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SUMMARY
Mass spectrometry (MS)-based phosphoproteomics has revolutionized our ability to profile phosphoryla-
tion-based signaling in cells and tissues on a global scale. To infer the action of kinases and signaling path-
ways in phosphoproteomic experiments, we present PhosR, a set of tools and methodologies implemented
in a suite of R packages facilitating comprehensive analysis of phosphoproteomic data. By applying PhosR
to both published and new phosphoproteomic datasets, we demonstrate capabilities in data imputation and
normalization by using a set of ‘‘stably phosphorylated sites’’ and in functional analysis for inferring active
kinases and signaling pathways. In particular, we introduce a ‘‘signalome’’ construction method for identi-
fying a collection of signaling modules to summarize and visualize the interaction of kinases and their
collective actions on signal transduction. Together, our data and findings demonstrate the utility of PhosR
in processing and generating biological knowledge from MS-based phosphoproteomic data.
INTRODUCTION

Protein phosphorylation is an essential regulatory mechanism in

cellular signal transduction. Elucidating changes in phosphoryla-

tion is crucial for understanding how cells sense and respond to

environmental cues and perturbations (Humphrey et al., 2015a).

Advances in mass spectrometry (MS)-based technologies have

enabled us to quantify changes in phosphorylation of tens of thou-

sands of phosphorylation sites in the phosphoproteome of cells

(Sharma et al., 2014). Although these technological advances

have enabled the generation of large-scale phosphoproteomic

data (Macek et al., 2009), computational methods for phospho-

proteomic data analysis remain in relative infancy. Upstreamchal-

lenges in the analysis workflow include phosphosite filtering,

handling missing values, and batch effect correction (Tyanova

et al., 2016). Beside challenges in data processing, a major

obstacle in phosphoproteomics is the lack of annotated phospho-

sites (Needham et al., 2019). Without knowledge of cognate ki-

nase(s) for the majority of phosphosite sites, the identification of

regulated phosphosites by themselves provides an incomplete

view of signaling network function. Moreover, most phosphopro-

teomic studies still rely on an analysis framework in which phos-
C
This is an open access article under the CC BY-N
phorylation is evaluated site specifically, although studies have re-

vealed that many proteins are phosphorylated at multiple sites, of

which some are targeted by orthogonal kinases. Adopting a phos-

phosite-centric analysis would therefore ignore any interactions

and relationships between phosphosites from the same protein

and any co-regulation of proteins at multiple sites.

Currently, only a handful of computational tools are suited to

processing and downstream analysis of phosphoproteomic

data. For example, although a large number of imputation algo-

rithms have been developed for proteomic data (Webb-Robert-

son et al., 2015), significantly fewer methods are available for

phosphoproteomic data (Tyanova et al., 2016). Similarly, a vari-

ety of methods developed for normalizing and batch-correcting

genomic and transcriptomic data (Johnson et al., 2007; Risso

et al., 2014) have been used for phosphoproteomic data normal-

ization, but very few are specifically tailored for this task. For the

downstream analysis of phosphoproteomic data, a number of

tools (Beekhof et al., 2019; Casado et al., 2013; Mischnik et al.,

2016) use kinase-substrate annotations to infer the activity of a

kinase by evaluating the phosphorylation status of its substrates;

however, these tools rely on a limited number of kinase-sub-

strate relationships predicted or curated in databases (Dinkel
ell Reports 34, 108771, February 23, 2021 ª 2021 The Author(s). 1
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et al., 2011; Hornbeck et al., 2012) and may therefore restrict

insight that could be obtained from unannotated sites. Although

these methods can be used in conjuncture with methods that

predict kinase-substrate relationships in a phosphoproteomic

data agnostic manner (Horn et al., 2014; Wong et al., 2007),

the use of motifs or a protein-protein interaction network over-

looks the dynamic and context-specific nature of phosphoryla-

tion. Compared to these approaches, more recent methods

such as PHOTON (Rudolph et al., 2016), CoPhosK (Ayati et al.,

2019), CoPPNet (Ayati et al., 2020), and PHONEMeS (Terfve

et al., 2015) use a data-driven approach to infer phosphoryla-

tion-based networks by using phosphosite-level interactions.

These methods enable us to begin addressing issues related

to the specificity of kinase-substrate relationships and context-

specific regulation but do not currently take into account how

a set of phosphosites may be co-regulated within and across

proteins.

Here, we developed a phosphoproteomic analysis pipeline

called PhosR (Figure 1A) to address key issues in processing

and downstream analysis of large-scale phosphoproteomic data

and applied the components of PhosR to a panel of published

and new skeletal muscle cell phosphoproteomic datasets. We

demonstrate the impact of imputation on downstream analysis,

introduce ‘‘stably phosphorylated sites’’ (SPSs) and highlight their

utility in phosphoproteomic data normalization and integration;

and develop a kinase-substrate scoring method that leverages

the dynamic profiles of canonical substrates and through which

the global relationships of kinases and substrates can be anno-

tated. We then use these annotations (1) to identify cognate

proteins with phosphosites of similar regulatory profiles by inter-

preting phosphorylation sites in the context of their protein of

origin; and (2) to construct ‘‘signalomes’’ of large-scale kinase

and substrate relationships on the basis of these protein modules

and, by doing, so reconstruct the interactions between kinases

and their collective action on signal transduction pathways. Using

our approach, we demonstrate distinct modules of cognate pro-

teins that characterize the response of rat L6 myotubes to treat-

ment with the 50 AMP-activated protein kinase (AMPK) agonist

5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR)

and/or insulin stimulation. In particular, our approach revealed a

module that is predominantly regulated by AMPK and is charac-

terized by AMPK-activated phosphosites whose phosphorylation

is attenuated with concurrent insulin stimulation. This finding re-

veals previously unappreciated interactions between the AMPK

and insulin signaling pathways involved in coordinating skeletal

muscle glucose transport and insulin sensitivity. Together, our

data and findings demonstrate the utility of PhosR from various

aspects of phosphoproteomic data processing toward generating

biological insight from MS-based phosphoproteomic data and

facilitating deeper understanding of existing and future large-

scale phosphoproteomic resources.

RESULTS

Pre-processing phosphoproteomic data with PhosR
strengthens biological signal for downstream analysis
To first demonstrate the handling of missing data in PhosR, we

used a phosphoproteome profiling dataset from FL83B and
2 Cell Reports 34, 108771, February 23, 2021
Hepa 1-6 cells stimulated with insulin (Humphrey et al., 2015b).

We conducted a stepwise imputation approach, comprising

site- and condition-specific imputation (scImpute) and paired-

tail imputation (ptImpute) that takes into account the value of

quantified phosphosites as well as the experimental design

(see STARmethods).We demonstrate that with the PhosR impu-

tation, the percentage of quantified phosphosites rises to 80%

across all samples (Figure S1A) and the biological replicates

from each of the four conditions are now correctly clustered (Fig-

ure 1B). In comparison, both the background imputation and the

k-nearest neighbor imputation did not lead to correct clustering

of biological replicates under all conditions (Figure S1B). Next, to

evaluate the impact of imputation on downstream analysis, we

compared the number of differentially phosphorylated sites

before and after imputation (Figure S1C). Interestingly, we found

that although the number of differentially up- and downregulated

sites nearly doubled in FL84B cells, imputation also led to an

almost 3-fold decrease in the number of upregulated sites in

Hep 1-6 cells, bringing the up- and downregulated sites to a rela-

tively comparable range (Figure S1C). Using pathway enrich-

ment analysis on the phosphoproteome summarized to protein

level with the phosCollapse function in PhosR (see STAR

methods), we further show that the differentially phosphorylated

sites from the imputed datasets are more enriched for the key

pathways related to insulin signaling (Figure 1C). Together, these

findings suggest PhosR imputation strengthens biological sig-

nals and facilitates downstream pathway analysis.

Identification of a set of SPSs from phosphoproteomic
data
Several commonly used data normalization approaches such as

the ‘‘removal of unwanted variation’’ (RUV) (Gagnon-Bartsch and

Speed, 2012) require a set of internal standards that are known

to be unchanged biologically in the samples measured. This is

a challenge for phosphoproteomics because phosphorylation

is highly dynamic, with diverse regulation across different cell

types and experimental conditions. To explore whether we could

identify a set of phosphorylation sites that might meet the criteria

of being ‘‘stably phosphorylated’’ across multiple phosphopro-

teomics datasets, we used four high-quality datasets generated

from different cell types and experimental conditions (see STAR

methods). We performed a four-way overlap of the four datasets

and found 1,207 phosphosites common to all four datasets (Fig-

ure S1D). To identify SPSs, we ranked the overlapping phospho-

sites on the basis of their absolute log2 fold change (Figure S1E)

and generated a consensus ranking by using a statistical frame-

work (see STAR methods) for which phosphosites with consis-

tently small fold changes are highly ranked and those with large

fold changes are lowly ranked (Figures S1F and S1G). The top

100 phosphosites from the consensus list are referred hereafter

as SPSs.

Normalization using SPSs removes unwanted variation
in phosphoproteomic data
To evaluate the utility of SPSs in phosphoproteomic data

normalization, we applied RUV-III (Molania et al., 2019) with

SPSs (denoted as ‘‘RUVphospho’’) to normalize the phospho-

proteomic data of rat L6 myotubes treated with AICAR, an
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Figure 1. Overview of the main components of PhosR and impact on downstream analysis

(A) The key modules in PhosR are categorized into two broad steps of data analytics—processing and downstream analysis.

(B) Hierarchical clustering of biological replicates from phosphoproteomic experiments profiling FL83B and Hepa1-6 liver cells under basal or insulin-stimulated

conditions.

(C) Enrichment of various signaling pathways known to be associated with insulin signaling before (black) and after (orange) imputation.
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analog of adenosine monophosphate (AMP) that stimulates

AMPK activity, and insulin either individually or in combination

(Figure 2A; see STAR methods). Before normalization, hierarchi-

cal clustering and principal component analysis (PCA) of the my-

otube phosphoproteomic data revealed a batch effect that is

driven by experiment runs for samples treated with insulin (Fig-

ures 2B and 2C, left panels), whereas normalization with RUV-

phospho effectively corrects this (Figures 2B and 2C, right

panels).

Integrating multiple phosphoproteomics datasets from inde-

pendent studies is typically challenging because signal derived

from technical sources such as high-performance liquid chroma-

tography (HPLC) and mass spectrometer performance charac-

teristics often dominate biological signals. To illustrate the ability

of RUVphospho to enable the integration of phosphoproteomics

data from independent studies, we used two time-course data-

sets from early and intermediate insulin signaling from mouse

liver (Humphrey et al., 2015b). This study was not included

among the four used to select the SPSs. It contains two overlap-

ping time points in each time series (0 s and 30 s), thus providing

the opportunity to integrate the time series into a single compre-

hensive dataset. Prior to normalization, hierarchical clustering of

the combined datasets reveals separation of the independent

time series. Applying RUVphospho effectively integrates the

two datasets, as demonstrated by the clustering of 0- and 30-s

time point samples from the two datasets (Figure 2D). Closer in-

spection of the temporal phosphorylation change of phosphosite

AKT1 T309, one of the most important markers of AKT activity in

response to insulin stimulation (Humphrey and James, 2012), re-

veals a smoother temporal profile following normalization with
RUVphospho. Importantly, normalization using data scaling

and quantile normalization did not result in the correction of

batch effect found in these datasets (Figures S1H–S1J). Collec-

tively, these results demonstrate the normalization procedure in

PhosR facilitates effective batch correction and integration of

phosphoproteomic data.

Dual-centric analyses to detect regulated pathways and
kinases in phosphoproteomic data
Most phosphoproteomic studies have adopted a phosphosite-

level analysis of the data. To enable phosphoproteomic data

analysis on the protein level, PhosR implements both site- and

protein-centric analyses for detecting changes in kinase activ-

ities and signaling pathways through traditional enrichment ana-

lyses (over-representation or rank-based gene set test, together

referred to as ‘‘one-dimensional enrichment analysis’’) as well as

two-dimensional (2D) and three-dimensional (3D) analyses (Fig-

ure 1A). To test which signaling pathways are activated upon in-

sulin stimulation in myotubes, we performed protein-centric

enrichment analyses on the normalized myotube phosphopro-

teomic dataset by using both over-representation and rank-

based gene set tests (Figure S2A). We found several expected

pathways including those associated with mTORC1, AKT, and

ERK signaling. Although these highly enriched pathways were

largely in agreement between the two types of enrichment ana-

lyses, the rank-based gene set test had much greater statistical

power in detecting these pathways (Figure S2B).

The two- and three-D analyses implemented in PhosR use di-

rection-based statistics (Yang et al., 2014, 2016) that enables the

investigation of kinases regulated by different combinations of
Cell Reports 34, 108771, February 23, 2021 3
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Figure 2. Normalization and batch correction using RUV and SPSs in PhosR

(A) Experimental setup of the phosphoproteomic profiling experiment in L6 myotubes in which phosphoproteomic analysis of cells were performed under the

basal conditions or following treatment with the AMPK agonist AICAR, insulin (Ins), or in combination (AICAR+Ins).

(B) Dendrogram of all biological replicates before and after RUVphospho normalization of the myotube phosphoproteomic data. Samples are colored by

experimental condition.

(C) PCA of the myotube phosphoproteomes before and after RUVphospho normalization. Each point represents a sample and is colored by experimental

condition.

(D) Hierarchical clustering of phosphoproteomic datasets from early and intermediate in situ insulin stimulation of mouse liver before and after RUVphospho

normalization. Samples are colored by time point and dataset.

(E) Log2 fold change in phosphorylation of AKT1 T309 upon insulin stimulation before and after implementation of PhosR normalization.
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treatments. Applying this to the myotube phosphoproteome da-

tasets, we found that, as expected, the activity of AMPK,marked

by PRKAA1 (the catalytic alpha-1 subunit of AMPK), is upregu-

lated following both AICAR and AICAR+Ins treatments but re-

mains unchanged by insulin treatment alone (Figure S2C, top

two panels). Strikingly, we found that the AICAR-induced upre-

gulation of AMPK catalytic activity is attenuated by the addition

of insulin as is observed from the kinase activity plot of AICAR

versus AICAR+Ins (Figure S2C, bottom left panel). These pair-

wise comparisons can be summarized using the 3D analysis

for which the three comparisons are integrated into a single sta-

tistical analysis to highlight the combinatorial effect of different

treatments on PRKAA1 activity (Figure S2D).

Global kinase-substrate relationship scoring of
phosphosites using PhosR
A key challenge in analyzing phosphoproteomics data is in iden-

tifying kinases responsible for the phosphorylation of specific

sites. although various computational tools can be applied to
4 Cell Reports 34, 108771, February 23, 2021
annotate potential kinases of particular phosphosites on the ba-

sis of their amino acid sequences or structural information (Trost

and Kusalik, 2011), most methods do not directly consider cell

type and/or treatment/condition specificity of phosphorylation.

To this end, PhosR implements a multi-step kinase-substrate

scoring method in which first the likelihood of a kinase to

regulate a phosphosite is scored by combining both kinase

recognition motifs and the dynamic phosphorylation profiles of

sites. The combined scores across all kinases are then inte-

grated using an adaptive-sampling-based positive-unlabeled

learning method (Yang et al., 2019a) to prioritize the kinase

most likely to regulate a phosphosite (see STAR methods). The

application of the proposed scoring method to the myotube

phosphoproteome uncovers potential kinase-substrate pairs

(Figure 3A, row dendrogram) and global relationships between

kinases (Figure 3A, column dendrogram). A Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway overrepresentation

analysis of the kinase-substrate pairs highlights over-repre-

sented pathways known to be associated with each kinase
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Figure 3. Global kinase-substrate relationship scoring of the myotube phosphoproteome

(A) A clustered heatmap of the combined kinase-substrate score for the top three phosphosites of all evaluated kinases. A higher combined score denotes a

better fit to a kinase motif and kinase-substrate phosphorylation profile of a phosphosite.

(B) Bar plots showing profile, motif, and combined scores and positive-unlabeled ensemble learning prediction score of the top-ranked AMPK substrates.

(C) Bar plots showing the log2 fold change in phosphorylation level of the top-ranked AMPK substrates after treatment with AICAR, insulin, and combined

treatment. Error bars denote standard deviation from the four biological replicates.
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(Figure S3A). The kinase dendrogram reveals three major kinase

groups governing the myotube phosphoproteome (AGC kinases

[e.g., RPS6K and AKT isoforms], CMGC kinases [e.g., MAPKs],

and CAMK kinases [e.g., AMPK catalytic subunits PRKAA1

and PRKAA2]). In particular, our kinase-substrate scoring

method confirms several well-established substrates of AMPK

such as ACACA S79, AKAP1 S103, SMCR8 S488 (Hoffman

et al., 2015), and MTFR1L S100 (Schaffer et al., 2015) while

also finding new candidate AMPK substrates such as XIRP1

S532 and MAP4K4 S791 (Figures 3A, 3B, and S3B). In agree-

ment with our 2D kinase enrichment analysis (Figure S2C, bot-

tom left panel), we demonstrate that the phosphorylation profiles
of several of these AMPK substrates show a strong upregulation

of phosphorylation upon AICAR stimulation that is attenuated

when myotubes are co-stimulated with insulin (Figure 3C).

Construction of signalomes from discrete modules of
co-regulated proteins
Proteins are frequently phosphorylated at multiple sites and

often by orthogonal kinases. Site- and protein-centric analyses

of phosphoproteomics data lie at opposite ends of the spectrum,

with the former treating phosphosites on the same protein inde-

pendently and ignoring the host protein information and the latter

focusing on a specific site, losing information from other sites on
Cell Reports 34, 108771, February 23, 2021 5
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the same protein. Because of the lack of appropriate methods,

the question of whether proteins are co-regulated across multi-

ple phosphosites remains poorly investigated. Leveraging our

global kinase-substrate scoring of phosphosites, we set out to

generate signalomes wherein dynamic changes in phosphoryla-

tion within and across proteins are conjointly analyzed.

We developed an approach to generate signalomes

comprising discrete protein modules with phosphosites sharing

similar dynamic phosphorylation profiles and kinase regulation

(Figure 4A; see STAR methods). Using this approach, we show

that themyotube phosphoproteome stimulated by AMPK activa-

tion and/or insulin stimulation contains six discrete protein mod-

ules. The resulting map of signalomes demonstrates that the

modules are regulated by different kinases and at various pro-

portions (Figure 4B). Notably, the signalome map highlights a

module (blue, module 3) entirely regulated by AMPK catalytic ac-

tivity (PRKAA1 and PRKAA2) and others (orange, module 1; and

green, module 4) that are co-regulated by AMPK with other ki-

nases, suggesting potential signaling crosstalk (Figure 4B). We

then zoomed in to the extended AMPK signalome (see STAR

methods) from the signalome network (Figure 4C) and found

distinct phosphorylation profiles between the three protein mod-

ules (Figures 4D and S3D). Consistent with previous reports

(Kjøbsted et al., 2015), the phosphorylation of sites in modules
6 Cell Reports 34, 108771, February 23, 2021
1 and 4 show synergistic effects upon AICAR and insulin stimu-

lation. Yet, in agreement with our kinase activity analysis, module

3—predominately regulated by AMPK alone—displays activity

that is enhanced by AICAR and attenuated by insulin (Figure 4D).

DISCUSSION

Here, we present PhosR, a complete set of methods and tools

for phosphoproteomic data processing and downstream anal-

ysis. Using PhosR, we have at once addressed many current

challenges facing phosphoproteomic data analysis. We have

addressed issues of data imputation, normalization, and inte-

gration through RUVphospho, supported by defining a set of

SPSs, which we include in the PhosR package as a resource

to the community. Processing of phosphoproteomics data

with PhosR facilitated the extraction of differentially phosphor-

ylated proteins with greater biological relevance, demonstrated

by the strengthened signal of known pathways. RUVphospho

normalization enabled datasets from independent studies to

be integrated and eliminated batch effects without affecting

biological signal.

Biochemically assigning phosphosites to their cognate kinase

is an experimentally labor-intensive process and may be

affected by the experimental system used. Moreover, because
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of the great complexity within phosphoproteomes, many kinase-

substrate relationships are likely to be context- and cell-type

specific, further complicating efforts to elucidate them. Our

global kinase-substrate scoring method enables computational

inference of kinase activities specific to experimental conditions

and cellular systems and the construction of signalomes wherein

both dynamic and differential phosphorylation changes in phos-

phosites within and across proteins are taken into account. Us-

ing this approach, we could identify proteins co-regulated at the

following three levels: (1) across experimental conditions, (2) be-

tween multiple phosphosites, and (3) by similar kinase

regulation. In doing so, we can begin investigating these layers

of complexities in signal transduction networks. Although the

lack of annotated phosphosites remains a major challenge in

phosphoproteomics studies (Needham et al., 2019), much prog-

ress has being made with the systematic mapping of kinases

acting upstream of a large number of phosphorylation sites

(Hijazi et al., 2020). We anticipate that as the number of experi-

mentally validated kinase-substrate annotations increases the

prediction accuracy and our capacity to recapitulate the under-

lying signaling network will also increase.

Previous research has demonstrated that skeletal muscle

AMPK activation, following AICAR treatment or exercise, influ-

ences muscle glucose transport and insulin sensitivity. In

particular, prior stimulation of skeletal muscle with AICAR to

stimulate AMPK activity has been shown to enhance the sensi-

tivity with which insulin stimulates glucose uptake (Kjøbsted

et al., 2015). Our approach to generate modules of co-regu-

lated proteins enabled the discovery of three sets of proteins

with phosphosites that are regulated by AMPK in the stimulated

myotube phosphoproteome (Figures 4A and 4B). Consistent

with previous knowledge, we found two modules that exhibited

enhanced phosphorylation upon insulin treatment if they were

first stimulated by AICAR, demonstrating a synergistic effect

between insulin and AMPK signaling pathways (Figure 4D).

Indeed, we observed TBC1D1 among the proteins, which has

been implicated in the AMPK-dependent increase of muscle

glucose uptake and insulin sensitivity (Dokas et al., 2013;

Kjøbsted et al., 2015; Taylor et al., 2008). Intriguingly, our

approach also revealed a module entirely regulated by AMPK,

and unlike the other two, the phosphosites found here demon-

strated strong activation by AICAR treatment and no sensitivity

to insulin stimulation alone. Strikingly, the AICAR-induced acti-

vation of phosphorylation on these sites was attenuated by the

addition of insulin, suggesting a negative regulatory effect of in-

sulin on the phosphorylation of AMPK substrates (Figure 4D).

Because the key differences between these modules are differ-

ential kinase regulation of phosphosites and the presence of in-

sulin-sensitive sites, we postulate that the interplay of AMPK

with other kinases such as MAPKs and S6K may occur to stim-

ulate diverse actions on different signaling pathways. In conclu-

sion, our signalome construction method is applicable to

diverse datasets that profile dynamic changes in the phospho-

proteomes, enables inference of kinase activities through visu-

alization of kinase interactions and their collective action on

signal transduction pathways, and supports the interpretation

of phosphoproteomic data at a level beyond the analysis of

phosphosites in isolation.
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Crowther, D., Mann, M., and Klabunde, T. (2016). IKAP: A heuristic framework

for inference of kinase activities fromPhosphoproteomics data. Bioinformatics

32, 424–431.

Molania, R., Gagnon-Bartsch, J.A., Dobrovic, A., and Speed, T.P. (2019). A

new normalization for Nanostring nCounter gene expression data. Nucleic

Acids Res. 47, 6073–6083.

Needham, E.J., Parker, B.L., Burykin, T., James, D.E., and Humphrey, S.J.

(2019). Illuminating the dark phosphoproteome. Sci. Signal. 12, eaau8645.

Ong, S.-E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey,

A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture,

SILAC, as a simple and accurate approach to expression proteomics. Mol.

Cell. Proteomics 1, 376–386.

Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S.,

Kundu, D.J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., et al. (2019). The

PRIDE database and related tools and resources in 2019: improving support

for quantification data. Nucleic Acids Res. 47, D442–D450.

Risso, D., Ngai, J., Speed, T.P., and Dudoit, S. (2014). Normalization of RNA-

seq data using factor analysis of control genes or samples. Nat. Biotechnol.

32, 896–902.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K.

(2015). limma powers differential expression analyses for RNA-sequencing

and microarray studies. Nucleic Acids Res. 43, e47.

Rudolph, J.D., de Graauw, M., van de Water, B., Geiger, T., and Sharan, R.

(2016). Elucidation of Signaling Pathways from Large-Scale Phosphoproteo-

mic Data Using Protein Interaction Networks. Cell Syst. 3, 585–593.e3.

Schaffer, B.E., Levin, R.S., Hertz, N.T., Maures, T.J., Schoof, M.L., Hollstein,

P.E., Benayoun, B.A., Banko, M.R., Shaw, R.J., Shokat, K.M., and Brunet, A.

(2015). Identification of AMPK Phosphorylation Sites Reveals a Network of

Proteins Involved in Cell Invasion and Facilitates Large-Scale Substrate Pre-

diction. Cell Metab. 22, 907–921.

Sharma, K., D’Souza, R.C.J., Tyanova, S., Schaab, C., Wi�sniewski, J.R., Cox,

J., andMann,M. (2014). Ultradeep human phosphoproteome reveals a distinct

regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 8, 1583–1594.

Taylor, E.B., An, D., Kramer, H.F., Yu, H., Fujii, N.L., Roeckl, K.S.C., Bowles,

N., Hirshman, M.F., Xie, J., Feener, E.P., and Goodyear, L.J. (2008). Discovery

of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus

in mouse skeletal muscle. J. Biol. Chem. 283, 9787–9796.

Terfve, C.D.A., Wilkes, E.H., Casado, P., Cutillas, P.R., and Saez-Rodriguez, J.

(2015). Large-scale models of signal propagation in human cells derived from

discovery phosphoproteomic data. Nat. Commun. 6, 8033.

Trost, B., and Kusalik, A. (2011). Computational prediction of eukaryotic phos-

phorylation sites. Bioinformatics 27, 2927–2935.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R.,

Botstein, D., and Altman, R.B. (2001). Missing value estimation methods for

DNA microarrays. Bioinformatics 17, 520–525.

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann,

M., and Cox, J. (2016). The Perseus computational platform for comprehen-

sive analysis of (prote)omics data. Nat. Methods 13, 731–740.
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Software and algorithms

R version 3.6.1 https://www.R-project.org/

MaxQuant 1.5 Cox and Mann, 2008 https://www.biochem.mpg.de/5111795/

maxquant

DirectPA 1.4 Yang et al., 2014 https://cran.r-project.org/web/packages/

directPA/index.html

Limma 3.32.2 Ritchie et al., 2015 https://bioconductor.org/packages/

release/bioc/html/limma.html

clusterProfiler 3.14.4 Yu et al., 2012 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

circlize 0.4.9 (Gu et al., 2014) https://cran.r-project.org/web/packages/

circlize/index.html

PhosR 1.0 This paper https://bioconductor.org/packages/

release/bioc/html/PhosR.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests for reagent and resource may be directed to and will be fulfilled by the Lead Contact, Dr. Pengyi

Yang (pengyi.yang@sydney.edu.au).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The myotube phosphoproteomic data described in this study are deposited to the ProteomeXchange Consortium (http://

proteomecentral.proteomexchange.org/cgi/GetDataset) via the PRIDE (Perez-Riverol et al., 2019) partner repository. The accession

number for the data reported in this paper is PRIDE: PXD019127.

The PhosR package is available as a Bioconductor package (https://bioconductor.org/packages/release/bioc/html/PhosR.html)

and the latest development version and associated vignette are available from Github repository (https://pyanglab.github.io/

PhosR/). All source code is published under the open-source license of GPL-3.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study utilized a collection of published phosphoproteomic datasets and profiled the phosphoproteome of myotubes in response

to AICAR and insulin stimulation (new data). The published datasets used in this study include (i) the ‘ESC differentiation’ dataset
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where a cocktail of treatments were applied to differentiate mouse embryonic stem cells (ESCs) to epiblast-like cells (Yang et al.,

2019b) (PRIDE: PXD010621); (ii) the ‘Adipocyte FGF21’ dataset (Minard et al., 2016) (PXD003631) where the phosphoproteome of

3T3-L1 adipocytes treated with either insulin or FGF21 were profiled using SILAC quantification; (iii) the ‘Adipocyte insulin, LY,

and MK’ dataset (Humphrey et al., 2013) where the phosphoproteome of 3T3-L1 adipocytes treated with either insulin in a time-

course or LY and MK prior to insulin were profiled using SILAC quantification; (iiii) the ‘FL83B and Hepa 1-6 Insulin’ dataset (Hum-

phrey et al., 2015b) (PXD001792) where the phosphoproteome of FL83B and Hepa 1-6 cells in basal and treated with insulin were

profiled using label-free quantification; and (iv) the ‘Mouse liver insulin’ datasets (Humphrey et al., 2015b) (PXD001792) where the

phosphoproteomes of mouse livers treated with insulin were profiled in an early time-course and an intermediate time-course using

label-free quantification.

Rat L6myoblasts (RRID: CVCL_0385), which have no reported sex (Yaffe, 1968), were grown andmaintained in a-Minimum essen-

tial medium (a-MEM; GIBCO by Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS; Hyclone Laboratories) in

a 10% CO2 humidified incubator at 37�C. Cells were routinely checked for the absence of mycoplasma using the MycoAlert PLUS

Mycoplasma Detection Kit (Lonza).

Stable isotope labeling by amino acids (SILAC) labeling (Ong et al., 2002) of L6 myoblasts was performed by supplementing SILAC

DMEM (deficient in Lysine, Arginine and Leucine; Thermo Fisher Scientific) with 10% FBS (Hyclone Laboratories), ‘light’ Leucine and

either ‘light’ or ‘heavy’ Lysine (13C8) and Arginine (13C10) (Silantes) to generate two different isotopically labeled cell populations. L6

myoblasts were cultured for at least five passages to allow sufficient SILAC amino acid incorporation (i.e., > 98%). SILAC labels were

switched between the basal and AICAR and/or insulin-treated groups in two out of four biological replicates to account for any effects

of isotopically labeled amino acids. SILAC-labeled L6myoblasts at�90% confluence and between passage number 14 and 16 were

differentiated into myotubes in SILAC DMEM containing 2% FBS. L6 myotubes were treated and harvested between 6 and 8 days

post-initiation of differentiation. Prior to treatments, myotubes were washed twice with PBS and twice with SILAC DMEMwith 0.2%

BSA (Bovogen Biologicals) prior to serum starvation in SILAC DMEM with 0.2% BSA. All cells remained in serum starvation medium

for 1.5 h and either left in the basal condition or stimulated for the final 30min with 2mMAICAR (Toronto Research Chemicals) and/or

20 min with 100 nM bovine insulin (Sigma).

Following cell harvesting and mixing of equal protein content from light and heavy SILAC cell populations, proteins were tryp-

sinised and fractionated using strong cation exchange chromatography and phosphopetides were enriched and analyzed by

LC-MS/MS as described previously (Hoffman et al., 2015). Raw MS data were processed using MaxQuant (Cox and Mann,

2008) (version 1.5) by searching with the following variable modifications: methionine oxidation; and serine, threonine and tyro-

sine phosphorylation. First search and main search peptide tolerances were set to 20 ppm and 4.5 ppm, respectively, in Max-

Quant (default settings) and product-ion mass tolerance set to 0.02 Da. An FDR cutoff of 0.01 was used at the peptide level for

selecting high confidence peptide identifications. Phosphosites with a localization score of 0.75 or higher were retained for

analysis.

METHOD DETAILS

Phosphosite Filtering and Imputation
MS-based phosphoproteomic data commonly contain a large amount of missing values due to biological and technical reasons.

PhosR implements a collection of data filtering and imputation methods for dealing with missing values in a phosphoproteomic data-

set. For filtering, PhosR allows users to specify an overall quantification rate (i.e., the percentage of quantification) of a phosphosite

across all biological replicates of all conditions (or time points in a time-course experiment) fromwhich phosphosites with lower quan-

tification rate would be removed from further analysis. While this overall quantification rate filtering is straightforward to implement,

more flexible filtering procedures are needed in many scenarios. One common scenario is that a phosphosite is only phosphorylated

in a specific condition (or treatment) but not in other conditions. Let us denote the quantification rate of a phosphosite in biological

replicates of a condition as qt ðt = 1.TÞ where T is the number of conditions (or time points in the case of time-course data). PhosR

implements the function selectGrpswhich allows phosphosites with a qt value equal to or greater than a predefined threshold in one

or more conditions to be retained. A schematic example is shown in Figure S4A. In addition, for time-course data, PhosR implements

the function selectTimes which allows phosphosites with a qt value equal or greater than a predefined threshold in two or more

consecutive time points to be retained.

For data imputation, PhosR implements multiple methods to take advantage of data structure and experimental design. These

include site- and condition-specific imputation (scImpute) where, in a condition, the missing values of a phosphosite with a qt value

equal or greater than a predefined threshold will be imputed by sampling from the empirical normal distribution constructed from the

quantified values of that phosphosite in that condition (Figure S4B); tail-based imputation (tImpute), similar to those described in Tya-

nova et al. (2016), where the missing values were imputed from the tail of the empirical normal distribution with a default setting of

N ðm�s31:6; s30:6Þ constructed from the quantified values across all sites in a sample (Figure S4C); and paired tail-based impu-

tation (ptImpute) where for a phosphosite that have missing values in all replicates in a condition (e.g., ‘basal’) and a qt value equal or

greater than a predefined threshold in another condition (e.g., ‘stimulation’), the tail-based imputation is applied to impute for the

missing values in the first condition (Figure S4D).
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For comparison, we also applied generic imputation methods including background imputation and k-nearest neighbor imputa-

tion. For background imputation, all missing values were replaced with the lowest detected value in a phosphoproteomics data (Vä-

likangas et al., 2018). For k-nearest neighbor imputation, the algorithm identifies k (default of 10) most similar phosphosites for a site

that contains missing value(s) (Troyanskaya et al., 2001).

Identification of Stably Phosphorylated Sites and Data Normalization
To identify a set of stably phosphorylated sites (SPSs) for subsequent data normalization and batch effect correction, we utilized four

independent datasets including ‘ESC differentiation’, ‘Adipocyte FGF21’, ‘Adipocyte insulin, LY, and MK’ and ‘Hepa 1-6 and FL83B

insulin’ (see Experimental Data). Specifically, these include the phosphoproteome data from the time-course of mouse embryonic

stem cell differentiation (Yang et al., 2019b) (‘ESC differentiation’), phosphoproteomic data of control and FGF21 treatedmouse 3T3-

L1 adipocytes (Minard et al., 2016) (‘Adipocyte FGF21’), phosphoproteomic data of FL83B and Hep 1-6 cells (‘FL83B & Hep 1-6 in-

sulin’; processed as described in the previous section), and phosphoproteomes of control and insulin stimulated, and kinase inhibitor

treated mouse 3T3-L1 adipocytes (Humphrey et al., 2013) (‘Adipocyte insulin, LY, & MK’). We selected phosphosites that were iden-

tified in all four datasets and then applied multiple steps to rank the selected phosphosites. For each dataset, let us denote the log2

quantification of a selected phosphosite compared to a control condition as sti ðt = 1.TÞwhere T is the number of conditions or time

points in that dataset. We first calculated the rank of each phosphosite by maxðabsðsti ÞÞ in each dataset. This captures the maximum

magnitude of changes, either up- or downregulation, of each phosphosite in each of the four datasets.We next converted the ranks of

phosphosites in each dataset into z-scores from which we calculated the p-values pi ði = 1; 2; 3; 4Þ for each phosphosite in each of

the four datasets. The p-values of each phosphosite were then integrated into a single combined p-value using Fisher’s methods:

pcombined = p

 
c2
d > � 2

X4
i = 1

logðpiÞ
!

The pcombined was used to generate the final consensus ranking of phosphosites identified in all four dataset and the top-100 sites that

show the overall minimum phosphorylation level changes were selected as SPSs.

To perform data normalization and batch effect correction, we implemented a wrapper function RUVphosphowhich makes use of

SPSs identified above as ‘negative controls’ in the RUV method using the version RUV-III (Molania et al., 2019). When the input data

contains missing values, tail-based imputation will be applied to impute for themissing values since RUV-III requires a complete data

matrix (Figure S4E). The imputed values are removed by default after normalization but can be retained for downstream analysis. For

comparison, data scaling, where each sample was first centered and then divided by its standard deviation, and quantile normali-

zation (Bolstad et al., 2003) were also applied for normalizing and correcting batch effects.

Protein- and Phosphosite-centric Enrichment Analyses
To enable enrichment analyses on both gene and phosphosite levels, PhosR implements a simplemethod called phosCollapsewhich

reduces phosphosite level of information to the protein level by selecting the sites with either the maximum (by default) or minimum

absðsti Þ ðt = 1.TÞ values as the representative of phosphorylation changes of their respective proteins. Phosphosite-centric ana-

lyses are performed using kinase-substrate annotation information from PhosphoSitePlus and protein-centric analyses are per-

formed using Reactome and KEGG databases while other pathway annotation databases such as Gene Ontology can also be

used aswell. For testing enrichment, PhosR implements two typical methods including over-representation test (using Fisher’s Exact

test) and rank-based gene set test (using Wilcoxon rank-sum test), and together refer to as 1-dimensional enrichment analyses.

PhosR also provide a single interface to unify several methods developed previously for analyzing multiple experimental conditions

simultaneously (refered to as 2- and 3-dimensional enrichment analyses) (Yang et al., 2014, 2016).

Kinase-substrate Prioritisation of Phosphosites
To identify potential kinases that could be responsible for the phosphorylation change of a phosphorylation site, we implement a

multi-step framework that contains two major components including (i) a kinaseSubstrateScore function which scores a given phos-

phosite using kinase recognition motif and phosphoproteomic dynamics, and (ii) a kinaseSubstratePred function which synthesize

the scores generated from (i) for predicting kinase-substrate relationships using an adaptive sampling-based positive-unlabelled

learning method (Yang et al., 2019a). The kinase-substrate scoring function combines both kinase recognition motif (i.e., motif

matching score) and experimental perturbation (i.e., profile matching score) for prioritising kinases that may be regulating the phos-

phorylation level of each site quantified in the dataset. To calculate the motif matching score for each kinase, all kinases and their

substrate peptide sequences from PhosphoSitePlus database were used to compile position-specific scoring matrices (PSSMs)

as follows:

Pk
j =

1

Nk
M

X
Nk
M

Iðxj = aÞ

where k ðk = 1.KMÞ is the index of kinases, Nk
M is the number of substrate sequences included for calculating the PSSM for the kth

kinase, j is the index to a position in sequence x (with a window size of 13 surrounding the sites of phosphorylation), and a is the set of
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characters corresponding to the 22 amino acids. Then, a motif matching score is calculated for each of all phosphorylation sites si by

scoring their surrounding amino acid sequences xi against each of all PSSMs for quantifying the phosphorylation preference of ki-

nases to each phosphosite:

Mk
si
=
X

xi;j 3Pk
j

For calculating profile matching score, the phospho-quantification of each site in the phosphoproteomic data is first z-score trans-

formed. Then, for each of all kinases, PhosR searches in the phosphoproteomic data for any known substrates of each of all kinases.

For each kinase that have one or more known substrates quantified in the phosphoproteomic data ðNk
DÞ, the z-score transformed

dynamic phosphorylation profiles of its known substrates are median averaged (denoted as dk ðk = 1.KDÞ, where Kd is the total

number of kinases that have a quantified substrate profile). Next, the profile matching scores of each phosphosite quantified in

the dataset are calculated by using Pearson’s correlation with respect to the averaged profiles of known substrates of each of all

kinases:

Dk
si
=

P�
si � si

��
dk � dk

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP�

si � si

�2P�
dk � dk

�2r

The final combined score of a phosphosite si with respect to a kinase k is the weighted average of themotif matching score and profile

matching score by taking into the number of sequences and substrates used for calculating the motif and profile of the kinase (Fig-

ure S3C). Specifically, the weights for the two parts of a kinase are calculated aswk
M = log2ðrðNk

MÞ + 1ÞÞ andwk
D = log2ðrðNk

DÞ + 1ÞÞ and
the combined score is calculated as:

Ck
si
=

�
wk

M

wk
M +wk

D

�
Mk

si
+

�
wk

D

wk
M +wk

D

�
Dk

si

While the combined score calculated above takes into account both motif and phosphorylation profile of a phosphosite in prioritising

kinases that may be responsible for their phosphorylation changes, these scores for each kinase are calculated independently from

each other. To maximize the information in determining kinase-substrate relationships, PhosR implements a machine learning

methodwhere the combined scores across all kinases are used as learning features to predict for kinasesPðk
���si; C1

si
.CK

si
Þ for a given

phosphosite si. One of the key issues in training machine learning models for predicting kinase substrates is the need to curate a set

of training examples for each kinase. This is difficult for most kinases because the numbers of known substrates are prohibitively

small for training predictive models. To this end, we implemented in PhosR the AdaSampling-based positive-unlabelled ensemble

of support vector machines (SVMs) as described previously (Yang et al., 2019a). For each kinase the top 30 highly ranked phospho-

sites (based on the combined scores) are used initially as positive examples for training SVMs for predicting substrates of that kinase

and the AdaSampling procedure is used to subsequently update the training examples based on the model confidence on each

phosphosite.

Signalome Construction
To construct signalomes wherein kinase regulation of protein modules can be identified, we developed an approach where wemake

direct use of the kinase-substrate prioritisation scores from the functions kinaseSubstrateScore and kinaseSubstratePred.

A similarity matrix of phosphosites is generated from the combined score from the kinaseSubstrateScore function by using Pear-

son’s correlation as the similarity metric. The resulting matrix provides a correlation of the kinase-substrate scoring of phosphosites

against all other phosphosites. The similarity matrix is then used to hierarchically cluster the phosphosites into groups with distinct

profiles. Because the kinase-substrate scoring is a combined score of both kinase recognition motif (i.e., motif matching score) and

experimental perturbation (i.e., profile matching score) for a phosphosite against all kinases, the phosphosites are partitioned into

clusters on the basis of all these components, while taking into account the global relationships between kinases. The total number

of phosphosite clusters is determined as the number of clusters wherein the mean correlation is equal to or above 0.5 for all clusters.

When there are multiple scenarios where all clusters have an average correlation equal to or above 0.5, the set of clusters with the

highest average correlation is chosen.

Given that many proteins are found to have multiple differentially regulated phosphosites, many of which were predicted to be

regulated by different kinases, we devised a method to evaluate phosphoproteomic data whereby the regulation of multiple phos-

phosites can be analyzed at the protein-level (therefore allowing both a protein- and site-centric analysis). To this end, we con-

structed a phosphosite co-assignment matrix based on the phosphosite clusters and the proteins they reside on. The co-assignment

matrix essentially provides a way to assign phosphosites of each protein across the clusters, generating a profile of assignment. As

proteins will show different profiles in terms of their overall phosphosite membership across the clusters, we are able to create mul-

tiple combinations of protein assignment. The assignment is a binary score, meaning that the frequency with which a protein is as-

signed is not considered, ensuring that the co-assignment matrix does not bias toward proteins with many phosphosites. The final

co-assignments, herein referred to as ‘‘protein modules,’’ consist of exclusive sets of proteins with similar phosphorylation profiles

and kinase regulation.
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TheSignalomes function generates a visualization of the signalomes present in the phosphoproteomic data. For the visualization of

signalomes, it does so by using the protein modules identified from above and the kinase-substrate predictions from the kinaseSub-

stratePred function. A cut-off of 0.5 is used as default (signalomeCutoff = 0.5) to capture kinase-substrate relationships (Figure S3B).

Then an adjacency matrix depicting the regulation of proteins by kinases is used to generate a chord diagram from the circlize pack-

age. This method of visualization provides a summary of the kinase regulation of each protein module. The Signalomes function also

outputs signalomes associated to any kinase of interest (referred to as extended signalome of a kinase). To facilitate assessment of

proteins and phosphosites that are under similar regulation, the extended signalome of a kinase combines cognate signalomes from

other kinases that share a high degree of similarity in substrate regulation.

Additional Functions
PhosR also provide a set of helper functions that enable various tasks related to phosphoproteomics data processing and analysis.

These include (but not limited to) data standardization, centering and scaling normalization, calculation of amino acid position-spe-

cific frequencymatrix, ANOVA analysis, and filtering for phosphosite localization probability. Details of these functions are provided in

the PhosR Bioconductor package (https://pyanglab.github.io/PhosR/) and the associated vignette.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differentially Phosphorylated Phosphosites
Differentially phosphorylated sites were identified using the two-sidedmoderated t-test implemented in the limmaRpackage (Ritchie

et al., 2015). Analyses were done on log (base 2)-transformed data and p-values were adjusted for multiple testing using Benjamini-

Hochberg FDR correction at a= 0:05.

KEGG Pathway Over-representation Analysis
Pathway over-representation analysis was performed on protein sets identified from our kinase-substrate scoring analysis (kinase-

substrate pairs with score > 0.5 were selected) using the over-representation analysis implemented in the clusterProfiler R package

(Yu et al., 2012). The KEGG pathway database was used and p-values were adjusted for multiple testing using Benjamini-Hochberg

FDR correction at a= 0:05.
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