Emotions running high: Examining the effects of supervisor and subordinate emotional stability on emotional exhaustion

Emily M. David a,⁎,1, Mindy K. Shoss b,2, Lars U. Johnson c,3, L. Alan Witt d,4

a Department of OB/HRM, China Europe International Business School (CEIBS), 699 Hongfeng Road, Pudong, Shanghai, 201206, PR China
b Department of Psychology, University of Central Florida, Psychology Building Room 347, 4111 Pictor Lane, Orlando, FL 32816, United States
c Department of Psychology, Wayne State University, 5057 Woodward Ave. 7th Floor, Detroit, MI 48202, United States
d Department of Psychology, University of Central Florida, Psychology Building Room 347, 4111 Pictor Lane, Orlando, FL 32816, United States

⁎ This author wrote the large majority of the manuscript and lead the project.
1 This author wrote portions of the paper and was involved with the data analysis.
2 This author was involved in data collection, analysis, and revision process.
3 This author wrote the large majority of the manuscript and lead the project.
4 This author sourced the data and conceived of the rough idea for the study.

We sought to better understand the impact of leader emotional stability on follower burnout. Drawing on conservation of resources theory, we examined the emotional exhaustion consequences of supervisor-subordinate emotional stability congruence. Study 1 consisted of 299 light construction and maintenance workers and their supervisors. Study 2 was comprised of 294 workers at a city permits office and their supervisors. As hypothesized, both samples revealed that the highest levels of subordinate emotional exhaustion occurred when both supervisor and subordinate emotional stability were low. Our polynomial regression results suggest that the effects of leader and follower emotional stability are not simply a matter of similarity; subordinates low in emotional stability are disproportionately and negatively impacted by a low-emotional stability leader.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Studies abound chronicling the negative effects that ineffective, emotional, and/or unsupportive supervisors have on employees (Liang, Hanig, Evans, Brown, & Lian, 2017; Schyns & Schilling, 2013). Although the popular press is also quick to place the blame on “bad bosses” who are making employees emotionally and physically ill (e.g., Anderson, 2014), researchers have recently posited that a more comprehensive picture of leadership can be painted by examining the joint impact of supervisor and subordinate characteristics (Chan & McAllister, 2014; Zhang, Wang, & Shi, 2012). In light of the widely accepted notion that leaders do not behave identically with each of their followers (Uhl-Bien, Riggio, Lowe, & Carsten, 2014) and research showing that specific types of followers are more likely to mimic the emotional displays of others (Johnson, 2008; Sy & Choi, 2013), we suggest that certain supervisor-subordinate combinations are more caustic than others. To investigate this notion, we examined the joint effects of supervisor and subordinate emotional stability on employee emotional exhaustion.

Applying conservation of resources (COR; Hobfoll, 1989) theory as a guiding paradigm, we view low supervisor emotional stability as a potential resource threat to employees. In contrast and other things being equal, high emotional stability leaders are unlikely to act as a threat to subordinate resources and this results in low levels of subordinate emotional exhaustion. Rather than acting as a universal stressor across all subordinates, however, we argue that the potential negative effects of low leader emotional stability are likely to be more strongly experienced by certain types of employees. Consistent with work suggesting that employees vary in their responses to leader behavior as a result of their individual characteristics (e.g., De Hoogh & Den Hartog, 2009) as well as those who note that certain employees are more susceptible to emotional contagion (Doherty, 1997; Hatfield, Cacioppo, & Rapson, 1994), we propose that subordinate level of emotional stability affects the extent to which low supervisor emotional stability results in subordinate emotional exhaustion.

With this study, we aimed to contribute meaningfully to the personality and leadership literatures. First, and in line with COR theory, we introduce the role of leader personality as a potential contextual resource threat for certain employees. We propose that supervisors who are lower rather than higher in emotional stability are more likely to manifest more negative moods, resulting in greater subordinate emotional exhaustion for those who are either...
chosen as targets or who are particularly susceptible to negative mood contagion. In doing so, we sought to reconcile equivocal research examining the outcomes of leader personality (e.g., Hoober & Hu, 2013; Matthiesen, Einarsen, & Mykletun, 2011; Sulea, Fine, Fischmann, Sava, & Dumitru, 2013) by demonstrating that low supervisor emotional stability disproportionately affects the degree of burnout among low-emotional stability subordinates. We also sought to answer calls to understand how leader and follower characteristics interact to influence subordinate outcomes (e.g., Uhl-Bien et al., 2014; Tuncdogan, Acar, & Stam, 2017). Finally, we aimed to advance theory related to leader-subordinate personality congruence by showing that certain traits (i.e., emotional stability) may be more complicated than fit or similarity-attraction frameworks (Byrne, 1971) might dictate.

2. Theory and hypothesis development

2.1. Emotional exhaustion and conservation of resources

Emotional exhaustion reflects general feelings of being worn-down, overextended, and drained of emotional and energy resources (Maslach, Schaufeli, & Leiter, 2001) and is widely considered to be the key dimension of job burnout (Halbesleben & Buckley, 2004). In addition to extensive negative health effects for employees (Leiter et al., 2013), emotional exhaustion poses substantial organizational costs in terms of lower productivity (Halbesleben & Bowler, 2007).

Scholars have applied COR theory to explain how resource threats and insufficient personal resources culminate in emotional exhaustion (Halbesleben & Buckley, 2004; Hobfoll, 1989). This theory posits that a key motivating force in people is to attain and protect the resources at their disposal (Hobfoll, 1989). People are threatened and experience exhaustion: (a) at the thought of losing resources, (b) at the actual loss of resources, and (C) at the failure to gain resources after investing other resources (Brotheridge & Lee, 2002). Hobfoll (1989, p. 516) defined resources as “those objects, personal characteristics, conditions, or energies that are valued by the individual” as well as efforts used to attain them. Higher (lower) levels of resource threats and fewer resources result in greater (lower) exhaustion over time (Alarcon, 2011).

2.2. The impact of supervisor emotional stability

Although scholars have hypothesized that leader personality can influence important subordinate outcomes since the early trait theories of leadership (cf. DeRue, Nahrgang, Wellman, & Humphrey, 2011), there has been a renewed interest in examining leader individual differences of late (Tuncdogan et al., 2017). One such leader trait, emotional stability, reflects the tendency to be calm during a crisis, patient with employees, and unflustered in the face of obstacles. Leaders low in this trait, alternatively, tend to be moody, defensive, and callous (Costa & McCrae, 1992). Several studies suggest that leaders low in emotional stability are rated as poor-performing and ineffective bosses (e.g., Judge, Bono, Ilies, & Gerhardt, 2002). Demonstrate decreased inspiration and role modeling (Bono & Judge, 2004), and fail to regulate extreme and “dark side” behaviors (Kaiser, LeBreton, & Hogan, 2015).

As a result, one might expect supervisors low in emotional stability to function as resource threats to their followers who have to expend resources to navigate such a tumultuous emotional environment. However, despite the intuitiveness of the notion that low supervisor emotional stability results in undesirable outcomes for subordinates, several studies have failed to support hypotheses linking supervisor emotional stability to leader behaviors and employee outcomes. For example, one attempt to relate leader emotional stability with task- and change-oriented behaviors was unsuccessful (DeRue et al., 2011). Similarly, relationships between supervisor emotional stability and aggression have not been supported (Burton, Taylor, & Barber, 2014). Still others have failed to replicate the emotional stability and abusive supervision link (e.g., Sulea et al., 2013), and recent meta-analytic evidence suggests that a rather weak relationship exists between these two factors ($r = 0.12$; Mackey, Zenk, Brover, Buckley, & Harvey, 2007). Leaders are likely to direct aggression and ridicule at followers who are either: (a) depressed, anxious, and submissive, or (b) aggressive, antagonistic, and annoying (Aquino & Bradley, 2000).

As low-emotional stability employees tend to experience a host of negative emotions fitting both profiles, they are more often the victims of bullying, incivility, and abuse (Aquino & Thau, 2009). That is, individuals who are either meek and unlikely to fight back or those who are annoying and provocative themselves may likely be targeted with rigorous control and micromanagement (Matthiesen et al., 2011) as well as harsh critiques of less-than-perfect work and unreasonable demands of work quality (Hoober & Hu, 2013; Mackay et al., 2013) by low-emotional stability bosses. Whether the low-emotional stability supervisor is looking to pick a fight or is simply searching for a scapegoat, low-emotional stability employees are likely to fit the bill.
Exposure to hostile moods and behaviors is likely to result in a very taxing experience for low-emotional stability employees, in turn, depleting their emotional, physical, and cognitive resources (Hobfoll, 1989). Indeed, the general consensus in the literature suggests that negative leader behaviors are among the more serious threats to physical and emotional resources that yield employee emotional exhaustion (Schyns & Schilling, 2013; Yuan, Xu, & Li, 2018).

Supporting the second theoretical mechanism, we look to the emotions literature and note that low-emotional stability leaders are more likely to experience a range of negative emotions including depression, anxiety, and anger than those high in emotional stability (Costa & McCrae, 1992). As the emotions of the more powerful member are frequently transferred to the less powerful member in dyads (Anderson, Keltner, & John, 2003), we expect that negative leader moods will trickle down to subordinates and function as a strong situational resource threat (e.g., Barsade, 2002). However, emotional contagion scholars have argued that although these negative emotions can be passed from person to person through a contagion process (Hatfield et al., 1994), this transmission is highly contingent upon the receiver's susceptibility to emotional contagion (Johnson, 2008; Sy & Choi, 2013), particularly within leader-follower dyads (Nguyen, Ashkanasy, Parker, & Li, 2018).

Susceptibility refers to the extent to which an individual is prone to adopting the emotions of others as their own (Doherty, 1997; Hatfield et al., 1994). Although we expect that a low-emotional stability leader may “pass on” their negative emotions to followers, low-emotional stability followers in particular may be more likely to “automatically mimic and synchronize facial expressions, vocalizations, postures, and movements with those of another person and, consequently, to converge emotionally” (Hatfield et al., 1994, p. 5) than employees high in emotional stability. Specifically, and aligned with research showing that people who are unable to regulate their own emotions may be particularly susceptible to emotional contagion (Papousek, Freudenthaler, & Schulter, 2008), we suggest that low subordinate emotional stability is a trait that involves or subsumes emotional contagion susceptibility.

Supporting this prediction, previous research has shown that follower perceptions, traits, and capabilities act as important moderators of the effects of leader emotion (e.g., Kafetsios, Athanasiadou, & Dimou, 2014). Moreover, Doherty (1997) reported that personality characteristics, including emotional stability, contribute to an individual's susceptibility to emotional contagion. High-emotional stability (and therefore emotional contagion resistant) employees are likely to emerge from a low-emotional stability leader's rampages relatively unscathed. Low-emotional stability subordinates, in contrast, are likely to be the target of the leader's rage, and they may also be more likely to mirror these negative emotions, leading these employees to experience a sharper depletion of resources and increased emotional exhaustion. Supporting this prediction, research has demonstrated that both low-emotional stability (Alarcon, Eschleman, & Bowling, 2009) and negative emotional contagion (Bakker, Schaufeli, Sixma, & Bosveld, 2001) lead to heightened burnout.

It is important to note that our prediction differs from that offered by relational demography (e.g., Guillaume, Brodbeck, & Ritketa, 2012) or person-environment fit (e.g., Kristof-Brown, Zimmerman, & Johnson, 2005) perspectives. The logic of these theoretical frameworks relies on the similarity-attraction paradigm (Byrne, 1971) and proposes that supervisor-subordinate dyads that are more similar in personality have greater interpersonal liking and attraction, more coordination, and a shared perspective regarding work goals (Meglino, Ravlin, & Adkins, 1991; Tepper, Moss, & Duffy, 2011). We argue that a straightforward (dis)similarity approach is insufficient to understand the complex interactive impact of supervisor and subordinate emotional stability. Although similarity may typically lead to interpersonal liking and shared understanding, it is unlikely that supervisor-subordinate dyads where both are low in emotional stability enjoy a mutually beneficial relationship, despite their similarity in this dimension. In this case, the pairing of two hostile members in a dyad is likely to result in explosive interpersonal interactions and potentially harmful consequences, particularly for the subordinate. Aligned with these arguments, we proposed:

Hypothesis. Congruence at low levels of emotional stability (i.e., when supervisor and subordinate emotional stability are both low) will be associated with higher levels of emotional exhaustion than either incongruence or congruence at high levels of emotional stability.

3. Study 1 method

3.1. Participants and procedure

Our first study consisted of a sample of 299 of 470 (64%) employees nested under 35 supervisors working in a North American public-sector organization, providing sufficient power to test our hypothesis. The workers performed light construction and maintenance tasks in field locations accompanied by their respective supervisors. On average, each supervisor was responsible for 12.28 employees (SD = 5.40). The employees frequently had to work together to complete their job tasks. On our behalf, human resources officials sent memoranda to supervisors requesting that they ask their subordinates to participate in the study and that they communicate that participation would be anonymous and on a strictly voluntary basis. Employees were asked to report to a meeting room at their respective sites. Upon arrival, they were informed of the study, provided a chance to ask questions, and given an opportunity to discontinue their involvement in the project. We provided surveys preprinted with the supervisor’s code number, which we created for the study. The subordinates provided no demographic information in order to protect their identity given the sensitive nature of the questions. On a separate occasion, supervisors took a personality inventory. We matched the supervisor and employee data using the supervisor’s code number.

3.2. Measures

3.2.1. Emotional exhaustion

We used the 5-item emotional exhaustion subscale of the Maslach Burnout Inventory – General Survey (MBI-GS; Maslach, Jackson, & Leiter, 1996). We presented the items (e.g., “I feel emotionally drained from my work”) on a 5-point scale (1 = “definitely disagree” to 5 = “definitely agree”).

3.2.2. Personality predictors

Both supervisors and subordinates rated themselves on the 10-item version of the emotional stability scale of Goldberg (1999) FFM trait markers in the International Personality Item Pool. Items were rated on a 5-point scale (1 = “Very Inaccurate” to 5 = “Very Accurate”).

3.2.3. Control variable

We included group size as a control variable, as it may theoretically impact subordinate perceptions of leader behavior and

3 Neither this study nor Study 2 was preregistered in an independent, institutional registry. The organization providing the data requested that we keep the raw data private, only reporting the summary of our findings as it includes proprietary information.
emotional exhaustion. Employees in a large group may be able to hide from their supervisor more easily, are numerically less likely to be targeted with abusive supervision behaviors, and have access to additional sources of support. Because exposure to negative leader behaviors is likely a function of group size and differential between group members (e.g., Aquino & Thau, 2009; Henle & Gross, 2014), it is important to address why a particular employee may be exposed to particular leader behaviors independent of the fact that in smaller groups there is simply a higher likelihood due to fewer group members (i.e., all employees in the group may be subject to negative emotional displays). Because of the nature of the study, we did not gather any demographic information.

4. Study 1 results

Table 1 presents the descriptive statistics and correlation matrix. As shown there, subordinate emotional stability was negatively related to subordinate emotional exhaustion ($r = -0.38$, $p < .01$). Supervisor emotional stability was unrelated to subordinate emotional exhaustion ($r = -0.07$, ns). Both of the control variables—the mean group emotional stability ($r = -0.20$, $p < .01$) and group size ($r = -0.14$, $p < .05$)—were significantly related to the outcome.

The data are nested such that subordinates are grouped under supervisors. We hypothesized that subordinate emotional exhaustion is predicted by subordinate emotional stability and the interaction between subordinate and supervisor emotional stability, controlling for group size and mean group emotional stability. We estimated a null random intercept model to determine significant variance in emotional exhaustion between groups exists, thus rendering multilevel the appropriate tool for analysis. The significant between-group variance ($\tau^2 = 0.06$, 95% CI [0.02, 0.22]; ICC (1) = 0.06, 95% CI [0.02, 0.19]) justified our use of multilevel analysis (Snijders & Bosker, 2011). Accordingly, we proceeded with multilevel analysis after mean-centering all individual level predictors and modeling the respective group mean.

We present the results of the polynomial regression analyses in Table 2. We followed procedures recommended by Edwards (2002), Edwards and Parry (1993), and Shanock, Baran, Gentry, Pattison, and Heggestad (2010) using polynomial regression and response surface analysis to assess our agreement hypothesis. Polynomial regression is an extension of the basic interaction approach and is particularly useful for our purposes because it allows us to examine the impact of supervisor and subordinate emotional stability at different levels of congruence (i.e., both high in emotional stability versus both low in emotional stability) as well as different levels of incongruence (i.e., supervisor emotional stability > subordinate emotional stability, and vice versa). Polynomial regression is arguably superior to other agreement techniques because it allows for the expression of each variable’s independent and joint contribution to the variance in the outcome, whereas alternative techniques (e.g., difference scores) confound this information (Shanock et al., 2010). Additionally, whereas the parameter estimates yielded from the polynomial terms are not directly interpretable, these estimates can be used to evaluate four surface test values (a_1, a_2, a_3, and a_4) that are used to evaluate the nature of the agreement and construct the response surface graph.

The slope of the line of perfect agreement (Employee Emotional Stability = Leader Emotional Stability) is given by $a_1 = (b_1 + b_2)$. As presented in Table 2, the slope of the line of perfect agreement was both significant and negative, $a_1 = -0.71$, SE = 0.14, $p < .001$. The negative sign indicates that as employee and leader emotional stability increase, emotional exhaustion decreases. As illustrated by

Table 1

Descriptive Statistics and Intercorrelation Matrix for Study 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emotional Exhaustion</td>
<td>2.83</td>
<td>1.01</td>
<td>3.68</td>
<td>2.56</td>
<td>1.88</td>
<td>1.92</td>
<td>2.56</td>
</tr>
<tr>
<td>Supervisor Emotional Stability</td>
<td>0.38</td>
<td>0.09</td>
<td>0.06</td>
<td>0.16</td>
<td>0.08</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>Group Size</td>
<td>0.29</td>
<td>0.08</td>
<td>0.13</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.13</td>
</tr>
<tr>
<td>Mean Group Emotional Stability</td>
<td>-0.20</td>
<td>0.13</td>
<td>0.44</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mean Group Emotional Stability</td>
<td>-0.03</td>
<td>0.18</td>
<td>0.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note. $N = 298$; *$p < .05$; **$p < .01$; ***$p < .001$; alpha reliability coefficients on the diagonal.

Table 2

Polynomial Regression Results Predicting Subordinate Emotional Exhaustion.

<table>
<thead>
<tr>
<th>Variable</th>
<th>γ</th>
<th>SE</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.24***</td>
<td>0.58</td>
<td>5.56</td>
<td><.001</td>
</tr>
<tr>
<td>Employee Emotional Stability (b_1)</td>
<td>-0.50***</td>
<td>0.08</td>
<td>-6.58</td>
<td><.001</td>
</tr>
<tr>
<td>Leader Emotional Stability (b_2)</td>
<td>-0.21</td>
<td>0.12</td>
<td>-1.66</td>
<td>.10</td>
</tr>
<tr>
<td>Employee Emotional Stability (b_3)</td>
<td>0.04</td>
<td>0.06</td>
<td>0.74</td>
<td>.461</td>
</tr>
<tr>
<td>Leader Emotional Stability (b_4)</td>
<td>0.52**</td>
<td>0.17</td>
<td>3.08</td>
<td>.003</td>
</tr>
<tr>
<td>Group Size</td>
<td>-0.23</td>
<td>0.25</td>
<td>-0.94</td>
<td>.349</td>
</tr>
<tr>
<td>Mean Group Emotional Stability</td>
<td>-0.02</td>
<td>0.01</td>
<td>-2.41</td>
<td>.02</td>
</tr>
<tr>
<td>Mean Group Emotional Stability</td>
<td>-0.03</td>
<td>0.18</td>
<td>-0.16</td>
<td>.875</td>
</tr>
</tbody>
</table>

Covariance Parameters

<table>
<thead>
<tr>
<th>τ^2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2</td>
<td>0.80</td>
</tr>
<tr>
<td>Pseudo R^2</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Surface Tests

a_1	-0.71***	0.14	-4.50	<.001
a_2	0.33	0.29	1.13	.26
a_3	-0.29*	0.14	-2.04	.04
a_4	-0.71*	0.32	-2.22	.03

Note. $N = 299$. Mean group size = 8.5. ***$p < .0001$; **$p < .01$; *$p < .05$. Pseudo R^2 was calculated as the percent reduction in residual variance as compared to a null model.
its relation to the outcome is further explained by additional exhaustion decreases. The direction of the discrepancy and between employee and leader emotional stability increases, emotionally face (downward curvature), indicating that as the discrepancy hypothosis. Contrarily, the lowest value of emotional exhaustion value of emotional stability along the line of perfect agreement. A significant value would indicate that the line is nonlinear; accordingly, the non-significant value in our findings ($a_2 = 0.33$, $SE = 0.29$, $p < .02$) provides evidence of linearity.

Given by $a_3 = (b_1 - b_2 + b_3)$, the curvature of the line of incongruence (Employee Emotional Stability $-$ Leader Emotional Stability) indicates the discrepancy between employee and leader emotional stability and its relation to the outcome. The significant negative value ($a_4 = -0.71$, $SE = 0.32$, $p = 0.03$) yields a concave surface (downward curvature), indicating that as the discrepancy between employee and leader emotional stability increases, emotional exhaustion decreases. The direction of the discrepancy and its relation to the outcome is further explained by $a_3 = (b_1 - b_2)$. The significant negative slope indicates that emotional exhaustion is lower when the discrepancy between employee emotional stability is higher than employee emotional stability. As noted in the graph, however, both types of incongruence seem to relate to low levels of emotional exhaustion.

5. Study 1 discussion

This initial evidence supporting the conditional effect of supervisor emotional stability helps to reconcile the mixed findings related to supervisor emotional stability suggested by previous work (e.g., De Hoogh et al., 2005; Kaiser et al., 2015; Sulea et al., 2013). With this model, we were able to gain insight into which subordinates are most likely to be negatively impacted by low supervisor emotional stability. Joining others reporting asymmetric effects of supervisor-subordinate personality congruence (e.g., Zhang et al., 2012), our findings suggest that having a low-emotional stability boss is not universally damaging, but rather that this leader trait is particularly toxic for low-emotional stability subordinates. In other words (and aligned with our expectations), congruence alone is not universally positive; although supervisor-subordinate dyads high in emotional stability did, indeed, experience low-emotional exhaustion, the worst outcome actually occurred when supervisors and subordinates were congruent and low in emotional stability. Further, our polynomial regression analyses revealed that neither form of incongruence proved harmful to subordinate’s burnout. As long as either the supervisor or the subordinate was high in emotional stability, the subordinate was able to stave off emotional exhaustion. That is, in Study 1, high emotional stability supervisors may have acted as a resource for employees to help buffer against emotional exhaustion.

While these findings were supportive of our hypothesis, we acknowledge that there might be questions regarding the degree to which they generalize to workers that have different job tasks, work settings, and amount of interaction with their supervisor. The employees in Study 1 performed manual work and were accompanied by their supervisor on job sites. Thus, they had a high degree of exposure to their supervisor. Moreover, safety-related concerns (e.g., operating on the side of a highway, and ensuring construction is properly done) may have made emotional displays and experiences particularly salient. Thus, in Study 2, we sought additional data to test our hypotheses among employees who perform more cognitive work with less interdependence with their supervisors.

6. Study 2 method

6.1. Participants and procedure

The data were collected from 294 of 993 (29.6%) employees nested under 86 supervisors working in a separate division of the organization featured in Study 1, once again providing sufficient power to test our hypothesis. On average, each supervisor was responsible for 3.42 employees (SD = 1.85). Study participants worked in construction and business development compliance operations. Participants at the “employee” level of this study worked in entry-level supervisor roles with limited time in the field. Unlike Study 1, the work performed by participants in Study 2 was described as less interdependent and more autonomous. Supervisors in this study worked in intermediary roles (i.e., mid-level management) with infrequent visits to the location where their employees worked and, thus, lower levels of contact with their direct reports than in Study 1. Human resources officials emailed supervisors requesting that they ask their subordinates to participate in the study and that they communicate that participation would be anonymous and on a strictly volunteer basis. Online surveys were distributed to supervisors and employees using email addresses provided by the organization. Supervisors were matched with subordinates using a coding scheme provided by the organization.

6.2. Measures

6.2.1. Emotional exhaustion

We used the 5-item emotional exhaustion subscale of the Maslach Burnout Inventory – General Survey (MBI-GS; Maslach et al., 1996). We presented the items (e.g., “I feel emotionally drained from my work”) on a 5-point scale (1 = “strongly disagree” to 5 = “strongly agree”).

6.2.2. Personality predictors

Both supervisors and subordinates rated themselves using Soto and John (2017) 6-item BF12-S measure of negative emotionality to reflect emotional stability. Items were rated on a 5-point scale (1 = “strongly disagree” to 5 = “strongly agree”) and reverse coded to match the direction of the items in Study 1.
6.2.3. Control variables

Consistent with Study 1, we included group size as a control variable to account for the potential impact of the size of the group on interactions between the supervisor and employees in their unit. The mean for group emotional stability was also included to account for potential mean-level effects on the outcome variable.

7. Study 2 results

Table 3 presents the descriptive statistics and correlation matrix for Study 2. As with Study 1, subordinate emotional stability was negatively related to subordinate emotional exhaustion \((r = -0.48, p < .01)\). Unlike Study 1, supervisor emotional stability was negatively and significantly related to subordinate emotional exhaustion \((r = -0.16, p < .05)\). With regards to the control variables, although mean group emotional stability was significantly related to subordinate emotional exhaustion \((r = -0.33, p < .001)\), the relationship between group size and subordinate emotional exhaustion was non-significant \((r = 0.01, ns)\).

Following procedures outlined in Study 1, we estimated a null random intercept model prior to our analysis. In this data, the between-group variance estimate was not significant \((\tau^2 = 0.00, ns)\). Whereas the lack of significant between-group variance indicates the appropriateness of proceeding with OLS regression, we first evaluated our hypotheses using multilevel modeling to address potential bias in our estimates by modeling group means to partial out fixed effects from group average employee emotional stability (Antonakis, 2017). We followed procedures outlined in Study 1, grand-mean centering our predictors and including respective group means for subordinate emotional stability and respective group size in our models. We also applied this approach to an OLS regression model—mean-centering our predictors and including respective group means for subordinate emotional stability and respective group size—which revealed no differences in the parameter estimates between the multilevel and OLS analyses. Because of this lack of influence of the nesting structure in the data, we present results from the OLS regression. The results from the polynomial regression for Study 2 are presented in Table 4. Applying procedures outlined in Study 1, we used the five polynomial terms to generate and evaluate surface test values (e.g., \(a_1, a_2, a_3\), and \(a_4\)). In this study, the slope of the line of perfect agreement \((\text{Employee Emotional Stability} - \text{Leader Emotional Stability})\), given by \(a_1 = (b_1 + b_2)\), was significant \((a_1 = -0.71, SE = 0.14, p < .001)\). The negative sign suggests that as subordinate and supervisor emotional stability increase, emotional exhaustion decreases. This supports our Hypothesis, and replicates this finding from Study 1. Alternatively, as can be seen in Fig. 2, exhaustion increases as both employee and leader decrease in emotional stability. The test of linearity for the slope of the line of perfect agreement is given by \(a_2 = (b_3 + b_4 + b_5)\). As with Study 1, the lack of a significant value

Table 3

Descriptive Statistics and Intercorrelation Matrix for Study 2.

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Emotional Exhaustion</td>
<td>(0.92)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Supervisor Emotional Stability</td>
<td>−0.16*</td>
<td>(0.65)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Subordinate Emotional Stability</td>
<td>−0.48*</td>
<td>0.40**</td>
<td>(0.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Group Size</td>
<td>0.01</td>
<td>0.05</td>
<td>0.07</td>
<td></td>
<td>−</td>
</tr>
<tr>
<td>5. Mean Group Emotional Stability</td>
<td>−0.33***</td>
<td>0.33*</td>
<td>0.67**</td>
<td>0.11*</td>
<td>−</td>
</tr>
<tr>
<td>Mean</td>
<td>2.52</td>
<td>3.91</td>
<td>3.93</td>
<td>3.40</td>
<td>3.94</td>
</tr>
<tr>
<td>SD</td>
<td>0.96</td>
<td>0.63</td>
<td>0.59</td>
<td>1.85</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Note. \(N = 294\); \(^{*}p < .05; **p < .01; ***p < .001\); alpha reliability coefficients on the diagonal.

Table 4

Study 2 Polynomial Regression Results Predicting Subordinate Emotional Exhaustion.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(b)</th>
<th>(SE)</th>
<th>(t)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.69*</td>
<td>0.67</td>
<td>4.03</td>
<td><.001</td>
</tr>
<tr>
<td>Employee Emotional Stability ((b_1))</td>
<td>−0.80*</td>
<td>0.12</td>
<td>−6.78</td>
<td><.001</td>
</tr>
<tr>
<td>Leader Emotional Stability ((b_2))</td>
<td>0.08</td>
<td>0.09</td>
<td>0.91</td>
<td>.37</td>
</tr>
<tr>
<td>Employee Emotional Stability ((b_3))</td>
<td>−0.12</td>
<td>0.13</td>
<td>−0.06</td>
<td>.37</td>
</tr>
<tr>
<td>Employee \times Leader Emotional Stability ((b_4))</td>
<td>0.06</td>
<td>0.17</td>
<td>0.37</td>
<td>.712</td>
</tr>
<tr>
<td>Leader Emotional Stability ((b_5))</td>
<td>0.05</td>
<td>0.10</td>
<td>0.44</td>
<td>.664</td>
</tr>
<tr>
<td>Group Size</td>
<td>0.02</td>
<td>0.03</td>
<td>0.78</td>
<td>.44</td>
</tr>
<tr>
<td>Mean Group Emotional Stability</td>
<td>−0.06</td>
<td>0.17</td>
<td>−0.02</td>
<td>.74</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surface Tests

\[a_1 = −0.71*, 0.13, −5.58, <.001\]
\[a_2 = −0.01, 0.12, −0.08, .94\]
\[a_3 = −0.83*, 0.17, −5.22, <.001\]
\[a_4 = −0.13, 0.22, −0.61, .54\]

Note. \(N = 294\). Mean group size = 3.42. \(^{*}p < .001\).
here ($a_2 = -0.01, SE = 0.12, p < .94$) indicates that the slope is, indeed, linear.

The curve of the line of incongruence (Employee Emotional Stability = Leader Emotional Stability) is given by $a_4 = (b_3 - b_4 + b_5)$ and indicates the discrepancy between employee and leader emotional stability and its relation to the outcome. The non-significant negative value ($a_4 = -0.13, SE = 0.22, ns$) indicates that the slope of the line of incongruence is linear and that as the discrepancy between employee and leader emotional stability increases, emotional exhaustion decreases. The direction of the discrepancy and its relation to the outcome is further explained by $a_3 = (b_1 - b_2)$. The significant negative a_3 slope ($a_3 = -0.88, SE = 0.17, p < .001$) indicates that when the discrepancy is such that when emotional stability is higher for leaders than it is for their subordinates, subordinate emotional exhaustion is higher.

8. Study 2 discussion

When taken together with the results of Study 1, the Study 2 results reinforce the notion that personality congruence alone is not the most important factor for predicting subordinate exhaustion. Rather, only congruence at low levels of emotional stability yield the most damaging outcome (i.e., high emotional exhaustion). In this way, similarity can either be highly beneficial or highly damaging depending on the level of emotional stability shared by the supervisor and subordinate pair.

This study also revealed an important distinction from the first study. Namely, in Study 2, the type of supervisor-subordinate incongruence mattered. This group of employees experienced high exhaustion when their own level of emotional stability was low but their supervisor’s level of emotional stability was high. This pattern of results implies that high emotional stability supervisors had less of a calming influence on low-emotional stability customer service employees with fewer supervisor interactions.

9. General discussion

The goal of our two studies was to examine the impact of supervisor and subordinate emotional stability on subordinate emotional exhaustion. In particular, we suggested that leader emotional stability may have a more complex effect on subordinate burnout than has perhaps been previously assumed. In line with this expectation, the polynomial regression results across our two separate studies suggest that unique combinations of supervisor and subordinate personalities yielded differential effects on subordinate emotional exhaustion.

Results from both studies support our hypothesis that supervisor and subordinate congruence at low levels of emotional stability is most detrimental in terms of subordinate emotional exhaustion. Interestingly, however, they suggest different effects for supervisor-subordinate incongruence. For Study 1, high levels of supervisor emotional stability seem to help buffer the negative effects of low subordinate emotional stability. For Study 2, however, low-emotional stability employees experienced high levels of exhaustion regardless of their supervisor’s level of emotional stability, failing to replicate the supportive role of a high-emotional stability supervisor.

One potential explanation for the differential results we found may lie within the characteristics of our samples. Study 1 features employees and their supervisors working outdoors in isolated field locations to complete manual maintenance tasks together. The workers in Study 2, in contrast, work in an office environment to provide customer service to civilians hoping to attain city permits. Thus, Study 2 participants likely have higher levels of autonomy and lower levels of interdependence than those in Study 1. Hence, we suspect these individuals are faced with a variety of demands that they must deal with on their own such as ensuring high levels of customer service, meeting project deadlines, and providing detailed documentation. Aside from having less supervisor interaction, the source of strain may differ across the two samples as well. Whereas the workers in Study 1 may be primarily affected by concerns for personal safety as well as the emotional state of their supervisor and workgroup, the employees in Study 2 may be faced with more customer-related and time pressure sources of strain. As the two samples worked for the same organization but were engaged in vastly different job tasks, work environments, and level of supervisor interaction, this finding has important implications for the personality profile of supervisor-subordinate dyad assignments in different jobs. These observed differences lend additional support to recent findings indicating the key role that job-related factors like occupational type (Furnham, Trickey, & Hyde, 2012) and task complexity (Le et al., 2011) play in determining the ideal level of personality traits. It is also possible that hiring policies and self-selection may have resulted in other differences between the two groups (e.g., levels of conscientiousness, conflict management aptitude, education level). For instance, it is possible that the presumed higher conscientiousness levels of the white-collar workers in Sample 2 led subordinates low in emotional stability to ruminate more on sources of stress, leading to higher emotional exhaustion even in the presence of an emotionally stable leader. As we only sampled two occupations within a single organization, there are limits to the generalizability of our findings and more research is needed to explore which occupations show the worst outcomes for toxic supervisor-subordinate combinations.

In a final potential explanation, we note that perhaps extremely high levels of leader emotional stability may fail to provide the energy and motivation that could help low-emotional stability employees in more cognitively complex jobs overcome exhaustion. For instance, Smith, Hill, Wallace, Recendes, and Judge (2018, p. 198) suggested that “perhaps leaders high in emotional stability, a trait commonly seen as desirable in leaders, may be perceived as lacking attachment or concern for follower well-being. [.and this trait] may interfere with the idealized influence component of transformation leadership, which is one of the more powerful sources of follower inspiration.” When workers come to emotionally stable bosses with worries about rude customers and unreasonable deadlines, it is possible that their emotionally-neutral demeanor may fuel rather than extinguish exhaustion.

Although we controlled for group size in the analyses, it is worth noting that Study 2 participants work in smaller groups and likely have more individual access to their supervisors. Additionally, participants at both levels in this study were in leadership roles with higher degrees of autonomy than participants in Study 1. As indicated by the significant negative relationship between group size and emotional exhaustion in Study 1, group size for Study 1 participants might have reduced exposure to neurotic leader behaviors as well as other stressors on the job. However, the effect of group size for participants in Study 2 was not significant. We suspect that the higher levels of autonomy associated with Study 2 subordinates’ job responsibilities allowed them to “select out” of potential negative exchanges with their respective supervisors. That is, Study 2 subordinates are likely able to engage in problem-focused coping strategies through their ability to choose the order of implementation of day-to-day duties. Whereas smaller group size may afford subordinates opportunities to build rapport and engage in positive exchange with their leaders, autonomy may allow these subordinates to conserve psychological resources by strategically avoiding negative exchanges with their leader. Finally, although the two studies did employ distinct measures for the trait of emotional stability, the underlying construct being captured...
should be identical, and thus we do not believe that this change is driving the differences in our results.

9.1. Theoretical implications

These results have important implications for the personality literature. In contrast to person-environment fit (e.g., Kristof-Brown et al., 2005) or relational demography (e.g., Guillaume et al., 2012) perspectives, we argue that a straightforward (dis)similarity approach is insufficient to understand the interactive impact of supervisor and subordinate emotional stability. Our results suggest that supervisor-subordinate dyads where both are low in emotional stability do not enjoy a mutually beneficial relationship, despite their similarity in this dimension. Instead, the pairing of two low-emotional-stability members in a dyad results in the most harmful consequences for the subordinate (i.e., high emotional exhaustion).

In COR terms (Hobfoll, 1989), we suggest that low supervisor emotional stability acts as a resource threat primarily for those employees low in emotional stability. Such followers may be more likely to elicit negative behaviors from their low-emotional stability leaders as well as more susceptible to adopting the frequent negative moods such leaders experience as their own. These results bolster research suggesting that having a bad boss can have an impact on subordinate strain (e.g., Byrne et al., 2014), particularly for workers low in emotional stability.

9.2. Strengths, limitations, and future directions

We offer three potential strengths of the current study. First, it not only builds on research linking supervisor personality traits with employee emotional exhaustion but also incorporates COR theory as a conceptual foundation (Hobfoll, 1989). Second, we employed two samples of multilevel and multisource data. Third, by using polynomial regression to investigate various combinations of supervisor-subordinate personality levels, we were able to identify who was most likely to manifest high levels of emotional exhaustion at the hands of a low-emotional stability supervisor. As noted by Edwards (2002), polynomial regression has several advantages over using difference scores including allowing one to examine: (a) how the degree of incongruence affects outcomes, (b) how the direction of the incongruence affects outcomes, and (c) how levels of agreement relate to outcomes. Our significant effects highlight the intricacies of considering the multifaceted impact of personality in the workplace. This study also answers calls to elucidate the complex effects of emotional constructs in relation to leadership (Walter & Bruch, 2009) and helps to explain why previous studies may have found mixed findings when examining the effects of leader personality (e.g., Hoobler & Hu, 2013; Matthiesen et al., 2011; Sulea et al., 2013). Finally, considering both supervisor and subordinate characteristics together contributes to the recent movement away from a leader-centric focus in favor of viewing leadership as a dynamic and reciprocal process (e.g., UhI-Bien et al., 2014).

We also emphasize two weaknesses and corresponding opportunities for future research. First, survey length constraints imposed by the participating organization prevented us from collecting all three burnout dimensions. Similarly, we did not collect demographic data to strengthen participant perceptions of anonymity. Accordingly, we urge future researchers to assess whether or not depersonalization and diminished personal accomplishment are similarly impacted by the interaction of supervisor and subordinate personality variables as well as to confirm generalizability across different demographic groups. Given the findings that personality traits are differentially important for the three different burnout dimensions (Zellars, Perrewé, & Hochwarter, 2000) and that agreeableness and emotional stability combine to predict interpersonal aggression (García-Sancho, Salguero, & Fernández-Berrocal, 2017), it might also be of utility to investigate both other combinations of personality traits as well as the remaining two burnout dimensions.

Second, we did not directly measure our theoretical mechanisms of abusive behavior, emotional contagion, or susceptibility, and therefore cannot be sure of why our significant interaction effects occurred. A related, alternative explanation for the congruence effect that we observed might be that low-emotional stability subordinates do not have the resources to cope with the particular challenges presented by a low-emotional stability supervisor which, in turn, leads to greater exhaustion. Researchers have demonstrated a persistent link between low-emotional stability and poor coping habits (e.g., Bolger, 1990). Specifically, individuals low in emotional stability tend to engage in escapist coping strategies, such as self-criticism, wishful thinking, and denial. Individuals high in emotional stability, alternatively, use control strategies, such as problem-solving and proactive behavior. In this way, high emotional stability may act as a personal resource as it provides tools to better cope with stressful situations (De Hoogh & Den Hartog, 2009). Indeed, whereas control tendencies are linked to lower levels of burnout, escapist coping strategies are associated with greater levels of burnout (Ito & Brotheridge, 2003). We encourage more research in this area to explicitly test potential mechanisms through which leader and follower personality interact to impact employee burnout and other outcomes, such as withdrawal, performance, satisfaction, well-being, and counterproductive work behaviors. Given that research has previously linked emotional exhaustion to these outcomes (e.g., Halbesleben & Bowler, 2007), our results suggest that leader emotional stability likely has downstream negative consequences for organizations, particularly for low-emotional stability employees. Thus, we argue that regardless of the specific explanatory mechanism, these findings are important.

9.3. Practical implications

Our results also have practical implications. First, we emphasize the need to select both managerial and front-line employees high in emotional stability. Given that other traits and competencies are often given more weight in the selection process (Judge, Bono, Ilies, & Gerhardt, 2002; Schmidt & Hunter, 1998), however, we recognize that this is not always possible. Accordingly, we encourage management and human resource professionals to keep this trait in mind when making internal promotion decisions to leadership positions. Given our finding that low-emotional stability employees working for low-emotional stability leaders had the highest emotional exhaustion, we encourage decision-makers to carefully consider the personality composition of direct reporting relationships.

From an individual standpoint, we recommend that low-emotional stability subordinates should make efforts to adopt positive coping strategies and seek out social support, particularly when paired with a low-emotional stability boss. Organizations can assist in these efforts by providing training to help employees acquire skills related to emotional regulation (e.g., Rempala, 2013). For example, Rempala (2013) reported that individuals who were trained to use the cognitive strategy of disassociation (i.e., mentally removing oneself from the present situation) were able to successfully avoid being infected by the negative emotions of others.

9.4. Conclusion

We investigated when leader emotional stability accounted for variance in subordinate emotional exhaustion by testing a model...
that investigates its conditional effects. Our results reveal that the impact of leader emotional stability on subordinate emotional exhaustion differs depending on the subordinates’ level of emotional stability such that this negative relationship exists primarily among low-emotional stability employees. This implies that although it would seem that low-emotional stability supervisors would act as a universal resource threat given their proclivity for hostile behaviors and the frequency of their negative moods, we found that low-emotional stability subordinates were most strongly (and adversely) affected by low supervisor emotional stability in terms of developing emotional exhaustion.

Declaration of Competing Interest

Author declares that he/she has no conflict of interest. We appreciate the assistance provided by Ching-Yuan Meng to format and proofread this paper.

References

Bakker, A. B., Schaufeli, W. B., Sij最后一个

