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Abstract 24 

Background: Inertial measurement units (IMUs) are used for running gait analysis in a variety of sports. 25 

These sensors have been attached at various locations to capture stride data. However, it is unclear if 26 

different placement sites affect the derived outcome measures. 27 

Objective: The aim of this systematic review and meta-analysis was to investigate the impact of 28 

placement on the validity and reliability of IMU-derived measures of running gait. 29 

Methods: Online databases SPORTDiscus with Full Text, CINAHL Complete, MEDLINE (Ebscohost), 30 

EMBASE (Ovid) and Scopus were searched from the earliest record to 6 August 2020. Articles were 31 

included if they 1) used an IMU during running 2) reported spatiotemporal variables, peak ground 32 

reaction force (GRF) or vertical stiffness and 3) assessed validity or reliability. Meta-analyses were 33 

performed for a pooled validity estimate when 1) studies reported means and standard deviation for 34 

variables derived from the IMU and criterion 2) used the same IMU placement and 3) determined 35 

validity at a comparable running velocity (≤1 m·s-1 difference). 36 

Results: Thirty-nine articles were included, where placement varied between the foot, tibia, hip, sacrum, 37 

lumbar spine (LS), torso and thoracic spine (TS). Initial contact, toe-off, contact time (CT), flight time 38 

(FT), step time, stride time, swing time, step frequency (SF), step length (SL), stride length, peak 39 

vertical and resultant ground reaction force (GRF) and vertical stiffness were analysed. Four variables 40 

(CT, FT, SF and SL) were meta-analysed, where CT was compared between foot, tibia and LS 41 

placements and SF was compared between foot and LS. Foot placement data was meta-analysed for FT 42 

and SL. All data are mean difference (MD [95%CI]). No significant difference was observed for any 43 

site compared to the criterion for CT (foot: -11.47 ms [-45.68, 22.74], p=0.43; tibia: 22.34 ms [-18.59, 44 

63.27], p=0.18; LS: -48.74 ms [-120.33, 22.85], p=0.12), FT (foot: 11.93 ms [-8.88, 32.74], p=0.13), 45 

SF (foot: 0.45 step·min-1 [-1.75, 2.66], p=0.47; LS: -3.45 step·min-1 [-16.28, 9.39], p=0.37) and SL 46 

(foot: 0.21 cm [-1.76, 2.18], p=0.69). Reliable derivations of CT (coefficient of variation [CV] <9.9%), 47 

FT (CV <11.6%) and SF (CV <4.4%) were shown using foot- and LS-worn IMUs, while the CV was 48 

<7.8% for foot-determined stride time, SL and stride length. Vertical GRF was reliable from the LS 49 
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(CV=4.2%) and TS (CV=3.3%) using a spring-mass model, while vertical stiffness was moderately 50 

(r=0.66) and nearly perfectly (r=0.98) correlated with criterion measures from the TS. 51 

Conclusion: Placement of IMUs on the foot, tibia and LS are suitable to derive valid and reliable stride 52 

data, suggesting measurement site may not be a critical factor. However, evidence regarding the ability 53 

to accurately detect stride events from the TS is unclear and this warrants further investigation. 54 

 55 

Key points 56 

• Practitioners may attach inertial measurement units to the foot, tibia and lumbar spine to 57 

accurately and reliably derive stride variables during running. 58 

• The computational method for gait event detection may be more critical to validity and 59 

reliability than the attachment location itself. 60 

• These findings may open opportunities for practitioners to use inertial measurement units to 61 

analyse the gait patterns of athletes in a variety of running-based sports. 62 
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1 Introduction 87 

It is common practice to quantify the activities performed by athletes, or external load, to plan and 88 

monitor training and competition load [1]. Tracking technology, such as video-based systems, global 89 

positioning systems (GPS) and local positioning systems (LPS), measure athlete displacement and 90 

calculate velocity and acceleration [2-5]. However, due to its low sampling frequency (e.g. 10 Hz), GPS 91 

is limited in its ability to accurately capture changes in velocity or high-speed movements over short 92 

distances and when movements are nonlinear, such as changes of direction [6-8]. Although LPS (1000 93 

Hz) sample at a higher rate than GPS, neither technology can account for non-locomotor activity, such 94 

as impacts or collisions [9-12]. To overcome some of the limitations of GPS and LPS, inertial 95 

measurement units (IMUs), comprising accelerometers, gyroscopes and magnetometers, can provide 96 

additional information on athlete activity profiles [13, 14]. 97 

Triaxial accelerometers measure acceleration in the anteroposterior, mediolateral and vertical 98 

axes and typically capture data between 100 and 1000 Hz [13, 15, 16]. Gyroscopes and magnetometers 99 

measure device orientation and direction, respectively [17]. Accelerometers have been used for 100 

quantifying daily physical activity and estimating energy expenditure [18-22] and their use is now 101 

common in athletes [11, 12, 23-25]. Accelerometer-derived metrics, such as PlayerLoadTM, provide an 102 

indication of global external load from the summation of instantaneous rate of change of acceleration 103 

in the anteroposterior, mediolateral and vertical axes [15, 26]. However, PlayerLoadTM is a relatively 104 

gross measure that does not offer insight into discrete movements, such as stride variables. Instead, 105 

patterns in the signals of IMUs can be explored to identify foot contacts to calculate different stride 106 

variables, which may help in understanding the way in which athletes produce a given load [27, 28]. 107 

The detection of gait events, such as initial contact (IC) and toe-off (TO), is possible using 108 

accelerometer and gyroscope data [29-31]. Identifying these key events allows for the calculation of 109 

spatiotemporal parameters, including contact time, flight time, step and stride times, step frequency and 110 

step and stride lengths [30, 32-35]. The acceleration signal from IMUs may also be used to estimate 111 

ground reaction forces (GRFs) and vertical stiffness to describe the impact forces experienced by 112 

athletes and their ability to absorb force during running [36-40]. Deriving stride variables is important 113 
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for evaluating an athlete’s gait pattern and may help to inform injury mitigation and performance 114 

enhancement strategies [41]. However, device placement may influence the derived outcome measures 115 

and should be considered when using IMUs to capture stride data [42, 43]. 116 

Placement of IMUs for analysis of running gait can vary between the foot [30, 34, 44], distal 117 

and mid tibia [13, 31, 40], lumbosacral region [30, 32, 33] or thoracic spine [37, 39, 43]. Given 118 

accelerometers measure acceleration of the segment to which it is attached, there are some potential 119 

issues associated with placement on the upper body to measure accelerations occurring at the lower 120 

limb and derive valid and reliable stride data [42]. Attachment location is an important consideration 121 

due to signal attenuation, whereby acceleration magnitudes dissipate from the foot to the torso during 122 

ground contact in running [45-47]. Although securing IMUs to the foot may provide the most accurate 123 

derivations of stride variables [16, 34, 35], this site may not be practical in some sports (such as those 124 

that involve kicking), while other work has noted the potential for injury in contact sports using IMUs 125 

attached to the tibia [44]. Given IMUs have been utilised at various sites for the analysis of running gait 126 

in the literature, it is important to understand if IMU placement affects the derived outcome measures. 127 

This may help inform practitioners which attachment location is most appropriate for deriving valid and 128 

reliable stride data based on the constraints of the sport they work in. Therefore, the aim of this 129 

systematic review and meta-analysis is to report on the validity and reliability of inertial sensors to 130 

calculate spatiotemporal variables, GRF and vertical stiffness during running with respect to sensor 131 

placement. 132 

 133 

2 Methods 134 

2.1 Systematic Review Protocol 135 

The protocol for this systematic review was registered on PROSPERO and can be accessed at 136 

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020160325. All procedures were 137 

performed in accordance with the PRISMA guidelines [48]. 138 

 139 
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2.2 Eligibility Criteria 140 

Articles were eligible for inclusion in this systematic review if they 1) were published in English 2) 141 

used an accelerometer, gyroscope or a combination of both technologies 3) had participants jog, run or 142 

sprint during data collection 4) reported at least one of the following outcome variables: IC, TO, contact 143 

time, flight time, step time, stride time, swing time, step frequency, step length, stride length, peak 144 

vertical or resultant GRF or vertical stiffness and 5) assessed validity or reliability. 145 

 146 

2.3 Search Strategy 147 

Keywords in the title and abstract of records, combined with relevant subject heading terms, such as 148 

Medical Subject Headings (MeSH), were systematically searched in SPORTDiscus with Full Text, 149 

CINAHL Complete, MEDLINE (Ebscohost), EMBASE (Ovid) and Scopus from the earliest record up 150 

until 6 August 2020. The following keyword search string was used in each electronic database (which 151 

is also detailed in Supplementary Information Appendix S1, Table S1): 152 

(jog* OR run* OR sprint*) AND (acceleromet* OR "global positioning system" OR GPS OR 153 

gyroscope* OR IMU OR inertial* OR microtechnolog* OR “wearable sensor”) AND (acceleration* 154 

OR event* OR fatigue* OR force* OR GRF OR kinematic* OR kinetic* OR parameter* OR reliab* 155 

OR stance OR step* OR stiff* OR stride* OR strike* OR temporal OR valid*) 156 

 157 

2.4 Study Selection 158 

Search results were exported to reference management software EndNote X9.3.3 (Clarivate Analytics, 159 

Philadelphia, USA) where duplicates were removed. Two authors (BJH and PJT) then independently 160 

screened the title and abstract of each record in the Rayyan web-based systematic review tool (available 161 

at www.rayyan.qcri.org). The full text of potentially eligible articles was retrieved and one author (BJH) 162 

performed a final eligibility assessment, which was later checked by a second author (PJT). 163 

Discrepancies in article selection were resolved by a third author (SJC). The reference lists of all 164 

retrieved articles were also examined to determine any other articles that may be relevant to the review. 165 

http://www.rayyan.qcri.org/
http://www.rayyan.qcri.org/


8 
 

2.5 Data Extraction 166 

Data relating to participant characteristics (age, body mass, height and activity level), sensor 167 

specifications (brand, model, range and sampling frequency), sensor location (foot, distal/mid tibia, hip, 168 

sacrum, lumbar and thoracic spine), criterion used for validity (brand, model and sampling frequency), 169 

running activity performed (number, duration or distance of runs, velocity), outcome variables analysed 170 

(temporal, spatial, GRF and vertical stiffness) and measures of validity and reliability were extracted 171 

from each included study. Definitions for the variables analysed in this review are presented in Table 172 

1. Running velocity, temporal and spatial variables and GRF are reported in metres per second (m·s-1), 173 

milliseconds (ms), centimetres (cm) and Newtons (N), respectively. Where included studies did not 174 

report results in the aforementioned units, values were converted to enable better comparison between 175 

studies. 176 

 177 

2.6 Assessment of Methodological Quality 178 

The methodological quality of each included study was assessed using a modified assessment scale of 179 

Downs and Black [49]. Of the 27 criteria, the most relevant to the study designs included in this review 180 

were applied, which is consistent with other reviews [50, 51]. Each study was therefore assessed for 181 

quality of reporting (1-4, 6, 7 and 10), external validity (11 and 12) and internal validity bias (16, 18 182 

and 20) based on 12 criteria. The criteria were evaluated as yes, no or unclear, with the score out of 12 183 

determined from the number of items that were answered yes. 184 

 185 

2.7 Data Analysis 186 

The values of validity and reliability for each stride variable are presented in the tables below and 187 

included throughout the results sections. 188 

 189 

 190 
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2.7.1 Meta-analysis 191 

Meta-analyses were performed when there were at least two studies that 1) reported means and standard 192 

deviation (SD) for stride variables calculated from IMUs and reference systems 2) used the same IMU 193 

attachment site and 3) assessed validity at a comparable running velocity (≤ 1 m·s-1 difference). Authors 194 

that did not include absolute mean ± SD values for the computed stride variables were contacted to gain 195 

the additional data. Raw outcome data was not obtained for 22 studies and were thereby ineligible for 196 

inclusion in any meta-analysis [31, 32, 34, 37, 38, 40, 43, 52-66]. Where there were multiple effects 197 

reported for different running velocities from a single study, data was aggregated so only a single effect 198 

was included in the meta-analysis [67]. However, when validity was assessed using IMUs from two 199 

different manufacturers [35] or criterion measures [29, 68] in a single study, effects were treated 200 

independently and both were included in the meta-analysis. Data pertaining to criterion validity was 201 

pooled from studies that used different reference measurement systems. Specifically, effects were 202 

pooled from studies that used motion capture [29], force plates [30, 69, 70], high-speed camera [16, 35, 203 

68] and photocell systems [68, 71, 72]. This approach was used due to the limited number of studies 204 

with comparable methodologies and previous work demonstrating that optical timing and motion 205 

capture systems and force plate systems are all considered as criterion methods for gait analysis [73-206 

75]. 207 

Where there was sufficient data to group effects based on eligibility criteria, meta-analyses 208 

were performed using random-effects models with the Meta statistical package in R software (version 209 

3.6.3, R Foundation for Statistical Computing) to produce a pooled estimate of the mean difference 210 

(MD) in absolute units [76]. When studies could be pooled based on different IMU attachment sites for 211 

the same variable, subgroup analysis was performed to test whether placement differs in terms of their 212 

effects, with the significance level set at p < 0.05 [77]. 213 

The level of statistical heterogeneity was quantified by calculating the I2 statistic [78]. 214 

Statistical heterogeneity was considered low (I2 < 25%), moderate (I2 = 25-49%) and high (I2 > 50%) 215 

[78]. When 12 was high (I2 > 50%), leave-one-out analysis was performed to determine the studies that 216 

contributed most to heterogeneity and had a high influence on the overall effect [79]. Moderator analysis 217 
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was also conducted to determine how much the criterion measure contributed to the observed variability 218 

of effect sizes between studies [80]. Where the criterion does not have a significant moderating effect, 219 

heterogeneity may be attributable to an unidentified source [80]. A meta-regression model was applied 220 

to the moderator analysis using the metareg function in R software [81]. Statistical significance was set 221 

at p < 0.05. 222 

Effect sizes and their respective confidence intervals (CI), along with the overall MD for pooled 223 

effects, were visualised as forest plots [82]. In forest plots, studies are represented by a point estimate, 224 

bounded by a 95% CI for the effect [82]. The summary effect (MD) is symbolised by the polygon at 225 

the bottom of the plot [82]. The width of the polygon indicates the 95% CI. Studies that exhibit larger 226 

squares contribute more to the summary effect (MD) compared to studies with smaller squares [82]. 227 

 228 

***Insert Table 1 about here*** 229 

 230 

3 Results 231 

3.1 Study Identification and Selection 232 

A total of 4,654 records were identified through the database searches. An additional three articles were 233 

included through reference list searches. Following deduplication, title and abstract screening and a 234 

thorough full text screen of each record, 39 studies met the eligibility criteria and were included in the 235 

review [16, 29-40, 43, 52-66, 68-72, 83-87]. An outline of this process using the PRISMA flow diagram 236 

is presented in Figure 1. 237 

 238 

3.2 Study Characteristics 239 

A summary of the characteristics of each study is presented in Table 2. A total of 657 participants were 240 

included across 39 studies (mean ± SD 16.8 ± 10.2), where the populations sampled included healthy 241 

active adults (n = 15 studies), recreational/amateur (n = 12) and high-level runners (n = 5), team-sport 242 



11 
 

athletes (n = 6), elite track and field athletes (n = 1) and triathletes (n = 1). Sensor placement varied 243 

between foot [16, 30, 34, 35, 52, 56, 59, 60, 65, 69, 71, 85], distal and mid tibia [29, 31, 40, 58, 60, 62, 244 

69, 70, 84], hip [66], sacrum [32, 57], lumbar spine [30, 33, 38, 64, 68, 69, 72, 83], torso [53] and 245 

thoracic spine [36-39, 43, 54, 61, 86]. Two studies used multiple sensors and a combination of 246 

placements to derive stride variables [55, 87]. Validity was assessed using force plate systems (n = 17) 247 

[31, 33, 36, 38-40, 43, 54, 55, 57-59, 61, 62, 66, 69, 70], optical motion capture (n = 7) [29, 32, 52, 55, 248 

64, 65, 85], instrumented treadmill (n = 7) [30, 34, 37, 53, 56, 60, 87], high-speed camera (n = 4) [16, 249 

33, 35, 68], photocell systems (n = 3) [68, 71, 72], foot-mounted accelerometer (n = 1) [83], in-shoe 250 

piezo-electric force sensitive resistors (FSR) (n = 1) [63] and different stride time calculation methods 251 

(n = 1) [84] as criterions. Reliability was assessed in nine studies [16, 38, 40, 43, 59, 68, 71, 83, 86]. 252 

Contact time was the most commonly reported variable (n = 16) [16, 29, 30, 32-35, 37, 52, 53, 62, 68-253 

71, 83], while six studies derived spatial data (step length and stride length) from accelerometers and 254 

gyroscopes [35, 52, 65, 71, 72, 85]. Eleven studies estimated peak vertical and resultant GRF [36, 38-255 

40, 43, 55-57, 61, 66, 87], whereas three studies used accelerometers to derive vertical stiffness [37, 38, 256 

86]. 257 

 258 

***Insert Table 2 about here*** 259 

 260 

3.3 Methodological Quality 261 

Based on the number of criteria that were answered yes, the methodological quality of included studies 262 

ranged from 7 to 10 out of 12, with a mean score of 9 out of 12 (see Supplementary Information 263 

Appendix S1, Table S2). Out of the 39 studies, 24 did not include p-values alongside validity or 264 

reliability outcomes [29-34, 37-40, 53, 55, 56, 58, 59, 61, 63-66, 72, 83, 84, 86], two studies did not 265 

clearly report subject characteristics [33, 63], while another study did not provide a description of the 266 

running protocol used for assessing validity [60]. Five studies scored a yes for detailing the source 267 
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population from which subjects were recruited [31, 60, 83, 86, 87], whereas this was unclear in the 268 

remaining studies. 269 

 270 

3.4 Stride Variables 271 

The results for each stride variable examined in this review are described in the following sections. 272 

 273 

3.4.1 Initial contact 274 

Validity outcomes for the detection of IC using IMUs secured to the foot, distal and mid tibia and 275 

lumbar spine are presented in Table 3. Mean relative differences (-16.0 to 3.3 ms) and estimation errors 276 

(-6.0 to 4.3 ms) were generally low for foot placement [30, 52, 69], while another study reported IC 277 

could be detected with a precision (median ± inter-quartile range [IQR]) of 2.0 ± 1.0 ms from a foot-278 

mounted IMU [34]. Contrasting results were evident for placement on the tibia. Using only the angular 279 

velocity signal from a gyroscope, errors were as high as 64.2 ms compared to motion capture in one 280 

study [29], while another study detected IC from gyroscope data with an absolute mean error of 13.0 ± 281 

6.0 ms to that of a force plate [70]. The mean relative difference (-38.0 ± 10.7 ms) was greater than that 282 

observed for the foot using tibial acceleration data [69], while other studies showed improved validity 283 

for determining IC from tibia-mounted IMUs compared to force plate measures (MD = -0.5 ± 0.3 ms, 284 

mean bias = -2.3 ± 4.7 ms, mean error = 1.68 ms) (see Table 3) [31, 58, 62]. In another study using 285 

tibia-mounted accelerometers, IC was detected with an accuracy of F1 = 0.92-0.96 compared to those 286 

events determined from in-shoe piezo-electric FSRs [63]. The F1 score is a measure of a test’s accuracy, 287 

where an F1 score of 1 reflects perfect precision and recall [88]. Detection of IC was slightly earlier 288 

(4.7 ms) at 3.3 m·s-1 from a lumbar spine-mounted IMU compared to the foot, but 2.4 ms slower at 4.1 289 

m·s-1 [69]. The largest difference from force plate-identified IC was 53.0 ms for the lumbar spine [30]. 290 

 291 

 292 
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3.4.2 Toe-off 293 

Table 4 documents the validity statistics from studies that determined the accuracy of IMUs to detect 294 

TO. Between 2.2 and 4.1 m·s-1, the mean relative difference and estimation errors for the detection of 295 

TO from foot-mounted IMUs ranged from -53.8 to 32.0 ms and -4.3 to 16.3 ms, respectively [30, 52, 296 

69]. Errors up to -32.4 ms were shown using a gyroscope attached to the tibia [29], while another study 297 

using angular velocity data from the tibia showed TO was determined after force plate detection 298 

(absolute mean error > 23.0 ms) [70]. Smaller mean absolute and relative differences were observed for 299 

determining TO from tibial acceleration data (< 8.8 ms and < 1.0 ms, respectively) [69], while TO was 300 

detected with an accuracy of F1 = 0.77-0.86 from accelerometers secured to the distal tibia when in-301 

shoe piezo-electric FSRs were the criterion [63]. A time lag of 7.6 to 24.0 ms was present for the 302 

detection of TO from an IMU secured to the lumbar spine compared to values obtained from a force 303 

plate [30, 69]. 304 

 305 

***Insert Tables 3 and 4 about here*** 306 

 307 

3.4.3 Contact time 308 

Validity outcomes reported from studies using placement on the foot, tibia, lumbar spine, torso and 309 

thoracic spine to derive contact time is presented in Table 5. The concurrent validity of an IMU fixed 310 

to the foot showed a deviation to high-speed camera measures between -3.3 and -0.1%, a mean bias 311 

between -5.6 and 0.4 ms and intraclass correlation coefficient (ICC) values as high as 0.97 for contact 312 

time across velocities of 4.3 ± 0.7 m·s-1, 6.2 ± 0.7 m·s-1 and 8.0 ± 1.6 m·s-1 [16]. When a photocell 313 

system was the criterion, ICC values were as low as 0.1 at 5.6 m·s-1 using a foot placement [71]. Pearson 314 

correlation analysis showed a large agreement (r = 0.96) between a tibial accelerometer estimate of 315 

contact time and force plate [62], whereas contrasting results were evident for contact time calculated 316 

from gyroscope data (see Table 5) [29, 70]. True error and ICC outcomes were > 63.4 ms and < 0.32, 317 

respectively, compared to motion capture [29], whereas differences to force plate were smaller (> -12.0 318 
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ms) in another study using angular velocity data to determine contact time [70]. Compared to motion 319 

capture and force plate, small biases (0.8-1.1 ms) and estimation errors (5.0 ms) were shown for contact 320 

time when an IMU was placed on the sacrum and lumbar spine, respectively [32, 33]. However, 321 

significant differences (p < 0.05) were reported in another study using the lumbar spine when photocell 322 

(> -35.0%) and high-speed camera (> -31.0%) measures of contact time were used as the reference [68]. 323 

In a study comparing contact times derived from different accelerometer attachment sites, the lumbar 324 

spine showed a smaller difference from force plate-determined contact time (< 8.7%) to the values 325 

obtained from the tibia (< 17.3%) and foot (< 26.6%), with each site significantly correlated (r > 0.74, 326 

p < 0.05) with force plate (see Table 5) [69]. Similar results reported in a more recent study showing 327 

the mean lumbar spine-force plate difference (-29.0 ms) was less than that observed between foot-force 328 

plate (47.0 ms). In that study, accelerometers placed on the lumbar spine underestimated mean contact 329 

time compared to force plate, whereas foot acceleration overestimated by 18.0 ms [30]. Contact time 330 

derived from an accelerometer secured to the thoracic spine showed a mean bias of -10.4% and a nearly 331 

perfect correlation (r = 0.98) with an instrumented treadmill [37]. However, data from only one 332 

participant was analysed [37]. 333 

 Three studies assessed the reliability of IMUs on the foot and lumbar spine to calculate contact 334 

time (see Table 6). The coefficient of variation (CV) was < 2.3% across velocities ranging between 2.2 335 

and 5.6 m·s-1, while the standard error of measurement (SEM) was highest at 2.2 m·s-1 (5.0 ms) [71]. 336 

Good absolute and relative between-trial reliability was established using an accelerometer mounted on 337 

the lumbar spine (CV < 9.9%, ICC > 0.88) [68], while lower ICC values ranging from -0.24 to 0.67 338 

were reported for inter-day reliability in another study using a lumbar spine-mounted accelerometer 339 

[83]. Greater SEM values were observed for lumbar spine-determined contact time (> 10.1 ms) 340 

compared to foot placement (< 5.0 ms) [71, 83]. 341 

Data collected between 3.3 and 4.3 m·s-1 was pooled to determine the effect of IMU placement 342 

on the accuracy of contact time compared to criterion measures (see Figure 2). There was a significant 343 

difference in the overall effect of different IMU attachment sites (p = 0.02). Contact time derived from 344 

the foot (MD [95% CI] -11.47 ms [-45.68, 22.74], p = 0.43), tibia (MD [95% CI] 22.34 ms [-18.59, 345 
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63.27], p = 0.18) and lumbar spine (MD [95% CI] -48.74 ms [-120.33, 22.85], p = 0.12) was not 346 

significantly different to the criterion. All subgroups were associated with high heterogeneity (I2 > 347 

54.1%). Leave-one-out analysis (see Supplementary Information Appendix S2) for foot and lumbar 348 

spine sites revealed that there was no single study influential enough to substantially change the overall 349 

heterogeneity (I2 > 83.4%) or pooled MD. In contrast, heterogeneity could be explained for the tibia 350 

site by omitting one study [70] (I2 = 0%), with the same study also having an influential effect on the 351 

overall result for tibia-determined contact time (MD [95% CI] 34.68 ms [11.16, 58.19], p = 0.02). 352 

Moderator analysis showed the type of criterion measure was not significantly associated with the 353 

observed variance in effect sizes (p = 0.15). 354 

 355 

***Insert Tables 5 and 6 about here*** 356 

***Insert Figure 2 about here*** 357 

 358 

3.4.4 Flight time 359 

Results from studies reporting the criterion validity of IMU-derived flight time are documented in Table 360 

7. For placement at the foot, ICC values were as high as 0.81 at 5.6 m·s-1 and 0.86 at 3.3 m·s-1 compared 361 

to photocell and high-speed camera measures of flight time [35, 71]. Low estimation errors (< 8.2 ms) 362 

and median ± IQR bias (15.0 ± 12.0 ms) and precision (5.0 ± 3.0 ms) were reported for foot-determined 363 

flight time versus motion capture and instrumented treadmill values, respectively [34, 52]. There was a 364 

significant difference (p < 0.05) from high-speed camera and photocell system criterions when a lumbar 365 

spine placement was used to calculate flight time across a range of velocities (3.3-5.8 m·s-1; 41.0 to 366 

103%) (see Table 7) [68], while the bias was -25.8% for thoracic spine-determined flight time in another 367 

study using an instrumented treadmill as the reference [37]. The observed difference for lumbar and 368 

thoracic spine sites was greater than that of a foot placement (< 15.1%) [35]. 369 
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 For reliability (see Table 6), the CV was as high as 11.6% at 2.2 m·s-1 for flight time derived 370 

from an IMU on the foot [71], while CV values were < 5.2% between trials using a lumbar spine-371 

mounted accelerometer [68]. 372 

 Outcome data between 3.3 and 4.2 m·s-1 was pooled from two studies [35, 71] to perform a 373 

meta-analysis assessing the effect of foot-determined flight time (I2 = 59%; see Figure 3). Meta-analysis 374 

demonstrated that foot-determined flight time is not significantly different to reference measures (MD 375 

[95% CI] 11.93 ms [-8.88, 32.74], p = 0.13). Leave-one-out and moderator analyses were not performed 376 

due to only two studies in the meta-analysis. 377 

 378 

***Insert Table 7 about here*** 379 

***Insert Figure 3 about here*** 380 

 381 

3.4.5 Step Time 382 

Validity outcomes from two studies that calculated step time are presented in Table 8. Compared to 383 

values obtained from an instrumented treadmill, step time determined from a foot-worn IMU was shown 384 

to have perfect agreement and a median ± IQR precision of 3.0 ± 2.0 ms across velocities ranging from 385 

2.8 to 5.6 m·s-1 [34]. The mean bias for step time calculated from a sacrum-worn accelerometer ranged 386 

from -1.3 to -0.4 ms across velocities ranging between 2.8 and 5.2 m·s-1, showing a marginal 387 

underestimation of step time compared to measures derived from a motion capture system [32]. Sacrum-388 

determined step time was most strongly correlated with motion capture at 2.8-3.3 m·s-1 (r = 0.93) [32]. 389 

 390 

3.4.6 Stride time 391 

Validity outcomes for IMU-determined stride time are outlined in Table 8. Stride time was calculated 392 

from IMUs worn on the foot [52], tibia [29, 84], sacrum [32], lumbar spine [33] and thoracic spine [54]. 393 

There was no significant difference (p = 0.92) between foot-worn IMU and motion capture calculations 394 
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of stride time, where the mean error ranged from -4.0 ± 24.0 ms at 2.2 m·s-1 to 0.3 ± 22.1 ms at 3.1 m·s-395 

1 [52]. Comparison between different stride time calculation methods using tibial accelerometry showed 396 

ICC values were > 0.95 [84], while in another study using tibia-mounted IMUs, ICC values ranged 397 

between 0.55 and 0.83 using two motion capture methods (see Table 8) [29]. Stride time derived from 398 

the sacrum and lumbar spine showed low errors (standard error < 0.8 ms, mean estimation error < 5.0 399 

ms) compared to motion capture, force plate and high-speed camera measures, respectively [32, 33]. 400 

However, when an accelerometer was attached to the thoracic spine, there was a significant bias of -401 

26.0 ms (p = 0.00) compared to force plate stride time [54], which is greater than the bias reported for 402 

the sacrum (-1.0-1.2 ms) [32]. 403 

One study (see Table 6) established the reliability of accelerometer-derived stride time across 404 

different sampling frequencies [59]. The CV of stride time was < 3.5% for accelerometer signals 405 

between 100 and 1000 Hz [59]. 406 

 407 

***Insert Table 8 about here*** 408 

 409 

3.4.7 Swing Time 410 

Only two studies, each using different attachment sites, reported the validity of IMUs to derive swing 411 

time (see Table 9). Swing time calculated from a foot-worn IMU was shown to have a median ± IQR 412 

bias of 15.0 ± 12.0 ms and a median ± IQR precision of 5.0 ± 2.0 ms compared to values obtained from 413 

an instrumented treadmill [34]. Swing time, derived from the angular velocity signal about the y-axis 414 

from a tibia-mounted gyroscope, showed poor to moderate agreement (ICC < 0.38) when two 415 

established motion capture methods were used as criterion measures [29, 89, 90].  416 

 417 

***Insert Table 9 about here*** 418 

 419 
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3.4.8 Step Frequency 420 

Six studies quantified step frequency from foot-, tibia- and lumbar spine-worn IMUs, with reliability 421 

and validity values from each study presented in Tables 6 and 10, respectively. Foot-determined step 422 

frequency was nearly perfectly correlated (ICC > 0.95) with photocell and high-speed camera measures 423 

across a range of velocities (2.2 to 5.6 m·s-1) [35, 71]. Biases were small (< 4.5 step·min-1) and 424 

correlations exhibited close to perfect agreement (r > 0.96, p < 0.001) with an instrumented treadmill 425 

in one study that used IMUs from five different manufacturers on the foot, heel and distal tibia (see 426 

Table 10) [60]. However, the authors did not report running velocity during the trials [60]. The 427 

difference between step frequency derived from foot- and lumbar spine-worn IMUs and high-speed 428 

camera and photocell systems ranged between -0.9 and 0.8% [35, 68], while another study that directly 429 

compared values obtained from a lumbar spine-worn accelerometer to a foot-mounted accelerometer 430 

during the same run protocol deemed validity as "good” (ICC = 0.78-0.90) between 2.8 and 3.9 m·s-1 431 

[83]. Maximal sprinting (6.8 ± 1.0 m·s-1) resulted in a bias ranging between -25.9 and -6.5 step·min-1 432 

for step frequency derived from an IMU on the lumbar spine [72]. 433 

Reliability (see Table 6) was established for foot-determined step frequency, where the CV and 434 

SEM ranged between 1.1 to 2.0% and 1.7 to 2.8 step·min-1, respectively, across velocities (2.2 to 5.6 435 

m·s-1) [71]. The ICC values representing the reliability of lumbar spine-determined step frequency were 436 

> 0.78 [68, 83]. 437 

 Data collected between 3.3 and 4.2 m·s-1 was grouped to produce a pooled validity estimate for 438 

foot- and lumbar spine-determined step frequency (see Figure 4). There was no significant difference 439 

between foot and lumbar spine estimates of step frequency (p = 0.20). Derivations of step frequency 440 

from the foot (MD [95% CI] 0.45 step·min-1 [-1.75, 2.66], p = 0.47) and lumbar spine (MD [95% CI] -441 

3.45 step·min-1 [-16.28, 9.39], p = 0.37) was shown to not be significantly different to the criterion. As 442 

there were only two studies in each subgroup, leave-one-out and moderator analyses were not 443 

performed. 444 

 445 
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***Insert Table 10 about here*** 446 

***Insert Figure 4 about here*** 447 

 448 

3.4.9 Step Length 449 

The validity of foot-mounted IMUs to quantify step length during running at different velocities (2.2 to 450 

5.6 m·s-1) was investigated in three studies (see Table 11). Pearson’s correlation and ICCs showed step 451 

length, calculated from StrydTM and RunScribeTM devices, was nearly perfectly correlated (r > 0.93, p 452 

< 0.001) with photocell and high-speed camera measures across all velocities [35, 71]. One study used 453 

placement on the lumbar spine and showed that biases increased and ICC values decreased from jogging 454 

(bias = 8.1-12.2 cm; ICC = 0.90-0.94) to sprinting (bias = 11.5-28.4 cm; ICC = 0.79-0.85) compared to 455 

a photocell system [72]. 456 

 One study assessed the reliability of step length derived from a foot-mounted IMU (see Table 457 

6), which showed the CV ranged from 1.1 to 2.1% across all velocities (2.2 to 5.6 m·s-1), while the SEM 458 

was highest at 5 m·s-1 (241.2 cm) [71]. 459 

Data collected between 3.3 and 4.2 m·s-1 was grouped to produce a pooled validity estimate for 460 

foot-determined step length. Results from the meta-analysis are presented in Figure 5 and show that 461 

IMUs worn on the foot produce step length values that are not significantly different to reference 462 

measures (MD [95% CI] 0.21 cm [-1.76, 2.18], p = 0.69). No moderator analysis was performed due to 463 

I2 = 0%. 464 

 465 

3.4.10 Stride Length 466 

Three studies determined the validity of foot-mounted IMUs to calculate stride length, where summary 467 

statistics from each study are documented in Table 11. Compared to motion capture, the mean error of 468 

IMU-derived stride length ranged from -0.5 to 46.0 cm [52, 65, 85]. The agreement between stride 469 

length determined from an IMU and motion capture system was improved during overground runs over 470 
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10 m (3.6 ± 0.3 m·s-1; root mean square error [RMSE] = 8.3 cm) compared to running on a treadmill 471 

for 3 min at different velocities (2.2-3.1 m·s-1; RMSE = 59.2-70.2 cm, r = 0.96, p < 0.001) [52, 85]. In 472 

a study comparing four different algorithms for computing stride length from IMU signals to a motion 473 

capture system, results showed that an algorithm based on foot trajectory performed best (mean error = 474 

2.0 ± 14.1 cm, mean percentage error = 2.8%) than those based on stride time (mean error = 17.7 ± 57.3 475 

cm, mean percentage error = 17.1%), foot acceleration (mean error = -0.5 ± 25.6 cm, mean percentage 476 

error = 7.9%) and deep learning (mean error = 2.5 ± 20.1 cm, mean percentage error = 5.9%) across a 477 

range of velocities up to 5.0 m·s-1 (see Table 11) [65]. 478 

The CV for within-subject variation of stride length across different sampling frequencies 479 

ranged from 4.9% at 1000 Hz to 7.8% at 100 Hz (see Table 6) [59]. 480 

 481 

***Insert Table 11 about here*** 482 

***Insert Figure 5 about here*** 483 

 484 

3.4.11 Ground reaction force 485 

The outcomes for the 11 studies that investigated the validity of IMUs to estimate GRF are presented 486 

in Table 12. Two studies applied a neural network model to accelerometer data from the foot and 487 

thoracic spine to predict vertical and resultant GRF, respectively [56, 61]. The RMSE for vertical GRF 488 

determined from foot acceleration data was < 10.5 N compared to values obtained from an instrumented 489 

treadmill, while the mean signal cross-correlation was 0.99 when the entire vertical GRF waveform was 490 

evaluated [56]. A neural network method predicted resultant GRF from accelerometers worn on the 491 

thoracic spine with a mean coefficient of determination (r2) value of 0.9 [61]. Attaching an 492 

accelerometer to the tibia [40] and hip [66] resulted in mean differences to force plate of 400.0 N and 493 

106.4 N (~ 8.3%), respectively, for vertical GRF, whereas biases were smaller for the vertical (-34.1 N) 494 

and resultant (-29.7 N) components of peak force when an IMU was attached to the sacrum (see Table 495 

12) [57]. One study that used a spring-mass model to calculate peak vertical force showed strong 496 
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correlations between force plate-lumbar spine (r = 0.81) and force plate-thoracic spine (r = 0.79), while 497 

the CV was 9.2% and 9.6%, respectively [38]. When acceleration values were converted to Newtons 498 

by multiplying by body mass, larger measurement errors and weaker correlations were reported for both 499 

vertical (CV = 16.2%, r = 0.44, p < 0.01) and resultant GRF (CV = 16.4%) using a thoracic spine 500 

accelerometer [36, 43]. During slow (2 m·s-1) to moderate (5 m·s-1) speed running in another study, a 501 

single thoracic spine-mounted accelerometer was shown to be inadequate (RMSE > 509.2 N) for use 502 

with a mass-spring damper model to predict resultant GRF waveforms [39]. When multiple IMUs were 503 

used to estimate vertical GRF, the RMSE was 220.8 ± 45.7 N, while the root mean square deviation 504 

was 241.4 ± 59.6 N [55, 87]. 505 

The reliability of accelerometers to estimate vertical GRF was examined in four studies (see 506 

Table 6). For placement on the tibia, the SEM was 99.8 N (7.0%), whereas the minimal detectable 507 

change (MDC) was 276.7 N (19.3%) [40]. As with placement on the tibia (ICC = 0.88), lumbar spine 508 

(CV = 4.2%) and thoracic spine (CV = 3.3%) sites also showed reliable outcomes for vertical GRF 509 

derived from a spring-mass model during a continuous 2 min shuttle run [38]. However, when the same 510 

model was applied in another study using thoracic spine accelerometers, the authors classed the 511 

between-day typical error (TE; 0.8 N) and ICC (0.47) values as moderate [86]. Poor reliability was 512 

exhibited in a further study utilising accelerometers placed on the thoracic spine, whereby CV values 513 

were > 17.8% across velocities ranging between 3.3 and 6.7 m·s-1 [43]. 514 

Two studies reported mean ± SD values for thoracic spine-derived peak resultant GRF [36, 39]. 515 

However, as one study had an SD that was nearly as large as the mean [39], which suggests the data 516 

was not normally distributed and therefore not meeting the assumptions for a random-effects meta-517 

analysis [91], these studies were not pooled. 518 

 519 

3.4.12 Vertical stiffness 520 

Three studies examined the reliability and validity of accelerometers placed at the lumbar and thoracic 521 

spine to calculate vertical stiffness (see Tables 6 and 13, respectively). A nearly perfect correlation (r = 522 
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0.98) between thoracic spine-determined vertical stiffness and that obtained from an instrumented 523 

treadmill was reported from a single participant in one study [37]. When a larger sample of participants 524 

were analysed in another study, correlations with force plate were not as strong between lumbar spine 525 

(r = 0.65) and thoracic spine (r = 0.66) estimates of vertical stiffness [38]. 526 

Inter-day reliability results were comparable between accelerometer placements, with a CV 527 

between 9.5 and 12.1% and ICC values 0.70-0.75 for both the lumbar and thoracic spine (see Table 6) 528 

[38, 86]. 529 

 530 

***Insert Tables 12 and 13 about here*** 531 

 532 

4 Discussion 533 

This systematic review and meta-analysis summarises the validity and reliability of IMUs to derive 534 

spatiotemporal features of running gait and estimate peak GRF and vertical stiffness based on different 535 

attachment sites. Twelve variables were analysed across 39 studies, where the placement of IMUs 536 

varied between the foot, distal and mid tibia, hip, sacrum, lumbar spine, torso and thoracic spine. The 537 

results from reviewed studies and meta-analysis suggest it is possible to obtain valid and reliable stride 538 

data using IMUs attached at different sites. It appears that accuracy may depend more on the 539 

computational method used for identifying stride events (IC and TO) from inertial data rather than the 540 

attachment site itself. 541 

Meta-analysis revealed that contact time and step frequency derived from IMUs placed at the 542 

foot, tibia and lumbar spine does not significantly differ to the criterion. However, some of these pooled 543 

analyses demonstrated high between-study heterogeneity (12 > 54.1%), which could not be explained 544 

by differing criterion methods, nor by omitting one study for the foot and lumbar spine subgroups. 545 

Subsequently, the source of heterogeneity remains unclear for these sites, but could be due to other 546 

methodological factors such as the type of sensor, sampling rate, or computational method for 547 

identifying stride events. These potential moderating variables could not be investigated further due to 548 
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insufficient reporting of data within those studies. Although there were no influential studies for the 549 

foot and lumbar spine subgroups, the pooled MD for contact time determined from the tibia was 550 

distorted when one study [70] was omitted. Removal of this study from the meta-analysis resulted in an 551 

overall effect that was significantly different (p = 0.02) to the criterion, which would have suggested 552 

the tibia is not a suitable site to determine contact time had the study not been included. Other work 553 

reviewed here demonstrated valid results for contact time using IMUs secured to the distal tibia [62]. 554 

Although this study was not eligible for inclusion in the meta-analysis due to insufficient reporting of 555 

data, it is possible it may have supported our findings in the final meta-analysis, where no significant 556 

difference (p = 0.18) was observed between the tibia and criterion. Furthermore, IC and TO have been 557 

detected with good accuracy from tibial acceleration data [31, 62, 63], which suggests this site is a 558 

viable option for calculating temporal variables, such as contact time. 559 

Subgroup analysis was not possible for flight time and step length due to a limited number of 560 

studies meeting eligibility criteria for inclusion. However, studies that used foot-worn IMUs to 561 

determine these metrics were meta-analysed and demonstrated that estimates of flight time and step 562 

length was not significantly different from criterion measures, which is similar to the results reported 563 

for contact time and step frequency. Collectively, the results from the four meta-analyses highlight the 564 

utility of using IMUs for gait analysis, where the findings reported here may open opportunities for 565 

practitioners to use placement on the foot, tibia or lumbar spine to capture spatiotemporal features of 566 

an athlete’s stride in the field. However, there has been little work done (two reviewed studies) applying 567 

gait event detection methods to inertial data from the thoracic spine to investigate the validity of this 568 

site to derive temporal variables, with one study only reporting a single observation (n = 1) [37, 54]. It 569 

is therefore unclear whether placement on the thoracic spine is also suitable to derive temporal stride 570 

data. 571 

 Peak vertical or resultant GRFs during running have traditionally been measured from force 572 

platforms [92-94]. However, IMUs are more accessible to an athlete’s normal training and competition 573 

environment than force platforms and may provide a useful tool for quantifying surrogate measures of 574 

force during running-based sports [95]. A variety of different approaches were used to estimate peak 575 
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GRFs in the studies reviewed here. Although meta-analysis was not possible, predictions of vertical 576 

GRF were shown to be most accurate when studies applied machine learning techniques or used 577 

multiple IMUs at different body segments [55, 56, 61, 87]. Given IMUs are commonly worn on the 578 

thoracic spine in sport, other studies investigated the validity of this site to predict GRFs from 579 

accelerometer data, with contrasting results. Acceleration data from the thoracic spine was inadequate 580 

to predict peak vertical and resultant GRF based on Newton’s second law of motion (i.e. multiplying 581 

by body mass) [36, 43] and as input into a mass-spring-damper model [39]. Conversely, improved 582 

results were shown when peak vertical GRF was estimated from known contact time, flight time and 583 

body mass using a spring-mass model [38], while another study suggested accurate predictions of 584 

resultant GRFs from IMUs worn on the thoracic spine are possible by applying machine learning [61]. 585 

Based on the conflicting results from the studies reviewed here, it is unclear whether the accurate 586 

determination of peak vertical and resultant GRFs from accelerometer data at the thoracic spine is 587 

possible and warrants further investigation. 588 

Two studies used estimations of peak vertical GRF to calculate vertical stiffness from IMUs 589 

worn the thoracic spine [37, 38]. Although the small biases and large to nearly perfect correlations in 590 

both studies appear promising for determining vertical stiffness using accelerometer data from this site, 591 

it is unclear whether placement on the thoracic spine is feasible for determining vertical stiffness when 592 

one study collected data from only one participant. Furthermore, calculating vertical stiffness using a 593 

spring-mass model approach, as per the method used in the two studies, is dependent on known contact 594 

time and flight time [96]. However, neither study provided a description of how IC and TO were 595 

determined mathematically from accelerometer data, nor how these events translated to accurate 596 

derivations of temporal variables [37, 38]. The ability of IMUs attached on the thoracic spine to 597 

correctly identify IC and TO events compared to a criterion should be explored more fully before 598 

practitioners can confidently use this site to 1) accurately calculate contact time and flight time and 2) 599 

use these metrics as inputs for estimating peak vertical GRF and vertical stiffness [23, 97]. 600 

Results from reviewed studies demonstrates that it is possible to obtain reliable derivations of 601 

contact time, flight time and step frequency from a foot or lumbar spine placement [16, 68, 71], while 602 
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foot-worn IMUs can provide reproducible calculations of stride time, step length and stride length [59, 603 

71]. Furthermore, placement on the tibia and lumbar and thoracic spine possessed excellent reliability 604 

for determining vertical GRF from accelerometer data [38, 40]. Collectively, these results indicate that 605 

IMUs possess good precision for calculating different stride variables [98]. Determining the sensitivity 606 

of IMU-derived stride variables by calculating the MDC or smallest worthwhile change (SWC) is also 607 

important so practitioners can determine whether changes in an athlete’s gait pattern are real or due to 608 

error [99-101]. However, only two studies reported here determined the value (i.e. signal) that may 609 

constitute meaningful change for stride variables determined from IMUs [40, 86]. One study using tibia 610 

accelerometers calculated an MDC for peak vertical GRF that was higher than the SEM, suggesting 611 

that this metric may be sensitive to detect change when IMUs are secured to the tibia [40]. Conversely, 612 

the TE associated with thoracic spine-derived peak vertical GRF and vertical stiffness was greater than 613 

the SWC [86], which suggests this site is limited for detecting subtle changes in an athlete’s gait pattern. 614 

No study determined the MDC or SWC for spatiotemporal variables, therefore future work may look 615 

to further our understanding of the signal-to-noise ratio of other stride metrics, such as from IMUs worn 616 

at various sites. 617 

 The use of IMUs in sport is increasingly being applied to gain additional insights (i.e. other 618 

than speed and distance) into the activity profiles of athletes. Practitioners can quantify proprietary 619 

designed metrics, such as PlayerLoadTM [10, 28, 102], estimate energy expenditure [103] and record 620 

the peak segmental acceleration values that occur during a variety of different team-sport movements 621 

[42, 104] using IMUs. There is an increasing body of evidence supporting the use of IMUs to capture 622 

characteristics of an athlete’s stride, including spatiotemporal data [54], GRFs [36, 39, 40] and vertical 623 

stiffness [37, 86]. Capturing accurate stride variables appears possible across different sites using 624 

automated gait event detection techniques and may have practical application in profiling an athlete’s 625 

stride in a variety of running-based sports. The use of IMUs may allow practitioners to perform gait 626 

analyses in the field to enhance their understanding of athlete movement strategy and monitor changes 627 

in stride variables that may occur with fatigue [28]. 628 
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 It is important to note that the meta-analyses in this review were impacted by a limited pool of 629 

eligible studies. It is likely that the results suffer from sparse data bias in instances where only two 630 

studies were meta-analysed due to relatively small sample sizes [105, 106]. Further research should 631 

include raw outcome data (mean ± SD values) alongside validity statistics in order to provide a complete 632 

summary of outcomes. Furthermore, the method adopted here treated three studies that used different 633 

IMUs or criterions as independent data sources [29, 35, 68]. It is possible that we may have observed a 634 

different finding had different IMUs or criterions not been treated independently within those studies. 635 

However, due to a limited number of studies, accounting for this dependency was not possible with the 636 

data available. Finally, data was only pooled within a velocity range of 3.3 to 4.3 m·s-1 due to eligibility 637 

criteria. As a result, meta-analyses here do not explain the effect of running velocity on validity, which 638 

may be an important distinction to make as previous work has shown that increased speed may lead to 639 

greater error in estimations of stride variables derived from IMUs [34, 43]. 640 

 641 

5 Conclusion 642 

This review and meta-analysis demonstrated that valid and reliable derivations of stride metrics are 643 

possible from IMUs mounted on the foot, tibia and lumbar spine. This suggests that location may not 644 

be the most critical factor and that validity and reliability may be more dependent on the mathematic 645 

approach for detection of gait events. However, further work is warranted to explore the application of 646 

automated gait event detection algorithms on inertial data from the thoracic spine before practitioners 647 

can confidently use this site in the field to derive stride variables.  648 
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Table 1 Definitions of stride variables. 

Variable Definition 

Initial contact The time instant when the foot initiates contact with the ground [34]. 

Toe-off The time instant when the foot ends contact with the ground [34]. 

Contact time Time between initial contact to toe-off of each foot [32, 37] 

Flight time Time between toe-off and initial contact of the contralateral foot [37]. 

Step time Time between initial contacts of the contralateral foot [32]. 

Stride time Time between initial contacts of the same foot [32, 54]. 

Swing time Time between toe-off to initial contact of the same foot [29]. 

Step frequency Number of ground contact events per minute [35]. 

Step length Length or distance between initial contacts of the contralateral foot 
[35]. 

Stride length Length or distance between initial contacts of the same foot [65]. 

Ground reaction force The force the ground exerts on the body during foot-ground contact 
[92]. 

Vertical stiffness The quotient of maximum ground reaction force and centre of mass 
displacement [96]. 
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Table 2 Study characteristics for the 39 studies included in the review. 

Study Sample (age, mass, 
height) 

Sensor Hardware Sensor placement Criterion Activity Variable(s) Methodological 
quality 

Ammann et al. (2016) 
[16] 

7 male and 5 female 
high-level running 
athletes (31 ± 6 y, 68.6 
± 11.6 kg, 1.70 ± 0.08 
m) 

IMU (PARTwear, 
HuCE-microLab, 
University of 
Applied Sciences, 
Biel, Switzerland) 

Triaxial accelerometer (± 
16 g), triaxial gyroscope 
and triaxial magnetometer 
sampled at 1000 Hz 

Foot (fixed to the 
lace of the shoe) 

High-speed camera 
(Camera Marathon Ultra 
CL600, Videal AG, 
Niederönz, Switzerland) 
sampled at 1000 Hz 

3 x 40 m runs at 4.3 ± 0.7, 
6.2 ± 0.7 and 8.0 ± 0.5 
m·s-1 

Contact time 10/12 

Aubol & Milner (2020) 
[31] 

9 male and 10 female 
recreational runners 
(26.2 ± 3.8 y, 71.5 ± 7.1 
kg, 1.78 ± 0.06 m) 

Accelerometer 
(Model 356A45, 
PCB Piezotronics, 
Depew, NY) 

Triaxial accelerometer (± 
16 g) sampled at 201.03 
Hz) 

Distal tibia Force plate (AMTI, Inc., 
Watertown, MA) sampled 
at 1000 Hz 

10 x 17 m runs at 3.0 ± 
0.2 m·s-1 

Initial contact 10/12 

Benson et al. (2019) 
[30] 

8 male and 4 female 
recreational runners 
(26.2 ± 3.8 y, 71.5 ± 7.1 
kg, 1.78 ± 0.06 m) 

Accelerometer 
(Shimmer3®, 
Shimmer Inc., 
Dublin, Ireland) 

Triaxial accelerometer (± 
16 g) sampled at 201.03 
Hz) 

Dorsal foot and 
lumbar spine 

Instrumented split-belt 
treadmill (Bertec Inc., 
Columbus, OH) sampled 
at 1000 Hz 

90 s runs at 2.7, 3.3 and 
3.6 m·s-1 

Initial contact, toe-off and 
contact time 

9/12 

Bergamini et al. (2012) 
[33] 

5 elite track and field 
athletes 

IMU (FreeSense, 
Sensorize, Italy) 

Triaxial accelerometer (± 6 
g) and triaxial gyroscope (± 
500°s-1) sampled at 200 Hz 

Lumbar spine (L1 
level) 

Six adjacent force 
platforms (Z20740AA, 
Kistler, Switzerland) 
sampled at 200 Hz and 
high-speed camera (Casio 
Exilim EX-F1, Japan) 
sampled at 300 Hz 

3 x 60 m maximal sprints Contact time and stride 
time 

8/12 

Brahms et al. (2018) 
[85] 

7 male and 4 female 
healthy adults (22.3 ± 
1.5 y, 76.04 ± 3.19 kg, 
175.2 ± 23.1 cm) 

IMU (Xsens, 
Enschede, the 
Netherlands) 

Triaxial accelerometer, 
triaxial gyroscope and 
triaxial magnetometer 
sampled at 100 Hz 

Mid-foot 6-camera 3D motion 
capture system sampled at 
100 Hz 

20 x 10 m runs at 2.7 to 
4.4 m·s-1 

Stride length 10/12 

Buchheit et al. (2015) 
[37] 

1 team-sport athlete (36 
y, 80 kg, 182 cm) 

Accelerometer 
(SPI HPU, 
GPSports, 
Canberra, 
Australia) 

Triaxial accelerometer (± 
16 g) sampled at 100 Hz 

Thoracic spine (T2 
level) 

Instrumented treadmill 
(ADAL3D-WR, MD, 
HEF Tecmachine, 
Andrézieux-Boutheon, 
France) sampled at 1000 
Hz 

2 x 3 runs at 2.8 m·s-1; 6 
runs at 4.7 m·s-1; 6 runs at 
6.7 m·s-1 

Contact time, flight time 
and vertical stiffness 

9/12 

Buchheit et al. (2018) 
[86] 

18 elite academy soccer 
athletes (17 ± 2 y) 

Accelerometer 
(SPI HPU, 
GPSports, 
Canberra, 
Australia) 

Triaxial accelerometer (± 
16 g) sampled at 100 Hz 

Thoracic spine N/A 4 x ~60 m runs at 6.1-6.7 
m·s-1) 

Vertical stiffness 10/12 
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Table 2 Study characteristics for the 39 studies included in the review (continued). 

Study Sample (age, mass, 
height) 

Sensor Hardware Sensor placement Criterion Activity Variable(s) Methodological 
quality 

Chew et al. (2018) [52] 10 healthy males (25.5 
± 3.8 y, 65.5 ± 15.2 kg, 
174.4 ± 19.5 cm) 

IMU (Opal, 
APDM Inc.) 

Triaxial accelerometer (± 6 
g) and triaxial gyroscope (± 
2000°s-1) sampled at 128 
Hz 

Foot (fixed to the 
shoe) 

Optical motion capture 
system (Qualisys, 
Qualisys AB) sampled at 
128 Hz 

3 min runs at 2.2, 2.5, 2.8 
and 3.1 m·s-1 

Initial contact, toe-off, 
contact time, flight time, 
stride time and stride 
length 

10/12 

Dorschky et al. (2019) 
[55] 

10 healthy male 
subjects (27.1 ± 2.6 y, 
76.9 ± 8.6 kg, 1.82 ± 
0.05 m) 

IMU (Portabiles 
GmbH, Erlangen, 
DE) 

Triaxial accelerometer (± 
16 g) and triaxial 
gyroscope (± 200°s-1) 
sampled at 1000 Hz 

Midfoot, lateral 
tibia, left and right 
lateral thigh and 
lumbar spine  

Optical motion capture 
system (Vicon MX, 
Oxford, UK) sampled at 
200 Hz and one force 
plate (Kistler Instruments 
Corp, Winterhur, CH) 
sampled at 1000 Hz 

Runs over a force 
platform at 3.0-3.3 m·s-1, 
3.9-4.1 m·s-1 and 4.7-4.9 
m·s-1 

Vertical ground reaction 
force 

9/12 

Edwards et al. (2019) 
[43] 

10 male rugby union 
athletes (21 ± 2 y, 81.8 
± 11.1 kg, 1.81 ± 0.50 
m) 

Accelerometer 
(SPI HPU, 
GPSports, 
Canberra, 
Australia) 

Triaxial accelerometer (± 
16 g) sampled at 100 Hz 

Thoracic spine 
(T1-T6 vertebrae) 

Two floor-embedded 
force platforms (Type 
9281CA and 9821EA, 
Kistler, Winterhur, 
Switzerland) sampled at 
1200 Hz 

Ten runs over a force 
platform at 3.3, 5.0 and 
6.7 m·s-1 

Vertical ground reaction 
force 

10/12 

Eggers et al. (2018) 
[38] 

10 male and 7 female 
healthy adults (18-40 y, 
70.4 ± 9.7 kg, 1.73 ± 
0.06 m) 

Accelerometer 
(wGT3X-BT, 
ActiGraph, 
Pensacola, FL, 
USA) 

Triaxial accelerometer (± 8 
g) sampled at 100 Hz 

Lumbar spine (L2) 
and thoracic spine 

Four 600 x 400 mm force 
plates (model BP400600-
1000, Advanced 
Mechanical Technology, 
Inc., Watertown, MA, 
USA) sampled at 2000 Hz 

2 min continuous shuttle 
runs over 20 m at 3.3 m·s-1 

Vertical ground reaction 
force and vertical stiffness 

9/12 

Fadillioglu et al. (2020) 
[70] 

13 male healthy adults 
(26.1 ± 2.9 y, 78.4 ± 5.9 
kg, 178.7 ± 5.5 cm) 

Gyroscope 
(ADXRS652, 
Analog Devices 
Inc., Norwood, 
MA, USA) 

Uniaxial gyrosope (± 
250°s-1) sampled at 1500 
Hz 

Tibia Two floor-embedded 
force plates (BP600900, 
Advanced Mechanical 
Technology, Inc., 
Watertown, MA, USA) 

3 trials of moderate and 
fast running (velocity not 
reported) 

Initial contact, toe off and 
contact time 

10/12 

Falbriard et al. (2018) 
[34] 

28 male and 13 female 
healthy adults (29 ± 6 y, 
70 ± 10 kg, 174 ± 8 cm) 

IMU (Physilog 4, 
Gait Up, 
Switzerland) 

Triaxial accelerometer (± 
16 g) and triaxial 
gyroscope (± 2000°s-1) 
sampled at 500 Hz 

Dorsal foot Instrumented treadmill (T-
170-FMT, Arsalis, 
Belgium) sampled at 1000 
Hz 

30 s runs ranging between 
2.8 m·s-1 and 5.6 m·s-1 

Initial contact, toe-off, 
contact time, flight time, 
swing time and step time 

9/12 

Garcia-Pinillos et al. 
(2018) [71] 

18 male recreational 
endurance runners (34 ± 
7 y, 70.5 ± 6.2 kg, 1.76 
± 0.05 m) 

IMU (StrydTM, 
Stryd Powermeter, 
Stryd Inc., 
Boulder, CO, 
USA) 

Triaxial accelerometer and 
triaxial gyroscope 

Foot OptoGait system 
(Optogait; Microgate, 
Bolzano, Italy)  

3 min runs ranging 
between 2.2 m·s-1 and 5.6 
m·s-1 (0.3 m·s-1 
increments) 

Contact time, flight time, 
step frequency and step 
length 

10/12 
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Table 2 Study characteristics for the 39 studies included in the review (continued). 

Study Sample (age, mass, 
height) 

Sensor Hardware Sensor placement Criterion Activity Variable(s) Methodological 
quality 

Garcia-Pinillos et al. 
(2019) [35] 

44 male and 5 female 
amateur endurance 
runners (26 ± 8 y, 71 ± 
10 kg, 1.74 ± 0.07 m) 

IMU (StrydTM 
[Stryd 
Powermeter, Stryd 
Inc. Boulder CO, 
USA]; 
RunScribeTM 
[Scribe Lab. Inc. 
San Francisco CA, 
USA]) 

Triaxial accelerometer and 
triaxial gyroscope 

Triaxial accelerometer, 
triaxial gyroscope and 
triaxial magnetometer 
sampled at 500 Hz 

Foot High-speed camera 
(Imaging Source DFK 
33UX174, The Imaging 
Source Europe GmbH; 
Germany) sampled at 
1000 Hz 

3 min self-selected 
comfortable running 
velocity (3.25 ± 0.36 m·s-

1) 

Contact time, flight time, 
step frequency and step 
length 

10/12 

Gindre et al. (2016) 
[68] 

20 male runners (31.6 ± 
9.2 y, 72.5 ± 9.8 kg, 
178 ± 5.4 cm) 

Accelerometer 
(Myotest®, 
Myotest SA, Sion, 
Switzerland) 

Triaxial accelerometer 
sampled at 500 Hz 

Lumbar spine 
(level with naval) 

Optojump Next® 
(Microgate, Bolzano, 
Italy) sampled at 1000 Hz 
and high-speed video 
camera (Casio High Speed 
EXILIM EX-FH25®, 
CASIO Europe GmbH, 
Norderstedt, Germany) 
sampled at 300 Hz 

2 x 60 m runs at 3.3, 4.2, 5 
and 5.8 m·s-1 

Contact time, flight time 
and step frequency 

10/12 

Gouttebarge et al. 
(2015) [83] 

11 male and 3 female 
recreational runners (45 
± 14 y, 77 ± 11 kg, 181 
± 7 cm) 

Accelerometer 
(Myotest®, 
Myotest SA, Sion, 
Switzerland) 

Triaxial accelerometer 
sampled at 200-500 Hz 

Lumbar spine Foot-mounted 
accelerometer (± 6 g, 
MMA7361L, Freescale 
Semiconductor, Austin, 
Texas, USA) sampled at 
1000 Hz 

3 x 400 m runs at 2.8, 3.3 
and 3.9 m·s-1 

Contact time and step 
frequency 

10/12 

Gurchiek et al. (2017) 
[57] 

12 male and 3 female 
subjects (23.2 ± 2.1 y, 
75.5 ± 12.6 kg, 1.8 ± 
0.1 m) 

IMU (Yost Data 
Logger 3-Space 
Sensor, YEI 
Technology, 
Portsmouth, OH) 

Triaxial accelerometer (± 
24 g) and triaxial 
gyroscope (± 2000°s-1) 
sampled at 450 Hz 

Sacrum Force plate (AMTI, 
Watertown, MA, USA) 
sampled at 1000 Hz 

Six linear standing sprint 
starts 

Vertical and resultant 
ground reaction force 

10/12 

Kenneally-Dabrowski 
et al. (2018) [54] 

13 male professional 
rugby union athletes 
(23.8 ± 2.4 y, 102.5 ± 
12.2 kg, 186.6 ± 8.4 
cm) 

Accelerometer 
(GPSports, 
Canberra, 
Australia) 

Triaxial accelerometer (± 
16 g) sampled at 100 Hz 

Thoracic spine Eight 600 x 900 mm force 
plates (Kistler, Amherst, 
MA, USA) sampled at 
1000 Hz 

3 x 40 m maximal sprints 
(8.64 ± 0.5) 

Stride time 10/12 

Lee et al. (2010) [32] 6 male and 4 female 
national standard 
runners (30.3 ± 7.9 y, 
67.7 ± 9.5 kg, 174.3 ± 
5.7 cm) 

Accelerometer 
(KXM52 – 1050 
Kionix, NY, USA) 

Triaxial accelerometer 
sampled at 100 Hz 

Sacrum (S1) Optical motion capture 
system (Proreflex MCU, 
Qualisys Medical AB, 
Gothenburg, Sweden) 
sampled at 500 Hz 

3 x 5 min runs at 2.8-3.3 
m·s-1, 3.6-4.2 m·s-1 and 
4.4-5.3 m·s-1 

Contact time, step time 
and stride time 

9/12 
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Table 2 Study characteristics for the 39 studies included in the review (continued). 

Study Sample (age, mass, 
height) 

Sensor Hardware Sensor placement Criterion Activity Variable(s) Methodological 
quality 

Machulik et al. (2020) 
[72] 

18 male and 10 female 
runners (28.2 ± 3.8 y, 
70.6 ± 10.7 kg, 175.5 ± 
9.5 cm) 

IMU (Humotion 
SmarTracks 
Integrated) 

Triaxial accelerometer (± 
16 g, 400 Hz), triaxial 
gyroscope (± 2000°s-1, 400 
Hz) and triaxial 
magnetometer (100 Hz) 

Lumbar spine Optojump Next® 
(Microgate, Bolzano, 
Italy) sampled at 1000 Hz 

3 x 60 m runs jogging (3.8 
± 0.7 m·s-1) and sprinting 
6.8 ± 1.0 m·s-1) 

Step frequency and step 
length 

9/12 

McGrath et al. (2012) 
[29] 

4 male and 1 female 
healthy adults (26-32 y) 

IMU (Shimmer, 
Shimmer Inc., 
Dublin, Ireland) 

Triaxial gyroscope sampled 
at 102.4 Hz 

Tibia Cartesian Optoelectronic 
Dynamic Anthropometer 
(CODA) motion analysis 
system (Charnwood 
Dynamics Ltd, 
Leicestershire, UK) 
sampled at 200 Hz 

2 x 20 s runs at 2.2 m·s-1 
and 3.3 m·s-1 

Initial contact, toe-off, 
contact time, swing time 
and stride time 

9/12 

Mitschke et al. (2017) 
[59] 

21 male subjects (28.9 
± 10.8 y, 74.4 ± 7.1 kg, 
177.0 ± 5.2 cm) 

Accelerometer 
(ADXL278, 
Analog Devices 
Inc., Norwood, 
MA, USA) 

Biaxial accelerometer (± 
687 m·s-2) sampled at 1000 
Hz 

Heel One 60 x 90 cm force 
platform (Kistler, 9287 
BA) sampled at 1000 Hz 

30 x 15 m runs at 3.5 ± 
0.1 m·s-1 

Initial contact 9/12 

Mitschke et al. (2017) 
[58] 

12 recreational rearfoot 
strike runners (24.8 ± 
4.5 y, 72.3 ± 7.8 kg, 
176.0 ± 5.4 cm) and 11 
recreational forefoot 
strike runners (26.3 ± 
3.2 y, 74.5 ± 7.5 kg, 
177.0 ± 3.6 cm) 

IMU (ICM-20601, 
InvenSense, San 
Jose, CA, USA) 

Triaxial accelerometer (± 
353 m·s-2), triaxial 
gyroscope (± 4000°s-1) 
sampled at 3570 Hz 

Tibia (medial 
aspect) 

One 0.6 x 0.9 m force 
plate (9287 BA, Kistler, 
Winterthur, Switzerland) 
sampled at 3570 Hz 

5 x 15 m runs at a self-
selected velocity (3.26 ± 
0.4 m·s-1) 

Initial contact 9/12 

Mo & Chow (2018) 
[69] 

7 male and 4 female 
healthy adults (25.5 ± 
4.2 y, 58.8 ± 5.3 kg, 
168.3 ± 9.1 cm) 

IMU 
(MyoMOTION 
MR3, Noraxon, 
USA) 

Triaxial accelerometer (± 
16 g) sampled at 200 Hz 

Dorsal foot, tibia 
and lumbar spine 
(L5-S1) 

Three force platforms 
(Bertec, FP4060-07, USA) 
sampled at 2000 Hz 

10 x 10 m runs at 3.1 ± 
0.1 m·s-1 and 4.1 ± 1.2 
m·s-1 

Initial contact, toe-off and 
contact time 

10/12 

Nedergaard et al. 
(2018) [39] 

20 healthy male athletes 
(22 ± 4 y, 76 ± 11 kg, 
178 ± 8 cm) 

Accelerometer 
(MinimaxX S4, 
Catapult 
Innovations, 
Scoresby, 
Australia) 

Triaxial accelerometer (± 
13 g) sampled at 100 Hz 

Thoracic spine One 0.9 x 0.6 m2 Kistler 
force platform (9287C, 
Kistler Instruments Ltd., 
Winterthur, Switzerland) 
sampled at 3000 Hz 

Four runs over a force 
platform at 2, 3, 4 and 5 
m·s-1 

Resultant ground reaction 
force 

9/12 
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Table 2 Study characteristics for the 39 studies included in the review (continued). 

Study Sample (age, mass, 
height) 

Sensor Hardware Sensor placement Criterion Activity Variable(s) Methodological 
quality 

Neugebauer et al. 
(2014) [66] 

19 male and 20 female 
subjects (21.2 ± 1.3 y, 
67.6 ± 11.5 kg, 1.73 ± 
0.12 m) 

Accelerometer 
(GT3X+ AM, 
ActiGraph, 
Pensacola, FL, 
USA) 

Triaxial accelerometer (± 6 
g) sampled at 100 Hz 

Hip Force plate (Kistler 
Corporation, Model 
9281B, Amherst, NY, 
USA) sampled at 1000 Hz 

8-10 x 15 m runs ranging 
between 2.2 m·s-1 and 4.1 
m·s-1 (0.3 m·s-1 
increments) 

Vertical ground reaction 
force 

9/12 

Ngoh et al. (2018) [56] 7 healthy male subjects 
(21.3 ± 0.5 y, 63 ± 6.1 
kg, 174.9 ± 6.6 cm) 

IMU (Opal, 
APDM Inc.) 

Triaxial accelerometer (± 6 
g), triaxial gyroscope (± 
200°s-1) and triaxial 
magnetometer (± 6 Gauss)  

Dorsal foot Instrumented treadmill 
(Mercury, H/P Cosmos 
Sports and Medical 
GmbH) 

1 min runs at 2.2, 2.5 and 
2.8 m·s-1 

Vertical ground reaction 
force 

9/12 

Norris et al. (2016) 
[84] 

1 male and 5 female 
recreational runners 
(33.5 ± 5.8 y, 71.1 ± 
12.2 kg, 1.66 ± 0.08 m) 

Accelerometer 
(Shimmer 2r, 
Shimmer Inc., 
Dublin, Ireland) 

Triaxial accelerometer (± 
16 g) sampled at 204.8 Hz 

Distal tibia Four varying 
accelerometer-derived 
stride time calculation 
methods 

Running at a self-selected 
velocity during a half-
marathon training 
programme 

Stride time 9/12 

Pairot de Fontenay et 
al. (2020) [60] 

19 male and 13 female 
healthy adults (27.0 ± 
5.5 y, 69.1 ± 11.4 kg, 
174.4 ± 8.5 cm) 

IMU 
(MilestonePod 
[Milestone Sports, 
Long Beach, CA, 
USA]; Zoi 
[Runteq, Tampere, 
Finland]; 
RunScribeTM 
[Montara, CA, 
USA]; Moov 
NowTM [Moov, 
San Mateo, CA, 
USA]; TgForce, 
Kelsec Systems 
Inc., Montreal, 
Canada]) 

Not reported Dorsal foot and 
distal tibia 

Instrumented treadmill 
(Bertec, Columbus, OH, 
USA) sampled at 1000 Hz 

Not reported Step frequency 10/12 

Pogson et al. (2020) 
[61] 

10 male and 5 female 
team-sport athletes (23 
± 1 y, 74 ± 9 kg, 1.74 ± 
0.08 m) 

Accelerometer 
(MinimaxX S5, 
Catapult 
Innovations, 
Scoresby, 
Australia) 

Triaxial accelerometer (± 
16 g) sampled at 100 Hz 

Thoracic spine In-ground force platform 
(9287B, Kistler Holding 
AG, Winterthur, 
Switzerland) sampled at 
3000 Hz 

Straight overground 
accelerated, decelerated 
and constant speed 
running between 2 m·s-1 
and 8 m·s-1 (1 m·s-1 
increments) 

Resultant ground reaction 
force 

9/12 
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Table 2 Study characteristics for the 39 studies included in the review (continued). 

Study Sample (age, mass, 
height) 

Sensor Hardware Sensor placement Criterion Activity Variable(s) Methodological 
quality 

Raper et al. (2018) [40] 4 male (27.00 ± 5.48 y, 
66.00 ± 5.29 kg, 177.50 
± 4.65 cm) and 6 
female (26.83 ± 3.06 y, 
54.83 ± 3.19 kg, 164.50 
± 2.88 cm) professional 
triathletes 

Accelerometer 
(ViPerform v5, 
DorsaVi, 
Melbourne, 
Australia) 

Triaxial accelerometer Tibia (medial 
border) 

Eight piezoelectric force 
plates (Kistler Instrument 
Group, Amherst, New 
York, United States of 
America) sampled at 1000 
Hz 

10 x 50 m runs at 5.2 ± 
0.6 m·s-1 

Vertical ground reaction 
force 

9/12 

Sinclair et al. (2013) 
[62] 

11 male and 5 female 
healthy adults (29.4 ± 
5.7 y, 67.8 ± 10.7 kg, 
1.73 ± 4.87 m) 

Accelerometer 
(Biometrics ACL 
300, UK) 

Triaxial accelerometer 
sampled at 1000 Hz 

Distal tibia Force platform (Kistler 
Ltd; Model 9281CA, 
Kistler Instruments Ltd., 
Alton, Hampshire) 
sampled at 1000 Hz 

10 runs at 4 m·s-1 Initial contact, toe-off and 
contact time 

10/12 

Tan et al. (2019) [63] 20 healthy subjects Accelerometer 
(Shimmer3®, 
Shimmer Inc., 
Dublin, Ireland) 

Triaxial accelerometer (± 8 
g) sampled at 128 Hz 

Distal tibia In-shoe piezo-electric 
force sensitive resistors 

Treadmill running 
overground running and 
outdoor running 

Initial contact and toe-off 7/12 

Watari et al. (2016) 
[53] 

14 male and 8 female 
semi-elite runners (28.2 
± 10.1 y, 65.4 ± 8.1 kg, 
1.73 ± 0.75 m) 

Accelerometer 
(Forerunner 620, 
Garmin 
International Inc., 
Olathe, KS) 

Not reported Torso (near 
xiphoid process of 
the sternum) 

Instrumented treadmill 
(Bertec, Columbus, OH) 
sampled at 1000 Hz 

60 s runs at 2.7, 3.0, 3.3, 
3.6 and 3.9 m·s-1 

Contact time 9/12 

Winter et al. (2016) 
[64] 

6 male and 4 female 
recreational runners 
(27.5 ± 9.5 y, 69.5 ± 
11.8 kg, 175.8 ± 8.1 
cm) 

Accelerometer 
(ADXL202, 
Analog Devices 
Inc., Norwood, 
MA, USA) 

Triaxial accelerometer (± 8 
g) sampled at 100 Hz 

Lumbar spine 12-camera motion 
analysis system (NEXUS 
v1.8, Vicon Motion 
Systems Ltd. UK) 
sampled at 100 Hz 

5 x 50 m runs overground Initial contact and toe-off 9/12 

Wouda et al. (2018) 
[87] 

8 experienced male 
runners (25.1 ± 5.2 y, 
77.7 ± 9.4 kg, 183.7 ± 
4.5 cm) 

IMU (Xsens, 
Enschede, the 
Netherlands) 

Triaxial accelerometer, 
triaxial gyroscope and 
triaxial magnetometer 
sampled at 240 Hz 

Lower legs and 
pelvis 

S-Mill instrumented 
treadmill (ForceLink, 
Culemborg, the 
Netherlands) sampled at 
1000 Hz 

3 min runs at 2.8, 3.3 and 
3.9 m·s-1 

Vertical ground reaction 
force 

11/12 

Wundersitz et al. 
(2013) [36] 

12 male and 5 female 
team-sport athletes (21 
± 2 y, 78.2 ± 11.6 kg, 
1.82 ± 0.08 m) 

Accelerometer 
(SPI Pro, 
ASP00725, 
GPSports, 
Canberra, 
Australia) 

Triaxial accelerometer (± 8 
g) sampled at 100 Hz 

Thoracic spine 
(T2) 

In-ground force plate 
(BP600900, Advanced 
Mechanical Technology 
Inc., Watertown, MA, 
USA) sampled at 100 Hz 

5 x 10 m runs in a 
straight-line (5.4 ± 0.4 
m·s-1) and 5 x 10 m angled 
runs at 45º (4.8 ± 0.4 m·s-

1), 90º (4.1 ± 0.3 m·s-1) 
and 180º (3.5 ± 0.3 m·s-1) 

Vertical and resultant 
ground reaction force 

10/12 
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Table 2 Study characteristics for the 39 studies included in the review (continued). 

Study Sample (age, mass, 
height) 

Sensor Hardware Sensor placement Criterion Activity Variable(s) Methodological 
quality 

Zrenner et al. (2018) 
[65] 

21 male and 6 female 
amateur runners (24.9 ± 
2.4 y, 178. 6 ± 8.0 cm) 

IMU (miPod 
sensor) 

Triaxial accelerometer (± 
16 g) and triaxial 
gyroscope (± 2000°s-1) 
sampled at 200 Hz 

Foot (midsole) Motion capture system 
(Vicon Motion Systems 
Inc., Oxford, UK) 
sampled at 200 Hz 

10 runs at 2-3 m·s-1, 10 
runs at 3-4 m·s-1, 15 runs 
at 4-5 m·s-1, 15 runs at 5-6 
m·s-1 

Stride length 9/12 

Abbreviations: °s-1, degrees per second; cm, centimetres; g, gravitational acceleration; Hz, hertz; IMU, inertial measurement unit; kg, kilograms; m, metres; m2, metres squared; m·s-1, metres per second; mm, millimetres; s, seconds; y, years. 
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Table 3 Validity summary statistics for initial contact. 

    
Running 
velocity Statistic 1 Statistic 2 

Study Sensor Criterion Site m·s-1 ± SD   

Chew et al. (2018) 
[52] 

IMU (Opal, APDM Inc.) Motion capture 
system 

Foot  

2.2 
2.5 
2.8 
3.1 

ME ± SD (ms) 

-2.6 ± 12.8 
-6.0 ± 14.1 
4.3 ± 17.9 
3.0 ± 14.1 

RMSE (ms) 

4.7 
5.3 
8.3 
4.7 

Falbriard et al. 
(2018) [34] 

IMU (Physilog 4, Gait Up, 
Switzerland) 

Instrumented 
treadmill 

Foot  

2.8-5.6 

Median bias ± IQR (ms) 

11.0 ± 10.0 

Median precision ± IQR (ms) 

2.0 ± 1.0 

Mo & Chow 
(2018) [69] 

IMU (MyoMOTION MR3, 
Noraxon, USA) 

Force plate Foot  

3.1 ± 0.1 
4.1 ± 1.2 

MRD ± SD (ms) 

-7.3 ± 3.3 
3.3 ± 4.7 

MAD ± SD (ms) 

5.2 ± 3.4 
4.2 ± 4.7 

Benson et al. 
(2019) [30] 

Accelerometer 
(Shimmer3®, Shimmer 
Inc., Dublin, Ireland) 

Force plate Foot  

3.3 

MD (ms) 

-16.0 

95% LoA (ms) 

-58.0, 27.0 

Mitschke et al. 
(2017) [59] 

Accelerometer (ADXL278, 
Analog Devices Inc., 
Norwood, MA, USA) 

Force plate Heel  

3.5 ± 0.1 

MD (ms) 

0.7 ± 2.6 

 

Sinclair et al. 
(2013) [62] 

Accelerometer (Biometrics 
ACL 300, UK) 

Force plate Tibia  

4.0 

ME (95% CI) (ms) 

1.7 (-2.9, 6.3) 

AE (95% CI) (ms) 

5.5 (1.9, 9.0) 

Tan et al. (2019) 
[63] 

Accelerometer 
(Shimmer3®, Shimmer 
Inc., Dublin, Ireland) 

In-shoe piezo-
electric force 
sensitive 
resistors 

Tibia  

Not reported 

F1  score 

0.92-0.96 

 

McGrath et al. 
(2012) [29] 

IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Hreljac and 

Marshal (2000) 

Tibia  

2.2 
3.3 

True error (ms) 

33.4 
24.1 

% error 

0.8 
0.5 

 IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Zeni et al., 

(2008) 

Tibia  

2.2 
3.3 

True error (ms) 

64.2 
61.7 

% error 

1.5 
1.4 

Mitschke et al. 
(2017) [58] 

IMU (ICM-20601, 
InvenSense, San Jose, CA, 
UDA) Sinclair et al., (2013) 

Force plate Tibia  

3.26 ± 0.4 

MD (ms) 

11.5 ± 4.2 

 

 IMU (ICM-20601, 
InvenSense, San Jose, CA, 
UDA) Mercer et al., (2003) 

Force plate Tibia  

3.26 ± 0.4 

MD (ms) 

-1.1 ± 10.7 

 

 IMU (ICM-20601, 
InvenSense, San Jose, CA, 
UDA) Maiwald et al., (2015) 

Force plate Tibia  

3.26 ± 0.4 

MD (ms) 

-0.5 ± 0.3 

 

 IMU (ICM-20601, 
InvenSense, San Jose, CA, 
UDA) Sabatini et al., (2005) 

Force plate Tibia  

3.26 ± 0.4 

MD (ms) 

-5.1 ± 3.0 

 

Mo & Chow 
(2018) [69] 

IMU (MyoMOTION MR3, 
Noraxon, USA) 

Force plate Tibia  

3.1 ± 0.1 
4.1 ± 1.2 

MRD ± SD (ms) 

-38.0 ± 10.7 
-16.7 ± 11.9 

MAD ± SD (ms) 

19.5 ± 6.5 
17.4 ± 11.0 

Aubol & Milner 
(2020) [31] 

Accelerometer (Model 
356A45, PCB 
Piezotronics, Depew, NY) 

Force plate Tibia  

3.0 ± 0.2 

Mean bias (ms) 

-2.3 ± 4.7 

95% LoA (ms) 

-6.8, 11.5 

Fadillioglu et al. 
(2020) [70] 

Gyroscope (ADXRS652, 
Analog Devices Inc., 
Norwood, MA, USA) 

Force plate Tibia  

Moderate 
Fast 

AME ± SD (ms) 

10.0 ± 4.0 
13.0 ± 6.0 

RAME ± SD (%) 

3.4 ± 1.4 
5.5 ± 2.7 
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Table 3 Validity summary statistics for initial contact (continued). 

    
Running 
velocity Statistic 1 Statistic 2 

Study Sensor Criterion Site m·s-1 ± SD   

Winter et al. 
(2016) [64] 

Accelerometer (ADXL202, 
Analog Devices Inc., 
Norwood, MA, USA) 

Motion capture 
system 

Lumbar 
spine 

 

Self-paced 

TEE (ms) 

0.8 

Pearson’s r 

0.99 

Mo & Chow 
(2018) [69] 

IMU (MyoMOTION MR3, 
Noraxon, USA) 

Force plate Lumbar 
spine 

 

3.1 ± 0.1 
4.1 ± 1.2 

MRD ± SD (ms) 

-2.6 ± 4.9 
5.7 ± 5.0 

MAD ± SD (ms) 

9.0 ± 2.0 
6.2 ± 4.6 

Benson et al. 
(2019) [30] 

Accelerometer 
(Shimmer3®, Shimmer 
Inc., Dublin, Ireland) 

Force plate Lumbar 
spine 

 

3.3 

MD (ms) 

53.0 

95% LoA (ms) 

24.0, 82.0 

Abbreviations: AE, absolute error; AME, absolute mean error; CI, confidence interval; F1  score, weighted average of precision and recall; IMU, inertial measurement 
unit; IQR, inter-quartile range; LoA, limits of agreement; MAD, mean absolute difference; MD, mean difference; ME, mean error; MRD, mean relative difference; ms, 
milliseconds; m·s-1, metres per second; RAME, relative absolute mean error; RMSE, root mean square error; SD, standard deviation; TEE, typical error of the estimate. 
Negative values represent a time lead in the detection of initial contact by the IMU compared to the criterion. 
Velocity reported with or without ± SD, depending on the method used in each study. A velocity range is presented for Falbriard et al. (2018) as validity outcomes were 
reported from pooled speeds. 
Values converted to milliseconds where required. 
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Table 4 Validity summary statistics for toe-off. 

    
Running 
velocity Statistic 1 Statistic 2 

Study Sensor Criterion Site m·s-1 ± SD   

Chew et al. (2018) 
[52] 

IMU (Opal, APDM Inc.) Motion capture 
system 

Foot  

2.2 
2.5 
2.8 
3.1 

ME ± SD (ms) 

3.3 ± 20.9 
16.3 ± 16.7 
-4.3 ± 15.0 
2.6 ± 19.5 

RMSE (ms) 

9.0 
11.1 
7.6 

11.0 

Falbriard et al. 
(2018) [34] 

IMU (Physilog 4, Gait Up, 
Switzerland) 

Instrumented 
treadmill 

Foot  

2.8-5.6 

Median bias ± IQR (ms) 

-4.0 ± 7.0 

Median precision ± IQR (ms) 

4.0 ± 2.0 

Mo & Chow 
(2018) [69] 

IMU (MyoMOTION MR3, 
Noraxon, USA) 

Force plate Foot  

3.1 ± 0.1 
4.1 ± 1.2 

MRD ± SD (ms) 

-32.0 ± 14.1 
-53.8 ± 8.1 

MAD ± SD (ms) 

25.0 ± 7.5 
27.6 ± 7.6 

Benson et al. 
(2019) [30] 

Accelerometer 
(Shimmer3®, Shimmer 
Inc., Dublin, Ireland) 

Force plate Foot  

3.3 

MD (ms) 

32.0 

95% LoA (ms) 

-84.0, 148.0 

Sinclair et al. 
(2013) [62] 

Accelerometer (Biometrics 
ACL 300, UK) 

Force plate Tibia  

4.0 

ME (95% CI) (ms) 

-3.6 (-5.4, 1.8) 

AE (95% CI) (ms) 

5.0 (3.5, 8.5) 

Tan et al. (2019) 
[63] 

Accelerometer 
(Shimmer3®, Shimmer 
Inc., Dublin, Ireland) 

In-shoe piezo-
electric force 
sensitive 
resistors 

Tibia  

Not reported 

F1  score 

0.77-0.81 

 

McGrath et al. 
(2012) [29] 

IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Hreljac and 

Marshal (2000) 

Tibia  

2.2 
3.3 

True error (ms) 

-32.4 
-28.8 

% error 

0.7 
0.8 

 IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Zeni et al., 

(2008) 

Tibia  

2.2 
3.3 

True error (ms) 

-15.1 
-24.2 

% error 

0.7 
0.7 

Mo & Chow 
(2018) [69] 

IMU (MyoMOTION MR3, 
Noraxon, USA) 

Force plate Tibia  

3.1 ± 0.1 
4.1 ± 1.2 

MRD ± SD (ms) 

0.0 ± 4.1 
1.0 ± 7.8 

MAD ± SD (ms) 

5.1 ± 2.1 
8.8 ± 3.7 

Fadillioglu et al. 
(2020) [70] 

Gyroscope (ADXRS652, 
Analog Devices Inc., 
Norwood, MA, USA) 

Force plate Tibia  

Moderate 
Fast 

AME ± SD (ms) 

26.0 ± 20.0 
23.0 ± 23.0 

RAME ± SD (%) 

8.0 ± 4.8 
9.4 ± 8.8 

Winter et al. 
(2016) [64] 

Accelerometer (ADXL202, 
Analog Devices Inc., 
Norwood, MA, USA) 

Motion capture 
system 

Lumbar 
spine 

 

Self-paced 

TEE (ms) 

0.8 

Pearson’s r 

0.99 

Mo & Chow 
(2018) [69] 

IMU (MyoMOTION MR3, 
Noraxon, USA) 

Force plate Lumbar 
spine 

 

3.1 ± 0.1 
4.1 ± 1.2 

MRD ± SD (ms) 

7.6 ± 9.9 
9.4 ± 12.7 

MAD ± SD (ms) 

15.2 ± 5.0 
20.3 ± 8.2 

Benson et al. 
(2019) [30] 

Accelerometer 
(Shimmer3®, Shimmer 
Inc., Dublin, Ireland) 

Force plate Lumbar 
spine 

 

3.3 

MD (ms) 

24.0 

95% LoA (ms) 

-15.0, 63.0 

Abbreviations: AE, absolute error; AME, absolute mean error; CI, confidence interval; F1  score, weighted average of precision and recall; IMU, inertial measurement 
unit; IQR, inter-quartile range; LoA, limits of agreement; MAD, mean absolute difference; MD, mean difference; ME, mean error; MRD, mean relative difference; ms, 
milliseconds; m·s-1, metres per second; RAME, relative absolute mean error; RMSE, root mean square error; SD, standard deviation; TEE, typical error of the estimate. 
Negative values represent a time lead in the detection of toe-off by the IMU compared to the criterion. 
Velocity reported with or without ± SD, depending on the method used in each study. A velocity range is presented for Falbriard et al. (2018) as validity outcomes were 
reported from pooled speeds. 
Values converted to milliseconds where required. 
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Table 5 Validity summary statistics for contact time. 

    
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 Statistic 5 

Study Sensor Criterion Site m·s-1 ± SD ms ms      

Ammann et al. 
(2016) [16] 

IMU (PARTwear, HuCE-
microLab, University of 
Applied Sciences, Biel, 
Switzerland) 

High-speed 
camera 

Foot  

4.3 ± 0.7 
6.2 ± 0.7 
8.0 ± 1.6 

 

185.5 ± 21.7 
145.5 ± 20.9 
118.3 ± 11.6 

 

194.6 ± 34.3 
147.4 ± 20.3 
117.5 ± 9.0 

ICC (95% CI) 

0.97 (0.92, 0.99) 
0.96 (0.92, 0.98) 
0.81 (0.65, 0.89) 

Systematic bias (ms) 

-5.6* 
-0.7 
0.4 

%D 

-3.3 ± 5.0 
-0.8 ± 6.2 
-0.1 ± 6.7 

  

Chew et al. (2018) 
[52] 

IMU (Opal, APDM Inc.) Motion capture 
system 

Foot  

2.2 
2.5 
2.8 
3.1 

 

Not reported 

 

Not reported 

ME ± SD (ms) 

-6.1 ± 6.2 
-8.2 ± 5.3 
-8.1 ± 3.1 
-8.1 ± 2.5 

RMSE (ms) 

7.8 
9.2 
9.1 

10.0 

   

Falbriard et al. 
(2018) [34] 

IMU (Physilog 4, Gait Up, 
Switzerland) 

Instrumented 
treadmill 

Foot  

2.8-5.6 

 

Not reported 

 

Not reported 

Median bias ± IQR (ms) 

-15.0 ± 12.0 

Median precision ± IQR (ms) 

5.0 ± 3.0 

   

Garcia-Pinillos et 
al. (2018) [71] 

IMU (StrydTM, Stryd 
Powermeter, Stryd Inc., 
Boulder, CO, USA) 

Photocell system Foot  

2.2-5.6 

 

311.5 ± 11.5 to 175.5 ± 3.3 

 

340.0 ± 28.0 to 175.0 ± 6.0 

ICC 

0.06-0.46 

Pearson’s r 

0.08-0.66** 

   

Mo & Chow (2018) 
[69] 

IMU (MyoMOTION MR3, 
Noraxon, USA) 

Force plate Foot  

3.1 ± 0.1 
4.1 ± 1.2 

 

228.0 ± 23.0 
159.0 ± 13.0 

 

253.0 ± 10.0 
215.0 ± 7.0 

MRD ± SD (ms) 

-24.7 ± 14.8 
-56.0 ± 9.6 

Pearson’s r 

0.88* 
0.74* 

%D 

11.9 ± 4.8 
26.6 ± 4.3 

MAD ± SD (ms) 

29.3 ± 11.5 
34.2 ± 10.4 

 

Benson et al. (2019) 
[30] 

Accelerometer (Shimmer3®, 
Shimmer Inc., Dublin, 
Ireland) 

Force plate Foot  

3.3 

 

320.1 ± 41.5 

 

270.6 ± 25.4 

MD (ms) 

47.0 

95% LoA (ms) 

-59.0, 154.0 

   

Garcia-Pinillos et 
al. (2019) [35] 

IMU (RunScribeTM, Scribe 
Lab. Inc. San Francisco CA, 
USA) 

High-speed 
camera 

Foot  

3.3 ± 0.4 

 

261.0 ± 28.0 

 

267.0 ± 28.0 

ICC (95% CI) 

0.90 (0.80, 0.94) 

Pearson’s r 

0.83 

MD (%) 

2.3** 

MD (ms) 

-6.0 

Systematic bias ± RE (ms) 

-6.0 ± 16.0 

 IMU (StrydTM, Stryd 
Powermeter, Stryd Inc. 
Boulder CO, USA) 

High-speed 
camera 

Foot  

3.3 ± 0.4 

 

253.0 ± 22.0 

 

267.0 ± 28.0 

ICC (95% CI) 

0.81 (0.29, 0.93) 

Pearson’s r 

0.82 

MD (%) 

5.2*** 

MD (ms) 

-14.0 

Systematic bias ± RE (ms) 

-15.0 ± 16.0 

Sinclair et al. (2013) 
[62] 

Accelerometer (Biometrics 
ACL 300, UK) 

Force plate Tibia  

4.0 

 

185.30 

 

190.46 

ME (95% CI) (ms) 

-5.2 (0.9, 10.2) 

Pearson’s r 

0.96 

AE (95% CI) (ms) 

11.5 (8.1, 14.9) 

  

McGrath et al. 
(2012) [29] 

IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Hreljac and 

Marshal (2000) 

Tibia  

2.2 
3.3 

 

390.0 ± 30.0 
450.0 ± 51.0 

 

440.0 ± 20.0 
390.0 ± 60.0 

ICC 

0.32 
0.30 

True error (ms) 

-66.4 
-63.4 

% error 

15.2 
16.7 

  

 



44 
 

Table 5 Validity summary statistics for contact time (continued). 

    
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 Statistic 5 

Study Sensor Criterion Site m·s-1 ± SD ms ms      

McGrath et al. 
(2012) [29] 

IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Zeni et al., 

(2008) 

Tibia  

2.2 
3.3 

 

390.0 ± 30.0 
450.0 ± 51.0 

 

460.0 ± 10.0 
420.0 ± 10.0 

ICC 

0.26 
0.29 

True error (ms) 

-79.1 
-90.2 

% error 

19.8 
22.4 

  

Mo & Chow (2018) 
[69] 

IMU (MyoMOTION MR3, 
Noraxon, USA) 

Force plate Tibia  

3.1 ± 0.1 
4.1 ± 1.2 

 

291.0 ± 15.0 
248.0 ± 39.0 

 

253.0 ± 10.0 
215.0 ± 7.0 

MRD ± SD (ms) 

38.0 ± 9.4 
32.9 ± 34.1 

Pearson’s r 

0.78* 
0.74* 

%D 

15.6 ± 3.0 
17.3 ± 14.1 

MAD ± SD (ms) 

39.4 ± 8.0 
30.9 ± 18.9 

 

Fadillioglu et al. 
(2020) [70] 

Gyroscope (ADXRS652, 
Analog Devices Inc., 
Norwood, MA, USA) 

Force plate Tibia  

2.6 ± 0.4 
3.9 ± 0.6 

 

297.0 ± 43.0 
225.0 ± 42.0 

 

309.0 ± 45.0 
232.0 ± 26.0 

MD (ms) 

-12.0 
-7.0 

95% LoA (ms) 

-83.0, 59.0 
-85.0, 71.0 

   

Lee et al. (2010) 
[32] 

Accelerometer (KXM52 – 
1050 Kionix, NY, USA) 

Motion capture 
system 

Sacrum  

2.8-3.3 
3.6-4.2 
4.4-5.2 

 

Not reported 

 

Not reported 

Mean bias (ms) 

1.1 
2.2 
0.8 

Pearson’s r 

0.91 
0.94 
0.90 

SE (ms) 

0.9 
0.7 
0.9 

95% LoA (ms) 

-25.0, 22.0 
-20.0, 16.0 
-24.0, 23.0 

 

Bergamini et al. 
(2012) [33] 

IMU (FreeSense, Sensorize, 
Italy) 

Force plate Lumbar 
spine 

 

Maximal 
sprint 

 

122.9 ± 10.9 

 

123.3 ± 13.1 

ME (ms) 

5.0 

LoA (ms) 

25.0 

   

 IMU (FreeSense, Sensorize, 
Italy) 

High-speed 
camera 

Lumbar 
spine 

 

Maximal 
sprint 

 

105.2 ± 4.5 

 

103.6 ± 7.7 

ME (ms) 

5.0 

LoA (ms) 

25.0 

   

Gouttebarge et al. 
(2015) [83] 

Accelerometer (Myotest®, 
Myotest SA, Sion, 
Switzerland) 

Foot-mounted 
accelerometer 

Lumbar 
spine 

 

2.8 
3.3 
3.9 

 

172.0 ± 15.0 
159.1 ± 17.0 
144.2 ± 16.0 

 

297.1 ± 20.0 
278.4 ± 25.0 
251.3 ± 24.0 

ICC (95% CI) 

0.49 (-0.03, 0.80) 
0.50 (-0.02, 081) 
0.48 (-0.07, 0.81) 

    

Gindre et al. (2016) 
[68] 

Accelerometer (Myotest®, 
Myotest SA, Sion, 
Switzerland) 

Photocell system Lumbar 
spine 

 

3.3 
4.2 
5.0 
5.8 

 

166.0 ± 15.0 
154.0 ± 15.0 
135.0 ± 16.0 
116.0 ± 16.0 

 

268.0 ± 17.0 
237.0 ± 15.0 
208.0 ± 13.0 
182.0 ± 16.0 

ICC 

0.63 
0.67 
0.75 
0.82 

CV% 

17.7 
16.2 
16.4 
17.9 

MD (%) 

-38.0* 
-35.0* 
-35.0* 
-36.0* 

  

 Accelerometer (Myotest®, 
Myotest SA, Sion, 
Switzerland) 

High-speed 
camera 

Lumbar 
spine 

 

3.3 
4.2 
5.0 
5.8 

 

166.0 ± 15.0 
154.0 ± 15.0 
135.0 ± 16.0 
116.0 ± 16.0 

 

252.0 ± 17.0 
223.0 ± 13.0 
198.0 ± 12.0 
173.0 ± 12.0 

ICC 

0.72 
0.47 
0.63 
0.74 

CV% 

15.9 
14.1 
14.7 
16.0 

MD (%) 

-34.0* 
-31.0* 
-32.0* 
-33.0* 

  



45 
 

Table 5 Validity summary statistics for contact time (continued). 

    
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 Statistic 5 

Study Sensor Criterion Site m·s-1 ± SD ms ms      

Mo & Chow (2018) 
[69] 

IMU (MyoMOTION MR3, 
Noraxon, USA) 

Force plate Lumbar 
spine 

 

3.1 ± 0.1 
4.1 ± 1.2 

 

263.0 ± 15.0 
220.0 ± 18.0 

 

253.0 ± 10.0 
215.0 ± 7.0 

MRD ± SD (ms) 

10.3 ± 8.9 
4.6 ± 12.1 

Pearson’s r 

0.83* 
0.89* 

%D 

6.3 ± 1.8 
8.7 ± 3.7 

MAD ± SD (ms) 

15.9 ± 4.7 
18.7 ± 7.5 

 

Benson et al. (2019) 
[30] 

Accelerometer (Shimmer3®, 
Shimmer Inc., Dublin, 
Ireland) 

Force plate Lumbar 
spine 

 

3.3 

 

241.8 ± 30.2 

 

270.6 ± 25.4 

MD (ms) 

-29.0 

95% LoA (ms) 

-69.0, 10.0 

   

Watari et al. (2016) 
[53] 

Accelerometer (Forerunner 
620, Garmin International 
Inc., Olathe, KS) 

Instrumented 
treadmill 

Torso  

2.7 
3.0 
3.3 
3.6 
3.9 

 

Not reported 

 

Not reported 

Mean bias (ms) 

-17.0 
-10.1 
-5.8 
-2.6 
-1.4 

CCC 

0.69 
0.77 
0.87 
0.83 
0.84 

   

Buchheit et al. 
(2015) [37] 

Accelerometer (SPI HPU, 
GPSports, Canberra, 
Australia) 

Instrumented 
treadmill 

Scapula  

2.8-7.5 

 

Not reported 

 

Not reported 

Mean bias (90% CI) (%) 

-10.4 (-12.3, -9.8) 

Pearson’s r (90% CI) 

0.98 (0.97, 0.99) 

CV% (90% CI) 

3.9 (3.4, 4.6) 

  

Abbreviations: %D, percentage difference; AE, absolute error; CCC, concordance correlation coefficient; CI, confidence interval; CV, coefficient of variation; ICC, intraclass correlation coefficient; IMU, inertial measurement unit; IQR, inter-quartile range; LoA, limits of agreement; MAD, mean absolute 
difference; MD, mean difference; ME, mean error; MRD, mean relative difference; ms, milliseconds; m·s-1, metres per second; RE, random error; RMSE, root mean square error; SD, standard deviation; SE, standard error. 
Negative values represent an underestimation of contact time calculated by the IMU compared to the criterion. 
Velocity reported with or without ± SD, depending on the method used in each study. A velocity range is presented for Falbriard et al. (2018) and Buchheit et al. (2015) as validity outcomes were reported from pooled speeds. 
Values converted to milliseconds where required. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Table 6 Reliability summary statistics for each analysed stride variable. 

   
Running 
velocity Statistic 1 Statistic 2 Statistic 3 Statistic 4 Statistic 5 

Study Variable Site m·s-1 ± SD      

Ammann et al. (2016) 
[16] 

Contact time Foot  

4.3-8.0 

CV% 

2.9-3.8 

ICC 

0.91-0.96 

   

Garcia-Pinillos et al. 
(2018) [71] 

Contact time Foot  

2.2-5.6 

CV% 

1.2-2.3 

SEM (ms) 

1.0-5.0 

   

Gouttebarge et al. (2015) 
[83] 

Contact time Lumbar spine  

2.8 
3.3 
3.9 

SEM (ms) 

 
14.8 
10.1 

ICC (95% CI) 

-0.24 (-0.69, 0.32) 
0.35 (-0.23, 0.74) 
0.67 (0.22, 0.88) 

   

Gindre et al. (2016) [68] Contact time Lumbar spine  

3.3 
4.2 
5.0 
5.8 

CV% 

6.5 
6.7 
8.3 
9.9 

ICC 

0.99 
0.88 
0.95 
0.97 

   

Garcia-Pinillos et al. 
(2018) [71] 

Flight time Foot  

2.2-5.6 

CV% 

3.7-11.6 

SEM (ms) 

3.0-8.0 

   

Gindre et al. (2016) [68] Flight time Lumbar spine  

3.3 
4.2 
5.0 
5.8 

CV% 

4.6 
4.8 
5.2 
5.2 

ICC 

0.94 
0.95 
0.98 
0.98 

   

Mitschke et al. (2017) 
[59] 

Stride time Heel  

3.5 ± 0.1 

CV% 

2.6-3.5 

    

Garcia-Pinillos et al. 
(2018) [71] 

Step frequency Foot  

2.2-5.6 

CV% 

1.1-2.0 

SEM (step·min-1) 

1.7-2.8 

   

Gouttebarge et al. (2015) 
[83] 

Step frequency Lumbar spine  

2.8 
3.3 
3.9 

SEM (step·min-1) 

3.5 
4.1 
3.0 

ICC (95% CI) 

0.82 (0.52, 0.94) 
0.78 (0.44, 0.92) 
0.92 (0.77, 0.97) 

   

Gindre et al. (2016) [68] Step frequency Lumbar spine  

3.3 
4.2 
5.0 
5.8 

CV% 

4.4 
3.9 
4.1 
4.1 

ICC 

0.94 
0.82 
0.84 
0.94 

   

Garcia-Pinillos et al. 
(2018) [71] 

Step length Foot  

2.2-5.6 

CV% 

1.1-2.1 

SEM (cm) 

107.1-241.2 

   

Mitschke et al. (2017) 
[59] 

Stride length Heel  

3.5 ± 0.1 

CV% 

4.9-7.8 

    

Raper et al. (2018) [40] vGRF Tibia  

5.2 ± 0.6 

SEM (95% CI) (N) 

99.8 (82.1, 119.1) 

ICC (95% CI) 

0.88 (0.83, 0.92) 

SEM (95% CI) (%) 

7.0 (5.7, 8.3) 

MDC (95% CI) (N) 

276.7 (227.3, 330.1) 

MDC (95% CI) (%) 

19.3 (15.9, 23.0) 

Eggers et al. (2018) [38] vGRF Lumbar spine  

3.3 

CV% (90% CI) 

4.2 (3.3, 6.1) 

ICC (90% CI) 

0.93 (0.84, 0.97) 

TEE (90% CI) (N) 

0.3 (0.2, 0.4) 

  

Buchheit et al. (2018) 
[86] 

vGRF Thoracic 
spine 

 

6.1-6.7 

CV% (90% CI) 

17.1 (13.6, 25.1) 

ICC (90% CI) 

0.47 (0.12, 0.72) 

TE (90% CI) (N) 

0.8 (0.6, 1.1) 

SWC (%) 

5.0 

 

Eggers et al. (2018) [38] vGRF Thoracic 
spine 

 

3.3 

CV% (90% CI) 

3.3 (2.5, 4.7) 

ICC (90% CI) 

0.95 (0.89, 0.98) 

TEE (90% CI) (N) 

0.3 (0.2, 0.4) 

  

Edwards et al. (2019) [43] vGRF Thoracic 
spine 

 

3.3 
5.0 
6.7 

CV% 

17.8 
18.6 
21.8 

ICC 

0.47 
0.50 
0.31 

TE (N) 

2.6 
2.9 
2.9 

  

Eggers et al. (2018) [38] Vertical stiffness Lumbar spine  

3.3 

CV% (90% CI) 

12.1 (9.3, 17.6) 

ICC (90% CI) 

0.70 (0.41, 0.86) 

TEE (90% CI) (kN·m-1) 

0.7 (0.5, 1.0) 
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Table 6 Reliability summary statistics for each analysed stride variable. 

   
Running 
velocity Statistic 1 Statistic 2 Statistic 3 Statistic 4 Statistic 5 

Study Variable Site m·s-1 ± SD      

Buchheit et al. (2018) [86] Vertical stiffness Thoracic 
spine 

 

6.1-6.7 

CV% (90% CI) 

11.0 (8.6, 15.6) 

ICC (90% CI) 

0.75 (0.52, 0.88) 

TE (90% CI) (kN·m-1) 

0.5 (0.7, 1.2) 

SWC (%) 

4.0 

 

Eggers et al. (2018) [38] Vertical stiffness Thoracic 
spine 

 

3.3 

CV% (90% CI) 

9.5 (7.3, 13.7) 

ICC (90% CI) 

0.71 (0.44, 0.87) 

TEE (90% CI) (kN·m-1) 

0.7 (0.5, 1.0) 

  

Abbreviations: CI, confidence interval; cm, centimetres; CV, coefficient of variation; ICC, intraclass correlation coefficient; kN·m-1; kilo Newtons per metre; MDC, minimal detectable change; ms, milliseconds; m·s-1, 
metres per second; N, Newtons; SD, standard deviation; SEM, standard error of measurement; step·min-1; steps per minute; SWC, smallest worthwhile change; TE, typical error; TEE, typical error of the estimate. 
Running velocity reported with or without ± SD, depending on the method used in each study. Values presented for Ammann et al. (2016) and Garcia-Pinillos et al. (2018) represents reliability assessed at a range of 
speeds. 
Values converted to milliseconds, centimetres or Newtons where required. 
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Table 7 Validity summary statistics for flight time. 

    
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 

Statistic 
4 Statistic 5 

Study Sensor Criterion Site m·s-1 ± SD ms ms      

Chew et al. (2018) 
[52] 

IMU (Opal, APDM Inc.) Motion capture 
system 

Foot  

2.2 
2.5 
2.8 
3.1 

 

Not reported 

 

Not reported 

ME ± SD (ms) 

6.1 ± 6.2 
8.2 ± 5.3 
8.1 ± 3.1 
8.1 ± 2.5 

RMSE (ms) 

7.8 
9.2 

10.1 
10.0 

   

Falbriard et al. 
(2018) [34] 

IMU (Physilog 4, Gait Up, 
Switzerland) 

Instrumented 
treadmill 

Foot  

2.8-5.6 

 

Not reported 

 

Not reported 

Median bias ± IQR (ms) 

15.0 ± 12.0 

Median precision ± IQR (ms) 

5.0 ± 3.0 

   

Garcia-Pinillos et 
al. (2018) [71] 

IMU (StrydTM, Stryd 
Powermeter, Stryd Inc., 
Boulder, CO, USA) 

Photocell system Foot  

2.2-5.6 

 

62.0 ± 16.9 to 137.6 ± 6.5 

 

36.5 ± 25.4 to 133.7 ± 8.4 

ICC 

0.56-0.81 

Pearson’s r 

0.60**-0.83* 

   

Garcia-Pinillos et 
al. (2019) [35] 

IMU (RunScribeTM, Scribe 
Lab. Inc. San Francisco CA, 
USA) 

High-speed 
camera 

Foot  

3.3 ± 0.4 

 

96.0 ± 26.0 

 

93.0 ± 25.0 

ICC (95% CI) 

0.86 (0.75, 0.92) 

MD (%) 

3.2 

Pearson’s r 

0.75*** 

MD (ms) 

3.0 

Systematic bias ± RE (ms) 

3.0 ± 17.0 

 IMU (StrydTM, Stryd 
Powermeter, Stryd Inc. 
Boulder CO, USA) 

 

High-speed 
camera 

Foot  

3.3 ± 0.4 

 

107.0 ± 23.0 

 

93.0 ± 25.0 

ICC (95% CI) 

0.81 (0.18, 0.93) 

MD (%) 

15.1*** 

Pearson’s r 

0.81*** 

MD (ms) 

14.0 

Systematic bias ± RE (ms) 

15.0 ± 15.0 

Gindre et al. (2016) 
[68] 

Accelerometer (Myotest®, 
Myotest SA, Sion, 
Switzerland) 

Photocell system Lumbar 
spine 

 

3.3 
4.2 
5.0 
5.8 

 

205.0 ± 13.0 
204.0 ± 14.0 
205.0 ± 15.0 
202.0 ± 15.0 

 

101.0 ± 20.0 
119.0 ± 20.0 
131.0 ± 18.0 
135.0 ± 17.0 

ICC 

0.67 
0.72 
0.78 
0.82 

MD (%) 

103* 
71.0* 
57.0* 
50.0* 

CV% 

24.7 
19.8 
17.1 
15.3 

  

 Accelerometer (Myotest®, 
Myotest SA, Sion, 
Switzerland) 

High-speed 
camera 

Lumbar 
spine 

 

3.3 
4.2 
5.0 
5.8 

 

205.0 ± 13.0 
204.0 ± 14.0 
205.0 ± 15.0 
202.0 ± 15.0 

 

117.0 ± 17.0 
133.0 ± 18.0 
143.0 ± 20.0 
144.0 ± 18.0 

ICC 

0.69 
0.66 
0.66 
0.77 

MD (%) 

75.0* 
52.0* 
43.0* 
41.0* 

CV% 

20.5 
16.3 
14.8 
13.7 

  

Buchheit et al. 
(2015) [37] 

Accelerometer (SPI HPU, 
GPSports, Canberra, 
Australia) 

Instrumented 
treadmill 

Scapula  

2.8-7.5 

 

Not reported 

 

Not reported 

Mean bias (90% CI) (%) 

-25.8 (-18.8, -27.7) 

CV% (90% CI) 

15.7 (13.5, 18.9) 

Pearson’s r (90% CI) 

0.68 (0.55, 0.78) 

  

Abbreviations: CI, confidence interval; CV, coefficient of variation; ICC, intraclass correlation coefficient; IMU, inertial measurement unit; IQR, inter-quartile range; MD, mean difference; ME, mean error; ms, milliseconds; m·s-1, metres per second; RE, random error; RMSE, root mean square error; SD, 
standard deviation. 
Negative values represent an underestimation of flight time calculated by the IMU compared to the criterion. 
Velocity reported with or without ± SD, depending on the method used in each study. A velocity range is presented for Falbriard et al. (2018) and Buchheit et al. (2015) as validity outcomes were reported from pooled speeds. 
Values converted to milliseconds where required. 
*p < 0.05. 
**p < 0.01. 
***p < 0.001. 
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Table 8 Validity summary statistics for step time and stride time. 

     
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 

Study Variable Sensor Criterion Site m·s-1 ± SD ms ms     

Falbriard et al. [34] 
(2018) 

Step time IMU (Physilog 4, Gait Up, 
Switzerland) 

Instrumented 
treadmill 

Foot  

2.8-5.6 

 

Not reported 

 

Not reported 

Median bias ± IQR (ms) 

0 ± 0 

Median precision ± IQR (ms) 

3.0 ± 2.0 

  

Lee et al. (2010) 
[32] 

Step time Accelerometer (KXM52 – 
1050 Kionix, NY, USA) 

Motion capture 
system 

Sacrum  

2.8-3.3 
3.6-4.2 
4.4-5.2 

 

Not reported 

 

Not reported 

Mean bias (ms) 

-0.7 
-1.3 
-0.4 

95% LoA (ms) 

-20.0, 18.0 
-21.0, 18.0 
-19.0, 19.0 

SE (ms) 

0.7 
0.8 
0.8 

Pearson’s r 

0.93 
0.78 
0.76 

Chew et al. (2018) 
[52] 

Stride time IMU (Opal, APDM Inc.) Motion capture 
system 

Foot  

2.2 
2.5 
2.8 
3.1 

 

Not reported 

 

Not reported 

ME ± SD (ms) 

-4.0 ± 24.0 
-3.2 ± 22.7 
-1.0 ± 25.6 
0.3 ± 22.1 

RMSE (ms) 

17.6 
17.3 
24.8 
21.4 

  

Norris et al. (2016) 
[84] 

Stride time Accelerometer (Shimmer 2r, 
Shimmer Inc., Dublin, 
Ireland) 

Stride time 
calculation 
method Mercer et al., 

(2003) 

Tibia  

Self-paced 

 

740.0 ± 90.0 

 

740.0 ± 100.0 

SE (ms) 

8.0 

CV% 

1.1 

ICC 

0.99 

 

  Accelerometer (Shimmer 2r, 
Shimmer Inc., Dublin, 
Ireland) 

Stride time 
calculation 
method Mizrahi et al., 

(2000) 

Tibia  

Self-paced 

 

740.0 ± 90.0 

 

740.0 ± 100.0 

SE (ms) 

7.0 

CV% 

0.9 

ICC 

0.99 

 

  Accelerometer (Shimmer 2r, 
Shimmer Inc., Dublin, 
Ireland) 

Stride time 
calculation 
method Purcell et al., 

(2006) 

Tibia  

Self-paced 

 

740.0 ± 90.0 

 

740.0 ± 100.0 

SE (ms) 

10.0 

CV% 

1.3 

ICC 

0.99 

 

McGrath et al. 
(2012) [29] 

Stride time IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Hreljac and 

Marshal (2000) 

Tibia  

2.2 
3.3 

 

810.0 ± 10.0 
770.0 ± 20.0 

 

810.0 ± 10.0 
780.0 ± 10.0 

True error (ms) 

0.1 
0.2 

% error 

1.5 
1.2 

ICC 

0.55 
0.83 

 

  IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Zeni et al., 

(2008) 

Tibia  

2.2 
3.3 

 

810.0 ± 10.0 
770.0 ± 20.0 

 

810.0 ± 10.0 
780.0 ± 10.0 

True error (ms) 

0.29 
0.29 

% error 

1.27 
1.26 

ICC 

0.57 
0.69 

 

Lee et al. (2010) 
[32] 

Stride time Accelerometer (KXM52 – 
1050 Kionix, NY, USA) 

Motion capture 
system 

Sacrum  

2.8-3.3 
3.6-4.2 
4.4-5.2 

 

Not reported 

 

Not reported 

Mean bias (ms) 

-0.5 
1.2 
-1.0 

95% LoA (ms) 

-16.0, 15.0 
-17.0, 20.0 
-21.0, 19.0 

SE (ms) 

0.6 
0.7 
0.8 

Pearson’s r 

0.98 
0.95 
0.92 
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Table 8 Validity summary statistics for step time and stride time (continued). 

     
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 

Study Variable Sensor Criterion Site m·s-1 ± SD ms ms     

Bergamini et al. 
(2012) [33] 

Stride time IMU (FreeSense, Sensorize, 
Italy) 

Force plate Lumbar 
spine 

 

Maximal 
sprint 

 

485.0 ± 42.2 

 

483.8 ± 41.4 

ME (ms) 

5.0 

LoA (ms) 

25.0 

  

  IMU (FreeSense, Sensorize, 
Italy) 

High-speed 
camera 

Lumbar 
spine 

 

Maximal 
sprint 

 

453.8 ± 14.2 

 

453.7 ± 16.2 

ME (ms) 

5.0 

LoA (ms) 

25.0 

  

Kenneally-
Dabrowski et al. 
(2018) [54] 

Stride time Accelerometer (GPSports, 
Canberra, Australia) 

Force plate Thoracic 
spine 

 

8.64 ± 0.5 

 

Not reported 

 

Not reported 

Mean bias (ms) 

-26.0* 

95% LoA (ms) 

-91.0, 39.0 

Spearman’s r 

-0.18 

 

Abbreviations: CV, coefficient of variation; ICC, intraclass correlation coefficient; IMU, inertial measurement unit; IQR, inter-quartile range; LoA, limits of agreement; ME, mean error; ms, milliseconds; m·s-1, metres per second; RMSE, root mean square error; SD, standard deviation; 
SE, standard error. 
Negative values represent an underestimation of step time and stride time calculated by the IMU compared to the criterion. 
Velocity reported with or without ± SD, depending on the method used in each study. A velocity range is presented for Falbriard et al. (2018) as validity outcomes were reported from pooled speeds. 
Values converted to milliseconds where required. 
*p < 0.05. 
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Table 9 Validity summary statistics for swing time. 

    
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 

Study Sensor Criterion Site m·s-1 ± SD ms ms    

Falbriard et al. (2018) 
[34] 

IMU (Physilog 4, Gait Up, 
Switzerland) 

Instrumented 
treadmill 

Foot  

2.8-5.6 

 

Not reported 

 

Not reported 

Median bias ± IQR (ms) 

15.0 ± 12.0 

Median precision ± IQR (ms) 

5.0 ± 3.0 

 

McGrath et al. (2012) 
[29] 

IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Hreljac and 

Marshal (2000) 

Tibia  

2.2 
3.3 

 

460.0 ± 330.0 
450.0 ± 20.0 

 

360.0 ± 10.0 
390 ± 10.0 

True error (ms) 

65.9 
54.8 

% error 

18.7 
16.6 

ICC 

0.38 
0.32 

 IMU (Shimmer, Shimmer 
Inc., Dublin, Ireland) 

Motion capture 
system Zeni et al., (2008) 

Tibia  

2.2 
3.3 

 

460.0 ± 330.0 
450.0 ± 20.0 

 

340.0 ± 10.0 
360 ± 10.0 

True error (ms) 

78.8 
90.0 

% error 

26.8 
26.4 

ICC 

0.32 
0.28 

Abbreviations: ICC, intraclass correlation coefficient; IMU, inertial measurement unit; IQR, inter-quartile range; ms, milliseconds; m·s-1, metres per second; SD, standard deviation. 
A velocity range is presented for Falbriard et al. (2018) as validity outcomes were reported from pooled speeds. 
Values converted to milliseconds where required. 
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Table 10 Validity summary statistics for step frequency. 

    
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 Statistic 5 

Study Sensor Criterion Site m·s-1 ± SD step·min-1 step·min-1      

Garcia-Pinillos et 
al. (2018) [71] 

IMU (StrydTM, Stryd 
Powermeter, Stryd Inc., 
Boulder, CO, USA) 

Photocell system Foot  

2.2-5.6 

 

160.9 ± 6.8 to 191.8 ± 5.4 

 

159.6 ± 6.3 to 193.2 ± 5.9 

ICC 

0.96-0.99 

Pearson’s r 

0.96-0.99*** 

   

Garcia-Pinillos et 
al. (2019) [35] 

IMU (RunScribeTM, Scribe 
Lab. Inc. San Francisco, 
CA, USA) 

High-speed 
camera 

Foot  

3.3 ± 0.4 

 

168.1 ± 7.4 

 

166.8 ± 7.7 

ICC (95% CI) 

0.96 (0.92, 0.98) 

Pearson’s r 

0.95*** 

MD (step·min-1) 

1.3 

MD (%) 

0.8 

Systematic bias ± RE (step·min-1) 

1.3 ± 2.5 

 IMU (StrydTM, Stryd 
Powermeter, Stryd Inc. 
Boulder, CO, USA) 

 

High-speed 
camera 

Foot  

3.3 ± 0.4 

 

166.7 ± 7.3 

 

166.8 ± 7.7 

ICC (95% CI) 

0.97 (0.94, 0.98) 

Pearson’s r 

0.93*** 

MD (step·min-1) 

-0.1 

MD (%) 

0.1 

Systematic bias ± RE (step·min-1) 

-0.1 ± 2.8 

Pairot de Fontenay 
et al. (2020) [60] 

IMU (MilestonePod, 
Milestone Sports, Long 
Beach, CA, USA) 

Instrumented 
treadmill 

Foot  

Not 
reported 

 

Not reported 

 

Not reported 

Mean bias (step·min-1) 

1.6 

Pearson’s r 

0.99*** 

95% LoA (step·min-1) 

± 1.4 

  

 IMU (Zoi, Runteq, 
Tampere, Finland) 

Instrumented 
treadmill 

Foot  

Not 
reported 

 

Not reported 

 

Not reported 

Mean bias (step·min-1) 

0.9 

Pearson’s r 

0.99*** 

95% LoA (step·min-1) 

± 1.3 

  

 IMU (RunScribeTM, 
Montara, CA, USA) 

Instrumented 
treadmill 

Heel  

Not 
reported 

 

Not reported 

 

Not reported 

Mean bias (step·min-1) 

1.1 

Pearson’s r 

0.99*** 

95% LoA (step·min-1) 

± 0.9 

  

Pairot de Fontenay 
et al. (2020) [60] 

IMU (Moov NowTM, Moov, 
San Mateo, CA, USA) 

Instrumented 
treadmill 

Tibia  

Not 
reported 

 

Not reported 

 

Not reported 

Mean bias (step·min-1) 

2.3 

Pearson’s r 

0.98*** 

95% LoA (step·min-1) 

± 2.0 

  

 IMU (TgForce, Kelsec 
Systems Inc., Montreal, 
Canada) 

Instrumented 
treadmill 

Tibia  

Not 
reported 

 

Not reported 

 

Not reported 

Mean bias (step·min-1) 

4.5 

Pearson’s r 

0.96*** 

95% LoA (step·min-1) 

± 6.1 

  

Gouttebarge et al. 
(2015) [83] 

Accelerometer (Myotest®, 
Myotest SA, Sion, 
Switzerland) 

Foot-mounted 
accelerometer 

Lumbar 
spine 

 

2.8 
3.3 
3.9 

 

164.3 ± 7.0 
168.9 ± 8.0 

175.9 ± 10.0 

 

165.6 ± 8.0 
169.4 ± 8.0 

175.7 ± 13.0 

ICC (95% CI) 

0.89 (0.69, 0.96) 
0.78 (0.45, 0.96) 
0.90 (0.72, 0.97) 
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Table 10 Validity summary statistics for step frequency (continued). 

    
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 Statistic 5 

Study Sensor Criterion Site m·s-1 ± SD step·min-1 step·min-1      

Gindre et al. (2016) 
[68] 

Accelerometer (Myotest®, 
Myotest SA, Sion, 
Switzerland) 

Photocell system Lumbar 
spine 

 

3.3 
4.2 
5.0 
5.8 

 

163.0 ± 10.0 
168.0 ± 9.0 

177.0 ± 10.0 
188.0 ± 11.0 

 

163.0 ± 9.0 
169.0 ± 9.0 

178.0 ± 10.0 
190.0 ± 12.0 

ICC 

0.86 
0.94 
0.93 
0.87 

MD (%) 

0.1 
-0.5 
-0.3 
-0.8 

CV% 

4.1 
3.9 
3.8 
4.6 

  

 Accelerometer (Myotest®, 
Myotest SA, Sion, 
Switzerland) 

High-speed 
camera 

Lumbar 
spine 

 

3.3 
4.2 
5.0 
5.8 

 

163.0 ± 10.0 
168.0 ± 9.0 

177.0 ± 10.0 
188.0 ± 11.0 

 

163.0 ± 9.0 
168.0 ± 9.0 

176.0 ± 11.0 
190.0 ± 12.0 

ICC 

0.89 
0.95 
0.84 
0.86 

MD (%) 

0.2 
-0.2 
0.3 
-0.9 

CV% 

3.9 
3.7 
3.8 
4.6 

  

Machulik et al. 
(2020) [72] 

IMU (Humotion 
SmarTracks Integrated 
System) 

Photocell system Lumbar 
spine 

 

3.8 ± 0.7 
6.8 ± 1.0 

 

159.6 ± 7.8 
206.4 ± 15.9 

 

168.6 ± 7.8 
228.0 ± 19.2 

ICC (95% CI) 

0.75-0.89 (0.48, 0.95) 
0.90-0.94 (0.79, 0.97) 

Systematic bias (step·min-1) 

-11.9 to -5.2 
-25.9 to -6.5 

95% LoA (step·min-1) 

-20.8, 1.7 
-47.76, 6.1 

  

Abbreviations: CI, confidence interval; CV, coefficient of variation; ICC, intraclass correlation coefficient; IMU, inertial measurement unit; LoA, limits of agreement; MD, mean difference; m·s-1, metres per second; RE, random error; SD, standard deviation; step·min-1, steps per minute. 
Negative values represent an underestimation of step frequency calculated by the IMU compared to the criterion. 
Velocity reported with or without ± SD, depending on the method used in each study. 
***p < 0.001. 
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Table 11 Validity summary statistics for step length and stride length. 

     
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 Statistic 5 Statistic 6 Statistic 7 

Study Variable Sensor Criterion Site m·s-1 ± SD cm cm        

Garcia-Pinillos 
et al. (2018) 
[71] 

Step 
length 

IMU (StrydTM, Stryd 
Powermeter, Stryd Inc., 
Boulder, CO, USA) 

Photocell 
system 

Foot  

2.2-5.6 

 

83.0 ± 3.6 to 173.9 ± 84.4 

 

83.8 ± 3.6 to 172.9 ± 5.1 

ICC 

0.93-0.99 

Pearson’s r 

0.93-0.99*** 

     

Garcia-Pinillos 
et al. (2019) 
[35] 

Step 
length 

IMU (RunScribeTM, 
Scribe Lab. Inc. San 
Francisco CA, USA) 

High-speed 
camera 

Foot  

3.3 ± 0.4 

 

116.3 ± 12.1 

 

116.9 ± 12.5 

ICC (95% CI) 

0.97 (0.95, 0.98) 

Pearson’s r 

0.96*** 

MD (cm) 

-0.6 

MD (%) 

0.5 

Systematic bias ± RE (cm) 

-0.6 ± 4.3 

  

  IMU (StrydTM, Stryd 
Powermeter, Stryd Inc. 
Boulder CO, USA) 

 

High-speed 
camera 

Foot  

3.3 ± 0.4 

 

118.05 ± 13.47 

 

116.89 ± 12.50 

ICC (95% CI) 

0.98 (0.96, 0.99) 

Pearson’s r 

0.94*** 

MD (cm) 

1.2 

MD (%) 

1.0 

Systematic bias ± RE (cm) 

1.2 ± 3.9 

  

Machulik et al. 
(2020) [72] 

Step 
length 

IMU (Humotion 
SmarTracks Integrated) 

Photocell 
system 

Lumbar 
spine 

 

3.8 ± 0.7 
6.8 ± 1.0 

 

141.0 ± 26.0 
196.0 ± 36.0 

 

131.0 ± 20.0 
173.0 ± 21.0 

ICC (95% CI) 

0.90-0.94 (0.79, 0.98) 
0.79-0.85 (0.58, 0.93) 

Systematic bias (cm) 

8.1-12.2 
11.5-28.4 

95% LoA (cm) 

-14.2, 30.4 
-7.1, 62.3 

    

Brahms et al. 
(2018) [85] 

Stride 
length 

IMU (Xsens, MTw) Motion 
capture 
system 

Foot  

3.6 ± 0.3 

 

259.2 ± 27.6 

 

262.3 ± 27.2 

ICC (95% CI) 

0.96 (0.93, 0.97) 

Pearson’s r 

0.96*** 

MD (cm) 

-3.2 

ME (cm) 

5.0 

% error 

2.0 

95% LoA (cm) 

-18.3, 11.8 

RMSE (cm) 

8.3 

Chew et al. 
(2018) [52] 

Stride 
length 

IMU (Opal, APDM Inc.) Motion 
capture 
system 

Foot  

2.2 
2.5 
2.8 
3.1 

 

Not reported 

 

Not reported 

ME ± SD (cm) 

32.3 ± 48.2 
14.1 ± 46.0 
44.0 ± 56.7 
46.0 ± 62.6 

RMSE (cm) 

62.4 
70.2 
63.8 
59.2 

     

Zrenner et al. 
(2018) [65] 

Stride 
length 

IMU (miPod sensor): 
stride time-based 
algorithm 

Motion 
capture 
system 

Foot  

2.0-6.0 

 

Not reported 

 

Not reported 

ME ± SD (cm) 

17.7 ± 57.3 

MAE (cm) 

45.2 

% error 

17.1 

    

  IMU (miPod sensor): 
acceleration-based 
algorithm 

Motion 
capture 
system 

Foot  

2.0-6.0 

 

Not reported 

 

Not reported 

ME ± SD (cm) 

-0.5 ± 25.6 

MAE (cm) 

19.9 

% error 

7.9 

    

  IMU (miPod sensor): 
foot trajectory-based 
algorithm 

Motion 
capture 
system 

Foot  

2.0-6.0 

 

Not reported 

 

Not reported 

ME ± SD (cm) 

2.0 ± 14.1 

MAE (cm) 

7.6 

% error 

2.8 

    

  IMU (miPod sensor): 
deep learning-based 
algorithm 

Motion 
capture 
system 

Foot  

2.0-6.0 

 

Not reported 

 

Not reported 

ME ± SD (cm) 

2.5 ± 20.1 

MAE (cm) 

15.3 

% error 

5.9 

    

Abbreviations: CI, confidence interval; cm, centimetres; ICC, intraclass correlation coefficient; IMU, inertial measurement unit; LoA, limits of agreement; MAE, mean absolute error; MD, mean difference; ME, mean error; m·s-1, metres per second; RE, random error; RMSE, root mean square error; SD, standard deviation. 
Negative values represent an underestimation of step length and stride length calculated by the IMU compared to the criterion. 
Velocity reported with or without ± SD, depending on the method used in each study. A velocity range is presented for Zrenner et al. (2018) as validity outcomes were reported from pooled speeds. 
Values converted to centimetres where required. 
***p < 0.001. 
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Table 12 Validity summary statistics for ground reaction force. 

     
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 

Study Variable Sensor Criterion Site m·s-1 ± SD N N     

Ngoh et al. (2018) 
[56] 

vGRF IMU (Opal, APDM Inc.) Instrumented 
treadmill 

Foot  

2.2 
2.5 
2.8 

 

Not reported 

 

Not reported 

RMSE ± SD (N) 

10.5 ± 6.2 
9.3 ± 4.4 
10.5 ± 5.6 

Signal cross-correlation 

0.99 
0.99 
0.99 

  

Raper et al. (2018) 
[40] 

 Accelerometer (ViPerform 
v5, DorsaVi, Melbourne, 
Australia) 

Force plate Tibia  

5.2 ± 0.6 

 

Not reported 

 

Not reported 

MD (N) 

400.0 

   

Neugebauer et al. 
(2014) [66] 

 Accelerometer (GT3X+ 
AM, ActiGraph, Pensacola, 
FL, USA) 

Force plate Hip  

2.2-4.1 

 

Not reported 

 

Not reported 

MD (N) 

106.4 

% MD ± SD 

8.3 ± 3.7 

Mean bias ± SD (N) 

-50.5 ± 130.4 

95% LoA (N) 

-311.3, 210.3 

Gurchiek et al. 
(2017) [57] 

 IMU (Yost Data Logger 3-
Space Sensor, YEI 
Technology, Portsmouth, 
OH) 

Force plate Sacrum  

Not reported 

 

Not reported 

 

Not reported 

RMSE (N) 

77.1 

Pearson’s r 

0.88** 

Systematic bias (N) 

-34.1 

95% LoA (N) 

-171.8, 103.7 

Eggers et al. (2018) 
[38] 

 Accelerometer (wGT3X-
BT, ActiGraph, Pensacola, 
FL, USA) 

Force plate Lumbar spine  

3.3 

 

Not reported 

 

Not reported 

CV% (90% CI) 

9.2 (7.6, 11.7) 

Pearson’s r (90% CI) 

0.81 (0.69, 0.89) 

TEE (90% CI) (N) 

0.71 (0.51, 1.05) 

 

Wundersitz et al. 
(2013) [36] 

 Accelerometer (SPI Pro, 
ASP00725, GPSports Pty. 
Ltd., Canberra, Australia) 

Force plate Scapula  

5.4 ± 0.5 

 

1582.0 ± 408.0 

 

1731.0 ± 245.0 

CV% 

16.2 

Spearman’s r 

0.12 

  

Eggers et al. (2018) 
[38] 

 Accelerometer (wGT3X-
BT, ActiGraph, Pensacola, 
FL, USA) 

Force plate Scapula  

3.3 

 

Not reported 

 

Not reported 

CV% (90% CI) 

9.6 (8.0, 12.3) 

Pearson’s r (90% CI) 

0.79 (0.54, 1.0) 

TEE (90% CI) (N) 

0.76 (0.54, 1.14) 

 

Edwards et al. 
(2019) [43] 

 Accelerometer (SPI HPU, 
GPSports Pty. Ltd., 
Canberra, Australia) 

Force plate Scapula  

3.3-6.7 

 

Not reported 

 

Not reported 

Pearson’s r 

0.44** 

   

Wouda et al. (2018) 
[87] 

 IMU (Xsens, Enschede, the 
Netherlands) 

Instrumented 
treadmill 

Lower legs 
and pelvis 

 

3.3 

 

2338.8 ± 256.4 

 

2261.1 ± 101.0 

RMSE ± SD (N) 

220.8 ± 45.7 

Pearson’s r 

0.96 

  

Dorschky et al. 
(2019) [55] 

 IMU (Portabiles GmbH, 
Erlangen, DE) 

Force plate Foot, tibia, 
thighs and 
lumbar spine 

 

3.0-4.9 

 

Not reported 

 

Not reported 

RMSD ± SD (N) 

241.4 ± 59.6 

Pearson’s r 

0.94 

rRMSD ± SD (%) 

12.8 ± 3.6 
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Table 12 Validity summary statistics for ground reaction force (continued). 

     
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 Statistic 4 

Study Variable Sensor Criterion Site m·s-1 ± SD N N     

Gurchiek et al. 
(2017) [57] 

rGRF IMU (Yost Data Logger 3-
Space Sensor, YEI 
Technology, Portsmouth, 
OH) 

Force plate Sacrum  

Not reported 

 

Not reported 

 

Not reported 

RMSE (N) 

73.6 

Pearson’s r 

0.90** 

Systematic bias (N) 

-29.7 

95% LoA (N) 

-163.9, 104.4 

Wundersitz et al. 
(2013) [36] 

 Accelerometer (SPI Pro, 
ASP00725, GPSports Pty. 
Ltd., Canberra, Australia) 

Force plate Thoracic spine  

5.4 ± 0.5 

 

2194.0 ± 317.0 

 

1755.0 ± 253.0 

CV% 

16.4 

Spearman’s r 

0.31 

  

Nedergaard et al. 
(2018) [39] 

 Accelerometer (MinimaxX 
S4, Catapult Innovations, 
Scoresby, Australia) 

Force plate Thoracic spine  

2.0 
3.0 
4.0 
5.0 

 

3124.4 ± 1422.7 
4769.0 ± 3979.4 

17562.8 ± 30118.0 
6818.0 ± 5999.4 

 

1714.6 ± 162.6 
1896.2 ± 149.7 
2068.0 ± 118.6 
2084.7 ± 186.2 

RMSE (N) 

509.2 
509.2 
706.8 
972.8 

   

Pogson et al. (2020) 
[61] 

 Accelerometer (MinimaxX 
S5, Catapult Innovations, 
Scoresby, Australia) 

Force plate Thoracic spine  

2.0-8.0 

 

Not reported 

 

Not reported 

r2 

0.9 

   

Abbreviations: CI, confidence interval; CV, coefficient of variation; IMU, inertial measurement unit; LoA, limits of agreement; MD, mean difference; m·s-1, metres per second; N, Newtons; r2, coefficient of determination; rGRF, resultant ground reaction force; RMSD, root mean 
square deviation; RMSE, root mean square error; rRMSD, relative root mean square deviation; SD, standard deviation; TEE, typical error of the estimate; vGRF, vertical ground reaction force. 
Negative values represent an underestimation of ground reaction force calculated by the IMU compared to the criterion. 
Velocity reported with or without ± SD, depending on the method used in each study. A velocity range is presented for Neugebauer et al. (2014), Edwards et al. (2019), Dorschky et al. (2019) and Pogson et al. (2020) as validity outcomes were reported from pooled speeds. 
Values converted to Newtons where required. 
**p < 0.01. 
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Table 13 Validity summary statistics for vertical stiffness. 

    
Running 
velocity Sensor mean ± SD Criterion mean ± SD Statistic 1 Statistic 2 Statistic 3 

Study Sensor Criterion Site m·s-1 kN·m-1 kN·m-1 (90% CI) (90% CI) (90% CI) 

Eggers et al. (2018) [38] Accelerometer (wGT3X-BT, 
ActiGraph, Pensacola, FL, 
USA) 

Force plate Lumbar 
spine 

 

3.3 

 

26.0 ± 5.0 

 

24.9 ± 3.7 

CV% 

12.9 (10.7, 16.5) 

Pearson’s r 

0.65 (0.44, 0.79) 

TEE (kN·m-1) 

1.2 (0.8, 2.0) 

Buchheit et al. (2015) 
[37] 

Accelerometer (SPI HPU, 
GPSports, Canberra, 
Australia) 

Instrumented 
treadmill 

Thoracic 
spine 

 

2.8-7.5 

 

Not reported 

 

Not reported 

CV% 

6.3 (5.5, 7.5) 

Pearson’s r 

0.98 (0.97, 0.99) 

Mean bias (%) 

-13.3 (-14.6, -11.9) 

Eggers et al. (2018) [38] Accelerometer (wGT3X-BT, 
ActiGraph, Pensacola, FL, 
USA) 

Force plate Thoracic 
spine 

 

3.3 

 

24.4 ± 3.8 

 

24.9 ± 3.7 

CV% 

12.8 (10.6, 16.3) 

Pearson’s r 

0.66 (0.46, 0.79) 

TEE (kN·m-1) 

1.2 (0.8, 2.0) 

Abbreviations: CI, confidence interval; CV, coefficient of variation; kN·m-1, kilo Newtons per metre; m·s-1, metres per second; SD, standard deviation; TEE, typical error of the estimate. 
Negative values represent an underestimation of vertical stiffness calculated by the IMU compared to the criterion. 
A velocity range is presented for Buchheit et al. (2015) as validity outcomes were reported from pooled speeds. 
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Fig. 1 Flow chart of study selection process 

 

Fig. 2 Forest plot displaying the effect of contact time (ms) calculated from IMUs worn on the foot, 

tibia and lumbar spine between 3.3 and 4.3 m·s-1. Data are presented as means and SD of IMU- and 

criterion-derived contact time. Data from the RunScribeTM sensor is shown in Garcia-Pinillos et al. 

(2019a), while data from the StrydTM device is shown in Garcia-Pinillos et al. (2019b). Two different 

motion capture algorithms were used as criterions for McGrath et al. (2012a and b). Gindre et al. (2016a 

and b) is represented by high-speed camera and photocell system criterions, respectively. CI, confidence 

interval; df, degrees of freedom; IMU, inertial measurement unit; IV, instrumental variable; over, 

overestimation; SD, standard deviation; under, underestimation 

 

Fig. 3 Forest plot displaying the effect of flight time (ms) calculated from IMUs worn on the foot 

between 3.3 and 4.2 m·s-1. Data are presented as means and SD of IMU- and criterion-derived flight 

time. Data from the RunScribeTM sensor is shown in Garcia-Pinillos et al. (2019a), while data from the 

StrydTM device is shown in Garcia-Pinillos et al. (2019b). CI, confidence interval; df, degrees of 

freedom; IMU, inertial measurement unit; IV, instrumental variable; over, overestimation; SD, standard 

deviation; under, underestimation 

 

Fig. 4 Forest plot displaying the effect of step frequency (step·min-1) calculated from IMUs worn on 

the foot and lumbar spine between 3.3 and 4.2 m·s-1. Data are presented as means and SD of IMU- and 

criterion-derived step frequency. Data from the RunScribeTM sensor is shown in Garcia-Pinillos et al. 

(2019a), while data from the StrydTM device is shown in Garcia-Pinillos et al. (2019b). Gindre et al. 

(2016a and b) is represented by high-speed camera and photocell system criterions, respectively, where 

the authors reported the same values for each. CI, confidence interval; df, degrees of freedom; IMU, 

inertial measurement unit; IV, instrumental variable; over, overestimation; SD, standard deviation; 

under, underestimation 

 

Fig. 5 Forest plot displaying the effect of step length (cm) calculated from IMUs worn on the foot 

between 3.3 and 4.2 m·s-1. Data are presented as means and SD of IMU- and criterion-derived flight 

time. Data from the RunScribeTM sensor is shown in Garcia-Pinillos et al. (2019a), while data from the 

StrydTM device is shown in Garcia-Pinillos et al. (2019b). CI, confidence interval; df, degrees of 

freedom; IMU, inertial measurement unit; IV, instrumental variable; over, overestimation; SD, standard 

deviation; under, underestimation 


