the findings herein highlight the modulation of gene 

transcripts relating to plasma membrane and extracellular matrix remodelling, as well 

as suppression of degradation processes, reflecting the high stress sustained during 

concurrent training. Collectively, these findings encourage further targeted 

investigation of pathways that have not been considered in the context of concurrent 

training adaptations. 
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CHAPTER 5 
 
  GENERAL DISCUSSION 
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5.1 Summary 

The primary aim of the studies undertaken for this thesis was to investigate the 

efficacy of implementing recent concurrent training recommendations to prevent or 

attenuate the ‘interference effect’ compared to resistance training performed in 

isolation. A second aim was to explore the molecular responses to chronic concurrent 

exercise training in an attempt to try and identify potential molecular mechanisms 

contributing to blunted training adaptations. To address these aims, young, healthy, 

recreationally active males performed 12 wk of resistance, endurance, or alternate day 

concurrent training. Measures of exercise performance and muscle architecture were 

assessed to determine whether concurrent training produced an ‘interference effect’ 

compared to single-mode training (Chapter 2). Subsequently, muscle morphology was 

assessed to recognize, for the first time, whether fibre-type specific changes in 

myonuclear and satellite cell content following concurrent training influence the 

‘interference effect’ (Chapter 3). Lastly, in an effort to expose previously overlooked 

molecular pathways that may contribute to the ‘interference effect’, transcriptome-wide 

molecular responses were interrogated (Chapter 4). Collectively, this thesis provides 

novel insight into the ‘interference effect’ from both a training-based and molecular 

prospective. 

The principal findings from the study described in Chapter 2 demonstrate that 

the current ‘best practice’ guidelines for designing concurrent exercise training 

programs are efficacious for protecting adaptations to strength and hypertrophy over 12 

wk, but are not sufficient to avoid compromised adaptations to maximal anaerobic 

power. Furthermore, changes to vastus lateralis muscle architecture (i.e., CSA, 

pennation angle, fascicle length) do not differ between concurrent and resistance 

training, and cannot therefore explain impairments to maximal anaerobic power. 
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Notably, implementing the recommended strategies to optimise maximal hypertrophic 

responses to concurrent training did not augment myofibre hypertrophy compared to 

endurance or resistance training alone, despite a greater volume of work completed.  

The findings from the experiment described Chapter 3 demonstrate that 

increases to satellite cell content are not required to support myofibre hypertrophy 

achieved during concurrent training. Conversely, increases in myonuclear content, 

while not prerequisite to myofibre hypertrophy, appear to be associated with the 

magnitude of myofibre hypertrophy achieved in young, healthy males. Collectively, 

these findings illustrate that limitations in the degree of myofibre hypertrophy achieved 

following a concurrent training intervention may be due to myonuclear content rather 

than satellite cell content as previously hypothesised.   

The results from the study described in Chapter 4 highlight an increased 

enrichment of gene sets related to plasma membrane structures, regulation of mRNA 

processing, and protein degradation following concurrent exercise training. However, 

it is currently unclear whether these gene programs cause limitations in myofibre 

hypertrophy, and therefore further research is required. Additionally, a considerable 

overlap of increased enrichment for gene sets related to extracellular matrix structure 

was observed between concurrent and endurance training and may be related to 

impairments in adaptations to maximal anaerobic power. Collectively, these findings 

suggest that muscle hypertrophy and maximal anaerobic power may be compromised 

by concurrent training, despite implementing aggressive strategies to prevent an 

‘interference effect’. These findings emphasise the need to revise protocols to promote 

hypertrophy responses and maximal anaerobic power adaptations within a concurrent 

training paradigm. Given the translational nature of this investigation, the results have 

broad implications for athletes and coaches striving to maximise physical performance, 
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non-athletes simply looking to reap the greatest benefits from their exercise efforts, and 

clinicians who may prescribe concurrent training for rehabilitation and physical 

therapy.  

 

5.2 Study Limitations 

In the study described in Chapter 2, the effectiveness of implementing a high 

protein diet in combination with concurrent training in an effort to prevent the 

‘interference effect’ was examined. A limitation of this study was the lack of an 

appropriate nutritional control group. As a result, it is not possible to determine the 

contribution of dietary protein alone in promoting training adaptations. A recent 

investigation into alternate day concurrent training demonstrated that higher protein 

consumption (~2.2 g•kg-1•d-1) during a concurrent training program improved lean 

mass and strength in men to a greater degree than an energetically equivalent, lower 

protein intake (~1.1 g•kg-1•d-1) over 24 wk (Ormsbee et al., 2018). However, no isolated 

resistance training condition was included in that study, making it unclear whether an 

‘interference effect’ was present. Notwithstanding, it is clear that protein is a critical 

nutrient for supporting both resistance (Morton et al., 2018) and endurance (Breen et 

al., 2011) training adaptations. To date, no study has investigated parallel concurrent, 

resistance, and endurance training with both protein and placebo supplementation 

comparisons for each training condition. Such an enquiry would provide more refined 

evidence to the efficacy of protein within a concurrent training paradigm and prove 

useful for optimising nutrition to support training adaptations.  

In the study described in Chapter 3, fibre type-specific skeletal muscle 

morphology, satellite cell content, and myonuclear content were assessed to determine 

whether such factors can explain the similar gains in lean mass observed across training 
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conditions, despite performing a greater training volume during concurrent training. A 

limitation associated with investigating changes to satellite cell content by 

immunohistochemistry is the restricted number of antibodies that can be simultaneously 

visualised under fluorescence microscopy. As satellite cell populations are 

heterogeneous in their expression of different molecular markers (i.e., Pax7 vs. 

NCAM), using a single molecular marker for their identification may underestimate 

total satellite cell content (Lindström & Thornell, 2009; Lindström et al., 2010). In 

addition, multiple labelling methods allow for the detection of subpopulations of 

satellite cells progressing through terminal differentiation (i.e., Pax7-/NCAM+) 

(Lindström & Thornell, 2009). As Pax7 alone was used for satellite cell enumeration in 

the present work, it is possible that subpopulations of satellite cells progressing through 

various stages of myogenesis were not detected, and, as a result, total satellite cell 

content was underestimated. Furthermore, while the immunohistochemistry has been 

routinely used to measure changes in myofibre cross-sectional area (Murach et al., 

2019), the reliability of this measure was not determined in the present work. However, 

care was taken to quantify >150 fibres per fibre-type in order to minimise variability 

and provide an accurate representation of physiological changes in myofibre 

hypertrophy (Nederveen et al., 2020). Lastly, a linear mixed-effect model was used to 

allow estimations by restricted maximum likelihood and account for random inter-

subject variability in molecular analyses to produce unbiased estimates for variance 

components in the model. Despite implementing a distinct statistical model, the results 

in Chapter 3 remain consistent with those observed using two-way ANOVA with 

repeated measures in Chapter 2. 

In the study described in Chapter 4, skeletal muscle transcriptomic responses 

to chronic concurrent training to determine whether changes in global gene expression 
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reveal a molecular foundation for the ‘interference effect’. A major challenge 

associated with this approach is the selection of sampling time points and the ‘snapshot’ 

nature of information contained within any post-exercise biopsy. As no resting pre-

exercise biopsy was collected during week 12 of training in the current investigation, it 

cannot be determined whether changes observed at the level of the transcriptome are 

due to transient fluctuations after exercise or accumulated over the course of training. 

Consequently, it is unclear whether gene sets enriched at 72 h were also prevalent 

throughout earlier time points during post-exercise recovery. However, based on 

previous findings demonstrating that transcriptomic responses 3 h after concurrent 

exercise are highly enriched for pathways associated with metabolic stress (Lundberg 

et al., 2016), it is likely that pathways associated with re-establishing cellular energy 

homeostasis predominate the immediate post-exercise recovery period to allow for 

successive structural remodelling pathways to prevail. Notably, contraction-induced 

myofibrillar damage can persist for up to 48 h after exercise, with much of this damage 

localised around the Z-disc (Gibala et al., 1995). Given that force transmission occurs 

via the Z-disc (Hughes et al., 2015), and that rate of torque development is impaired for 

up to 96 h (Gibala et al., 1995), it is possible that considerable structural remodelling 

is occurring beyond time points measured in the present thesis and contributes to 

impairments in maximal anaerobic power output following concurrent training. 

However, damage and remodelling processes after concurrent training have gained 

little attention. Future studies examining myofibrillar and ECM remodelling by electron 

microscopy and picroserius red staining, respectively, are necessary fully appreciate the 

post-exercise time course of myofibre recovery.  

Lastly, it has been suggested that impaired adaptive responses with concurrent 

training compared to single-mode training are exacerbated with increased training 
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history (Coffey & Hawley, 2017). As athletes become more highly trained, the 

biochemical and mechanical signals produce adaptive signals become more distinct and 

skeletal muscle morphs into a phenotype that coincides with the specificity of training. 

In turn, the divergent phenotype becomes more sensitive to antagonistic signalling 

(Coffey et al., 2009b), which may result in exacerbated impairments to training 

adaptations with concurrent training. Thus, it is possible that the interference to 

maximal anaerobic power and the limited degree of muscle hypertrophy in response to 

concurrent training observed in this thesis are influenced by the training status of the 

participants and may potentially be exaggerated in highly trained athletes. Therefore, 

the findings of any interference effect observed must be interpreted with caution and 

placed in context with the training status of the individual or athlete. 

 

5.3 Future Directions 

From a theoretical perspective, it is recommended that endurance and resistance 

exercise within a concurrent training program should be separated by 6-24 h to optimise 

training responses (Murach & Bagley, 2016). However, a lack of time is commonly 

cited as a barrier to meeting physical activity recommendations for a large portion of 

adults (Trost et al., 2002; Bauman et al., 2012). Thus, the practicality of completing 

multiple training sessions in a single day or alternate-day training may not be realistic 

in recreational populations. In this regard, combining both endurance and resistance 

exercises into a single session may serve as a time-efficient means to improve the 

feasibility of reaching and adhering to physical activity guidelines. Notably, time-

matched concurrent training has been shown to be more efficacious in increasing lower 

limb strength than endurance or resistance training alone in untrained older adults (>65 

y), despite performing only half the work volume of each training mode (Timmons et 
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al., 2018b). However, the efficacy of time-matched concurrent training in younger 

populations remains to be evaluated. A major challenge in prescribing time-matched 

concurrent exercise sessions is the balance of work volume completed between training 

modes.  As concurrent training typically results in a larger total training volume 

completed than single-mode training, it is unclear whether differences in adaptations 

between concurrent and single-mode training are due to the volume of work completed 

or the combined exercise stimulus. In the present work, the additional volume of work 

completed during concurrent training did not augment any training adaptations. 

Whether differences in adaptations occur if total work volume is matched across all 

training modes has yet to be determined. Thus, future investigations implementing 

work-matched training are needed to appreciate how total training volume influences 

concurrent training adaptations and the ‘interference effect’.  

Emerging evidence suggests that several micronutrients and supplements (e.g., 

creatine, Omega-3 polyunsaturated fatty acids, collagen) may facilitate recovery from 

strenuous exercise (Heaton et al., 2017). In particular, collagen and vitamin C 

supplementation have been shown to augment collagen synthesis (Shaw et al., 2017), 

which is imperative for connective tissue remodelling and training adaptations (Kjær et 

al., 2006). In this regard, stiffness of the tendinous structures is positively correlated 

with rate of torque development and performance (power, force, and velocity) during 

high-force isometric and dynamic contractions (Bojsen-Møller et al., 2005). While 

resistance training increases tendon CSA and connective tissue stiffness (Kongsgaard 

et al., 2007; Couppé et al., 2008; Rønnestad et al., 2012b), it appears that concurrent 

weightlifting and cycle training impairs such remodelling (Rønnestad et al., 2012b). 

When considered with the observations that concurrent training interferes with rate of 

torque development (Häkkinen et al., 2003; Rønnestad et al., 2012a), it is possible that 
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alterations to connective tissue stiffness and/or tendon structure may be the basis for 

impaired improvements to maximal anaerobic power output with concurrent training. 

Albeit speculative, collagen and vitamin C supplementation during a concurrent 

training program may promote an increase in tendinous structure CSA and stiffness, 

resulting in more effective force transmission and superior rate of torque development. 

Such evidence may be of considerable interest to athletes where a high degree of 

strength and power are necessary for performance, including events such as rowing, 

martial arts, and sprinting, and deserves further investigation.  

Increases in myonuclear content to support myofibre hypertrophy are dependent 

on the differentiation of satellite cells to myonuclei through myogenesis (Snijders et 

al., 2015a). While satellite cell content does not limit hypertrophy, obstructions during 

the progression of satellite cells through terminal differentiation of myogenesis may 

pose a potential restraint on the hypertrophic process. As satellite cells exist in 

heterogeneous populations (Lindström & Thornell, 2009), developing a comprehensive 

understanding of such heterogeneity will begin to reveal how satellite cells navigate 

through the myogenic lineage and how they are maintained under homeostasis and in 

response to an exercise stimulus. A recent investigation using a combination of single 

cell RNA-Seq and flow cytometry to distinguish disparate satellite cell populations 

from human skeletal muscle identified 12 transcriptionally distinct clusters of cells 

within the satellite cell pool of adult muscle under resting conditions (Barruet et al., 

2020). While it remains unclear whether the distinct transcriptional profile of these 

subpopulations is retained throughout the lifespan of the satellite cell or represents a 

transient state along myogenesis, future work characterising the expression of discrete 

satellite cells populations in response to exercise is needed to appreciate if exercise 

modulates specific subpopulations of satellite cells.   
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Few studies exist on how life-long physical activity affects myofibre size and 

satellite cell content. Recently, McKendry and colleagues (2019) demonstrated that 

endurance-trained master athletes with ~37 y of training experience display no 

difference in satellite cell content compared to untrained young or age-matched 

individuals. Additionally, myofibre CSA was not different between the masters athletes 

and young untrained individuals, suggesting that life-long endurance training may 

preserve myofibre size. However, young endurance-trained athletes were not included 

in the analysis, making it difficult to reconcile if no change occurs or if there is a loss 

in myofibre CSA or satellite cell content compared to young endurance-trained athletes. 

Likewise, studies on how life-long resistance training affects myofibre CSA and 

satellite cell content are needed. Skeletal muscle from well-trained powerlifters 

displays greater satellite cell content compared to sedentary individuals, and is 

positively correlated to mean myofibre CSA (Lindström & Thornell, 2009). Yet, it 

remains unknown if resistance training-induced increases in myofibre CSA and satellite 

cell content from young adulthood are preserved and can delay sarcopenia in resistance-

trained masters athletes. In this regard, whether declines in satellite cell content cause 

myofibre atrophy, or is simply a consequence, remains a topic of debate (Snijders et 

al., 2014b; Arentson-Lantz et al., 2016). However, given observations that age-related 

myofibre atrophy is accompanied by declines in satellite cell content (Verdijk et al., 

2007, 2014), satellite cells present a potential therapeutic target in the management of 

sarcopenia.  

The notion that skeletal muscle may possess an intrinsic ‘muscle memory’ of 

earlier life encounters with hypertrophy has recently gained considerable attention 

(Bruusgaard et al., 2010; Egner et al., 2013; Lee et al., 2018; Seaborne et al., 2018; 

Turner et al., 2019; Dungan et al., 2019). The extent to which satellite cells contribute 
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to such a phenomenon is unclear from murine models (Bruusgaard et al., 2010; Egner 

et al., 2013; Dungan et al., 2019), but remains to be explored in human skeletal muscle. 

Recently, the concept of an ‘epi’-memory in skeletal muscle has been proposed, 

whereby epigenetic modifications to gene expression, such as DNA methylation, may 

contribute to the muscle memory (Sharples et al., 2016). Genome-wide DNA 

methylation after an initial period of resistance training, followed by cessation of 

resistance training, and a subsequent later period of resistance training (i.e., loading, 

de-loading, re-loading) offers initial evidence for an ‘epi’-memory in previously 

untrained young men (Seaborne et al., 2018). Remarkably, hypomethylation from the 

initial loading period was maintained during de-loading, despite muscle mass returning 

to baseline levels. Upon re-loading, the frequency of hypomethylation was enhanced in 

association with the largest increases in lean mass, suggesting that ‘muscle memory’ 

occurs at the epigenetic level within human skeletal muscle. The implications of such 

muscle memories in young adulthood on the maintenance of muscle mass in later life, 

or potential to counteract sarcopenia, still remain to be explored. Additionally, how 

concurrent training affects epigenetic modifications and the ‘muscle memory’ has yet 

to be identified.  Likewise, whether epigenetic modifications contribute to the 

‘interference effect’ is currently unknown.  

As breakthroughs in technology continue, it will become feasible to apply multi-

omics approaches to map the biological complexity of exercise training adaptations. 

Indeed, a number of investigations have already begun to employ combined –omic 

approaches (Lindholm et al., 2014; Robinson et al., 2017; Laker et al., 2017; Turner et 

al., 2019). However, a major challenge as we progress rapidly through the –omics 

renaissance will be the integration of datasets across multi-omic platforms to 

reconstruct global biochemical networks in silico. While initial efforts to establish 
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‘trans-omic’ analyses and propositions for ‘trans-ome-wide association studies’ 

covering genetic and environmental factors are underway (Yugi et al., 2016), 

technological and analytical advances must strive to improve the breadth and reliability 

of pathway information available. In this regard, efforts to amalgamate publically 

available data and curate repositories of uniformly processed –omics datasets are 

starting to emerge (Ziemann et al., 2019), and are a critical development to ensure 

consistency and reproducibility across experiments.  

 

5.4 Concluding Remarks 

In this thesis, recommendations to minimise the ‘interference effect’ during a 

concurrent training regimen were tested. For the first time it has been demonstrated that 

concurrent training impairs the development of maximal anaerobic power output 

compared to resistance training, despite recommended strategies to optimise training 

variables and protein availability. From a molecular perspective, the data provide the 

first assessment of time course-dependent changes to satellite cell and myonuclear 

content in response to concurrent exercise training.  Notably, the findings illustrate that 

satellite cell content does not limit the degree of myofibre hypertrophy achieved, and 

that myonuclear content may more likely be related to limitations in the degree of 

hypertrophic gains following a concurrent training intervention. Furthermore, studies 

in this thesis explored the use of transcriptomics to provide an unbiased analysis of 

potential genes and gene sets that may regulate the ability of skeletal muscle to adapt 

to divergent training modalities. Namely, data from the exploratory –omics-based 

investigation delivers the first comparison of unique and overlapping gene sets enriched 

following chronic resistance, endurance, and concurrent training and highlights 

remodelling of the ECM as a contributing factor potentially linked to impaired maximal 
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anaerobic power output. To date, no studies have investigated ECM remodelling in 

response to concurrent exercise training. Therefore, investigating structural 

remodelling to non-contractile (i.e., connective tissue) in addition to contractile (i.e., 

myofibrillar) apparatuses contributing to post-exercise recovery may expose previously 

uncharacterised adaptations.  

In conclusion, this thesis demonstrates that concurrent exercise training is a 

potent stimulus to improve skeletal muscle hypertrophy, strength, and oxidative 

capacity, but impairs maximal anaerobic power development. Still, it remains unclear 

why chronic concurrent exercise training does not result in augmented hypertrophic 

responses. In theory, it seems reasonable that hypertrophic responses to concurrent 

training should be the sum of those observed by endurance and resistance training 

alone, yet this appears not to be the case in practice. But is this evidence of an 

‘interference effect’? In many respects, this will depend on how the ‘interference effect’ 

is defined. Nevertheless, it is clear that some degree of an ‘interference effect’ does 

exist following concurrent training, and deserves further attention. Collectively, the 

findings within this thesis present a new view of the ‘interference effect’ and offer 

prospective mechanisms for future investigation ranging from training to transcriptome.  
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CHAPTER 2: SUPPLEMENTAL METHODS 
 

 
 

This chapter has been adapted from the following published article: 

 

Baubak Shamim, Brooke L. Devlin, Ryan G. Timmins, Paul Tofari, Connor Lee Dow, 

Vernon G. Coffey, John A. Hawley, and Donny M. Camera. Adaptations to Concurrent 

Training in Combination with High Protein Availability: A Comparative Trial in 

Healthy, Recreationally Active Men. Sports Medicine. 2018 Dec;48(12):2869-2883. 
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A.1 Performance Testing 

The following performance tests were conducted prior to, and upon completion 

of the 12-wk intervention to determine maximal power output: 

 

A.1.1 Anaerobic power test 

Participants completed a Wingate test ~20 min after VO2peak testing. The 

Wingate test was performed on an externally loaded stationary cycle ergometer 

(Monark 894E, Monark, Sweden), with the resistance of the flywheel equivalent to 

0.075 kg•kg-1 body weight. Participants were familiarized with the test and instructed 

to remain seated in the saddle for the duration of the test. Briefly, participants began 

pedalling as fast as possible against the inertial resistance of the ergometer. Once 

pedalling reached 150 revolutions•min-1, the external load was automatically applied to 

the flywheel by the ergometer-computer interface (ATS, Monark, Sweden). 

Participants were verbally encouraged to continue pedalling as hard, and fast as 

possible throughout the whole 30-s test. Where stringent confines of the test were not 

met due to participants either rising from saddle (n = 1) or incorrect seat position (n = 

1), data were excluded from analysis. 

 

A.1.2 Countermovement and squat jumps 

Participants completed the countermovement jump (CMJ) and squat jump (SJ) 

on the force plate prior to IMTP and 1RM testing. Following a standardized warm-up 

consisting of 5 min of low-intensity cycling (~50 W) and dynamic stretching of the 

lower limbs, three attempts of each jump were performed, as previously described 

(Tofari et al., 2017). For the CMJ, participants started from a standing position and 

were instructed to maintain their hands on hips throughout the jump. Upon verbal 
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command, participants descended quickly to a self-selected depth then accelerated as 

rapidly as possible from the bottom position to achieve maximal jump height and 

velocity. Following the CMJ, SJ’s were performed on the force plate to determine 

concentric-only jump performance. Participants were instructed to maintain their hands 

on their hips, squat down to a self-selected depth and hold the position for an audible 

3-s count prior to a maximal jump. All efforts were separated by at least 60 s of passive 

recovery. Variables including jump height (cm), absolute and relative peak power (W 

and W•kg-1) and peak velocity (m•s-1) were recorded from the trial with the greatest 

jump height. 

 

A.2 Architectural assessment of Vastus Lateralis 

Segmental muscle thickness, pennation angle, fascicle length and volume 

changes of the VL were assessed from ultrasound images taken along the longitudinal 

axis of the muscle belly utilizing a two dimensional, B-mode ultrasound (frequency, 12 

Mhz; depth, 8 cm; field of view, 14 x 47 mm; GE Healthcare Vivid-i, USA) at baseline, 

after wk 2, 4, 8, and post-intervention. Images were taken at 75 (proximal), 50 (mid), 

and 33% (distal) of the distance between the central palpable point of the greater 

trochanter and the lateral condyle of the femur.  Once the scanning sites were 

determined, the distances from various anatomical landmarks were recorded to ensure 

reproducibility for future testing sessions. These landmarks included the ischial 

tuberosity, fibula head and the greater trochanter. On subsequent visits the scanning 

sites were determined and marked on the skin and then confirmed by replicated 

landmark distance measures. All architectural assessments were performed with 

participants in a supine position with the hip and knee in a neutral position following 

at least 5 min of inactivity and prior to any testing or exercise sessions. To obtain 
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ultrasound images, the linear array ultrasound probe was aligned parallel to the muscle 

fascicles and perpendicular to the skin with a layer of conductive gel. Care was taken 

to ensure minimal pressure was placed on the skin by the probe as this may influence 

measurement accuracy (Klimstra et al., 2007). Finally, the probe orientation was 

manipulated slightly by the assessor if the superficial and deep aponeuroses were not 

parallel.  

Once the images were collected, analysis was undertaken off-line (MicroDicom 

version 0.7.8, Bulgaria). For each image and site, fascicle length estimation was 

performed as described elsewhere (Blazevich et al., 2006; Kellis et al., 2009). At each 

site, muscle thickness was defined as the distance between the superficial and deep 

aponeuroses of the VL. A fascicle of interest was outlined and marked on the image, 

and the angle at which it inserted onto the deep aponeurosis was determined as the 

pennation angle. The superficial and deep aponeurosis angles were determined as the 

angle between the line marked as the aponeurosis and an intersecting horizontal 

reference line across the captured image (Blazevich et al., 2006; Kellis et al., 2009).  

The same assessor collected and analysed all scans and was blinded to 

participant identifiers (name and group) during the collection and analysis of the 

images. Day-to-day reliability of the assessor was determined prior to data collection 

in a small pilot study (n = 9). Measures of reliability included intraclass correlation 

coefficients (ICC), typical error (TE) and TE as a coefficient of variation (%TE). 

Minimum detectable change at a 95% confidence interval (MDC95) was calculated as 

TE x 1.96 x √2. Based on previous quantitative reliability literature, it was determined 

that an ICC ≥ 0.90 was regarded as high, between 0.80 and 0.89 as moderate and ≤0.79 

as poor. A %TE ≤10% was considered to represent an acceptable level of reliability. 

Assessments for the pilot study were taken one day apart at the same time of day. 
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Across all three sites for muscle thickness ICCs ranged from 0.97 to 0.99, TE from 0.09 

to 0.22, %TE from 1.0 to 3.9% and MDC95 from 0.25 to 0.61cm. For pennation angle 

ICCs ranged from 0.90 to 0.98, TE from 0.16 to 0.33, %TE from 2.1 to 4.0% and 

MDC95 from 0.44° to 0.91°. For fascicle length ICCs ranged from 0.90 to 0.98, TE from 

0.18 to 0.30, %TE from 3.9 to 4.9% and MDC95 from 0.49 cm to 0.83 cm. 

Muscle thickness measures from ultrasound have been used to estimate muscle 

volume at a single time point and following training interventions (Miyatani et al., 

2002, 2004; Franchi et al., 2017). In the current study, thigh length and VL thickness 

measures at the mid-point of the thigh were utilised with the following validated 

equation (Miyatani et al., 2002) to estimate muscle volume: 

MV (cm3) = (MT x 311.732) + (TL x 53.346) – 2058.529 

Where MV = muscle volume, MT = muscle thickness in centimetres, and TL = thigh 

length in centimetres. 

 

A.3 Diet 

A free-living, high-protein (2 g•kg-1•d-1) eating plan was implemented over the 

12-wk intervention. Energy intake was based on the Cunningham Equation (using fat 

free mass from DXA) and Physical Activity Level (PAL) of 1.6 (RES and END) or 1.8 

(CET), and modified accordingly depending on individual weight changes over the 12-

wk intervention. Macronutrient composition was monitored throughout the 

intervention with total energy intake (TEI) and protein intake a focus. Carbohydrate 

and fat intake were recommended to be within the Acceptable Macronutrient 

Distribution Range for these macronutrients (45-65% and 20-35% TEI for carbohydrate 

and fat, respectively).  
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Prior to and throughout the intervention, participants were provided the 

following guidelines to reach protein and energy targets: 1) distribute protein intake 

evenly throughout the day across 4-6 meals (Areta et al., 2013; Loenneke et al., 2016) 

and 2) consume ~20-30 g of protein prior to bed to maximize potential for muscle 

protein synthesis (Moore et al., 2009a; Snijders et al., 2015b; Trommelen et al., 2018). 

Participants were provided with ~34 g of whey protein (Pure Warrior 100% WPI, 

Swisse™, Australia) following every training session to maximally stimulate post-

exercise rates of muscle protein synthesis (Macnaughton et al., 2016). In addition, all 

participants were provided with a whey protein supplement (Whey Protein 

Concentrate, Bulk Nutrients, Australia) to consume as needed throughout the 12-wk 

intervention. Both protein supplements are commercially available and undergo batch 

testing for banned substances by independent organizations in compliance with the 

World Anti-Doping Authority. To further assist in reaching the 2 g•kg-1•d-1 protein 

amount, participants were also provided with weekly allotments of yoghurt from 

Chobani (Chobani LLC, Australia) and Jalna (Jalna Dairy Foods Pty Ltd, Australia), as 

well as almonds (Almond Board of Australia). 

Participants attended consultations with an Accredited Practicing Dietitian on a 

fortnightly basis for a total of 8 consultations (Baseline prior to intervention, wk 1, 3, 

5, 7, 9, and 11, as well as wk 13 to conclude the study). Consultations lasted ~20-30 

min and provided participants with education, support, and advice to ensure nutrient 

targets were met, protein intake was evenly distributed throughout the day, and to 

monitor, and assess, dietary adherence. Advice was tailored and individualized to each 

participant depending on food preference, as well as eating habits and behaviours. On 

alternate weeks, the Accredited Practicing Dietitian contacted participants via text 

message and phone call to ensure dietary compliance and food record maintenance. 
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Daily food records were kept by participants through mobile phone applications Easy 

Diet Diary (Xyris Software Pty Ltd, Australia) for participants with iPhones® (Apple 

Inc., USA; n = 20) and MyFitnessPal (MyFitnessPal Inc., USA) for participants with 

Android-based (Google Inc., USA) devices (n = 12). All dietary intake data was 

analysed using FoodWorks 8© (Xyris Software Pty Ltd, Australia) to ensure the same 

food database was used for all analysis. Diet records were analysed for energy (kJ•kg-

1), protein, carbohydrate, and fat (g•kg-1 for all macronutrients) to provide a daily 

average for the entire 12-wk intervention. Habitual dietary intake at baseline was 

assessed prior to commencing the study and analysed for energy and macronutrient 

intakes. 
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A.4 Resistance training program 

Table A.1 Overview of 12-week resistance training program. Abbreviations: 1RM, 1-repetition maximum; RPE, rating of perceived exertion; BB, barbell; 

DB, dumbbell; RDL, Romanian deadlift; SL, straight-legged; CG, close grip; WG, wide grip; DXA, dual-energy X-ray absorptiometry. 
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 Table A.1 (Continued) 
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A.5 Endurance training program 

Table A.2A Overview of 12-week endurance training program. Abbreviations: MAP, 

maximum aerobic power; HIIT, high-intensity interval training, DXA, dual-energy X-ray 

absorptiometry.   

 
  Session 

Week  1 2 3 

1  Hill Simulation 8 x 2.5 Hill Simulation 
2  8 x 2.5 Hill Simulation 8 x 2.5 
3  No training - Biopsy/Ultrasound Hill Simulation 10 x 2.5 
4  6 x 5 Hill Simulation +5% 6 x 5 
5  1/2 Session - DXA/Ultrasound: 4 x 5 Hill Simulation +10% 7 x 5 
6  Hill Simulation +15% Steady State VO2peak Test 
7  Hill Simulation 8 x 5 Hill Simulation 
8  HIIT A Hill Simulation HIIT A 
9  No training - Biopsy/Ultrasound Hill Simulation HIIT A 

10  Hill Simulation +5% Steady State Hill Simulation +5%  
11  HIIT B Hill Simulation +10% HIIT B 
12   HIIT B Hill Simulation +10% HIIT B 
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Table A.2B Breakdown of specific endurance training sessions.   
  

Session Outlines 
Session 

Descriptor 
Work 

Interval 
Rest 

Interval 
Work Power % 

MAP 
Rest Power % 

MAP Repeats 

Hill Simulation 

8 min - 40.0% - - 
5 min - 52.5% - - 
3 min - 62.5% - - 
3 min - 70.0% - - 
5 min - 25.0% - - 
10 s - 40.0% - - 
10 s - 50.0% - - 
10 s - 60.0% - - 
10 s - 70.0% - - 
10 s - 80.0% - - 
10 s - 90.0% - - 
30 s - 100.0% - - 

10.5 min - 25-40% - - 
8 x 2.5 2.5 min 1 min 70% 40% 8 

10 x 2.5 2.5 min 1 min 70% 40% 10 
4 x 5 5 min 1 min 70% 40% 4 
6 x 5 5 min 1 min 70% 40% 6 
7 x 5 5 min 1 min 70% 40% 7 
8 x 5 5 min 1 min 70% 40% 8 

HIIT Session A 

10 s 50 s 100% 40% 6 
60 s 60 s 100% 40% 1 
20 s 40 s 100% 40% 3 

- 4 min - 40% - 
Repeat all parts 2x after 4 min rest 

HIIT Session B 

5 min 1 min 70% 40% 3 
10 s 50 s 100% 40% 6 
60 s 60 s 100% 40% 1 
20 s 40 s 100% 40% 3 

- 4 min - 40% - 
Repeat all 100% efforts 2x after 4 min rest 

Steady State 45 min - 50% - - 
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APPENDIX B 
 

CHAPTER 2: SUPPLEMENTAL RESULTS 
 

 
 

This chapter has been adapted from the following published article: 

 

Baubak Shamim, Brooke L. Devlin, Ryan G. Timmins, Paul Tofari, Connor Lee Dow, 

Vernon G. Coffey, John A. Hawley, and Donny M. Camera. Adaptations to Concurrent 

Training in Combination with High Protein Availability: A Comparative Trial in 

Healthy, Recreationally Active Men. Sports Medicine. 2018 Dec;48(12):2869-2883. 
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B.1 Muscle architecture 

Table B.1 Changes to vastus lateralis muscle architecture throughout the 12 week training intervention as measured by two-dimensional B-mode ultrasound.  

 
Values are presented as means ± SD. a = P < 0.05 from PRE. b = P < 0.05 from WK2. c = P < 0.05 from WK4. d = P < 0.05 from WK8. ǂ = P < 0.05 from 
END at time point. (ǂ) = P < 0.055 from END at time point. Abbreviations: CET, concurrent exercise training; RES, resistance training; END, endurance 
training. 
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B.2 Isometric mid-thigh pull 

 

 
 

Figure B.1 Change to A) absolute and B) relative isometric mid-thigh pull (IMTP) peak power. 

Values are presented as percent change from PRE to POST and presented as individual data 

with group mean ± SD. a = P < 0.05 from PRE. Abbreviations: CET, concurrent exercise 

training; RES, resistance training; END, endurance training. 
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B.3 Training variables 

Table B.2 Session averages for training variables throughout the 12-week training intervention. 

        
  Training Group 

Variable CET RES END 

Resistance Variables    
 Time To Complete Set (s●set-1) 42 ± 9 40 ± 3 - 

 Rest Interval (s) 185 ± 2 185 ± 3 - 

 Rating of Perceived Exertion 7 ± 0 7 ± 1 - 

Endurance Variables    
 Training Hours (h●wk-1) 1.44 ± 0.02 - 1.43 ± 0.04 

 Heart Rate (bpm) 159 ± 7 - 155 ± 8 

 Rating of Perceived Exertion 6 ± 1ǂ - 5 ± 1 
     
Time Between Session (h) 23.6 ± 0.85^ǂ 47.7 ± 3.13 48.0 ± 1.76 

     
ǂ = P < 0.05 from END. ^ = P < 0.05 from RES. Abbreviations: CET, concurrent exercise 
training; RES, resistance training; END, endurance training. 
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B.4 Training volume 

 

 
 
Figure B.2 Weekly average training volume for A) resistance-based and B) endurance-based 

training programs. Abbreviations: CET, concurrent exercise training; RES, resistance training; 

END, endurance training.  
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APPENDIX C 
 

WHERE DO SATELLITE CELLS ORBIT? AN ENDOMYSIUM SPACE 
ODYSSEY  

 
 
 

This chapter has been adapted from the following published article: 

 

Baubak Shamim, Miguel S. Conceição, Marcus J. Callahan, and Donny M. Camera. 

Where do satellite cells orbit? An endomysium space odyssey. Journal of Phsyiology. 

2018 May;596(10):1791-1792. 
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The regenerative capacity of skeletal muscle following injury is dependent on 

myogenic specific precursor cells, referred to as satellite cells. Under homeostatic 

conditions in adult muscle, satellite cells lie quiescent between the sarcolemma and 

basal lamina of myofibers. Upon perturbations to their surroundings, such as exercise-

induced mechanical stress, satellite cells are summoned to an active state. 

Subsequently, active satellite cells can proliferate and differentiate by fusing with 

existing myofibers and donating their nuclei, or fusing with one another to form new 

fibres in a process known as myogenesis. Conversely, satellite cells may exit the 

myogenic lineage before differentiation and return to quiescence to replenish the 

satellite cell reserve for restitution of future damage.  

Satellite cells were first identified using electron microscopy. However, the 

development of high quality antibodies for specific detection of satellite cell markers 

has made the use of light microscopy possible for evaluating satellite cells. Major 

technical advances in immunohistochemistry and fluorescence microscopy have 

allowed for simultaneous measurement of multiple antibodies on a single specimen. As 

a result, studies utilizing multiple labelling methods provide greater resolution into fibre 

type specific satellite cell enumeration and activation status.  

Satellite cells are most commonly detectable by the expression of transcription 

factor Paired-box protein 7 (Pax7), which, in skeletal muscle, is exclusively expressed 

in satellite cells. However, the progression of satellite cells through myogenesis is 

choreographed by a transcriptional network of myogenic regulatory factors (MRF), 

particularly myogenic differentiation 1 (MyoD), myogenic factor 5, myogenin, and 

MRF4. Thus, through combined detection of Pax7 with MRFs, the number of satellite 

cells progressing through particular stages of myogenesis can be quantified. While the 
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role of individual MRFs is well established, the precise mechanisms regulating their 

manifestation remain largely unidentified.  

It has been hypothesised that myogenesis is influenced by the delivery of growth 

factors and inflammatory cytokines (e.g., insulin-like growth factor-1, hepatocyte 

growth factor, interleukin 6, etc.) to satellite cells via capillaries. Initial work from 

Christov and colleagues (2007) demonstrated that myogenesis is spatiotemporally 

associated with angiogenesis, with active satellite cells located in closer proximity to 

capillaries compared to quiescent satellite cells. Such symbiosis appears to be, in part, 

mediated by the “cross-talk” between endothelial cells and satellite cells to deliver 

growth factors during myogenic differentiation. However, the extent of satellite cell 

responses controlled by the microvascular network during recovery from acute injury 

(i.e., exercise) in human muscle had not been explored.  

A recent article published in The Journal of Physiology by Nederveen and 

colleagues (2018) assessed the expansion and activation status of the satellite cell niche 

following exercise-induced muscle fibre damage. Twenty-nine previously untrained 

healthy young men undertook a bout of unilateral lower-limb resistance exercise. For 

each participant, one leg was randomly selected to perform 30 sets of 10 maximal 

isokinetic eccentric knee extensions on a dynamometer at 180 deg•s-1 with 1 minute of 

rest between sets; a protocol designed to induce a significant level of myocellular 

damage. Percutaneous needle biopsies of the vastus lateralis and venous blood samples 

were taken pre-exercise and at select points over a 96 h post-exercise recovery period. 

Satellite cell content and activation status were measured concomitantly with 

capillarisation via immunohistochemistry. Specifically, quantification of capillary 

contacts (number of capillaries adjacent to a fibre), capillary-to-fibre ratio of individual 

fibres, number of fibres sharing contact with each capillary, and capillary density were 
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performed to determine the impact of muscle fibre capillarisation on satellite cell 

responses following exercise. Additionally, the capillary-to-fibre perimeter exchange 

(CFPE; derived as the quotient of the individual capillary-to-fibre ratio and the fibre 

perimeter) of mixed muscle was determined as an index of fibre perfusion.  

Participants were retrospectively divided into tertiles based on their mixed 

muscle CFPE index into a High (n = 10; ~7.6 capillaries•1000μm-1), Mid (n = 9; ~6.4 

capillaries•1000μm-1) or Low (n = 10; ~5.2 capillaries•1000μm-1) CFPE group. At rest, 

cross-sectional area, perimeter, myonuclear domain, and myonuclear content of type I 

and II fibres were not different between High and Low groups. Additionally, neither 

total (Pax7+ cells•100 myofibers-1) nor activated (Pax7+/MyoD+ cells•100 myofibers-1) 

satellite cell content were different between the High and Low cohorts. Notably, 

differences in fibre type proportions were observed, whereby High displayed ~22% 

more type I fibres than Low, indicating a potentially more oxidative muscle. In addition, 

the High group presented with a greater capillary-to-fibre ratio, larger number of 

capillary contacts, and shorter satellite cell distance to nearest capillary in both type I 

and II fibres compared to Low. 

As expected, eccentric contractions resulted in significant muscle damage. In 

both the High and Low groups, creatine kinase activity was increased at 24 h post-

exercise, while force production was significantly reduced over 72 h post-exercise. 

However, force production returned to baseline by 96 h post-exercise in the High group, 

whereas such recovery was absent in the Low group. Distinct satellite cell responses 

were also observed whereby a greater expansion of total satellite cell content was seen 

in High as compared to Low at 6 h (~48% vs. ~1%, respectively) and 24 h (~73% vs. 

~10%, respectively) of recovery. Likewise, greater activation of satellite cells was 

observed in High compared to Low at 6 h (~750% vs. ~450%, respectively) and 72 h 
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(~750% vs. ~300%, respectively). Together, these findings indicate that individuals 

with a higher CFPE index appear to recover more quickly following an acute bout of 

damaging exercise. 

When data from all participants was collated, a positive correlation was 

identified between the activation of satellite cells at 6 h and 72 h post-exercise and 

CPFE index. Similarly, there was a positive correlation between the expansion of total 

satellite cell content 24 h post-exercise and CFPE index. Collectively, these correlations 

suggest that the greatest satellite cell response to exercise was experienced by 

individuals with the highest capacity for muscle fibre perfusion. Thus, the authors 

postulate that there appears to be a link between juxtavascular position of satellite cells 

and microvasculature that influences satellite cell responses following muscle damage.  

These novel insights provided by Nederveen and colleagues (2018) extend on 

the group’s previous work demonstrating that satellite cells are located significantly 

further away from capillaries in muscle of older (~67 y) compared to younger (~24 y) 

individuals (Nederveen et al., 2016). Given that older muscle typically exhibits 

impaired satellite cell responses to exercise as well as decrements to capillary structure 

and function (Verdijk et al., 2016), interventions that proliferate the microvasculature 

network in elderly individuals may improve, to a degree, satellite cell responses 

following injury and preservation of skeletal muscle mass. In turn, a greater capillary 

supply may precondition skeletal muscle to support myofiber hypertrophy and combat 

anabolic resistance. In this regard, Verdijk and colleagues (2016) demonstrated that 12-

wk of resistance training can effectively augment muscle fibre capillarisation and whole 

muscle cross-sectional area in older men. This work also reported increases in capillary 

contacts and CFPE index were associated with an expansion of satellite cell content 

after 12-wk of training. Accordingly, these findings exhibit resistance training as an 
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effective strategy to improve muscle size and satellite cell function as well as fibere 

capillarisation in older muscle.  

Similar improvements in individual capillary-to-fibre ratio and satellite cell 

activation have been observed following 16-wk of resistance training in young men 

(Nederveen et al., 2017). Considering the concomitant augmentation in satellite cell 

content and muscle perfusion after training, it was speculated that enhanced delivery of 

circulating growth factors results in more rapid initiation of myogenesis. Indeed, it has 

been shown that activated satellite cells are positioned in closer proximity to capillaries 

compared to their quiescent antecedents (Christov et al., 2007; Nederveen et al., 2016). 

However, to date, no studies have investigated spatial proximity of activated satellite 

cells with capillaries in older adults. Similarly, whether increasing muscle fibre 

capillarisation through exercise training results in augmented satellite cell responses 

during post-exercise recovery in older adults remains unidentified.  

Indeed, many questions on the interaction of satellite cells and capillaries with 

regards to exercise modality (i.e., resistance, endurance, or concurrent exercise), 

nutrient availability (i.e., dietary protein), and clinical populations (i.e., sarcopenic 

adults) remain to be answered. The propinquity between satellite cells and capillaries 

provokes the notion that implementing strategies to improve vasodilation may augment 

delivery of valuable circulating factors to sites of injury and potentially expedite 

myogenesis. Thus, the capacity for dietary inorganic nitrates (e.g., beetroot juice), 

which are known vasodilators, to enhance satellite cell activation warrants exploration. 

Furthermore, investigations utilising high-throughput pathway platforms are needed to 

comprehensively profile and disinter circulating biochemical factors that may 

prospectively influence satellite cell responses following exercise.  
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Nonetheless, Nederveen and colleagues (2018) are to be commended for their 

novel insights into the critical relationship between muscle capillarisation and satellite 

cells during skeletal muscle repair following exercise. Characterising the satellite cell’s 

“orbit” around capillaries provides one small step in understanding mechanisms 

regulating skeletal muscle repair, and one giant leap for exploration of the endomysium 

space.  
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APPENDIX D 
 

PROTEIN AVAILABILITY AND SATELLITE CELL DYNAMICS IN 
SKELETAL MUSCLE 

  
 
 

This chapter has been adapted from the following published article: 

 

Baubak Shamim, John A. Hawley, and Donny M. Camera. Protein Availability and 

Satellite Cell Dynamics in Skeletal Muscle. Sports Medicine. 2018 Jun;48(6):1329-
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D.1 Abstract

Human skeletal muscle satellite cells are activated in response to both resistance 

and endurance exercise. It was initially proposed that satellite cell proliferation and 

differentiation were only required to support resistance exercise-induced hypertrophy. 

However, satellite cells may also play a role in muscle fibre remodelling after 

endurance–based exercise and extracellular matrix regulation. Given the importance of 

dietary protein, particularly branched chain amino acids, in supporting myofibrillar and 

mitochondrial adaptations to both resistance and endurance-based training, a greater 

understanding of how protein intake impacts satellite cell activity would provide further 

insight into the mechanisms governing skeletal muscle remodelling with exercise. 

While many studies have investigated the capacity for protein ingestion to increase 

post-exercise rates of muscle protein synthesis, few investigations have examined the 

role for protein ingestion to modulate satellite cell activity. Here the molecular 

mechanisms controlling the activation of satellite cells in response to mechanical stress 

and protein intake in both in vitro and in vivo models are reviewed. A mechanistic 

framework that describes how protein ingestion may enhance satellite activity and 

promote exercise adaptations in human skeletal muscle is provided. 
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of satellite cells in skeletal muscle remodelling following exercise has long been 

known. However, whether dietary protein ingestion can modulate satellite cell 

responses is less well understood. 

• In vitro literature indicates that amino acids improve satellite cell dynamics;

however, results in vivo remain ambiguous. Findings from human trials suggests

that dietary protein may have the most pronounced effect on satellite cell

activity after unaccustomed exercise when most myocellular damage and

structural repair occurs, but may have diminishing returns with prolonged

periods of training.

• The potential for protein supplementation to accelerate satellite cell responses

after acute muscle damage may be of clinical and economic significance by

expediting skeletal muscle remodelling processes and recovery from injury.

D.2 Key Points

• The regenerative capacity of skeletal muscle is dependent on an undifferentiated

niche of myogenic specific precursor cells, referred to as satellite cells. The role
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D.3 Introduction

The regenerative capacity of skeletal muscle is dependent on an undifferentiated 

niche of myogenic specific precursor cells, referred to as satellite cells. In adult skeletal 

muscle, satellite cells exist in a quiescent state and are located between the sarcolemma 

and basal lamina (Mauro, 1961). Classically, they are activated in response to muscle 

damage, such as mechanical stress caused by exercise (Crameri et al., 2004; Dreyer et 

al., 2006; Babcock et al., 2012; Joanisse et al., 2013; Snijders et al., 2014a; Farup et 

al., 2014a). Once activated, satellite cells proliferate and differentiate in order to 

contribute to the repair of existing muscle fibres through the formation of new 

myonuclei, a process known as myogenesis (Blaauw & Reggiani, 2014). In turn, the 

addition of new myonuclei increases the transcriptional capacity of the fibre to support 

further hypertrophy. However, evidence for the requirement for satellite cells in 

supporting overload hypertrophy is equivocal. McCarthy and colleagues (McCarthy et 

al., 2011) demonstrated that in a novel mouse strain developed to deplete >90% of 

satellite cells, short-term (2 wk) mechanical overload-induced hypertrophy was not 

blunted compared to wild type mice, suggesting satellite cells are not required for load-

induced hypertrophy. In contrast, results from other investigations show that satellite 

cell depletion effectively attenuates muscle fibre hypertrophy over both short-term (2 

wk) (Egner et al., 2016) and long-term (8 wk) (Fry et al., 2014a) overload. While the 

notion that satellite cells are required to facilitate muscle growth responses is a topic of 

considerable debate (Petrella et al., 2006, 2008; Verdijk et al., 2009, 2014; Bellamy et 

al., 2014; Dirks et al., 2017; Reidy et al., 2017b; McCarthy et al., 2017; Karlsen et al., 

2015; Murach et al., 2017), current evidence indicates that the presence and activation 

of satellite cells are obligatory for supporting training-induced adaptations.    
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The activation of satellite cells is influenced by the delivery of growth factors 

to muscle such as insulin-like growth factor-1 (IGF-1), hepatocyte growth factor 

(HGF), and the myokine interleukin 6 (IL-6) (McKay et al., 2008, 2009; Nederveen et 

al., 2016, 2017). Changes to the concentrations of circulating cytokines or growth 

factors can induce satellite cell activation (Conboy et al., 2005; Merritt et al., 2013; 

Corrick et al., 2015; Rodgers et al., 2017). However, information on the effect of 

nutrient delivery, specifically amino acids from dietary protein consumption, on 

satellite cell activation is lacking. This is surprising considering the numerous studies 

demonstrating the stimulatory effects of protein ingestion on muscle hypertrophy with 

exercise (Cermak et al., 2012; Morton et al., 2018) and the purported roles of satellite 

cells to promote muscle hypertrophy. Given in vitro findings showing that leucine 

availability can promote myocyte proliferation and differentiation (Averous et al., 

2012; Chen et al., 2013; Dai et al., 2015; Duan et al., 2017), protein ingestion in 

conjunction with exercise may provide an additional stimulus to promote satellite cell 

activation in vivo. This review focuses on the role of protein availability to regulate 

satellite cell dynamics in both cell and animal models and in the adaptive response to 

both resistance- and endurance-based exercise in human skeletal muscle. Studies are 

discussed that have determined the effects of protein ingestion on satellite cell 

activation following exercise and provide putative mechanistic insight into the 

regulation of exercise adaptation responses through increased satellite cell activity with 

protein availability. 

 

D.4 The role of satellite cells in exercise adaptations 

Adaptations to exercise training are specific to the mode, intensity, frequency, 

and loading pattern of activity being undertaken (Hawley et al., 2014; Coffey & 
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Hawley, 2017). For example, endurance-based exercise classically results in increased 

skeletal muscle oxidative capacity and improved whole-body maximal oxygen uptake 

(VO2max) (Holloszy & Coyle, 1984; Hawley, 2002). This is predominantly due to an 

increase in mitochondrial proteins (e.g., energy-producing oxidative enzymes) to 

facilitate metabolic adaptations, leading to a more fatigue–resistant muscle (Wilkinson 

et al., 2008). Conversely, resistance-based exercise (i.e., weightlifting) is characterized 

by its ability to induce skeletal muscle hypertrophy and maximal force-generating 

capacity (McDonagh & Davies, 1984), particularly via the synthesis of contractile 

myofibrillar proteins (e.g., myosin heavy chain proteins). Though the specificity of 

training produces phenotypically divergent adaptations (Hawley et al., 2014; Coffey & 

Hawley, 2017), both endurance and resistance exercises stimulate the turnover of 

skeletal muscle tissue. 

Myonuclei are post-mitotic, and therefore the addition of new myonuclei to 

support fibre adaptations is ultimately dependant on satellite cell differentiation. 

Accretion of myonuclei with exercise training is assumed to accommodate the 

increased demands for transcriptional activity and synthesis of new proteins to support 

hypertrophy. It has been suggested that a single myonucleus only has control over a 

limited volume of cytoplasm, known as the myonuclear domain (Cheek, 1985). During 

robust hypertrophy, expansion of the myofibre volume places strain on the myonuclear 

domain. Accordingly, additional myonuclei are hypothesised to permit muscle fibre 

hypertrophy beyond a definite extent (~2250 μm2), a postulate referred to as the ‘ceiling 

theory’ (Petrella et al., 2006, 2008). Similarly, it has been speculated that only when 

the relative magnitude of fibre hypertrophy exceeds a certain threshold (≥ ~25% of 

cross-sectional area) are additional myonuclei required to sustain growth (Kadi et al., 

2004). However, myonuclear accretion has been observed during periods of 
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hypertrophy (~18% of cross-sectional area) where this threshold is not met (Snijders et 

al., 2016). Furthermore, myonuclear content and fibre size are linearly related, whereas 

myonuclear domain and fibre size share a logarithmic relationship, with smaller fibres 

possessing disproportionately smaller myonuclear domains (Karlsen et al., 2015). 

Though the reason for this relationship is unclear, it indicates that myonuclear domains 

may be different between smaller and larger fibres, and raises question to the scope of 

satellite cell behaviour dictated by previously established thresholds.  

In human skeletal muscle, the activation of satellite cells following resistance 

exercise is well accepted (Kadi et al., 2004; Olsen et al., 2006; Verdijk et al., 2007; 

Petrella et al., 2008; Verdijk et al., 2009; Mackey et al., 2011; Snijders et al., 2012; 

Babcock et al., 2012; Snijders et al., 2014b, 2014a; Fry et al., 2014b; Bellamy et al., 

2014; Farup et al., 2014a; Snijders et al., 2016; Nederveen et al., 2017; Reidy et al., 

2017b). Following a single bout of resistance exercise, increases in satellite cell 

proliferation are typically detectable after 24 h, with these responses peaking 72 h post–

exercise (Snijders et al., 2015). However, the precise timing of initial satellite cell 

proliferation is equivocal, and early (≤ 24 h) increases in satellite cell number may 

likely be due to an increased cell size prior to division, as suggested by ex vivo data 

(Rodgers et al., 2014; Charville et al., 2015), which may increase the likelihood of 

detection though immunohistochemistry. Nevertheless, a positive correlation exists 

between satellite cell-mediated myonuclear accumulation and muscle fibre hypertrophy 

(Petrella et al., 2006, 2008; Verdijk et al., 2010, 2014; Bellamy et al., 2014; Reidy et 

al., 2017b), which has led some (Petrella et al., 2008; Bellamy et al., 2014) to 

hypothesise that an individual’s ‘responsiveness’ to resistance exercise may be based 

on satellite cell activation. Indeed, Petrella and colleagues (Petrella et al., 2008) 

reported that individuals with the highest basal quantity of satellite cells achieved the 
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greatest magnitude of myonuclear addition and hypertrophy after 16 wk of resistance 

training. Bellamy and associates (Bellamy et al., 2014) also demonstrated that an acute 

expansion of the satellite cell pool, rather than basal number, after a single bout of 

resistance exercise was associated with the magnitude of hypertrophy achieved over 16 

wk of resistance training. However, it should be noted that Petrella and colleagues 

(Petrella et al., 2008) used the membrane-bound satellite cell marker neural cell 

adhesion molecule (NCAM) while Bellamy and colleagues (Bellamy et al., 2014) used 

the paired-box transcription factor Pax7, which is confined to the satellite cell nucleus. 

As a result of their cellular locations, staining of successive 7 μm cryosections shows 

that the same satellite cell is detectable through only two sections for Pax7, whereas 

NCAM is detectable through four or five sections (Mackey et al., 2009). Thus, 

discrepancies regarding baseline satellite cell enumeration between studies may be 

attributable to inherent differences in staining profiles of satellite cell markers and 

thickness of cryosections. Irrespective of the marker used, these data collectively 

suggest that satellite cell activation and muscle fibre size may be closely related over 

chronic periods of resistance training. 

While the majority of investigations that have determined the role of satellite 

cells in adaptations to exercise have focused on muscle hypertrophy, less is known 

regarding the role of satellite cells during less ‘anabolic’ stimuli, such as endurance 

exercise and high-intensity interval training (Charifi et al., 2003; Verney et al., 2008; 

Snijders et al., 2011; Babcock et al., 2012; Joanisse et al., 2013, 2015; Fry et al., 2014b; 

McKenzie et al., 2016). However, recent evidence suggests a contribution of satellite 

cells to muscle fibre remodelling in the absence of hypertrophy (Joanisse et al., 2013, 

2015). Following 6 wk of sprint cycle interval training (10 x 60 s at ~90% of maximal 

heart rate, three times per week) in untrained women, the number of satellite cells 
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associated with hybrid fibre types (type I/II myosin heavy chain isoforms) increased as 

a mechanism hypothesised to assist in fibre type remodelling (Joanisse et al., 2013). 

Similarly, both continuous moderate-intensity and high-intensity sprint interval cycle 

training have been shown to increase the number of activated and differentiating 

satellite cells post exercise without an expansion of the satellite cell pool or myonuclear 

content (Joanisse et al., 2015). Though less predominant, unaccustomed aerobic 

training can result in muscle hypertrophy which is accompanied by increases in both 

satellite cell and myonuclear content in type I fibres (Fry et al., 2014b; McKenzie et 

al., 2016). While discrepancies regarding the increase in myonuclear content may have 

been driven by the robust hypertrophy seen in the latter investigation, these studies 

collectively demonstrate the recruitment of satellite cells in response to endurance-

based exercise stimuli. Though the heightened activity and constant turnover of satellite 

cells in the absence of hypertrophy remains ambiguous, it may be required for 

myonuclear turnover during enucleation processes (McLoon et al., 2004) or regulation 

of the extracellular matrix required during myofibre remodelling (Fry et al., 2017).  

The molecular basis for this response with both endurance and sprint interval 

exercise may centre on the activation of the transcriptional coactivator peroxisome 

proliferator-activated receptor-γ coactivator 1α (PGC-1α) (Figure D.1). As a key 

regulator in endurance exercise adaptations through its co-activation of several DNA 

binding transcription factors including the nuclear respiratory factors (NRF-1 and NRF-

2) (Hood, 2009) and peroxisome proliferator activated receptors (PPARs) (Gilde & Van 

Bilsen, 2003), PGC-1α may play a role in regulating satellite cell activation by 

increasing both the mitochondrial content and activity of satellite cells (Rodgers et al., 

2014). Additionally, PGC-1α may also be involved in remodelling the extracellular 

matrix composition, thereby improving the propensity for satellite cells to proliferate 
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(Dinulovic et al., 2016). However, several isoforms of PGC-1α are known to exist and 

are differentially activated based on the mode of exercise performed (Ruas et al., 2012). 

For example, PGC-1α4 becomes activated only after resistance or combined resistance 

and endurance exercise (termed concurrent exercise) and promotes muscle fibre 

hypertrophy (Ruas et al., 2012). Whether the effects of PGC-1α on satellite cell 

regulation are isoform specific is currently unknown. Similarly, the transcription factor 

prospero-related homeobox-1 (Prox1) has been proposed as a critical regulator of 

satellite cell differentiation in slow-twitch type I fibres, while also being responsible 

for fast- to slow-fibre type gene programing through modulation of the nuclear factor 

of activated T-cells (NFAT) signalling pathway (Kivelä et al., 2016). Whether 

endurance exercise modifies Prox1 activity has yet to be determined. Indeed, the precise 

role(s) of satellite cells during adaptation to endurance training requires further 

investigation. Notably, an acute bout of concurrent exercise impairs satellite cell 

proliferation (Babcock et al., 2012). While this attenuated response may be linked to 

the ‘interference’ in muscle hypertrophy typically observed when resistance and 

endurance exercise are performed concurrently over several months, the precise 

mechanisms directing this response and whether this phenomenon manifests after a 

chronic concurrent training program (i.e., 12-16 wk) is unknown.  
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Figure D.1 Graphical representation of the potential mechanistic underpinning for satellite cell 

stimulation by resistance exercise, endurance exercise, and protein ingestion, as well as the 

expression pattern of associated transcription factors based on evidence presented from in vitro 

and murine models. Following a bout of resistance exercise, mechanical stress results in the 

activation of the mechanistic target of rapamycin complex 1 (mTORC1), which, in turn, assists 

in the transition of satellite cells from a quiescent state into an active state. Upon activation, 

satellite cells can either continue along the path of myogenic commitment to proliferate into 

myoblasts, or return to quiescence and self–renew to maintain the satellite cell pool. Metabolic 

stress caused by endurance exercise stimulates the activity of the transcriptional coactivator 

peroxisome proliferator–activated receptor–γ coactivator 1α (PGC–1α), which can promote the 

proliferation of satellite cells. Protein/branch chained amino acid (BCAA) supplementation 

may enhance both proliferation and differentiation of satellite cells. Though the mechanisms 

are not fully understood, potential pathways of satellite cell modulation through protein/BCAA 

supplementation have been included as dashed arrows. Myogenic regulatory factor expressions 

are present in higher levels (green) through specific stages and become suppressed (red) as the 

myogenic process advances as depicted by the shift from green to red in representative 

expression bars. Solid black arrows indicate increases/activation of downstream target proteins/ 

processes. 
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D.5 The impact of protein ingestion on satellite cell responses to exercise 

Dietary protein is a critical substrate for providing amino acids to facilitate 

skeletal muscle repair and regeneration during recovery from exercise. Accordingly, 

sufficient protein needs to be consumed to facilitate the synthesis of new proteins during 

the immediate (2-3 h) post–exercise recovery period, which provides the basis for both 

resistance and endurance training–induced adaptations in skeletal muscle (Moore et al., 

2009b; Breen et al., 2011; Camera et al., 2015). Moreover, the addition of new satellite 

cell-derived nuclei through exercise-induced myonuclear turnover is essential to the 

continued contribution of genetic information for protein synthesis (Burd & De Lisio, 

2017). Several interrelated factors including the dose (Moore et al., 2009a), type (Tang 

et al., 2009), timing (Res et al., 2012) and distribution (Morton et al., 2015; Areta et 

al., 2013) of protein ingestion directly impact the anabolic effects of post-exercise 

protein ingestion. An in-depth discussion on these factors is beyond the scope of this 

review and readers are referred to several comprehensive reviews on this topic (Phillips 

& van Loon, 2011; Moore et al., 2014; Phillips, 2016). 

 

D.5.1 In vitro and animal models of satellite cell activity in response to amino acids  

Work from as early as the 1970’s reported the branched-chain amino acid 

(BCAA) leucine accelerates muscle regeneration in crushed animal skeletal muscle 

(Rogulska & Kurasz, 1975). In vitro-based models demonstrate C2C12 myoblast 

proliferation and differentiation are enhanced with BCAAs (Duan et al., 2017) or 

leucine supplementation alone (Chen et al., 2013). Leucine treatment has also been 

shown to promote myotube formation and increase MyoD and myogenin (MyoG) 

expression in primary preterm rat satellite cells (Dai et al., 2015), while leucine 

withdrawal from culture media blunts C2C12 myoblast and primary satellite cell 
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differentiation (Averous et al., 2012). Kornasio and colleagues (Kornasio et al., 2009) 

investigated the effects of adding various concentrations of the leucine metabolite β-

hydroxy-β-methylbutyrate (HMB) on serum–starved myoblasts and observed enhanced 

proliferation, differentiation, and accelerated fusion, indicating a capacity for HMB to 

drive quiescent adult myoblasts into the cell cycle. Similarly, HMB supplementation in 

neonatal pigs results in increased satellite cell proliferation and protein synthesis (Kao 

et al., 2016) during a period of rapid growth that is accompanied by myonuclear 

addition (Davis & Fiorotto, 2009) and may serve as an effective strategy to increase 

muscle mass in clinical settings such as low-birth weight or preterm births.  

Leucine induces hypertrophy on tissue engineered skeletal muscle as evidenced 

by increases in myotube width in supplemented constructs compared to a rapamycin 

control (Martin et al., 2017). In regards to animal models, Alway and co-workers 

(Alway et al., 2013) reported enhanced muscle stem cell proliferation exclusively in 

type II skeletal muscle of aged rats during recovery from disuse with HMB 

supplementation. Leucine ingestion has also been shown to improve muscle force 

production and increase the number of proliferating satellite cells of regenerating young 

and old skeletal muscles after cryolesion independent of modulating rates of muscle 

protein synthesis (Pereira et al., 2015). Collectively, these findings provide strong 

evidence for a beneficial effect of leucine supplementation on muscle regenerative 

processes.  

Recently, Rodgers and colleagues (Rodgers et al., 2014) demonstrated that the 

leucine sensitive mechanistic target of rapamycin complex 1 (mTORC1) controls the 

transition of satellite cells between a quiescent and an initial ‘alert’ phase of the cell 

cycle in mice. This finding is noteworthy as subsequent investigations have 

demonstrated that mTORC1 signalling is rapidly activated during skeletal muscle 
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regeneration (Jash et al., 2014) and is not only required for the adaptive transition of 

cell cycle phases, but necessary for satellite cell proliferation, differentiation, and 

overall skeletal muscle regeneration (Han et al., 2008; Zhang et al., 2015). Given the 

ability of leucine to both activate mTORC1 directly (Sancak et al., 2008) and promote 

proliferation and differentiation in vitro through an mTORC1-MyoD cascade (Dai et 

al., 2015), protein ingestion in conjunction with an appropriate exercise stimulus may 

provide an additional signal to promote satellite cell activation in vivo (Figure D.1).  

 

D.5.2 Satellite cell activity in response to protein availability in human skeletal muscle 

 To date, few studies have investigated the interaction between protein 

supplementation and satellite cell activity in human skeletal muscle. In the following 

section, acute (defined here as a single exercise session), short-term (< 2 wk exercise 

training), and chronic (> 2 wk training intervention) exercise protocols that have 

determined the effects of protein ingestion/supplementation on markers of satellite cells 

activity in human skeletal muscle are discussed. Studies that have investigated how 

acute and short–term protein restriction can impact satellite cells activity are also 

reviewed. 

 

D.5.3 Acute and short–term exercise  

Following a single bout of resistance exercise in elderly men, Hulmi and 

colleagues (Hulmi et al., 2008) reported that the ingestion of 15 g of whey protein 

immediately before and after exercise increased the gene expression of myogenic 

regulatory factors and cell cycle regulators in the 48 h post-exercise (Table D.1). 

Likewise, in elderly men, ingesting 10 g of essential amino acids after a single bout of 

resistance exercise increased the number of proliferating satellite cells during 24 h of 
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post-exercise recovery compared to a non-caloric placebo beverage (Reidy et al., 

2017a). Specifically, an increase in the number of MyoD+ cells was observed only in 

the essential amino acid supplemented condition at 24 h post-exercise. Likewise, only 

essential amino acid supplementation resulted in an increase in Pax7+/Ki67+ cells post-

exercise, which was significantly greater than the placebo condition. Though an 

increase in type I satellite cell content was observed with essential amino acid 

supplementation at 24 h, there was no difference in satellite cell content of type II fibres 

between groups. Similarly, when all myofiber types were pooled, no significant 

difference in satellite cell content was apparent between groups. There may be several 

explanations for these findings. First, the timing of analysis may have been too early to 

detect new satellite cells which typically occurs later (i.e., 48-72 h) in human skeletal 

muscle (Snijders et al., 2015). Second, two separate essential amino acid supplements 

were used and were not matched for amino acid composition, particularly leucine (1.85 

g, n = 4 versus 3.5 g, n = 7). Third, immunohistochemistry was only performed on nine 

participants in the essential amino acid group and five control participants and thus may 

have underpowered the analysis. Nevertheless, it appears that essential amino acids can 

accelerate proliferation compared to a placebo. In line with these findings, consumption 

of 28 g of protein during the post-exercise recovery period increased satellite cell 

content compared to a placebo control for up to 48 h in healthy young men (Farup et 

al., 2014a)(Table D.2). Notably, exercise alone was unable to stimulate a satellite cell 

response in the placebo group. This is surprising given previous investigations have 

shown robust satellite cell proliferation within 48 h of completing exercise in the 

absence of protein supplementation (McKay et al., 2009, 2010). However, it may be 

that a delayed response occurred in the placebo group as others have shown satellite 

cells to accumulate as late as 4-8 days after exercise (Crameri et al., 2004, 2007). When 
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considering the homogeneity in number of satellite cells between the protein and 

placebo group at 168 h, it is possible that the satellite cell response was not completely 

captured across the selected sampling time points, highlighting the difficulty with 

biopsy sampling collection for timing of satellite cell proliferation.   
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Table D.1 Change in myogenic gene expression in human skeletal muscle in response to acute and short-term high and low protein intakes with exercise. 

Arrows pointed upwards (↑) indicate a significant increase relative to non-protein control at each time point. Arrows pointed left–right (↔) indicate no difference 

between protein supplement and controls at each time point. Exercise modalities are abbreviated as RES (resistance training) or END (endurance training). 

Essential amino acid supplementation is abbreviated as EAA. 

  



 

 
 

210 

 

Table D.2 Change in satellite cell content measured through immunohistochemistry (IHC) in human skeletal muscle in response to acute and short-term high 

and low protein intakes with exercise. Arrows pointed upwards (↑) indicate a significant increase relative to non-protein control at each time point. Arrows 

pointed left–right (↔) indicate no significant difference between protein supplement and control at each time point. Values are presented for mixed muscle 

fibres, unless specified. Exercise modalities are abbreviated as RES (resistance training) or END (endurance training). Essential amino acid supplementation is 

abbreviated as EAA.  
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Consuming a 70 g bolus of milk protein (providing 15 g of leucine) following 

prolonged endurance exercise upregulates MyoD and MyoG gene signalling networks 

in the first 4 h of post-exercise recovery compared to a lower protein intake (23 g, 

providing 5 g of leucine) or an isoenergetic carbohydrate placebo (Rowlands et al., 

2016). Though not a direct measure of satellite cell content, the augmented gene 

expression of these myogenic regulatory factors may be indicative of a greater 

propensity for satellite cell proliferation and differentiation. Collectively, the results 

from these studies suggest that protein ingestion may accentuate myogenic regulatory 

factor gene expression and promote satellite cell activation and proliferation following 

single bouts of resistance and endurance–based exercises. 

Not all findings have been analogous amongst all studies. For example, in a 

crossover study in which healthy young men completed three separate bouts of lower–

body resistance exercise before ingesting 25 g of whey protein isolate or placebo 

(maltodextrin or artificial sweetener) beverages, no differences in MyoD mRNA 

expression were observed between conditions (Roberts et al., 2010). While not directly 

measured, the isolated gene expression of MyoD suggests an absence of satellite cell 

proliferation.  Similarly, results from a crossover trial in a cohort of well-trained cyclists 

(VO2max ~63 mL•kg-1•min-1) performing 10 days of intensified cycle training (120% of 

average daily training volume) followed by a period of reduced volume training (~60% 

of average daily training volume) in combination with intra-session (38 g) and post-

session (29 g) whey protein or carbohydrate placebo supplementation have shown 

limited effects of protein availability on satellite cell function (McKenzie et al., 2016). 

Specifically, following intensified training with protein supplementation, an increase 

in the number of satellite cells associated with type I fibres in the absence of 

myonuclear addition was observed, whereas the carbohydrate placebo condition 
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elicited a rapid increase in both type I satellite cells and myonuclear density (McKenzie 

et al., 2016). Additionally, both satellite cell and myonuclear number increased 

following reduced volume training in the carbohydrate placebo condition. Whether a 

similar response is also apparent in the protein condition was not determined due to 

insufficient tissue yield from the small sample size (n = 8). Nonetheless, protein 

supplementation resulted in type I and II myofibre hypertrophy (D’Lugos et al., 2016) 

following intensified training. Collectively, the increase in satellite cell content and 

myofibre hypertrophy suggests that protein supplementation may be beneficial for 

skeletal muscle during periods of heavy endurance training.  

While the factor(s) responsible for discrepant outcomes between acute exercise 

trials is unclear, they may partially be explained by inherent differences in study design 

and methodology (i.e., type and volume of exercises performed, training status of 

participants, sex of participants, biopsy timing, analytical measurements, etc.). In 

particular, several investigations conducted satellite cell analyses as secondary 

measures and selected biopsy time points around separate primary outcomes (such as 

cell signalling and gene expression, as well as muscle protein synthesis analyses). As a 

result, measurement time points across the aforementioned studies ranged from 0-144 

h post-exercise (Table D.2). Likewise, the use of different satellite cell markers (i.e., 

Pax7 vs. NCAM, gene vs. protein, etc.) between studies can also introduce considerable 

variability due to potential issues with differences in antibody sensitivity and detection 

between markers. Furthermore, satellite cell populations are heterogeneous in their 

expression of different molecular markers and using a single molecular marker for their 

identification may underestimate total satellite cell content (Lindström & Thornell, 

2009; Lindström et al., 2010). Therefore, multiple labelling methods should be 

implemented to improve detection of subpopulations of satellite cells progressing 
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through terminal differentiation (i.e., Pax7-/NCAM+)(Lindström & Thornell, 2009). 

Although multiple labelling will most likely provide a more comprehensive 

identification of the total satellite cell pool, use of multiple markers in 

immunohistochemistry can be cumbersome, especially when combining multiple 

nuclear markers with surface proteins for activation status and myosin heavy chain 

isoforms for fibre type specific analysis. Such inconsistencies in methodological 

approaches highlight the need to design studies with satellite cell dynamics as primary 

outcomes and establish consistent analytical techniques between investigations in order 

to accurately evaluate satellite cell responses to exercise.  

 

D.5.4 Chronic training  

Olsen and colleagues (Olsen et al., 2006) were the first to demonstrate that 

chronic protein supplementation in combination with strength-based resistance training 

amplifies the expansion of satellite cell and myonuclei numbers in human skeletal 

muscle compared to a placebo control (Table D.3). In that study, healthy young male 

participants performed lower body periodised strength training (external loads 

corresponding to 6-12 repetition maximum) three times per week and consumed 20 g 

of cow milk protein in close proximity to each training session (10 g pre- and 10 g post-

exercise) and once daily on non-training days. Whilst robust increases in muscle fibre 

cross sectional area were observed both with and without protein supplementation, the 

increase in number of satellite cells per fibre was significantly greater with protein 

supplementation. However, data on habitual dietary intake for participants was not 

provided, making it unclear whether the larger expansion in satellite cell content was a 

result of a greater daily protein intake or due to protein availability in close proximity 

to exercise. Furthermore, whether protein feeding influenced satellite cells in a fibre-
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type-specific manner was not determined. Nonetheless, findings from this study 

provided the first evidence that consuming a bolus amount of additional protein around 

resistance exercise bouts could augment long-term training–induced satellite cell 

expansion and yield concomitant increases in myonuclear accretion and fibre 

hypertrophy. 

  



 

 
 

215 

 

Table D.3 Change in satellite cell and myonuclear content measured through immunohistochemistry in human skeletal muscle in response to chronic resistance 

exercise with protein supplementation. Arrows pointed upwards (↑) indicate a significant increase relative to non-protein control at each time point. Arrows 

pointed left–right (↔) indicate no significant difference between protein supplement and control at each time point. Values are presented for mixed muscle 

fibres, unless specified. 
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To further explore how increased protein availability may influence satellite cell 

numbers in response to chronic resistance training, Farup and colleagues (Farup et al., 

2014b) investigated the effect of contraction mode (i.e., concentric versus eccentric) on 

fibre type specific satellite cell response in the presence of a protein supplement. Using 

a within-subject design, healthy young male participants undertook 12 wk of unilateral 

resistance training of the knee extensors, three times per week, with one leg performing 

eccentric (lengthening) contractions only and the contralateral leg performing 

concentric (shortening) contractions only. For the duration of the training program, 

participants were randomised into either a protein supplement (~20 g of whey protein) 

or a control group (isocaloric carbohydrate placebo). On all training days, participants 

ingested half of their supplement before and the remaining half after training (providing 

~10 g protein pre- and ~10 g protein post-exercise). Though both protein and placebo 

supplementation resulted in equivalent increases to type I fibre cross-sectional area and 

number of satellite cells per unit of fibre cross-sectional area, protein supplementation 

elicited a significantly greater satellite cell expansion compared to the placebo group. 

Though not directly measured, the greater increase in satellite cell content with 

concentric contractions was hypothesised to be caused by the larger metabolic demands 

and greater transcription of IGF-1 with concentric versus eccentric contractions. 

Additionally, concentric contractions combined with protein supplementation lead to 

increases in type II fibre cross sectional area with parallel myonuclear accretion. 

Notably, a similar degree of myonuclear addition was also observed in type II fibres in 

the absence of hypertrophy with eccentric training in the placebo group. While it is 

unclear why nutrient intake resulted in contraction mode specific changes to 

myonuclear content, the similar increase in type II fibre myonuclei suggests any 

potential ergogenic effects of protein to drive hypertrophy may not have been 



 

 
 

217 

responsible for myonuclear addition. However, information regarding changes to 

myonuclear domain were not presented and therefore cannot be ruled out as a possible 

explanation for expansion of myonuclear number. Nevertheless, the results provide 

further evidence for the consideration of protein supplementation to augment satellite 

cell content with chronic training. 

The findings of Farup and colleagues (Farup et al., 2014b) raise the possibility 

that increasing supplemental protein availability around concentric-based exercise 

could amplify long-term training-induced increases in satellite cell and myonuclei 

numbers and promote fibre hypertrophy. It has previously been reported that an 

increase in myogenic gene expression and satellite cells associated with type I fibres 

manifests after acute bouts of cycling exercises (McKenzie et al., 2016; Rowlands et 

al., 2016). Given the reliance upon type I fibres for aerobic-based contractile activity, 

consumption of additional protein after endurance exercise may be a useful strategy to 

promote type I fibre hypertrophy and myonuclear turnover to support tissue repair 

through increased satellite cell proliferation. To date, no investigation has assessed the 

effects of chronic endurance training with protein supplementation on satellite cell 

function, and is an area that deserves further attention.  

The type of protein ingested has also recently received attention in regards to 

satellite cell response to chronic resistance training in young healthy men (Mobley et 

al., 2017). In a study involving 12 wk of periodised whole-body resistance training, 

participants were randomly allocated to either a leucine supplementation (~3 g), one of 

two leucine-matched protein supplements (whey protein: ~26 g, or soy protein: ~39 g), 

or a carbohydrate placebo supplement (~44 g) condition to be consumed twice daily 

that resulted in habitual daily protein intakes of ~1.35 g•kg-1•d-1, ~1.95 g•kg-1•d-1, and 

~1.3 g•kg-1•d-1, respectively, throughout the intervention. Regardless of dietary 
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condition, all participants increased total lean body mass and muscle strength, as well 

as fibre cross sectional area and myonuclear number in both type I and II fibres at the 

end of the 12 wk. However, only participants consuming whey or soy protein 

supplements significantly increased satellite cell count (~94%) in mixed muscle fibre 

types. These results suggest that consumption of intact protein influences the satellite 

cell response to chronic training.  

Not all studies, however, have reported added benefits of protein 

supplementation on satellite cell activity during periods of chronic resistance training 

in young men (Spillane & Willoughby, 2016; Reidy et al., 2017b, 2017c) or elderly 

men and women (Dirks et al., 2017). Work from Reidy and colleagues (Reidy et al., 

2017b) found 12 wk of resistance exercise training (including both concentric and 

eccentric contractions) in the presence of protein supplementation (22 g of either whey 

or a soy-dairy protein blend ingested immediately post–exercise on training days, and 

once between meals on non-training days) resulted in similar increases in mean fibre 

satellite cell content, proportion (percentage of satellite cells per myonuclei), and 

domain (satellite cells per mm2) compared to an isocaloric maltodextrin placebo 

condition. Notably, habitual protein intake for participants across conditions in this 

study was ~1.3 g•kg-1•d-1, and was increased to ~1.6 g•kg-1•d-1 in the protein 

supplemented group. The authors concluded that habitual protein intake without 

supplementation was sufficient to promote skeletal muscle remodelling and satellite 

cell activity following chronic resistance training. Therefore, it appears that when 

adequate protein is available, additional protein supplementation is otherwise of 

negligible benefit. However, the authors did observe a trend for greater satellite cell 

content increases in myosin heavy chain type I fibres with protein supplementation 

compared to the placebo control. Thus, it is also plausible that these studies did not 
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observe any added (or synergistic) benefits of protein supplementation due to the high 

individual variability in responses to protein ingestion and potential low effect size for 

protein supplementation to enhance muscle anabolism and associated satellite cell 

responses (Reidy & Rasmussen, 2016). 

Recent work from the Dirks and associates (Dirks et al., 2017) examined 

whether protein supplementation over a 24-wk whole-body resistance-training program 

in frail elderly men and women modulates satellite cell content. Participants were 

randomly allocated to either a protein (30 g of milk protein) or placebo (non-protein 

containing dairy beverage) supplement group and trained twice weekly over the course 

of the intervention. Baseline habitual protein intake for participants was 1.0 g•kg-1•d-1 

and was increased to 1.3 g•kg-1•d-1 in the protein–supplemented group. While there was 

a trend for muscle fibre hypertrophy in the placebo group after training (no change in 

type I and ~20% in type II; P = 0.051), only significant hypertrophy was observed in 

the protein-supplemented group (~23% in type I and ~33% in type II, P < 0.01). Despite 

the marked increase in fibre cross sectional area, no changes in satellite cell or 

myonuclear content were observed in either group. The authors attribute the lack of 

changes in satellite cell and myonuclear content to smaller baseline myonuclear 

domains, which may have allowed fibre hypertrophy to occur without the need for 

additional myonuclei. These findings are in contrast to previous reports in elderly 

individuals (Verdijk et al., 2009), whereby resistance training-induced hypertrophy is 

accompanied by an increase in satellite cell content.  

Incorporating protein supplementation to chronic exercise rehabilitation 

programmes following short-term bed rest has also been equivocal (Reidy et al., 

2017c). Following five days of bed rest, both young and older adults completed 8 weeks 

of eccentric knee extensor training three times per week. During the rehabilitation 
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programme, half of the young participants and all of the older participants were 

provided with 17 g of a BCAA-enriched (4.6 g leucine, 2.4 g isoleucine, 2.3 g valine) 

whey protein. Though only the older participants increased myofiber cross-sectional 

area from the cessation of bed rest to completion of training, all participants 

demonstrated significant increases in satellite cell density and number per fibre, 

regardless of protein supplementation. Despite no further benefit of protein 

supplementation to satellite cell content in the young cohort, these results are 

inconclusive in regards to older individuals as there was no non-supplemented older 

participant group to determine whether the satellite cell response in these older subjects 

was solely due to exercise training, protein supplementation, or a combination of the 

two.  

Protein supplementation in combination with 16 wk of resistance exercise in 

clinical populations undergoing dialysis has also shown no effect on satellite cell 

content, myonuclear number, or myonuclear domain compared to a placebo condition 

(Molsted et al., 2015). In this study, habitual protein intake for participants was 1.3 

g•kg-1•d-1 in both groups, and was unchanged with the additional 9.4 g of whey protein 

ingested by the protein supplement group. Considering the equivalent daily protein 

intake between conditions, it is possible that the protein supplement consumed may not 

have been an effective dose to elicit a meaningful change to satellite cell activity given 

the relatively low leucine content. However, a dose response study has yet to be 

performed to determine if a protein threshold exists to stimulate satellite cell activity. 

Additionally, dialysis patients have reduced type I fibre satellite cell content, but not 

fibre area or myonuclear content, compared to healthy untrained men (Mackey et al., 

2014). Consequently, the satellite cell pool of dialysis patients may be under excessive 

stress in order to maintain fibre size and myonuclear numbers. Accordingly, the results 



 

 
 

221 

related to satellite cell content/activity from investigations involving disease-states 

must be interpreted with caution when making comparisons to healthy populations.  

Protein overfeeding (~2.5 g•kg-1•d-1) has little effect on markers of satellite cell 

activity (Spillane & Willoughby, 2016). Following 8 wk of whole-body resistance 

training in healthy young men supplemented daily with either a mixed protein-

carbohydrate-fat beverage (94 g, 196 g, and 22 g of protein, carbohydrate, and fat, 

respectively) or carbohydrate beverage (312 g) before and after each resistance exercise 

session, no changes to c-Met content, a proxy for satellite cell quantification, were 

observed in either condition. However, c-Met is expressed in several epithelial cell 

types and is not exclusive to satellite cells (Lindström et al., 2010). Thus, without 

having also directly measured satellite cell specific markers (i.e., Pax7), it is unclear 

whether the training stimulus or protein supplementation affected satellite cell content. 

Nevertheless, the findings from this study suggest that high protein intakes provide no 

benefit to satellite cell responses during chronic training.  

 

D.5.5 Protein restriction  

Several studies have investigated the effects of protein restriction on satellite 

cell activity in human skeletal muscle. Four days of severe protein restriction (0.1 g•kg-

1•d-1) in healthy young men had little impact on satellite cell content during post-

exercise recovery following a single bout of resistance exercise compared to a protein 

intake of a 1.2 g•kg-1•d-1 (Snijders et al., 2014a) (Table D.2). While there were no 

differences in satellite cell content or myogenic regulator factor gene expression 

between the low and higher protein diets over the 72 h post-exercise recovery period, a 

pronounced reduction in the number of satellite cells expressing myostatin protein was 

observed in the low protein group at 72 h. Myostatin is a member of the transformation 
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growth factor-β (TGF-β) superfamily and is known to be a negative regulator of satellite 

cell activity (Taylor et al., 2001; McKay et al., 2012) as well as muscle protein 

synthesis (Welle et al., 2006). The authors speculated that in the absence of dietary 

protein, the co-localization of myostatin with satellite cells remains repressed for a 

prolonged period as a compensatory mechanism to allow muscle remodelling to occur 

when an adequate concentration of amino acids becomes available. To conclude that 

protein has no effect on satellite cell activity based on studies in which protein intake 

has been severely restricted may be an over-simplification. Previous reports have 

indicated that short-term (7-18 days) protein restriction results in decreased 

transcription of genes associated with satellite cell proliferation and increased 

transcription profile of genes related to ubiquitin–dependant protein catabolism and 

apoptosis (Thalacker-Mercer et al., 2007, 2010). Thus, it would appear that several 

protective mechanisms exists to allow for skeletal muscle remodelling during an acute 

period of protein deprivation, although these mechanisms appear to be down-regulated 

over time.  

 

D.6 Conclusions and future directions 

The role of satellite cells in skeletal muscle remodelling has long been known. 

However, the role for protein ingestion to modulate satellite cell activity is less well 

understood. Based on current in vitro literature, there are clear indications that 

amino acids improve satellite cell activity; however, results from in vivo work 

remain ambiguous. Data from human trials suggests that dietary protein has the 

most pronounced effect on satellite cell activity under acute exercise conditions, but 

may have diminishing returns with prolonged periods of training (i.e., months or years). 

One potential explanation for this is that acutely increasing dietary protein intake 
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simply accelerates the myogenic response to exercise, likely through increasing MyoD 

gene expression, which will eventually be reached with adequate protein intake (Figure 

D.1). Further, the effects of protein on satellite cell response after initiating 

unaccustomed exercise training, when most myocellular damage occurs, is most 

pronounced during acute structural repair to combat unfamiliar stress and may not be 

predictive of long term responses (Damas et al., 2016). In this regard, these potential 

acute effects with protein supplementation may be of clinical and economic 

significance by enhancing skeletal muscle remodelling processes that reduce injury 

occurrence, muscle damage and soreness (Pasiakos et al., 2014). Macrophage activity 

is also closely tied to satellite cell activity and may be modulated with amino acid 

availability (Rowlands et al., 2016; Drummond et al., 2017). Thus, the regulation of 

immunity pathways with protein ingestion following unaccustomed exercise stimuli 

may in part be responsible for accelerated satellite cell activity.  

Little is currently known about the potential mechanistic bases that may govern 

enhanced satellite cell dynamics with protein ingestion following either resistance or 

endurance exercise. Therefore, an emphasis on designing studies in which satellite cell 

responses (i.e., time course of response) are primary outcome measures is essential to 

critically evaluate such mechanisms. Future studies in which diets are tightly monitored 

by daily food records in conjunction with supervised exercise training are also required 

to advance the current understanding of how nutrition (specifically protein) can 

stimulate satellite cell contribution to support exercise adaptations. Similarly, how 

variable protein intake affects satellite cell activity in response to divergent modes of 

exercise (e.g., resistance, endurance, or combined resistance and endurance) is a topic 

that warrants further exploration. In this regard, it has been shown that protein ingestion 

following a bout of concurrent resistance and endurance exercise increases rates of 
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muscle protein synthesis and attenuates markers of muscle catabolism compared to a 

placebo control (Camera et al., 2015). Whether increased protein availability during a 

chronic concurrent training program can rescue the inhibition of satellite cell activity 

previously observed after a single bout is unknown. Thus, future investigations 

combining concurrent exercise and protein consumption with regards to satellite cell 

activity are needed to improve the translation from research to practice when 

prescribing exercise and dietary interventions to promote skeletal muscle health and 

quality with this training modality. Likewise, how the distribution of daily protein 

intake affects satellite cell activity after exercise is currently unknown. Low protein 

diets affect satellite cell activity and there are important implications of this for clinical 

populations. Accordingly, studies are needed to determine how changes to feeding 

patterns may impact the time course of satellite cell activity and skeletal muscle 

remodelling. Additionally, whether specific amino acids have potential regulatory roles 

in the return of satellite cells to quiescence is unknown and deserves consideration to 

improve our understanding of how satellite cells maintain regenerative capacity. 

Finally, a better understanding of the association, if any, between amino acid 

transporter expression/activation and satellite cell activity is warranted to determine 

whether the capacity for these transporters may be a limiting factor for the inward 

transport of amino acids to subsequently regulate satellite cell dynamics. 
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