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Abstract Asymmetries of the cerebral cortex are found across diverse phyla and are particularly 
pronounced in humans, with important implications for brain function and disease. However, many 
prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce 
a novel approach to characterize asymmetries of the whole cortical shape, independent of size, 
across different spatial frequencies using magnetic resonance imaging data in three independent 
datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical 
fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical 
thickness and surface area, or measures of inter-regional functional coupling of brain activity. Indi-
vidual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries 
show scale-specific associations with sex and cognition, but not handedness. While unihemispheric 
cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymme-
tries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape 
asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cogni-
tion, and are primarily driven by stochastic environmental influences.

Editor's evaluation
The article is of interest to scientists who study neuroanatomy or the many behavioral phenotypes 
that have been proposed be associated with left–right asymmetry of the human brain. The method-
ology is sophisticated and rigorously applied.

Introduction
Asymmetries in brain structure and function are found throughout the animal kingdom (Duboc et al., 
2015; Güntürkün et al., 2020; Corballis and Häberling, 2017; Güntürkün and Ocklenburg, 2017) 
and can be discerned at multiple spatial scales, ranging from differences in the size and shape of the 
cerebral hemispheres through measures of regional morphometry and connectivity to cellular and 
molecular organization (Güntürkün et al., 2020; Güntürkün and Ocklenburg, 2017; Esteves et al., 
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2021). At the coarsest scale, the most salient feature of anatomical asymmetry in the human brain is 
cerebral torque, in which the right hemisphere appears to be warped in the rostral direction relative 
to the left hemisphere (Li et al., 2018; Toga and Thompson, 2003; Zhao et al., 2021). More fine-
grained asymmetries of specific sulci/gyri (Kang et al., 2015) and brain regions Kong et al., 2018; 
Plessen et al., 2014 have also been investigated. For example, the superior temporal sulcus, which is 
adjacent to the Wernicke’s area, shows a leftward asymmetry in length (Gómez-Robles et al., 2013).

Asymmetries in brain organization are often considered at an average level across a population of 
individuals (Toga and Thompson, 2003; Kong et al., 2018; Kong et al., 2022; Deep-Soboslay et al., 
2010; Postema et al., 2019). These population-based asymmetry features have been studied exten-
sively and are thought to have important implications for both functional lateralization and abnormal 
brain function in a wide range of psychiatric and neurological diseases (Esteves et al., 2021; Plessen 
et al., 2014; Postema et al., 2019; Cai et al., 2015; Fling et al., 2014). For example, the planum 
temporale of the left hemisphere, which encompasses Wernicke’s area, has been consistently shown 
to be larger than the right for most healthy individuals (Güntürkün et al., 2020; Toga and Thompson, 
2003; Royer et al., 2015; Takao et al., 2011), and patients with schizophrenia often show reduced 
leftward asymmetry in planum temporale compared to healthy individuals (Clark et  al., 2010; 
Ratnanather et  al., 2013; Corballis, 2013). However, many findings with respect to asymmetries 
of specific brain regions have been inconsistent in terms of the directions and magnitudes of asym-
metry observed (Kong et al., 2018; Plessen et al., 2014; Kong et al., 2022). The correlates of these 
asymmetries are also unclear (Güntürkün and Ocklenburg, 2017; Plessen et al., 2014; Kong et al., 
2022; Kurth et al., 2018; Núñez et al., 2018). For example, two fundamental characteristics often 
examined in relation to cerebral asymmetry are sex and handedness. Some studies have found that 
the surface area (Kong et al., 2018), shape (Núñez et al., 2018; Wachinger et al., 2015; Kovalev 
et al., 2003), volume (Guadalupe et al., 2015), and torque (Zhao et al., 2021) of cortical structures 
in males are more asymmetric than in females, whereas other studies have found no sex differences 
(Takao et al., 2011; Narr et al., 2007). Similarly, some studies have found associations between cere-
bral asymmetry and handedness (Zhao et al., 2021; Deep-Soboslay et al., 2010; Steinmetz et al., 
1991), with others reporting no such effect (Kong et al., 2018; Plessen et al., 2014; Wachinger 
et al., 2015; Narr et al., 2007; Good et al., 2001; Guadalupe et al., 2014; Maingault et al., 2016).

Some of these inconsistencies may arise from the disparate methodologies and the heteroge-
neous nature of the brain asymmetries across the population (Toga and Thompson, 2003; Kong 
et al., 2018; Gómez-Robles et al., 2013; Kong et al., 2022; Deep-Soboslay et al., 2010; Postema 
et al., 2019). Despite some consistent asymmetry features across the population (Güntürkün et al., 
2020; Toga and Thompson, 2003; Royer et al., 2015; Takao et al., 2011), there is also consider-
able individual variability around population means, with many people often showing little or even 
reversed asymmetries relative to the prevalent pattern of the population (sometimes also referred 
to as antisymmetry) (Corballis and Häberling, 2017; Gómez-Robles et  al., 2013; Gómez-Robles 
et al., 2016; Neubauer et al., 2020). The distinction between population-level and individual-specific 
asymmetries is essential as they are thought to arise from distinct mechanisms (Gómez-Robles et al., 
2016; Sherwood and Gómez-Robles, 2017). Populational-level asymmetries are hypothesized to 
have a genetic basis (Zhao et al., 2021; Kong et al., 2018; Gómez-Robles et al., 2016; Neubauer 
et al., 2020; Sherwood and Gómez-Robles, 2017; Francks, 2015; de Kovel et al., 2018; Graham 
and Özener, 2016; Sha et al., 2021), whereas individual-specific asymmetries, which describe the 
way in which a given individual departs from the population mean, may reflect environmental influ-
ences, developmental plasticity, or individual-specific genetic perturbations (Gómez-Robles et al., 
2016; Neubauer et al., 2020; Sherwood and Gómez-Robles, 2017; Francks, 2015; de Kovel et al., 
2018; Graham and Özener, 2016; Nadig et al., 2021). Notably, cortical asymmetries of the human 
brain are more variable across individuals than other primates at both regional and global hemi-
spheric levels (Gómez-Robles et al., 2013; Neubauer et al., 2020). The variability is most evident in 
regions of heteromodal association cortex, leading some to conclude that high levels of variability in 
asymmetry may have emerged in line with the evolution of human-specific cognition (Gómez-Robles 
et al., 2013), although the relationship between the asymmetries of the human brain and individual 
differences in cognition is still largely unknown.

Traditional analysis methods, which rely on standard image processing techniques such as image 
registration and spatial smoothing, minimize individual variation and thus have limited sensitivity for 
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studying individual-specific asymmetries (Gomez-Robles et al., 2018; Wachinger et al., 2016). More-
over, most past studies have focused on morphological properties related to the size of specific brain 
regions, such as estimates of gray matter volume, cortical thickness, or surface area, often measured 
at fine-grained resolutions, such as individual voxels or the vertices of cortical surface mesh models 
(Cai et al., 2015; Takao et al., 2011; Kurth et al., 2018; Good et al., 2001; Maingault et al., 2016; 
Kruggel and Solodkin, 2020; Kurth et al., 2015). Many of the most obvious features of cerebral 
asymmetry arise from variations in brain shape, which are not captured by size-related descriptors 
(Wachinger et al., 2015; Reuter et al., 2009). Indeed, it is possible for two objects to have identical 
volume but have very different shapes (Reuter et  al., 2009; Ge et  al., 2016). In addition, shape 
variations can occur at different spatial resolution scales, from the presence and configuration of 
specific sulci at fine scales to more global patterns such as cerebral petalia at coarser scales. Conven-
tional analyses only consider the finest resolvable scale (i.e., point-wise differences) and have limited 
sensitivity for identifying important morphological variations that occur over large swathes of cortical 
tissue.

A comprehensive, multiscale description of cortical shape, from the finest to coarsest scales, can be 
derived through a spectral analysis of cortical geometry based on solutions to the Helmholtz equation 
(Wachinger et al., 2015; Reuter et al., 2009; Reuter et al., 2006), which is fundamental in many 
branches of physics, engineering, chemistry, and biology (Lévy, 2006). The equation can be solved 
by formulating it as an eigenfunction–eigenvalue problem of the Laplace–Beltrami operator (LBO) 
(see ‘Materials and methods’). Importantly, the characteristics of the eigenfunctions and eigenvalues 
depend on the cortical shape for which the equation is solved (Reuter et al., 2006; Lévy, 2006), and 
thus, the spectral analysis provides a comprehensive description of the intrinsic geometry of a given 
object, akin to a ‘Shape-DNA’ (see ‘Materials and methods’; Reuter et al., 2006). The application of 
such Shape-DNA analysis to human magnetic resonance imaging (MRI) data has shown that shape 
properties of cortical and subcortical structures have superior sensitivity compared to traditional, size-
based measures for identifying individual subjects (Wachinger et al., 2015), classifying and predicting 
the progress of psychiatric and neurological diseases (Wachinger et al., 2016; Richards et al., 2020), 
and detecting genetic influences on brain structure (Ge et  al., 2016; Wachinger et  al., 2018). 
However, a detailed characterization of individual-specific asymmetries in cerebral shape is lacking.

Here, we introduce methods for constructing an individual-specific measure of cortical asymmetry, 
called the shape asymmetry signature (SAS; see ‘Materials and methods’). The SAS characterizes pure 
shape asymmetries of the whole cortical surface, independent of variations in size, across a spectrum 
of spatial scales. We apply this methodology to three independent longitudinal datasets to test the 
hypothesis that cortical shape asymmetry is a highly personalized and robust feature that can identify 
individuals, akin to a cortical asymmetry fingerprint. We then use the identifiability values to identify 
optimal spatial scales at which robust individual differences are most salient. We also compare the 
identifiability of the SAS and shape descriptors of individual hemispheres, asymmetries in traditional 
size-based descriptors, or patterns of inter-regional functional connectivity (so-called connectome 
fingerprinting; Finn et al., 2015) to test the hypothesis that the SAS is a more individually unique 
property of brain organization than unihemispheric and functional properties. We further elucidate the 
relationships between the SAS and sex, handedness, as well as cognitive performance across multiple 
tasks. Finally, we test the hypothesis that individual-specific asymmetry features are largely driven by 
environmental influences using classical heritability modeling of twin data.

Results
Cortical shape asymmetries are individually unique
To understand how cortical shape asymmetries vary across individuals, we examined the degree to 
which different cortical shape descriptors (defined below) can be used to identify individual brains 
from a large sample of T1-weighted MRIs. We analyzed healthy subjects from three open-source 
datasets – the latest Open Access Series of Imaging Studies (OASIS-3; LaMontagne et al., 2019), 
the Human Connectome Project (HCP; Van Essen et al., 2013), and the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI; https://ida.loni.usc.edu/) – in which individuals had at least two anatomical 
MRI scans acquired at different time points (separated by 1 day to several years; see ‘Materials and 
methods’). For each dataset, we asked whether the shape descriptors for an individual estimated 
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from the first scan could accurately identify the same participant’s second scan. Within each dataset, 
the shape descriptor was calculated from the cortical surfaces at the white and gray matter boundary 
estimated either from FreeSurfer (Fischl et al., 2002) (OASIS-3 and ADNI) or FreeSurfer-HCP (HCP), 
which is a FreeSurfer (Fischl et al., 2002) pipeline with some HCP-specific enhancements (Glasser 
et al., 2013). Shape-DNA (Reuter et al., 2009; Reuter et al., 2006) analysis was employed to obtain 
multidimensional shape descriptors for each hemisphere that quantify the shape of each individual’s 
cortex, as defined by the eigenvalue spectrum of the LBO (Figure  1A and B; see ‘Materials and 
methods’). Each eigenvalue is associated with a corresponding eigenfunction, which describes shape 
variations at a particular spatial wavelength, ordered from coarse to fine-grained scales (Figure 1B). 
These eigenfunctions are orthogonal by construction and thus represent a basis set for cortical shape 
variations much like the sinusoidal basis used in Fourier decomposition of signals, with the corre-
sponding eigenvalue being analogous to the wave frequency at each spatial scale. Critically, we 
normalized the surface area (Reuter et  al., 2009) of the meshes prior to Shape-DNA analysis to 
ensure that the resulting eigenvalue spectra were independent of individual differences in brain size 
(see ‘Materials and methods’).

To investigate the uniqueness of these shape descriptors to individual brains, we performed an 
identifiability analysis (Amico and Goñi, 2018; Mansour L et  al., 2021), where identifiability was 
quantified as the degree to which the surface eigenvalue spectrum of an individual at scan time 1 
was more similar to the same person’s spectrum at time 2, relative to other people’s time 2 spectra 
(Figure 1C; see also ‘Materials and methods’). To determine whether identifiability is maximized at 
any specific scales, we repeated the analysis multiple times, initially by taking only the first two eigen-
values, which describe shape variations at the coarsest scale, and then incrementally adding eigen-
values representing more fine-grained features to a maximum of 1000. Plotting the identifiability score 
as a function of the number of eigenvalues allows us to identify characteristic spatial scales at which 
the identifiability score is maximized (Figure 1D). In other words, it allows us to identify the scales at 
which individual-specific shape features are most pronounced. We repeated this procedure using the 
eigenvalue spectra for the left and right hemispheres alone, the combination of both (which describes 
the shape of both hemispheres), and for the SAS, which quantifies shape asymmetries as the differ-
ence between the left and right hemisphere eigenvalue spectra (see Figure 2 for details). Finally, 
we utilized the spatial scales with maximum identifiability (Figure 1D) to examine the relationships 
between the SAS and sex, handedness, cognition, and heritability. In general, a brain with a higher 
degree of shape asymmetry has SAS values that more strongly depart from zero (Figure 1—figure 
supplement 1).

Figure 2A–C shows the identifiability scores obtained for the different shape descriptors. In all 
three datasets, across a broad range of spatial scales, identifiability was highest for the SAS, followed 
by the combination of left and right hemisphere eigenvalues, and then each hemisphere alone. This 
result indicates that individual variability in the asymmetry of cortical shape is greater than the vari-
ability of shape across the whole cortex or within each hemisphere alone. Figure 2A–C also shows 
identifiability scores obtained when trying to identify an individual’s left hemisphere using right hemi-
sphere shape descriptors obtained at the same time point. These scores are very low, indicating that 
shape variations between the two hemispheres are largely independent of each other and lack a 
consistent pattern amongst subjects. In other words, for any given person, the shape of one hemi-
sphere offers little individually unique information about the shape of the other hemisphere.

Individually unique variations of cortical shape asymmetry are maximal 
at coarse spatial scales
We next investigated the scale-specificity of SAS identifiability. Figure 2A–C shows that SAS identi-
fiability sharply increases to a peak as we use more eigenvalues to characterize the surface shape at 
finer scales (i.e., as we add more shape information from finer spatial scales), before gradually falling 
again. This peak identifies a characteristic spatial scale in which individual differences in shape asym-
metries are maximally unique (see also Figure 2—figure supplement 1).

Peak SAS identifiability was observed using the first 126 and 122 eigenvalues for the OASIS-3 
(Figure 2A) and ADNI (Figure 2B) data, respectively. At these scales, the subject identifiability scores 
were 4.93 (p=0; estimated by permutation; see ‘Statistical analysis’ section for details) for OASIS-3 
and 5.03 (p=0) for ADNI. For the HCP data, peak SAS identifiability was observed when using the first 
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Figure 1. Schematic of our analysis workflow. (A) The shapes of the left and right hemispheres are independently analyzed using the Laplace–Beltrami 
operator (LBO) via the Shape-DNA algorithm (Reuter et al., 2009; Reuter et al., 2006). (B) Eigenfunctions of the LBO are obtained by solving the 
Helmholtz equation on the surface, given by ‍∆f = −λf ‍, where ‍f ‍ corresponds to a distinct eigenfunction, and ‍λ‍ is the corresponding eigenvalue. Each 
eigenvalue ‍λi, i = 1, 2, . . . , 1000‍, quantifies the degree to which a given eigenfunction is expressed in the intrinsic geometry of the cortex. Higher-order 
eigenvalues describe shape variations at finer spatial scales. (C) The shape asymmetry signature (SAS) is quantified as the difference in the left and right 
hemisphere eigenvalue spectra, providing a summary measure of multiscale cortical shape asymmetries. To investigate the identifiability of the SAS, 
we use Pearson’s correlation to calculate the similarity between the SAS vectors obtained for the time 1 (t1) and time 2 (t2) two scans from the same 
individuals (diagonal elements of the matrices) as well as the correlation between t1 and t2 scans between different subjects (off-diagonal elements). We 
estimate identifiability by first correlating the initial two eigenvalues, then the initial three eigenvalues, and so on to a maximum of 1000 eigenvalues. 
Here, we show examples of correlation matrices obtained when using the first 10, 50, 144, and 1000 eigenvalues, and the cortical surface reconstructions 
show the shape variations captured by corresponding spatial scales. (D) Repeating the identifiability analysis up to a maximum of 1000 eigenvalues 
yields a curve with a clear peak, representing the scale at which individual differences in cortical shape are maximal. For the SAS, this peak occurs when 
the first 144 eigenvalues are used (black dashed line), which offers a fairly coarse description of shape variations (see panel C). We then use a similar 

Figure 1 continued on next page
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268 eigenvalues (identifiability score = 6.74; p=0; Figure 2C), but the identification curve flattened 
after the first 137 eigenvalues (identifiability score = 6.56), which is closely aligned with the OASIS-3 
and ADNI datasets.

In the case of a perfect sphere, the shape spectral analysis yields subsets of degenerate eigen-
values with equal magnitude (Robinson et al., 2016), within which the corresponding eigenfunctions 
represent orthogonal rotations of the same spatial pattern at a given scale. For example, eigenfunc-
tions 2–4 of a sphere represent coarse-scale gradients in the anterior–posterior, inferior–superior, 
and left–right axes. As the cortex is topologically equivalent to a sphere, the spherical eigen-groups 
offer a natural way to identify characteristic spatial scales, more succinctly summarize cortical shape 
variations (Robinson et al., 2016), and smooth out eigenvalue-specific fluctuations at a given scale 
(see ‘Materials and methods’). We averaged the identifiability scores for each harmonic group and 
plotted these as a function of the group index in Figure 2D–F. The group mean identifiability score 
peaks at the 11th eigenvalue group for the OASIS-3 (mean identifiability score = 4.93) and ADNI (mean 
identifiability score = 5.06) datasets, which is comprised of the first 144 eigenvalues. Identifiability also 
reaches a near-plateau at the 11th group for the HCP data (mean identifiability score = 6.47), with an 
additional marginal increase observed at the 16th group (mean identifiability score = 6.69). Thus, the 
first 144 eigenvalues represent a stable and robust characteristic scale at which individual uniqueness 
in cortical shape asymmetry is strongest. The 11th group corresponds to a wavelength of approxi-
mately 37 mm in the case of the population-based template (fsaverage in FreeSurfer; Supplementary 
file 1 shows the corresponding wavelengths of the first 14 eigen-groups; Figure 2G shows the spatial 
scales corresponding to the cumulative eigen-groups).

A reconstruction of the cortical surface using the first 144 eigenfunctions is shown in Figure 2H. The 
reconstruction captures shape variations at a coarse scale, representing major primary and secondary 
sulci, but with minimal additional details. If we include additional eigenfunctions to capture more 
fine-scale anatomical variations, inter-session image differences increase, suggesting that finer spatial 
scales may be capturing dynamic aspects of brain structure that are more susceptible to increased 
measurement noise (Figure 2—figure supplement 2). This same characteristic scale was obtained 
after repeating the identifiability analysis over the longest inter-scan intervals in the ADNI and OASIS-3 
datasets (Figure 2—figure supplement 3), indicating that our results are robust over time windows 
ranging from 1 day to more than 6 years.

Shape asymmetries are more identifiable than classical morphological 
and functional measures
We next compared the identifiability of the SAS to scores obtained using asymmetries in classical 
morphological descriptors such as regional surface area, cortical thickness, and gray matter volume, 
and measures of inter-regional functional connectivity (Figure 3), which have previously been shown 
to yield high identifiability (Finn et al., 2015; Amico and Goñi, 2018). Identifiability scores obtained 
with the SAS were much higher than those obtained by regional asymmetries in size-related morpho-
logical measures with the HCP-MMP1 atlas (Glasser et al., 2016; Figure 3A and B). We also found 
that SAS identifiability was higher when using our surface area normalization procedure compared 
to the SAS computed without this procedure (Figure 3—figure supplement 1; see ‘Materials and 
methods’). Since the normalization isolates the pure effects of shape independent of brain size, the 
results converge to indicate that individual variability in brain anatomy is higher when considering 
asymmetries in cortical shape compared to more traditional size-based morphological descriptors.

Figure 3C–F compares the identifiability scores obtained from the SAS to those obtained using 
inter-regional functional connectivity (see ‘Materials and methods’), within the HCP test–retest data. 
Functional connectivity was quantified for the entire cortex using four different regional parcella-
tions defined at different spatial scales (Schafer 100, Schaefer 300, Schaefer 900 [Schaefer et al., 

analysis approach to investigate associations between scale-specific shape variations and sex, handedness, cognitive functions, as well as heritability. 
The data in this figure are from the OASIS-3 (n = 233) cohort, and the cortical surfaces are from a population-based template (fsaverage in FreeSurfer).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Higher shape asymmetry signature (SAS) values characterize brains with stronger cortical shape asymmetries.

Figure 1 continued
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Figure 2. Identifiability of different shape descriptors at different spatial scales. (A–C) Identifiability scores for shape features across eigenvalue indices. 
The identifiability scores of the shape asymmetry signature (SAS) are generally higher than the scores for shape descriptors of individual hemispheres 
or scores obtained when concatenating both hemispheres across three datasets (OASIS-3: n = 233; ADNI: n = 208; HCP test–retest: n = 45). The SAS 
scores are also much higher than the scores obtained by randomly shuffling the order of the subjects at time 2 (shaded area represents mean ± 2 SDs). 
(D–F) The cumulative mean identifiability scores for each eigenvalue group, derived from correspondence with spherical harmonics (Robinson et al., 
2016). The peak mean identifiability occurs at the 11th eigenvalue group for the OASIS-3 (D) and ADNI data (E), representing the first 144 eigenvalues. 
The curve of the mean identifiability score for the HCP test–retest data (F) flattens after the 11th group and peaks at the 16th group. (G) Cortical surfaces 
reconstructed at different spatial scales, starting with only the first eigen-group (E1) and incrementally adding more groups to a maximum of the first 12 
eigen-groups (E12). (H) Overhead view of the spatial scale corresponding to the eigen-group at which identifiability is maximal in the OASIS-3 and ADNI 
datasets (i.e., the first 11 eigen-groups, corresponding to the first 144 eigenvalues).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Understanding the identifiability score.

Figure 2 continued on next page
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2018], and HCP-MMP1 [Glasser et al., 2016] atlas). The SAS outperformed all functional identifi-
ability scores, indicating that cortical shape shows greater specificity to an individual than patterns of 
functional connectivity.

Cortical shape asymmetries are related to sex but not handedness
Sex and handedness are two characteristics that have frequently been examined in relation to brain 
asymmetry (Güntürkün et al., 2020; Toga and Thompson, 2003; Kong et al., 2018; Plessen et al., 
2014; Wachinger et al., 2015; Guadalupe et al., 2015; Narr et al., 2007; Good et al., 2001; Kong 
et al., 2021). We used a general linear model (GLM) with permutation testing and accounting for 
familial structure (Winkler et al., 2016; Winkler et al., 2015) of the HCP data to evaluate the asso-
ciation between these two characteristics and the SAS defined at each eigenvalue ranging between 
the 2nd and 144th. After false discovery rate (FDR) correction, males and females showed significant 
differences in asymmetry scores for the 2nd (PFDR = 0.037), 6th (PFDR = 0.037), 8th (PFDR = 0.039), 52nd (PFDR 
= 0.030), and 84th (PFDR = 0.037) eigenvalues (Figure 4A), where female brains showed more rightward 
asymmetry than males in these eigenvalues. These five eigenvalues come from four different eigen-
groups, and the corresponding spatial scales of these eigenvalues are shown in Figure 4B. These 
eigenvalues relate to shape variations over coarse scales. For instance, for the 2nd eigenvalue (L = 1; 
see ‘Materials and methods’ for the definition of L), the wavelength is of order 300 mm, which is about 
half the circumference of the brain; for the most-fine grained eigenvalue, the 84th eigenvalue (L = 9), 
the wavelength is about 44 mm. We note however that the sex differences are small, with consider-
able overlap between male and female distributions (Figure 4A). No such effects of handedness on 
the SAS surpassed the FDR-corrected threshold. We also found that the overall asymmetry level (i.e., 
the sum of the SAS) was not correlated with either handedness or sex.

Individual differences in cortical shape asymmetry correlate with 
cognitive functions
We used canonical correlation analysis (CCA) (Winkler et al., 2020) to examine associations between 
the SAS and 13 cognitive measures from the HCP dataset (n = 1094; see ‘Materials and methods’) 
selected to represent a wide range of cognitive functions (Kong et  al., 2019; see ‘Materials and 
methods’ for details). To reduce the dimensionality of the SAS measures and ensure equivalent repre-
sentation of asymmetries at each spatial scale, we took the mean SAS value for each of the 1st to 11th 
eigen-groups, spanning the 2nd to 144th eigenvalues. To minimize collinearity of the cognitive variables, 
we applied principal component analysis (PCA) to the 13 cognitive measures and retained the first 
four principal components (PCs), which explained 80% of the variance. The analysis revealed a single 
statistically significant canonical mode (CCA r = 0.187; PFWER = 0.032; Figure 5A). Figure 5B shows 
that the mode has significant positive loadings from mean SAS scores in eigen-groups 2, 4, 5, and 11, 
and significant negative loadings from eigen-groups 3, 6, 7, and 10. Figure 5C indicates that 12 of the 
13 cognitive measures showed significant positive correlations with the canonical variate, indicating 
that it captures covariance with general cognitive ability. Thus, our findings identify strong scale-
specificity of associations between cortical shape asymmetry and cognition, with a greater leftward 
asymmetry in scales captured by eigen-groups 2 (~170 mm wavelength), 4 (~95 mm wavelength), 5 
(~75 mm wavelength), and 11 (~37 mm wavelength) being associated with better performance across 
most cognitive measures, and a greater leftward asymmetry in scales captured by eigen-groups 3 
(~120 mm wavelength), 6 (~65 mm wavelength), 7 (~55 mm wavelength), and 10 (~40 mm wave-
length) being associated with poorer cognitive performance.

Cortical shape asymmetries are primarily driven by unique 
environmental influences
To characterize genetic and environmental effects on cortical shape and its asymmetry, we calcu-
lated the heritability of each eigenvalue within the left and right hemispheres, as well as for the SAS. 

Figure supplement 2. Inter-session variability in cortical shape is higher at more fine-grained spatial scales.

Figure supplement 3. Subject identifiability scores recalculated for data from MRI sessions with the longest inter-sessional interval.

Figure 2 continued
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Figure 3. Cortical shape asymmetries are more identifiable than size-related descriptors or functional connectivity. (A) Identifiability scores for the 
shape asymmetry signature (SAS) are higher than those obtained for asymmetries based on cortical surface area (identifiability score = 0.81), volume 
(identifiability score = 0.66), and thickness (identifiability score = 0.33) for the OASIS-3 dataset (n = 232; see ‘Materials and methods’). (B) Matrices of 
the Pearson correlation coefficients for SAS and size-based morphological asymmetries from MRI scans taken at different time points (t1 and t2) of 

Figure 3 continued on next page
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We used data from 138 monozygotic (MZ) twin pairs, 79 dizygotic (DZ) twin pairs, and 160 of their 
non-twin siblings drawn from the HCP dataset (Van Essen et al., 2013; see ‘Materials and methods’ 
for details). Unihemispheric shape descriptors demonstrated strong heritability at very coarse spatial 
scales and moderate heritability at slightly finer scales. For instance, the heritability of the first eigen-
group (second to fourth eigenvalues) of both hemispheres ranged between 0.52 < h2 < 0.69 (all 
PFDR < 0.05; Figure 6A and B). These eigenvalues are related to shape variations on the coarsest scale 
that does not include any sulcal or gyral features (the corresponding wavelength is approximately 
170 mm). Beyond the second eigen-group, heritability estimates dropped to below 0.5 (PFDR < 0.05 
for most eigenvalues), and beyond the fourth eigen-group they dropped below 0.3. Most eigenvalues 
with statistically significant heritability estimates were confined to the first six eigen-groups, which 
correspond to wavelengths greater than or equal to approximately 65 mm (Figure 6A and B, insets). 
These results indicate that genetic influences on the shape of each cortical hemisphere are expressed 
over very coarse scales at which only primary cortical folds such as the Sylvian and central sulci are 

the OASIS-3 subjects. (C) SAS identifiability is higher than the identifiability based on functional connectivity, assessed with parcellations at different 
resolution scales in the HCP test–retest dataset (n = 44). (D) Matrix of the Pearson correlation coefficients for SAS of the HCP test-retest subjects. 
(E) Four resolution scales of parcellations used in the functional connectivity analysis (shown on an inflated fsaverage surface in FreeSurfer). (F) Matrices 
of the Pearson correlation coefficients for functional connectivity using the Schaefer 100 (identifiability score = 1.57), HCP-MMP1 (identifiability score = 
2.06), Schaefer 300 (identifiability score = 2.11), and Schaefer 900 (identifiability score = 2.69) parcellations.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparing identifiability scores between the shape asymmetry signature (SAS) with either native eigenvalues or volume-
normalized eigenvalues.

Figure 3 continued

Figure 4. Sex differences in eigenvalue asymmetries. (A) Smoothed distributions and boxplots with mean and 
interquartile range (Allen et al., 2019) of the eigenvalues among males (n = 504) and females (n = 602). Under 
these five spatial scales, female brains show a greater rightward asymmetry than males. The p-values are false 
discovery rate (FDR)-corrected values of the correlation between sex and shape asymmetry signature (SAS), 
obtained via a general linear model (GLM). The d values are effect sizes (Cohen’s d). L denotes eigen-group. 
(B) The corresponding eigenfunction of each eigenvalue in panel (A) that shows the gradients of spatial variation 
on a population-based template.
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apparent. Estimates of common environmental influence on both hemispheres were uniformly low 
across the 2nd to 144th eigenvalues (range 0–0.20).

In contrast to unihemispheric shape variations, all the heritability estimates of the SAS were low 
(<0.28; Figure 6C), with only four eigenvalues (2, 3, 16, and 28) showing statistically significant heri-
tability after FDR correction (PFDR = 0.004–0.022) and no heritability estimates exceeding 0.30. Thus, 
at any given scale, genes account for less than one-third of the phenotypic variance in the SAS. These 
four eigenvalues are confined to the first five eigen-groups, with corresponding wavelengths greater 
than or equal to approximately 75 mm (Figure 6C, inset). Estimates of common environmental influ-
ences were uniformly low (range 0–0.14), whereas unique (subject-specific) environmental influences 
on the SAS were consistently high across the full range of eigenvalues considered, ranging between 
0.72 and 1.00 (Figure 6D).

Notably, heritability estimates for non-surface area normalized eigenvalues of individual hemi-
spheres, which capture variations in both shape and size, were uniformly high across all scales, and 
the scale-specific effects were eliminated (Figure 6—figure supplement 1), indicating that variations 
in cortical size are under greater genetic influence than cortical shape. These results underscore the 
importance of controlling for size-related variations in shape analyses.

Discussion
Asymmetries in brain anatomy are widely viewed as a critical characteristic for understanding brain 
function. Here, we employed a multiscale approach to quantify individualized shape asymmetries of 
the human cerebral cortex. We found that cortical shape asymmetries were highly personalized and 
robust, with shape asymmetries at coarse spatial scales being the most discriminative among indi-
viduals, showing differences between males and females, and correlating with individual differences 
in cognition. Heritability estimates of shape descriptors in individual hemispheres were high at very 
coarse scales but declined to moderate values at finer scales. By contrast, the heritability of cortical 
shape asymmetry was low at all scales, with such asymmetries being predominantly influenced by 
individual-specific environmental factors.

Identifiability of cortical shape asymmetry is maximal at coarse scales
Cortical asymmetries have traditionally been investigated at fine-scale, voxel, or vertex-level resolu-
tions (Cai et al., 2015; Takao et al., 2011; Kurth et al., 2018; Good et al., 2001; Maingault et al., 

Figure 5. Individual differences in cortical shape asymmetry correlate with general cognitive ability. (A) Scatterplot of the association between the 
cognitive and shape asymmetry signature (SAS) canonical variates with the corresponding least-squares regression line in black. (B) Canonical variate 
loadings of each eigen-group. (C) Correlations between the original cognitive measures and the cognitive canonical variate. Error bars show ±2 
bootstrapped standard errors (SE). Asterisks denote bootstrapped PFDR < 0.05. The data in this figure are from the HCP dataset (n = 1106).
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2016; Kruggel and Solodkin, 2020; Kurth et al., 2015). These approaches may ignore meaningful 
effects (i.e., properties that are individually unique and correlated with cognition) at coarser spatial 
scales. Our SAS quantifies these underlying variations across the whole brain and along a spectrum 
of spatial scales. Our approach is akin to studying seismic waves of earthquakes with different wave 
frequencies at the global tectonic scale, instead of focusing on a particular city. The ability to assess 
shape along a spectrum of spatial scales is important since brain asymmetry is a multidimensional and 
multivariate phenotype (Corballis and Häberling, 2017; Kong et al., 2022; Kruggel and Solodkin, 
2020).

Few studies have assessed individual variations in shape at coarse scales. Neubauer et al., 2020 
found that individual-specific asymmetry in endocranial shape is reliable across two time points. The 
endocranial shape is the imprint of the cortical surface shape but contains only very coarse shape 
information (Neubauer et al., 2020). Moreover, levels of brain torque (both horizontal and vertical) 
are robust across time (Kong et al., 2021). Wachinger et al., 2015 used shape descriptors at coarse 
scales derived from the eigenvalues of the LBO for all brain structures to achieve accurate subject 
identification. Taken together with our findings, these results indicate that coarse features of cortical 
shape are highly personalized and unique to individuals.

It is perhaps surprising that individual differences in cortical shape are most strongly expressed 
at coarse scales, given the known variability of fine-grained anatomical features such as the pres-
ence and trajectories of tertiary sulci. It is possible that local changes in gray matter volume affect 
fine-scale geometry in such a way that it carries less identifying information, or that such fine scales 

Figure 6. Heritability of cortical shape. (A, B) Heritability of the eigenvalues of the left (A) and right 
(B) hemispheres. The insets show the corresponding spatial scales by reconstructing the surfaces using the first six 
eigen-groups. (C) Heritability of the shape asymmetry signature (SAS). The inset shows the corresponding spatial 
scale with some level of genetic influence, obtained by reconstructing the surface using the first five eigen-groups. 
(D) Unique environmental influences to the SAS at each eigenvalue. Statistical significance is evaluated after false 
discovery rate (FDR) correction. Note that significance is not estimated for unique environmental effects as this 
represents the reference model against which other genetically informed models are compared. We use 79 same-
sex dizygotic (DZ) twin pairs, 138 monozygotic (MZ) twin pairs, and 160 of their non-twin siblings.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Heritability of cortical shape with volume normalization but without normalizing the surface 
area.

Figure supplement 2. Heritability estimates of regional volumes of individual hemispheres across four parcellation 
resolutions: Schaefer 100, Schaefer 300, HCP-MMP1, and Schaefer 900 (top to bottom panels).
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carry too much measurement noise to be used for the purpose of identification. Traditional analysis 
methods use smoothing to address the issue of image noise (Kurth et al., 2015), but smoothing can 
also suppress actual variations at fine scales. Our multiscale approach affords a more comprehensive 
characterization of shape variations across multiple spatial scales. An important avenue of future work 
will involve investigating the functional consequences of these pronounced individual differences.

Cortical shape, rather than shape asymmetry, is heritable
Genetic effects on cortical thickness and surface area are generally bilateral (Kong et al., 2018; Chen 
et al., 2011; Chen et al., 2012; Chen et al., 2013), resulting in few lateralized effects (Kong et al., 
2018; Eyler et al., 2014). Accordingly, it has been postulated that individual-specific asymmetries 
may be largely determined by environmental factors (Gómez-Robles et al., 2016; Sherwood and 
Gómez-Robles, 2017; Francks, 2015; de Kovel et al., 2018; Graham and Özener, 2016). In line 
with this hypothesis, we found that individualized cortical shape asymmetries were associated with 
low heritability and were driven mainly by unique environmental effects. These environmental effects 
are captured by the E parameter of the ACTE heritability model that we used in our analysis. This 
parameter also includes the contributions of measurement error. However, our effects cannot be 
explained by the SAS being a noisier descriptor of morphology as it showed the highest identifiability 
(Figure 2A-C). A noisy measure will not be able to discriminate between individuals in this way. Thus, 
taking the findings of our identifiability and heritability analyses together, we can conclude that indi-
vidual differences in SAS scores are primarily driven by unique environmental influences rather than 
measurement error.

Previous studies have found some evidence of environmental influences on brain asymmetry 
(Güntürkün et al., 2020; Güntürkün and Ocklenburg, 2017; Esteves et al., 2021; Felton et al., 
2017). Early in the intrauterine environment, fetal posture and light may influence brain asymmetry 
(Güntürkün et al., 2020; Güntürkün and Ocklenburg, 2017; Esteves et al., 2021), and during post-
natal maturation, language learning has been linked to specific asymmetry features. For example, 
bilinguals have stronger rightward asymmetry of cortical thickness of the anterior cingulate than 
monolinguals (Felton et al., 2017). However, the mechanisms of how environmental effects shape 
brain asymmetry are largely unknown, and epigenetics may also play a role (Güntürkün et al., 2020; 
Güntürkün and Ocklenburg, 2017).

In contrast to shape asymmetries, the shape of individual hemispheres showed greater heritability 
at coarse scales, consistent with results from previous studies on other morphological measurements 
(Kong et al., 2018; Sha et al., 2021; Kruggel and Solodkin, 2020). The scales at which genetic effects 
on unihemispheric shape were observed captured variations in primary sulci, consistent with evidence 
that the primary folds, which develop early in life, are less variable across individuals and under greater 
genetic control than other folds (i.e., secondary and tertiary folds) (Kruggel and Solodkin, 2020; 
Ronan and Fletcher, 2015; Kruggel, 2018). Previous studies have found that genetic influences on 
the cerebral thickness, geodesic depth, and surface curvature generally occur along the posterior–
anterior and inferior–superior axes (Kruggel and Solodkin, 2020; Valk et al., 2020). These two axes 
correspond to the second and third eigenvalues of the LBO, which also showed strong heritability in 
the shapes of both hemispheres in our results. In addition to these two axes, we found strong herita-
bility at very coarse scales in other directions that have not been described in previous studies. Our 
approach thus identifies dominant spatial scales and gradients of heritability in shape.

Shape asymmetries, sex, and handedness
Using our multiscale approach, we did not find a relationship between shape asymmetry and hand-
edness, consistent with numerous studies showing that handedness is unrelated to anatomical brain 
asymmetry in cortical thickness, volume, surface area, shape, and voxel-based morphometric (VBM) 
analysis (Kong et al., 2018; Plessen et al., 2014; Núñez et al., 2018; Wachinger et al., 2015; Narr 
et al., 2007; Good et al., 2001; Maingault et al., 2016).

Numerous studies, focusing primarily on size-related descriptions such as gray matter volume and 
cortical thickness, have found that female brains are more symmetric than male brains (Zhao et al., 
2021; Kong et al., 2018; Núñez et al., 2018; Wachinger et al., 2015; Kovalev et al., 2003; Guada-
lupe et al., 2015). Our analysis reveals that, although the overall level of shape asymmetry did not 
differ between male and female brains, female brains displayed a greater rightward shape asymmetry 
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than male brains at certain coarse spatial scales, such as along the anterior–posterior axis. The mech-
anisms giving rise to these scale-specific sex differences require further investigation.

Shape asymmetries are correlated with general cognitive performance
We found that individual differences in cortical shape asymmetry are correlated with cognitive perfor-
mance in a scale-specific way. Specifically, we found that a greater leftward asymmetry across a wide 
range of spatial scales, corresponding to wavelengths of approximately 37, 75, 95, and 170 mm, and 
greater rightward asymmetry at wavelengths of approximately 40, 55, 65, and 120 mm, are associ-
ated with better performance across nearly all cognitive measures considered. Previous studies have 
found that asymmetries in cortical thickness and surface area are negatively correlated with cognition 
(Nadig et al., 2021; Yeo et al., 2016), but these studies only measured the level of asymmetry and 
did not consider the direction (i.e., leftward or rightward) of the asymmetry. The scale-specificity of 
the associations that we find underscores the importance of viewing brain asymmetry as a multiscale 
rather than a unidimensional trait.

The magnitudes of the associations are modest, but they are consistent with effect sizes reported 
in past research (Nadig et al., 2021; Yeo et al., 2016). These modest correlations with cognition may 
reflect a robustness of cognitive abilities to stochastic perturbations of brain morphology, given that 
our heritability analysis revealed a dominant effect of unique environmental factors in driving indi-
vidual differences in cortical shape asymmetries.

Conclusion
We developed a multiscale approach and found that cortical shape asymmetries are robust and person-
alized neuroanatomical phenotypes, especially at coarse spatial scales. Some of these coarse scales 
are more strongly rightward asymmetric in females compared to males. The cortical shape asymme-
tries also show scale-dependent associations with cognition. Finally, individual-specific cortical shape 
asymmetries are driven mainly by subject-specific environmental influences rather than by genetics, 
contrasting with the shape of individual hemispheres, which shows strong heritability at coarse scales.

Materials and methods
Neuroimaging data
We used healthy subject data from three open-source neuroimaging datasets: the latest OASIS-3 
(LaMontagne et al., 2019), the HCP (Van Essen et al., 2013), and the ADNI (https://ida.loni.usc.​
edu/) to develop and test our new asymmetry shape measure – the SAS (see below for details). To test 
for relationships of sex, handedness, and heritability, we restricted our analysis to the HCP dataset, 
which provides twin and non-twin sibling information and handedness measurement as a continuous 
variable, as the sample sizes of the left-handers in the other two datasets are too small (n = 15 in the 
ADNI data; n = 18 in the OASIS-3 data).

OASIS-3
We used 239 healthy participants with at least two longitudinal MRI sessions using 3T scanners from 
the latest release of the OASIS-3 (LaMontagne et al., 2019). We excluded six subjects whose SAS was 
an outlier in at least one of those sessions due to poor image quality and major errors in image segmen-
tation. These subjects had more than two eigenvalues of the first 200 eigenvalues that departed 
from the population mean values by more than four standard deviations. The remaining 233 subjects 
(99 males; 134 females) were aged from 42 to 86 (mean = 66.03; standard deviation = 8.81) when 
they entered the study. We also repeated the analyses using all the subjects including the outliers, and 
the resulting number of eigenvalues with peak identifiability was identical to the initial analysis that 
excluded the outliers. For comparing the identifiability of the SAS and the asymmetry from traditional 
measurements (volume, cortical thickness, and surface area), we further excluded one subject because 
some of this subject’s files were corrupted and could not be segmented. For subjects with more than 
two MRI sessions (n = 115), our main analysis used the initial session as the time 1 (t1) session and 
the session closest in time to the initial session as the time 2 (t2) session. The intervals between these 
two sessions were one to 3151 days (mean = 2.95 years; standard deviation = 1.67 years). To ensure 
the robustness of our methods, we used sessions with the longest intersession interval (mean interval 
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of 6.24 years; standard deviation of 1.88 years) to reanalyze the subject identifiability. These healthy 
participants had no history of neurological or psychiatric diseases. We also excluded subjects with a 
Mini-Mental State Examination (MMSE) score equal to or lower than 26 as this indicates that a subject 
is at risk of being diagnosed with dementia (O’Bryant et al., 2008).

OASIS-3 (LaMontagne et  al., 2019) provides surface meshes based on the T1-weighted MRI 
images created by FreeSurfer version 5.3 with the cross-sectional pipeline (i.e., to treat the T1 and 
T2 sessions independently; Fischl et al., 2002), including the FreeSurfer patch (10 December 2012) 
and the HCP patch (http://surfer.nmr.mgh.harvard.edu/pub/dist/freesurfer/5.3.0-HCP; LaMontagne 
et al., 2019). A trained lab member of the OASIS project reviewed the image segmentation, and for 
the images that failed the quality control, TkMedit (http://freesurfer.net/fswiki/TkMedit), a FreeSurfer 
toolbox, was used to revise the images and rerun the FreeSurfer pipeline (LaMontagne et al., 2019). 
After the re-segmentation, the images were excluded if they still failed a quality control process 
(LaMontagne et al., 2019). The details of the OASIS-3 dataset can be found in LaMontagne et al., 
2019 and the OASIS website (https://www.oasis-brains.org/). We used the actual output files provided 
by the OASIS-3 without any further corrections.

HCP
We used participants from the HCP (Van Essen et al., 2013) s1200 release (https://www.humancon-
nectome.org/), which includes 1113 subjects with T1-weighted MRI. All subjects of the s1200 release 
were healthy young adults (aged 22–35, mean = 28.80, standard deviation = 3.70). The structural 
images (T1-weighted and T2-weighted scans) of the HCP have a high isotropic resolution (0.7 mm; see 
Van Essen et al., 2013 for details), and all images underwent the HCP-specific minimal preprocessing 
pipeline (Glasser et al., 2013). We used native surface meshes created by the FreeSurfer (version 
5.3)-HCP pipeline (Fischl et al., 2002; Glasser et al., 2013; Jenkinson et al., 2012; Jenkinson et al., 
2002) from T1-weighted MRI images using 3T scanners. For subject identification, we employed the 
test–retest subsample, which consists of 45 healthy subjects (13 males, 32 females) aged from 22 to 
35 (mean = 30.29; standard deviation = 3.34), including 17 pairs of MZ twins. The intervals between 
the test session (the t1 session in our analysis) and the retest session (t2) were between about 1 and 
11 months (mean interval of 4.7 months). To compare the identifiability of the SAS and the resting-
state functional connectivity, we further excluded one subject without REST1 data in one session.

For analyzing the relationships between SAS and sex as well as handedness, we excluded three 
subjects with unclear zygosity and four subjects with outlying SAS values (using the same criteria as 
used in the OASIS-3) from the s1200 release subjects, and GLM of sex and handedness effects were 
applied to cross-sectional data of these remaining 1106 subjects (504 males; 602 females). We further 
excluded 12  subjects who did not have all 13 cognitive measures analyzed in our CCA (detailed 
below). Among the s1200 release subjects were 79 same-sex DZ twin pairs and 138 MZ twin pairs; 
160 of these twin pairs have non-twin sibling imaging data. For twin pairs with more than one non-twin 
sibling, we selected one sibling at random (Arnatkeviciute et al., 2021). We used the resulting twin 
and non-twin siblings data for the heritability analysis.

ADNI
The ADNI database (adni.loni.usc.edu) was launched in 2003 as a public–private partnership, led by 
principal investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether 
serial MRI, positron emission tomography (PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of mild cognitive impairment 
(MCI) and early Alzheimer’s disease (AD).

Participants in the ADNI sample completed multiple MRI sessions, but the number of sessions was 
not consistent across subjects. We used 208 healthy control subjects from the ADNI 1 who had both 
the baseline MRI session (the t1 session) and a follow-up MRI session 6 months later (the t2 session). 
These subjects comprised 109 males and 99 females aged 60–90 (mean = 76.21; standard deviation = 
5.10) upon study entry. Of these 208 subjects, 135 subjects also had an MRI session 3 years later from 
the initial session. To evaluate the stability of our methods, we reanalyzed these 135 subjects using 
data from the 3-year follow-up as the t2 session. The preprocessing procedure included gradwarping, 
B1 correction, and/or N3 scaling. We used the ADNI-provided surface meshes generated by the 
cross-sectional FreeSurfer (version 4.3) from T1-weighted MRI image. Detailed descriptions of image 
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acquisition, quality control, and preprocessing are described at http://adni.loni.usc.edu/methods/mri-​
tool/mri-analysis/ and Jack et al., 2008.

Spectral shape analysis
We utilized the eigenvalues of the LBO applied to cortical surface mesh models generated with Free-
Surfer (Fischl et  al., 2002). The eigendecomposition of each individual’s cortical surface was esti-
mated using the Shape-DNA software (Wachinger et al., 2015; Reuter et al., 2009; Reuter et al., 
2006), which provides algorithms that extract and optimize the eigenvalues and eigenfunctions from 
the LBO based on the intrinsic shape of an object (Reuter et al., 2009; Reuter et al., 2006). The 
Shape-DNA software (Reuter et al., 2009; Reuter et al., 2006) uses the cubic finite element method 
to solve the Helmholtz equation (Equation 1), also known as the Laplacian eigenvalue problem:

	﻿‍ ∆f = −λf ‍� (1)

where Δ is the LBO, and f is the eigenfunction with corresponding eigenvalue ‍λ‍. The eigenvalues of 
the Helmholtz equation are a sequence ranging from zero to infinity, that is, 0 ≤ ‍λ1‍ ≤ ‍λ2‍ ≤…< ∞, and 
changes in shape result in changes in the eigenvalue spectrum (Reuter et al., 2006).

Spectral shape analysis via LBO is a departure from traditional morphological analyses that focus 
on either specific locations (i.e., regions defined by a cortical atlas) or global differences (such as total 
hemispheric volume). Spectral shape analysis focuses instead on differences in the spatial scales of 
variation. The decomposed spatial scales can be linearly combined to reconstruct the surface via the 
eigenfunctions and their corresponding coefficients (the contribution of each set of eigenfunctions to 
the original surface; see Figure 2G for examples of reconstructed surfaces).

Importantly, Shape-DNA achieves better results for retrieving object shapes than numerous 
cutting-edge shape-retrieval methods (Lian et al., 2013). Shape-DNA compresses the cortical-surface 
geometry from around 5 mb into only less than 3 kb, making it computationally efficient for further 
analysis (Wachinger et al., 2015). The code for calculating Shape-DNA is written in Python and is 
freely available (http://reuter.mit.edu/software/shapedna/). We applied the Shape-DNA code to the 
data and analyzed the resulting eigenvalues using MATLAB.

Eigenvalue normalization
To account for differences in brain sizes among participants, the eigenvalue spectra from Shape-DNA 
should be normalized (Reuter et al., 2009). Previous studies Wachinger et al., 2015; Wachinger 
et al., 2016; Wachinger et al., 2018 have applied volume normalization to normalize the eigenvalue 
spectrum to unit volume via the following equation (Wachinger et al., 2015; Wachinger et al., 2016):

	﻿‍ λ′ = v2/Dλ‍� (2)

Figure 7. Eigenvalue spectra with and without normalization. (A) Native eigenvalue spectra. (B) Eigenvalue spectra 
with volume normalization. (C) Eigenvalue spectra with surface area normalization. All of these results are from the 
left white surfaces of 233 subjects from the OASIS- 3 data. Each line represents a subject. The slopes of the spectra 
in (A) and (B) differ among subjects, whereas those in (C) are almost identical.
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where ‍v‍ is the Riemannian volume of the manifold, ‍λ‍ is the original eigenvalue spectrum (‍λ‍ = [ ‍λ1‍ , ‍λ2‍ 
,…]), and ‍λ‍ is the volume normalized eigenvalue spectrum. Although this approach has been used in 
the literature, it is still unable to isolate shape properties as it does not control the effect of different 
surface areas among objects. For example, in Figure 7, each line is the eigenvalue spectrum for the 
cortical surface of one subject, and these eigenvalue spectra are straight lines (although they are not 
straight lines if we zoom in these figures) increasing along with the indices: each eigen-spectrum line 
has its own slope. Specifically, slopes of the native eigenvalue spectra from each subject are different 
(Figure 7A) and related to the volume of the manifold. Even though volume normalization decreases 
the differences in the slopes of the eigenvalue spectra, the slopes remain quite different (Figure 7B) 
and are driven by differences in surface area (Reuter et al., 2009). More specifically,

	﻿‍
λn ∼ 4πn

area
(

M
)
‍� (3)

where ‍λ‍ is the eigenvalue and ‍n‍ is the eigenvalue index. Hence, an appropriate surface area-based 
normalization is essential to isolate the effects of shape that are distinct from size, particularly given 
the evidence that the right hemisphere tends to have a greater cortical surface area than the left hemi-
sphere (Kong et al., 2018). Without surface area normalization, differences between the hemispheres 
may be primarily driven by differences in the surface area of the two hemispheres.

To perform surface area normalization, we obtained the unit surface area by dividing the vertex 
coordinates on each axis by the square root of the total surface area (Equation 4).

	﻿‍
Vx

′
= Vx√

area
(

M
) ; Vy

′
= Vy√

area
(

M
) ; Vz

′
= Vz√

area
(

M
)
‍�

(4)

where Vx, Vy, Vz are the coordinates of all vertices on the X-axis, Y-axis, and Z-axis, respectively; area 
(‍M ‍) is the surface area of object ‍M ‍; Vx′, Vy′, Vz′ are the coordinates of transformed vertices on the 
X-axis, Y-axis, and Z-axis, respectively. Surface area normalization is stricter than volume normalization 
for spectral alignment, and the eigenvalue spectra with surface area normalization have a nearly iden-
tical slope (Reuter et al., 2009; Figure 7C).

The shape asymmetry signature
The LBO eigenvalues measure the intrinsic geometry of an object and are isometry invariant. Hence, 
the eigenvalue spectra are identical regardless of object positions, rotations, and mirroring (i.e., 
perfect projection from the brain structure of the right hemisphere to the left does not change the 
eigenvalue spectrum) (Wachinger et  al., 2015; Reuter et  al., 2006). Therefore, brain asymmetry 
can be calculated directly from the eigenvalue spectra of the two hemispheres (Wachinger et al., 
2015; Wachinger et al., 2016) without image registration or smoothing (Wachinger et al., 2015; 
Reuter et al., 2006). In this study, after calculating the eigenvalues with surface area normalization, 
we subtracted the eigenvalue spectra of the right hemisphere from those of the left hemisphere in 
the same subject at each spatial scale (each eigenvalue index) to define the SAS. Formally, the SAS 
for subject i is given by

	﻿‍ Λi = λi
L − λi

R‍� (5)

where λ is the eigenvalue spectrum λ = (‍λ1‍ , ‍λ2‍ ,..., ‍λn‍) from the left (L) and right (R) hemispheres, 
each of which represents a certain spatial scale. There are other possible asymmetry indices (Kong 
et al., 2018; Moodie et al., 2020), but those indices are not appropriate for a surface area-normalized 
eigenvalue analysis, as our normalization already accounts for size effects.

Moodie et  al., 2020 proposed subtracting the mean of the asymmetry values across subjects 
from the individual asymmetry values to represent the asymmetry. We tested this approach with our 
method, and the results were generally the same, as the eigenvalues were normalized before calcu-
lating the asymmetry. For simplicity, we defined the SAS using Equation 5 to represent the individual-
specific asymmetry.

To further check the possible influence of image quality on the SAS, we first took the mean of the 
Euler number of the left and right hemispheres using FreeSurfer, which is widely used as an index of 
image quality (Morgan et al., 2019; Kaufmann et al., 2019; Rosen et al., 2018), and then calcu-
lated the Pearson’s correlation between the mean Euler number and the SAS across the first 200 
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eigenvalues. For the HCP s1200 dataset, the correlations were all below 0.07 (PFDR > 0.05). For the 
OASIS-3, the correlations were all below 0.18 (PFDR > 0.05) at either time 1 or time 2 MRI session. 
These results indicate that image quality does not strongly influence the SAS, which is in line with past 
findings that the eigenvalues and eigenfunctions of the LBO are robust to image noise (Reuter, 2010).

Subject identification
Our first aim was to validate the SAS as a useful and robust measure of individual-specific asymmetry. 
We, therefore, evaluated the extent to which the SAS of each individual subject measured at time 1 
(t1) could be used to identify the same person at time 2 (t2) in the longitudinal data, akin to a neuro-
morphological fingerprint. The t1 – t2 Pearson correlations were then estimated between all pairs of 
‍N ‍ individuals, resulting in an ‍N × N ‍ correlation matrix.

Amico and Goñi, 2018 defined identifiability as the difference between the mean of within-subject 
correlations (diagonal elements of the Pearson correlation matrix in Figure  1C) and the mean of 
between-subject correlations (off-diagonal elements of the Pearson correlation matrix in Figure 1C). 
This approach allows for a more quantitative and finer-grained comparison of the identifiability of 
different metrics compared to other approaches that just rely on binary identification accuracy (e.g., 
Finn et al., 2015; Amico and Goñi, 2018; Mansour L et al., 2021). However, this approach does 
not take into account the variance of the observations. To examine the within- and between- subject 
similarities, we utilized the Glass’s ∆, which is the standardized difference between the mean values of 
two categories of observations, normalized by the standard deviation of a control group (Glass et al., 
1981), which is the between-subject group in our case. Glass’s ∆ has been recommended when the 
standard deviations of the two groups are substantially different (Glass et al., 1981; Lakens, 2013), 
which is the case for the between- and within-subject groups. Thus, our identifiability score was given 
by

	﻿‍
Identifiability score = mean

(
rii
)
−mean

(
rij
)

SD
(

rij
)

‍�  
(6)

where SD is the standard deviation. Higher scores indicate a greater capacity to discriminate between 
individuals. We also tested the pooled standard deviation of the two groups (Mansour L et al., 2021), 
as in the estimation of Cohen’s d, and the results were generally consistent to those using the Glass’s 
∆.

We also evaluated the identifiability performance of the SAS with respect to unihemispheric 
descriptors of either combining size and shape or shape alone: namely, the eigenvalues (native, 
volume-normalized, or surface area-normalized) from the same hemispheres between time 1 and time 
2 follow-up; concatenating eigenvalues of both left and right hemispheres between time 1 and time 2; 
and identifying the shape of one hemisphere from the shape of the other hemisphere both at time 1 
or both at time 2. Finally, we compared the identifiability score of the SAS to the asymmetry based on 
commonly used size-related measures (i.e., volume, cortical thickness, and surface area), and resting-
state functional connectivity.

Identifying spatial scales for optimum subject identifiability
Given a surface of ‍N ‍ vertices, spectral shape analysis yields up to ‍N ‍ eigenvalues, raising the question 
of how many eigenvalues constitute a sufficient description of cortical shape. Is a full representation 
of the entire surface necessary for optimal subject identifiability, or can this be achieved using a more 
compact set of eigenvalues? If so, the specific number of eigenvalues required would define the rele-
vant spatial scale of shape differences that characterize the individual-specific asymmetry at which 
individual differences are most prevalent.

To address this question, we decomposed the cortical surface and use an increasing number of 
eigenvalues, from the first two eigenvalues (‍λ1‍ , ‍λ2‍) to the first 1000 eigenvalues (‍λ1‍ , ‍λ2,‍﻿﻿‍λ3,‍ …, ‍λ1000‍), 
each time computing the SAS and evaluating subject identifiability. For example, we first quantified 
the shape of cortical surface using only ‍λ1‍ and ‍λ2‍ , thus capturing the coarsest scales of cortical shape. 
We then quantified the surface using ‍λ1‍ through ‍λ3‍ , then ‍λ1‍ through ‍λ4‍ , and so on. If there is a 
specific spatial scale that is optimal for this subject identifiability, we expect to see a peak in the iden-
tifiability score as a function of the truncation number, ‍k‍. This peak not only defines the spatial scale 
at which individual variability, and thus individual-specific asymmetry, is most strongly expressed, but 
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it also identifies a meaningful point at which to define a compressed summary of individual-specific 
asymmetry using the eigenvalue spectrum.

Cortical shape harmonics
The cerebral cortex is topologically equivalent to a sphere. Solving the Helmholtz equation for a sphere 
yields groups of eigenfunctions with the same eigenvalues and spatial wavelength, progressing along 
orthogonal axes (Robinson et al., 2016). These groups in the solutions to the idealized spherical case 
are known as the spherical harmonics. The zeroth group (L = 0) is comprised of the first eigenvalue; the 
first group (L = 1) is comprised of the second, third, and fourth eigenvalues; the second group (L = 2) 
is comprised of the fifth to ninth eigenvalues, and so on, with 2 (L + 1)–1 eigenvalues in the Lth group. 
Robinson et al., 2016 showed that while the eigenvalues between the cortical surface and sphere 
are different, the spherical grouping provides a rough division of the convoluted cortical surface. This 
is a useful grouping approach to investigate eigenfunctions and eigenvalues as the constituents of 
each group have roughly the same spatial wavelength. By averaging over several eigenvalues with 
similar spatial scales, we can also increase the stability of the truncation number across datasets. For 
example, the peak SAS identifiability appeared at the first 126 and 122 eigenvalues for the OASIS-3 
and ADNI data, respectively, and these eigenvalues are all within the 11h eigen-group (L = 11).

To estimate the corresponding wavelength of each eigen-group, we used an approximation of the 
spatial wavelength in the spherical case:

	﻿‍
W = 2πRs√

L
(

L+1
)
‍�

(7)

where Rs is the equivalent sphere of the original object (for the fsaverage case, Rs is about 67 mm) and 
L is the index of the eigen-group. We used the population-based template (fsaverage) as an example 
to show the wavelengths of the first 14 eigen-groups in Supplementary file 1.

Cortical segmentation
We applied the HCP-MMP1 atlas (Glasser et al., 2016) to segment cortical regions for accessing 
size-related morphological asymmetry, functional connectivity, and regional volume heritability. This 
atlas is based on a surface alignment approach that aligns the images using cortical folding patterns 
and minimizes the spatial smoothness (Glasser et al., 2016; Coalson et al., 2018), thus offering more 
accurate inter-subject registration than volume-based registration (Glasser et al., 2016). Moreover, 
regions in the left and right hemispheres of the HCP-MMP1 atlas are corresponding and thus can be 
used for accessing cortical asymmetry. In addition to the HCP-MMP1 atlas, we also employed the 
Schaefer atlas (Schaefer 100, 300, and 900) (Schaefer et al., 2018) for constructing functional connec-
tivity (FC) and regional volume heritability. The Schaefer atlas has superior functional homogeneity 
and has different parcellation scales (Schaefer et al., 2018); therefore, it can be used for comparing 
the identifiability of the FC and estimating regional volume heritability at different scales. Specifically, 
each hemisphere has 50 regions in the Schaefer 100 atlas, 150 regions in the Schaefer 300 atlas, and 
450 regions in the Schaefer 900 atlas (Schaefer et al., 2018). However, regions in the left and right 
hemispheres of the Schaefer atlas are not corresponding; therefore, the atlas cannot be used for 
assessing brain asymmetry.

Non-shape descriptors of brain anatomical asymmetry
To compare identifiability scores obtained with SAS to asymmetries using size-related descriptors, 
including volume, cortical thickness, and surface area, we had to ensure that the asymmetry values 
were purely from the asymmetry effect and were not affected by the effect of total brain size. A tradi-
tional asymmetry index (Kong et al., 2022; Kurth et al., 2018; Sha et al., 2021) is

	﻿‍
AIS,i =

(
PS,i

L −PS,i
R

)

0.5
(

PS,i
L +PS,i

R

)
‍�

(8)

where ‍AIS,i‍ is the asymmetry index for parcellation S of subject i. ‍P
S,i
L ‍ is the value of the morphological 

measurement from parcellation S from subject i’s left hemisphere; and ‍P
S,i
R ‍ is from the right hemi-

sphere. However, this asymmetry index is unable to entirely eliminate the effect of total brain size. 
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Here, we use cortical volume as an example. We suppose the total brain volume effect (α) exists, and 
the effects of each ROI-based volume of the left (Equation 9) and right (Equation 10) hemispheres are

	﻿‍ VF,i
L = δi

LVi
L + αi

‍� (9)

	﻿‍ VF,i
R = δi

RVi
R + αi

‍� (10)

where ‍V
i
L‍ and ‍V

i
R‍ are the volumes of region i in the left and right hemispheres, respectively, ‍δ

i
L‍ and ‍δ

i
L‍ 

are the scaling coefficients, and αi is the effect of total brain volume on region i. Thus, ‍V
F,i
L ‍ and ‍V

F,i
R ‍ are 

the overall effects of volume on region i. We can apply ‍V
F,i
L ‍ and ‍V

F,i
R ‍ to the traditional asymmetry index 

as in Equation 8 to get

	﻿‍
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RVF,i

R +αi)]
0.5[(δi
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(11)

By rearranging this equation, we obtain

	﻿‍
Vi

AI = δi
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L −δi
RVF,i

R
0.5δi

LVF,i
L +0.5δi

RVF,i
R +αi ‍�

(12)

which shows that the total volume effect αi still remains in the denominator and is not removed by the 
traditional asymmetry index defined in Equation 8.

In this study, we adjusted the asymmetry index for the mean of each morphological measurement, 
such as the asymmetry of cortical thickness, volume, and surface area. Specifically, we revised the 
traditional asymmetry index by subtracting the mean value of the measurement across all parcel-
lations of each subject before calculating the asymmetry index defined in Equation 8. This revised 
asymmetry measure ‍RAIS,i‍ is explicitly calculated as

	﻿‍
RAIS,i =

(
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L −Mi
)
−
(

PS,i
R −Mi

)

0.5
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)
+
(
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)]
‍�

(13)

where ‍Mi‍ is the mean value of the measurement across all regions in parcellation of subject i. We note 
that this is an important point as without this correction, the asymmetry measure is dependent on the 
mean value.

We employed a multi-modal parcellation, HCP-MMP1 version 1.0 (Glasser et al., 2016), on the 
OASIS-3 subjects. We excluded one subject whose cortical surfaces could not be segmented by the 
HCP-MMP1 atlas. There are 180 regions in each hemisphere of the HCP-MMP1 atlas, including the 
hippocampus that was excluded in our analysis. We created one vector per size-related measure that 
quantified the asymmetry index per subject and then used these asymmetry indices in the subject 
identifiability analyses.

Functional connectivity
We used the resting-state FC from the first session (REST1) in the test sample as the first FC time point 
(t1) and FC from the first session in the retest session as the second FC time point (t2). We utilized 
the fMRI signals that were preprocessed by the HCP functional and ICA-FIX pipelines (Glasser et al., 
2013). We did not apply any spatial smoothing on the signals. FC was calculated using the upper 
triangle entries of the Pearson correlation matrix between nodes from the atlas (Finn et al., 2015). 
To compare the identifiability of the SAS and the FC across different parcellation scales and atlas, we 
repeated the FC analysis with the Schaefer 100, 300, and 900 atlas (Schaefer et al., 2018) and the 
HCP-MMP1 atlas (Glasser et al., 2016) from the subjects in the HCP test–retest subsample (n = 44; 
we excluded one subject without REST1 data in one session).

Relationships with sex and handedness
Sex and handedness are two common characteristics that have been widely examined in the asym-
metry literature (Corballis and Häberling, 2017; Güntürkün and Ocklenburg, 2017; Toga and 
Thompson, 2003; Kong et al., 2018; Plessen et al., 2014; Kong et al., 2022; Deep-Soboslay et al., 
2010; Núñez et al., 2018; Wachinger et al., 2015; Narr et al., 2007; Steinmetz et al., 1991; Good 
et al., 2001; Guadalupe et al., 2014; Maingault et al., 2016; Kong et al., 2021). We used a GLM 
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to analyze relationships between each eigenvalue with sex and handedness on 1106 HCP subjects 
(see ‘HCP’ section). The HCP dataset provides the handedness preference measured by the Edin-
burgh Handedness Inventory (EHI) (Oldfield, 1971). EHI is the most widely used handedness inven-
tory (Vlachos et al., 2013; Willems et al., 2014), with resulting scores range from –100 (complete 
left-handedness) to 100 (complete right-handedness) (Oldfield, 1971). Handedness preference is not 
a bimodal phenomenon (Dragovic, 2004), and cutoff scores to categorize the handedness are still 
arbitrary. We therefore used the EHI score as a continuous variable in our main analysis, which is a 
widely used approach (Maingault et al., 2016; Kong et al., 2021). To further confirm the robustness 
of the relationship between handedness and the SAS, we tested two thresholds to categorize handed-
ness. First, right-handed (EHI: 71–100), left-handed (EHI: –100 to -71), and ambidextrous (EHI: –70–70) 
(Deep-Soboslay et al., 2010; Narr et al., 2007; Dragovic, 2004) second, right-handed (EHI: 50–100), 
left-handed (EHI: –100 to -50), and ambidextrous (EHI: –49–49) (Vlachos et al., 2013; Perlaki et al., 
2013). Regardless of the threshold, the categorized handedness variable was still unrelated to the 
SAS (2–144 eigenvalues).

Relationships with cognition
We followed Kong et al., 2019 and used 13 cognitive measures in the HCP data dictionary that repre-
sent a wide range of cognitive functions, namely, (1) Visual Episodic Memory (PicSeq_Unadj); (2) Cogni-
tive Flexibility (CardSort_Unadj); (3) Inhibition (Flanker_Unadj); (4) Fluid Intelligence (PMAT24_A_CR); 
(5) Reading (ReadEng_Unadj); (6) Vocabulary (PicVocab_Unadj); (7) Processing Speed (ProcSpeed_
Unadj); (8) Delay Discounting (DDisc_AUC_40K); (9) Spatial Orientation (VSPLOT_TC); (10) Sustained 
Attention – Sens (SCPT_SEN); (11) Sustained Attention – Spec (SCPT_SPEC); (12) Verbal Episodic 
Memory (IWRD_TOT); and (13) Working Memory (ListSort_Unadj). We used PCA to reduce dimen-
sionality and minimize collinearity in the CCA. The first four PCs explained 80% of the variance and 
were retained for our primary analysis. Similarly, we reduced the dimensionality of the SAS measures 
and ensured equal representation across different spatial scales by taking the mean of the SAS across 
each eigen-group (from 1st to 11th groups). These 11 mean SAS values and the first 4 cognitive PCs 
were then subjected to CCA to identify linear combinations of SAS and cognitive measures that 
maximally covary with each other (Smith et al., 2015). Inference on the resulting canonical variates 
was performed using a permutation-based procedure (Winkler et al., 2020), and robust estimates 
of canonical loadings were obtained using bootstrapping (Dong et al., 2020), as described in the 
‘Statistical analysis’ section.

Heritability of brain shape
We used MZ and same-sex DZ twin pairs and their non-twin siblings to calculate the heritability of 
brain shape and cortical volume. For twin pairs with more than one non-twin sibling, we selected one 
sibling at random. We estimated the heritability of each eigenvalue from individual hemispheres and 
the SAS. To emphasize the importance of properly controlling surface area, we show the heritability 
of eigenvalues with volume normalization (but without surface area normalization; Figure 6—figure 
supplement 1). We also calculated the heritability from ROI-based volumes of individual hemispheres 
(Figure  6—figure supplement 2). Regional cortical volumes of individual hemispheres were esti-
mated for each region of the Schaefer 100, 300, and 900 atlas (Schaefer et al., 2018), as well as the 
HCP-MMP1 atlas (Glasser et al., 2016).

Under the assumption that MZ twins are genetically identical whereas DZ twins on average share 
half of their DNA, structural equation modeling (SEM) can be used to decompose the phenotypic 
variance of a trait into additive genetic (A), common environmental (C), and unique (subject-specific) 
environmental (E) factors (Arnatkeviciute et al., 2021). Twins raised together are likely to share a 
more common environment compared to their non-twin siblings; therefore, including a set of non-
twin siblings into the analysis allows us to additionally separate common environmental contributions 
into twin-specific (T) and twin non-specific common environmental factors (C). The heritability anal-
yses of brain shape and volume were performed independently using standard SEM implemented in 
OpenMx software (Boker et al., 2011; Neale et al., 2016) in R.

For each eigenvalue and parcellated volume, outlying values were first excluded using the boxplot 
function in R keeping data points (v) in a range Q1−1.5 × IQR < v < Q3 + 1.5 × IQR, where Q1 and Q3 
are the first and third quartiles respectively, and IQR is the interquartile range (Arnatkeviciute et al., 
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2021). For each phenotype, we then fitted a set of biometric models – ACTE, ACE, ATE, CTE, TE, 
CE, E – using age and sex as covariates, where the letters indicate the factors present in the model. 
The goodness of fit between the models was compared using the Akaike information criterion (AIC) 
(Parzen et al., 1998), and the best-fitting model for each measure was selected based on the lowest 
AIC value. Consequently, the heritability for each measure was derived from the best-fitting model, 
corresponding to the best model that balances the ability to explain data with model complexity. 
To ensure that the general heritability pattern was not dependent on the model selection, we also 
calculated the heritability estimates from the full ACTE model (without model selection) at each eigen-
value (with surface area normalization) of individual hemispheres as well as the SAS. The heritability 
estimates were highly correlated with those with model selection (Pearson correlation r = 0.92–0.96).

Statistical analysis
We applied a permutation test to evaluate the statistical significance of a given identifiability score for 
a given number of eigenvalues. We randomly shuffled the subject order of the SAS of the t2 session 
50,000 times and then compared the original identifiability score with all the permuted peak identi-
fiability score truncated at each iteration independently to calculate the P-value. Statistical inference 
for models evaluating associations between SAS and sex and handedness was also performed using a 
permutation test with 100,000 iterations by randomly shuffled the subjects’ sex and handedness data.

When analyzing associations between the SAS and cognition, we used a recently developed 
permutation-based procedure for CCA inference (Winkler et al., 2020) with 50,000 iterations. The 
P-values of the canonical modes were controlled over family-wise error rate (FWER; FWER corrected 
P-values are denoted PFWER), which is more appropriate than the FDR when measuring the significant 
canonical mode (Winkler et al., 2020). The results were consistent when controlling for age and sex 
as confounding variables. To identify reliable loadings of each SAS eigen-group on the canonical 
variate, we used bootstrapping with 1000 iterations of the correlation between each SAS eigen-group 
and the SAS canonical variate. The resulting standard errors were used to estimate z-scores for each 
loading by dividing the original correlation by the standard errors, and then the z-scores were used 
to compute two-tailed p-values. We then used FDR (q = 0.05) to correct for multiple comparisons of 
P-values of all the eigen-groups. We also used the same approach to identify reliable correlations of 
cognitive measures on the corresponding canonical variate. Due to the family structure of the HCP 
data, we kept the subjects’ family structures intact when shuffling or bootstrapping the subjects using 
the Permutation Analysis of Linear Models (PALM) software package (Winkler et al., 2016; Winkler 
et al., 2015).

The statistical significance of the heritability estimates was evaluated through model comparison 
between models with and without parameter A. For example, if the ACE model was the best-fitting 
model, the P-value was derived by comparing the ACE and CE models; if the best-fitting model was 
CE, we compared this model with the ACE model to get the P-value for the A parameter. We also 
used the same approach for measuring the statistical significance of the common environmental factor 
(C). FDR (q = 0.05) was used to correct for multiple comparisons (corrected P-values are denoted PFDR) 
in all analyses except for the CCA, where FWER was controlled using a permutation-based procedure 
(Winkler et al., 2020).
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