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Abstract   Correlation is not causation is one of the mantras of the sciences—a cautionary 

warning especially to fields like epidemiology and pharmacology where the seduction of 

compelling correlations naturally leads to causal hypotheses. The standard view from the 

epistemology of causation is that to tell whether one correlated variable is causing the other, one 

needs to intervene on the system—the best sort of intervention being a trial that is both 

randomized and controlled. In this paper, we argue that some purely correlational data contains 

information that allows us to draw causal inferences: statistical noise. Methods for extracting 

causal knowledge from noise provide us with an alternative to randomized controlled trials that 

allows us to reach causal conclusions from purely correlational data. 
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1. Introduction. Suppose you want to know whether diet soft drinks cause type-2 diabetes. You 

examine the historical data and find that cases of type-2 diabetes have occurred more often 

among individuals who report consuming one or more diet soft drink per day. Is this evidence 

sufficient to conclude that diet soft drinks cause type-2 diabetes? The answer, according to 

statistical orthodoxy, is an emphatic no. The historical data reveal a correlation between the 

consumption of diet soft drinks and type-2 diabetes, but this does not—and cannot—by itself 

show that the diet soft drinks are the relevant causal factor in the increased rates of type-2 

diabetes. It might be that the direction of causation goes the other way: perhaps type-2 diabetes 

increases thirst, which increases diet soft drink consumption. Or perhaps individuals who 

consume large amounts of diet soda also tend to be lower in economic status, and people with 

fewer economic resources tend to consume more calorie dense processed foods. If this is the 

case, then the relatively high incidence of type-2 diabetes among diet soft drink consumers may 

be a result of other features of their diet. Processed food consumption, in this case, is a 

confounding causal factor hidden in the observed correlation between diet soft drinks and type-2 

diabetes.     

In light of these difficulties, it is commonly thought—and sometimes explicitly argued 

(Fisher 1947, Papineau 1994)—that the only way to eliminate confounding causal factors when 

testing the effect of an intervening factor on some outcome of interest is to conduct randomized 

controlled trials (RCTs). Inferring causation from historical or observational studies, for reasons 

illustrated above, is claimed to be epistemologically untenable. Fisher writes:  

 



 

3 
 

The full procedure of randomization [is the method] by which the validity of the test of 

significance may be guaranteed against corruption by the causes of disturbance which 

have not been eliminated. (1947, p. 19) 

 

Consider again our diet soft drink example. In order to meet the conditions required for an RCT, 

you would need to randomly assign test subjects into two groups: an experimental group 

provisioned with and assigned to drink diet sodas, and a control group who does not drink diet 

soda. By randomly selecting who goes into which group, we should end up with people of 

varying ages, socioeconomic backgrounds, levels of fitness, and any other potentially relevant 

factors in both groups. This aims to achieve Fisher’s guarantee by ensuring that diet soda 

consumption is the sole causal difference between the two groups and, as such, eliminates any 

hidden causal influence from skewing the results. It also ensures that the subjects drinking more 

diet soda are doing so not because of type-2 diabetes, but because we assigned them to do so. If 

instances of type-2 diabetes are higher in the experimental group than in the control, then (and 

only then) can we conclude that diet sodas cause type-2 diabetes.    

Philosophers and scientists continue to debate the viability of RCTs for determining 

causality (Urbach 1985, Papinau 1994, Worrall 2007). In what follows, we argue that there is an 

alternative to RCTs not appreciated in discussions of the epistemology of causation: drawing 

causal inferences from statistical noise. The philosophical literature generally treats statistical 

noise as a nuisance. It is thought to mask causal relations and to interfere with theory choice. 

Forster and Sober, for example, argue that “if we think of the true curve as the ‘signal’ and the 

deviation from the true curve generated by errors of observation as ‘noise’, then fitting the data 

perfectly involves confusing the noise with the signal” (1994, p. 5). 
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This view of noise—as merely obscuring causal information—has remained 

unchallenged. We challenge this orthodoxy by showing how, in some cases, not only does noise 

not obscure causal relations, it is an invaluable source of insight regarding them. If this is right, 

the signal-noise dichotomy offered by Forster and Sober, and generally held by the philosophical 

community, is in error. Noise itself can carry a signal, and an important one, one from which we 

can gain knowledge of the causal underpinnings of our world.  

New statistical research helps to support our arguments by offering rigorous techniques 

for making reliable causal inferences from the statistical noise in historical, observational data. 

We call these techniques Noise Inference Methods (NIMs). If successful, NIMs may allow us to 

make causal inferences in domains in which experimentation carries prohibitive costs or is 

impossible. If these techniques could be applied to fields like epidemiology and drug 

development, the ethical payoffs could be tremendous. At the very least, these new techniques 

warrant careful consideration within the context of the ongoing philosophical debate regarding 

theory choice and the importance of RCTs for the epistemology of causation. 

Our paper proceeds as follows. In Section 2, we demonstrate through a series of examples 

the in-principle possibility of causal inference from noise. In Section 3, we consider the 

application of NIMs to real-world datasets. In Section 4, we consider some theoretical 

implications of our argument to the epistemology of causation. In Section 5, we conclude. 

 

2. Causal Inferences from Noisy Data. As our diet soft drink example shows, there are good 

reasons for thinking that we cannot rationally infer that X causes Y from mere knowledge that X 

and Y are correlated. For the most part, defenders of the statistical orthodoxy that one cannot 

draw particular causal inferences from correlational data will agree that an observed correlation 
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between X and Y must be due either to some causal relation between X and Y or to chance.1 But 

even in cases in which we have confidence that the correlation between X and Y is due to a 

causal relation between them, it appears that from mere historical data we cannot conclude that X 

causes Y rather than Y causing X or their having a common cause. Fortunately, for many 

correlations we know not merely that X and Y are correlated, but how they are correlated. And 

this information can serve as a key to unlock an overlooked source of information for inferring 

causal relations: noise. We will now consider how this can occur. 

Let X→Y stand for the hypothesis that X causes Y, X←Y stand for the hypothesis that Y 

causes X, and X←Z→Y stand for the hypothesis that X and Y have a common cause.2 Where E 

is the historical data on which X and Y are correlated, the worry that many have about inferring 

X→Y from historical trials is that P(E|X→Y) = P(E|X←Y) = P(E|X←Z→Y). That is to say, we 

would expect X and Y to be correlated, whatever the causal connection is between them. Hence, 

                                                
1 Sober (2001) offers the following illustration of how events can be correlated over long spans 

of time in the absence of a causal link: although there is no causal connection between the price 

of bread in Britain and the height of the sea in Venice, they nevertheless both tend to increase 

over time. Correlation thus does not imply a causal connection. Nevertheless, as Sober points 

out, in many cases the hypothesis that there is no causal connection between X and Y predicts 

that there is no correlation between X and Y. (Most events that are not causally connected will 

not be correlated.) The examples we consider in this paper are all ones in which correlation does 

appear to indicate some causal connection. 
2 Note that more than one of X→Y, X←Y, and X←Z→Y could be true, and in many cases more 

than one is true. Nevertheless, we may be interested in determining whether X→Y is true, 

irrespective of whether X←Y or X←Z→Y is also true. The objection to inferring X→Y from E 

stated in this paragraph, and the response to it in the rest of this section, apply whether the 

hypotheses are compatible in a given case or not. 
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we cannot use the fact that X and Y are correlated to discriminate between the different possible 

causal connections between X and Y.  

 This argument has some plausibility. It is indeed true that, ordinarily, any of the above 

causal hypotheses will predict that X and Y will be correlated. However, ordinarily, our evidence 

E will not merely tell us that X and Y are correlated: rather, it will tell us that they are correlated 

in a specific way. And particular kinds of correlation, it turns out, will often be more likely on 

one causal hypothesis than on another. When we take into account all available historical 

evidence, then, we may indeed be able to legitimately infer (with high probability) that X→Y 

from solely historical data. 

 A familiar example of this is when our historical evidence includes temporal lags 

between X and Y. For example, circadian temperature and sunshine cycles are correlated. It is 

warmer during the day when the sun is shining and cooler at night when it is dark. But does the 

rising sun cause the earth to warm or does the warming earth cause the sun to rise? One piece of 

evidence supporting the former hypothesis is that there is a lag: if the sun crests at noon, we can 

observe that the temperatures are cooler at nine in the morning then they are at three in the 

afternoon, despite the solar intensity being the same. This lag in temperature values is more 

likely given that the rising sun causes the earth to warm than given that the warming earth causes 

the sun to rise—more likely, that is, given X→Y than given X←Y, where X is the rising sun and 

Y is the rising temperature. 

 While a temporal lag can be informative, in many cases there is no practical way to 

obtain data of sufficiently high grain to discern such lags. We will now show that even in the 

absence of temporal lag data, particular patterns of noise can be more likely given certain causal 

connections than other causal connections. 
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 Our argument will proceed via a series of progressively more complicated cases. In this 

section, we will consider four thought experiments showing the in-principle possibility of using 

patterns of noise to discriminate between X→Y, X←Y, and X←Z→Y when these hypotheses 

are mutually exclusive. In the next section, we will look at the prospects of using Noise Inference 

Methods to discriminate between causal hypotheses using real-world datasets. 

 Consider first the following simple example.  

 

 CASE 1 

Max the Mathematician has placed you in a room with two computers, X and Y. Each 

displays a number. Max tells you that he has a sliding dial that he uses to alter the number 

displayed on one of the computers, but he does not tell you which one. The number 

displayed on the other computer, he tells you, is determined by the number displayed on 

the one he controls, but it is modified by a mathematical function. If he controls X, then 

X sends a signal to Y to make its number twice X’s; if he controls Y, then Y sends a 

signal to X to make its number half Y’s. Your task is to observe the numbers displayed 

on the computers at various times, and to figure out which direction the causal influence 

is running: is X causing the output of Y? Or is Y causing the output of X? 

 

Assuming there is no discernable temporal lag between the displays, this task is 

impossible if the causation from X to Y or Y to X works perfectly as described above—for these 

two hypotheses predict any observed pairs of numbers equally well. However, suppose that Max 

admits to you that there is an occasional glitch in the message sent from the input computer to 

the output computer. In particular, this glitch leads the output computer to display a number 1 
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greater or 1 less than the value it is supposed to display. If you know this, your task is now 

possible. Suppose you record the series of values in Table 1. 

 

 X Y 

t1 .5 1 

t2 -11 -22 

t3 4 9 

 

Table 1. Your recordings from your observations of the computers in the first case. 

 

Observations t1 and t2 do not distinguish between the two causal hypotheses. Observation t3, 

however, does. Where x is the value displayed on computer X, and y is the value on computer Y, 

it is consistent with t3 that y = 2x + noise = 2(4) + noise = 8 ± 1, but it is not consistent with t3 

that x = y/2 + noise = 9/2 + noise = 4.5 ± 1. 

 In this first example, it was part of our background knowledge that either X→Y or X←Y. 

Consider now a second example, in which X←Z→Y is a third possibility.  

 

 CASE 2 

The glitch functions as before, but Max tells you that one of three causal hypotheses is 

true: either X determines Y according to the function y = 2x + noise, Y determines X 

according to the function x = y/2 + noise, or both Y and X are determined by a third 

hidden computer Z, according to the functions x = 2z + noise and y = 4z + noise. In this 

third case, the glitch might affect both output computers, it might affect just one of them, 

or it might affect neither. 
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  X Y 

t1 .5 1 

t2 -11 -22 

t3 4 9 

t4 3 4 

 

Table 2. Your recordings from your observations of the computers in the second case. 

 

Suppose you record the same three values as before, and one more, as in Table 2. In this 

case, observation t3, as before, lets you rule out x = y/2 + noise = 9/2 + noise = 4.5 ± 1. This time, 

however, observation t4 also lets you rule out y = 2x + noise = 2(3) + noise = 6 ± 1. Thus, while 

t3 is consistent with X→Y, and t4 is consistent with X←Y, they are jointly inconsistent with 

both. The only remaining hypothesis compatible with the data is X←Z→Y, according to which x 

= 2z + noise and y = 4z + noise. This hypothesis could result in t3 when z = 2, if the glitch affects 

Y but not X, and t4 when z = 1, if the glitch affects X but not Y. 

 If, instead of observing a result incompatible with X→Y, you continued to gather data 

that were consistent with both X→Y and X←Z→Y, this would be evidence that X is 

determining the output of Y. This is because, if Z is determining the output of both X and Y, you 

should expect that eventually you will see the glitch manifest itself in the value displayed on X; 

if you do not see this, this is evidence that Z is not the causal root.  

These examples illustrate how “imperfect” causation sometimes allows us to draw causal 

inferences that would be impossible if the variables we are studying were perfectly related. In 

these examples, the glitch in the program is causal noise that makes the output of our causal 

function identifiably different than its input.  
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These cases are unrealistically simple since we knew the precise possible causal functions 

and we knew the precise magnitude of the noise. Can we still use noise as evidence for causal 

hypotheses in cases that are more realistic? Let’s consider a more complicated example.  

 

 CASE 3 

As before, we have the two computers, X and Y. This time, all that Max tells you is that 

the value on one of the computers determines the value on the other according to some 

mathematical function. This process is again glitchy, but the glitch is not as constant as 

before. The glitch either adds or subtracts from the output, and it can add or subtract any 

number. However, it is more likely to add or subtract a small amount than a large 

amount. In particular, the value on the output computer differs from the true value3 by a 

particular amount with the probability represented by a normal Gaussian distribution. 

Graphically, this looks like a bell curve. 

 

 The Gaussian noise created by the glitch in this case is more realistic than the artificial 

noise pattern created by the glitch in Cases 1 and 2.4 This noise, however, also leads to 

asymmetries in our observations of the cause and the effect. Suppose that, as before, you 

                                                
3 By ‘true’ value, we mean the value derived from the function alone. 
4 Gaussian noise is common in nature partly because non-Gaussian distributions approach 

Gaussian distributions under special circumstances. The well-known Central Limit Theorem is 

one case of this. See Jaynes 2003: ch. 7 for discussion. 
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examine the values on X and Y at various times, and record your observations. This time, you 

plot them on a graph, as in fig. 1.5 

 

 

Fig. 1. Your observations from the two computers in Case 3. 

 

After collecting a large number of data points, you are able to plot the frequency of 

different values for y given particular values for x, and vice-versa. Fig. 2a shows the observed 

distribution of 610 y-values when X = 1. This distribution shows the frequency of different y-

values for the data points on the vertical dashed line in Fig. 1; the most frequent y-value is 2, 

with y-values further away from 2 occurring less frequently in a Gaussian manner. More 

generally, you find that as you collect more data, when X = x, the distribution of y-values looks 

roughly like a bell curve centered on x + x3. 

                                                
5 The graphs in this and the next example are based on computer-generated data. For more detail 

on these data and how we constructed the graphs from them, see the Appendix. 
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However, in general, the shape approached by your distribution of x-values when Y = y is 

not a bell curve. Moreover, the shape is different for different values of Y. Fig. 2b shows the 

observed distribution of 446 x-values when Y = 1. This distribution shows the frequency of 

different x-values for the data points on the horizontal dashed line in Fig. 1. 

 

 

Fig. 2a. The observed distribution of y-values when X = 1 in Case 3.  

2b. The observed distribution of x-values when Y = 1 in Case 3. 

 

You can now reason as follows. If Y were causing X according to some function x = f(y) 

+ noise, then the frequency with which X takes on different values when Y has a particular value 

should be a bell curve centered on f(y), since the glitch leads the output to deviate from its true 

value with Gaussian noise. However, this is not what you observe. Instead, you observe the 

converse: when X has a particular value, the frequency with which Y takes on different values is 

Gaussian. This is consistent with X causing Y according to the function y = g(x) + noise. 

Moreover, in general the most frequent Y-value when X = x is x + x3, suggesting that g(x) = x + 

x3.6 The hypothesis that X→Y makes a prediction that you have found to be true, while the 

                                                
6 Hoyer et al. 2009 also use this example function. 
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hypothesis that X←Y makes a prediction that you have found to be false. So in this case, you can 

again conclude, solely from historical data, that X→Y.  

Many causal functions are similar to this example in that adding Gaussian noise to them 

results in the probability distribution of the cause given the effect sometimes being non-

Gaussian. Informally speaking, this non-Gaussianity is the result of the causal noise being 

permuted by Bayes’ Theorem, where the precise character of this permutation depends on the 

prior distribution of the cause (e.g., a uniform distribution from 0 to 1), the causal function (e.g., 

squaring the cause and adding 1), and the kind of noise added to this function (e.g., Gaussian 

noise with mean 0 and variance 1).7 Hence, in many cases, if you know that the causal noise is 

Gaussian, you will be able by observation to distinguish cause from effect in the above manner.  

In Case 3, unlike in Cases 1 and 2, the noise was Gaussian and the possible causal 

functions were unknown. However, as in Case 1, you knew that either X→Y or X←Y. Let us 

finally consider a case with Gaussian noise and an unknown causal function, where there is also 

the possibility of a common cause. 

 

                                                
7 The precise shape of the distribution of cause given effect is determined by the continuous form 

of Bayes’ Theorem, according to which h(x|y) ∝ h(x)h(y|x)—that is, the relative frequency with 

which X takes on different x-values when Y = y is proportional to the relative prior frequency 

with which X takes on those values multiplied by the relative frequency with which those values 

of X lead to Y = y. This latter factor is determined by the mathematical function from cause to 

effect and the noise added to this function. Most combinations of prior distribution of the cause, 

mathematical function from cause to effect, and Gaussian noise lead to the distribution of effect 

given cause sometimes being non-Gaussian. The main exception is when the prior distribution is 

Gaussian and the function is linear. In this case the distribution of effect given cause will always 

be Gaussian. (See Section 2.1.1 of Mooij et al. 2016 for the mathematical details.) 
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CASE 4 

As in the previous cases, you are able to make observations of the values displayed on 

two computers, X and Y, and your task is to determine the causal connection between 

these values. The glitch functions as in Case 3. However, unlike in Case 3, Max tells you 

that one of three causal hypotheses is true: either X determines Y according to some 

function plus Gaussian noise, Y determines X according to some function plus Gaussian 

noise, or both X and Y are determined by a third hidden computer Z, according to some 

functions plus Gaussian noise. In this third case, the glitch functions independently in the 

signals sent from Z to X and Z to Y; that is, the Gaussian noise added to the two 

functions is independent. 

 

 

Fig. 3. Your observations from the two computers in Case 4.  

 

As in Case 3, you plot your observations on a graph. As before, if one of X and Y is the 

causal root, you should expect the distribution of the values on the other computer given a value 

for that computer to approximate a bell curve. To see whether this is the case, you plot the 

frequency of different values for y given particular values for x, and vice-versa. Fig. 4a shows the 
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observed distribution of 313 y-values when X = 1. This distribution shows the frequency of 

different y-values for the data points on the vertical dashed line in Fig. 3. Fig. 4b shows the 

observed distribution of 496 x-values when Y = 1. This distribution shows the frequency of 

different x-values for the data points on the horizontal dashed line in Fig. 3. 

 

 

Fig. 4a. The observed distribution of y-values when X = 1 in Case 4.  

4b. The observed distribution of x-values when Y = 1 in Case 4.  

 

Neither of these distributions are very Gaussian. Unlike normal distributions, both have 

non-zero skewness (i.e., they are skewed to one side). Fig. 4b also has a much higher kurtosis 

than a normal distribution (i.e., it has very long tails). The non-Gaussianity of Fig. 4b is in 

conflict with the hypothesis that Y is causing X according to some function x = g(y) + noise. 

According to this hypothesis, the frequency with which X takes on different values when Y has a 

particular value should be a bell curve centered on g(y), since the glitch leads the output to 

deviate from its true value with Gaussian noise. And the non-Gaussianity of Fig. 4a is in conflict 

with the hypothesis that X is causing Y according to some function y = f(x) + noise. According to 

this hypothesis, the frequency with which Y takes on different values when X has a particular 

value should be a bell curve centered on f(x), since the glitch leads the output to deviate from its 

true value with Gaussian noise. 
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 On the third hypothesis, however, according to which X and Y are both caused by some 

hidden cause Z, according to some functions x = h(z) + noise and y = j(z) + noise, these 

observations are not surprising. Just as the distribution of a cause given an effect is often non-

Gaussian even when the causal noise leading from the cause to the effect is Gaussian, so the 

distribution of one effect of a common cause given the other effect of a common cause is often 

non-Gaussian even when the causal noise leading from the common cause to each of the effects 

is Gaussian. 

 This case is dissimilar from Case 3 in that the precise causal function from the causal root 

to the effects is not evident merely from inspecting the conditional frequency distributions. 

Nevertheless, it is significant that you are able to tell that Z is the causal root, even without 

knowing what the causal functions are from Z to X and from Z to Y.8 

 The progression of cases above are sufficient to show the in-principle possibility of 

causal inferences from noise in a wide variety of circumstances. Table 3 summarizes the 

characteristics of the four cases. 

 

 Possible causal 
relationships 

Possible causal 
functions 

Linearity of causal 
function 

Causal noise 

Case 1 X→Y, X←Y Known Linear Non-Gaussian 

Case 2 X→Y, X←Y, X←Z→Y Known Linear Non-Gaussian 

Case 3 X→Y, X←Y Unknown Non-linear Gaussian 

Case 4 X→Y, X←Y, X←Z→Y Unknown Non-linear Gaussian 

 

Table 3. Summary of the four Max cases. 

                                                
8 In fact, the data in Case 4 were generated according to the functions x = 1/z + noise and y = 

1/z1/3 + noise. 
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Case 4 is particularly instructive. It exhibits causal inference in a case where there is the 

possibility of a common cause, the common cause is unobserved, and the causal function is 

unknown.  

 

3. NIMs in the Real World. While the cases in Section 2 demonstrate the considerable power of 

NIMs for inferring causes from historical observation, all of the above cases involve a good deal 

of idealization. In this section, we will consider the possibility of applying NIMs to real-world 

problems. We will first examine a real-world dataset using the same kind of reasoning as in the 

cases above, which will let us see some ways in which the computer-generated data in our last 

two cases differ from real-world data. We will then briefly describe what more systematic NIMs 

look like, and the extent to which these more complicated statistical algorithms have been 

successful in analyzing other real-world datasets. 

Figure 5 shows the relationship between water temperature (in Celsius) and ocean depth 

(in meters), from 1998 to 2017, between 18 and 20 degrees latitude and -153 to -123 degrees 

longitude (qualitatively: a strip of water from Hawaii to North America).9 

 

                                                
9 See the Appendix for more detail on the source of these data. 
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Fig. 5. The relationship between depth and temperature in ocean water between Hawaii and North 

America. 

 

In this case, the depth of the ocean at a location is a cause of water temperature at that location, 

and not the other way around. But suppose we did not know this, and only knew that either 

Temperature→Depth or Temperature←Depth. Could we then determine which of these causal 

hypotheses is correct? 

Let’s try approaching these data in the same way as our computer-generated data in the 

last section. We thus begin by assuming that the frequency with which the effect takes on 

different values when the cause takes on a given value will be Gaussian, but that this is unlikely 

to hold in reverse. That is, the frequency with which the effect takes on different values—when 

the cause takes on a given value—will not usually be Gaussian. We can then look at the 

frequency with which the water takes on various temperatures at a given depth, and the 

frequency with which the ocean is at different depths when the water is at a given temperature, 

and see which of these two distributions is more Gaussian. 
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 Fig. 6 shows the distributions of the other variable when we hold each variable fixed at 

its mean. Fig. 7 shows the distributions of each variable when we fix the other at its mean plus its 

standard deviation. 

 

 

Fig. 6a. The recorded distribution of depth values when temperature = 9.96 degrees Celcius. 

6b. The recorded distribution of temperature values when depth = -679.30 meters.  

 

 

Fig. 7a. The recorded distribution of depth values when temperature = 17.33 degrees Celcius.  

7b. The recorded distribution of temperature values when depth = -104.70 meters. 

 

While the difference is not as clear-cut as in Case 3, visual inspection suggests that, in 

both cases, the distribution of Temperature given Depth is more Gaussian than the converse—

(correctly) indicating that Temperature←Depth, rather than the reverse. This is a real-world 
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example in which the same kind of reasoning applied in our thought experiments in Section 2 

seems to deliver the right result.  

We stress, though, that the above analysis is primarily illustrative: this kind of visual 

inspection of individual data points would be a poor (and inefficient) method for drawing causal 

inferences from most real-world datasets. Statisticians have come up with several procedures that 

codify the kind of reasoning employed above into something more algorithmic and holistic. One 

class of these procedures10 begins with the assumption that the effect is a function of the cause 

plus Gaussian noise. A test is then run to see whether the data is a better fit to an “additive noise 

model” on which y = f(x) + N or on which x = g(y) + N, where N is Gaussian noise. The test 

involves two things. First, a regression is run to express y as a function of x, and vice-versa. 

Second, the resulting deviations from this function—what would be causal noise if this function 

correctly describes the causal relationship between X and Y—are measured to see how much 

they deviate from the assumption of Gaussianity. (This is thus a class of NIMs, rather than a 

single NIM, because it is dependent on both a regression method and a measure of Gaussianity.) 

The function that comes closer to expressing the one variable as a function of the other plus 

Gaussian noise is then preferred. 

Other NIMs exploit different kinds of asymmetries in patterns of noise, or rely on 

different assumptions about the noise. For example, Shimizu et al. (2006) describe NIMs that 

                                                
10 This kind of NIM was first described in Hoyer et al. 2009. Here we follow the description in 

Mooij et al. 2016. 
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exploit assymetries in cases with linear causation but non-Gaussian noise (like Cases 1 and 2 in 

Section 2).11 

There are a number of reasons why NIMs might be less accurate when applied to real-

world data than when applied to simulated data. The most important reason is that the 

assumptions of the NIM might be incorrect. For example, there are many reasons why an 

assumption that causal noise is Gaussian might fail. A smaller number of data points means that 

random variation is more likely to be lopsided. There may be unobserved causes which 

systematically bias our observations. Measurement or recording errors may result in anomalous 

outliers. In addition, most NIMs that have been developed assume that either X→Y or X←Y,12 

and in many real-world cases this assumption is violated. 

We take these difficulties to be calls for further work, rather than reasons to doubt the 

possibility of ever applying NIMs to real-world problems. For example, algorithms that seek to 

identify outliers in datasets in a principled way might help us remove anomalous data points that 

                                                
11 For further discussion of and references for inferring causation in these different kinds of 

cases, see the review in Mooij et al. 2016. 
12 An exception is Hoyer et al. 2008, which extends Shimizu et al.’s (2006) method for inferring 

causation from linear causation and non-Gaussian noise to the case where there may be 

unobserved confounding variables. The strongest result Hoyer et al. argue for in that paper is that 

“it is possible to estimate, up to a finite set of observationally equivalent models, causal models 

involving linear relationships between non-Gaussian variables, some of which may be hidden” 

(Hoyer et al. 2008: 376). In other words, there is a finite set of causal models (specific ways in 

which X←Z→Y or [X→Y]&[X←Z→Y] could be true) which predict the observed pattern of 

noise. This is an important result, though it falls short of our being able to use the correlational 

data to discriminate between these models. 
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make the distributions of effect given cause less Gaussian.13 As for common causation, Cases 2 

and 4 in the last section show that it is in principle possible to use NIMs to discriminate not only 

between X→Y and X←Y, but also X←Z→Y. The development of NIMs that can be used in 

real-world cases involving common causes will require attending to the various ways in which 

these cases are more complicated than Cases 2 and 4. (For example, in real-world cases, X→Y 

and X←Z→Y are often not mutually exclusive.) 

It is also worth noting that NIMs may still be effective even in cases where their 

assumptions are violated, and that to a large extent (due to our lack of knowledge of the causal 

details of real-life cases) the reliability of NIMs when applied to different kinds of datasets is an 

empirical question. Mooij et al. (2016) study the reliability of different NIMs by applying them 

to a variety of real-world and simulated datasets in which the direction of causation is already 

known (either because the dataset is computer-generated, or because we have background 

knowledge about the real-world phenomenon that already tells us the direction of causation—as 

in the example of ocean depth and temperature above). In general, they find that NIMs are more 

accurate when applied to the computer-generated datasets, even when these datasets include 

perturbations meant to model non-ideal features of real-world datasets. Applied to the real-world 

                                                
13 For an overview of outlier detection algorithms, see Hodge and Austin 2004 and Zimek and 

Schubert 2017. For the purposes of improving the accuracy of NIMs, we would want to use an 

algorithm that (a) distinguishes outliers and noise, identifying data points that are outside the 

normal variation resulting from noise in the data (Aggarwal and Yu 2001), and (b) is 

unsupervised, meaning that it requires no prior knowledge about the data (such as causal 

directionality) (Hodge and Austin 2004: 88-89). Tests on real-world data sets like those 

described below could then reveal whether combining NIMs with this algorithm improves their 

reliability. 
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datasets, the most effective class of NIMs deliver the right result between 63% and 69% of the 

time.14 (By comparison, a “coin flip” algorithm would be expected to deliver the right result 50% 

of the time.) While these accuracy levels are not yet as high as we might like, this result is 

already encouraging to the extent that the assumptions of the NIMs (such as the lack of common 

causes) are often not met in these datasets. We are hopeful that future works on NIMs can lead to 

even better results, and to their fruitful application to datasets in which the direction of causation 

is not already known. 

 

4. Theoretical Implications of NIMs. The possibility of using NIMs to draw causal inferences 

has several important theoretical implications. First, it shows that RCTs are not the only way to 

determine causal relationships: just as certain results are more or less likely in an RCT given 

X→Y, X←Y, or X←Z→Y, so certain patterns of noise in historical data are more or less likely 

given these different causal hypotheses. This lends considerable justification to the viability of 

observational studies as an alternative to RCTs, especially in cases where RCTs are practically or 

ethically problematic. Our point isn’t that RCTs are always bad, or that they are never useful. 

Nor is it that NIMs necessarily do better than RCTs by way of invariably eliminating 

confounding causal factors. Rather, our point is to show that RCTs aren’t the only game in town 

when it comes to justifying inference from correlation to causation. Not only can NIMs provide a 

viable alternative to RCTs when the ethical or practical constraints on RCTs prove too onerous 

to accept, but there are some cases in which NIMs succeed in determining causal directionality 

where an RCT would be physically impossible. Our application of NIMs to the correlation 

                                                
14 For the details, see pages 34-35 of Mooij et al. 2016. 
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between ocean temperature and depth is an example: it’s not possible for us to randomly assign 

different locations in the ocean to different depths.  

 NIMs do not only show that RCTs aren’t necessary for determining causal relationships, 

they show that in some cases no intervention at all is necessary. NIMs involve inference from 

purly observational data. (In the ocean case, there is no intervention at all. In the Max cases, 

there was an intervention, though it was not yours—namely, Max setting the value on the root 

computer. But that the value of the root variable is set by Max’s intervention is inessential to the 

cases. Cases 1-4 could be redescribed so that the observed values of X and Y are measurements 

of some other variables, and the process which determines the distribution of values for the root 

variable is unknown.) 

Not only is no intervention necessary for NIMs, nothing even like an intervention is 

necessary. Scheines (2005), for example, has argued that causal search algorithms that use 

dependencies and independencies in observed data to derive the causal graphs consistent with 

those data15 (given certain assumptions that need not be elaborated here), while they do not 

require interventions on the network, may require observations of variables that function like 

interventions. In particular, he notes that the Fast Causal Inference algorithm proposed by Spirtes 

et al. (2000) only allows us to infer that X→Y if we have an observed variable Z that either 

directly causes X or shares a common cause with X, is not an effect of X, and is not a direct 

cause of Y. This is similar to the requirement for experimental studies that an intervention I on X 

should be a direct cause of X and not a direct cause of Y. The observed variable Z has, in effect, 

taken the place of the intervention variable I on X in allowing us to infer that X→Y. 

                                                
15 This is a burgeoning literature, with Pearl 2000 and Spirtes et al. 2000 among the classic texts. 
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 NIMs do not require the presence of any variable like Z. In Case 3 in Section 2, you are 

able to infer that X→Y even though you only observe two variables: X and Y. You need not 

observe any variables that either cause X or share a common cause with X. So NIMs allow for 

causal inference in cases in which Spirtes et al.’s algorithm does not.  

 Other conditions proposed as necessary for causal inferences are also not needed for 

NIMs. For example, Clarke et al. (2014), who are critical of the predominance of RCTs in 

evidence-based medicine, argue that in order to establish X→Y, one needs to establish both that 

X and Y are correlated and that there is a mechanism that can explain the causal influence of X 

on Y. While some of our examples did rely on background knowledge, we do not necessarily 

need mechanistic knowledge in order to predict the unique noise signatures from different causal 

hypotheses. The inferences in the Max cases would still be possible even if you had no 

knowledge of the mechanism of causation. As long as you have some way of observing the 

values of X and Y, you do not even need to know what these values represent (they could be 

recordings of measurements of some external variables, for all you know). You could still infer 

that X←Z→Y in Case 4, for example, provided that you knew the values of X and Y, that either 

X→Y, X←Y, or X←Z→Y, and that the causal noise was Gaussian.  

We have seen that not only are interventions not necessary to draw causal inferences 

from noise, neither are observed variables that function like interventions, nor are other kinds of 

background conditions like mechanistic knowledge. One moral of this is that it is a mistake to try 

to lay down general substantive necessary conditions on when it is possible to draw causal 

inferences. Causal hypotheses may often have consequences without our immediately being able 

to see that they have those consequences (or test for them given our current technology and 

resources). From the fact that right now we can only see one way in which the predictions of two 
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theories differ, we should not conclude that in the future new ways to discriminate between them 

will not be discovered. 

 Another major theoretical implication of NIMs concerns how we understand noise. Noise 

is standardly taken to be something unwanted or unexplained. For example, Floridi’s (2016) 

entry in the Stanford Encyclopedia of Philosophy defines noise as “data received but unwanted.” 

Pierce (1980: 291) similarly holds noise to be “[a]ny undesired disturbance in a signaling 

system.” And Scales and Snieder (1998: 1123) define noise as “that part of the data that we 

choose not to explain.” The existence of NIMs shows definitions along these lines to be 

misleading. When employing a NIM, we are using noise to make causal inferences. As Case 1 

made clear, in some situations, we can make causal inferences from the data only if it is noisy. In 

such cases, noise is not unwanted, nor do we choose not to explain it. Noise is not invariably 

what obscures causal signals—it can be a causal signal of its own, providing invaluable clues to 

the nature of the causal relations. 

Finally, the possibility of drawing causal inferences from noise gives us reason to be 

wary of the goal of striving to reduce the amount of noise in our data. Sometimes the very data 

that appear to be keeping us from solving our problem can—when looked at in a new way—be 

used to establish our desired conclusions. Just as we should not close off the possibility of 

drawing inferences from hitherto unrecognized consequences of different theories, we should be 

cautious about throwing out evidence whose relevance is not immediately apparent. There may 

be a considerable amount of data collected by researchers that appears to be useless. The 

existence of NIMs should, however, give researchers pause when considering the value of their 

noisy data. Instead of casting such data aside, they should consider whether there may be 

statistical techniques able to extract causal information from the data. And as data storage is 
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becoming increasingly inexpensive, the prospect of emerging NIMs shedding light on old 

datasets argues for an increased effort to archive raw data in the hope that they may eventually 

be reanalyzed with NIMs.  

 

6. Conclusions. NIMs call for a revision of the epistemology of causation. Philosophers and 

scientists often argue that RCTs are needed to demonstrate causation (e.g., Fisher 1947; Papineau 

1994), or they simply assume the necessity of RCTs for causal knowledge (e.g., the evidence 

hierarchies offered by the evidence-based medicine movement). If we are right, RCTs are not the 

only way of obtaining causal knowledge, and in many cases they may not be the best way of 

generating this knowledge. Variables that are correlated will be correlated in specific ways. The 

way that they are correlated may support one or more causal hypothesis. In particular, the 

noisiness of the causal link between X and Y is a source of causal information that has not been 

appreciated by the philosophical world.16 If X and Y are causally linked, and if this link exhibits 

noise, the noise will tend to be asymmetric. This asymmetry can be a basis of causal inference, 

allowing us to discriminate between causal hypotheses such as X→Y, X←Y, and X←Z→Y.  

 NIMs call into question the standard way of understanding the nature and importance of 

noise. Noise is generally considered a nuisance, something we should strive to eliminate to 

expose the hidden causal relations. Because NIMs require noise to make causal inferences, while 

                                                
16 The word ‘noise’ does not appear in key treatments of the metaphysics and epistemology of 

causation such as the Philosophy Compass article “Introduction to the Epistemology of 

Causation” (Eberhard 2009), nor does it appear at the time of writing in relevant Stanford 

Encyclopedia of Philosophy entries, such as “The Metaphysics of Causation,” “Causation and 

Manipulability,” “Probabilistic Causation,” or “Causal Processes.” 
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some noise may be a nuisance, noise may more often be a blessing—a window into the causal 

structure of the world.   

 

Appendix 

The graphs for Case 3 (Figures 1-2) were constructed from 250,000 randomly generated data 

points. We began with a normal distribution of X-values with mean 0 and variance 1. Then we 

generated Y values according to the function y = x + x3, plus Gaussian noise with mean 0 and 

variance 1. 

To calculate the frequency of different y-values when X = 1, we took the 610 data points 

at which X = 1 to two significant digits, i.e., X = 1.00 +/- .005. To calculate the frequency of 

different x-values when Y = 1, we took the 446 data points at which Y = 1 to two significant 

digits, i.e., Y = 1.00 +/- .005. 

The graphs for Case 4 (Figures 3-4) were constructed from 250,000 randomly generated 

data points. We began with a normal distribution of Z-values with mean 0 and variance 1. Then 

we generated X according to the function x = 1/z, plus Gaussian noise with mean 0 and variance 

1; and Y according to the function y = 1/z1/3 + noise, plus (independent) Gaussian noise with 

mean 0 and variance 1. 

To calculate the frequency of different y-values when X = 1, we took the 313 data points 

at which X = 1 to two significant digits, i.e., X = 1.00 +/- .005. To calculate the frequency of 

different x-values when Y = 1, we took the 496 data points at which Y = 1 to two significant 

digits, i.e., Y = 1.00 +/- .005. 

Figures 5-7 were generated from 339,266 data points from Argo (www.argo.ucsd.edu/), a 

global array of ocean measurement floats. These data points came from the 3067 Argo floats 
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operative from 1998 to 2017 between 18 and 20 degrees latitude and -153 to -123 degrees 

longitude. The floats measure depth (in meters) by recording pressure (in decibars). We removed 

data points that were blank, corrupt, or contained obvious recording errors—i.e., numbers several 

orders of magnitude greater than all the other numbers in the data. These removals did not affect 

the data used in generating Figures 6-7. 

To two significant digits, the mean temperature in our remaining data (in degrees Celsius) 

was 9.96, and the standard deviation was 7.37. The mean depth (in meters) was -679.32 and the 

standard deviation was 574.47. Figures 6 and 7 were constructed using the measurements of the 

uncontrolled variable when the measurements for the controlled variable were closest to their 

mean (for Figure 6), and mean + standard deviation (for Figure 7). In particular, Figure 6a was 

constructed from the 30 data points at which recorded temperature was (exactly) 

9.95899963378906, Figure 6b was constructed from the 23 data points at which recorded depth 

was (exactly) -679.299987792969, Figure 7a was constructed from the 10 data points at which 

recorded temperature was (exactly) 17.3279991149902, and Figure 7b was constructed from the 

11 data points at which recorded depth was (exactly) -104.699996948242. 
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