
1 
 

How robust are cross-country comparisons of PISA 
scores to the scaling model used? 

John Jerrim (UCL Institute of Education and Education Datalab) 

Philip Parker (Australian Catholic University, Institute for Positive Psychology and 
Education) 

Alvaro Choi (Institut d’Economia de Barcelona) 

Anna Katyn Chmielewski (University of Toronto) 

Christine Sälzer (Technical University of Munich, School of Education) 

Nikki Shure (UCL Institute of Education and IZA) 

May 2018 

 

The Programme for International Student Assessment (PISA) is an important international 
study of 15-year-olds’ knowledge and skills. New results are released every three years, and 
have a substantial impact upon education policy. Yet, despite its influence, the methodology 
underpinning PISA has received significant criticism. Much of this criticism has focused upon 
the psychometric scaling model used to create the proficiency scores. The aim of this paper is 
to therefore investigate the robustness of cross-country comparisons of PISA scores to subtle 
changes to the underlying scaling model used. This includes the specification of the item-
response model, whether the difficulty and discrimination of items are allowed to vary across 
countries (item-by-country interactions) and how test questions not reached by pupils are 
treated. Our key finding is that these technical choices make little substantive difference to the 
overall country-level results.   
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1. Introduction 

The Programme for International Student Assessment (PISA) is an important international 

study of 15-year-olds’ knowledge and skills. Conducted by the Organisation for Economic Co-

Operation and Development (OECD) every three years, the results are now widely anticipated 

by academics, journalists and public policymakers alike. Results from PISA have led to reforms 

of education systems across the world, including curriculum changes in Norway (Baird et al. 

2011), reforms of national assessments in Japan and the Slovak Republic (Breakspear 2012), 

alterations to the number of teaching hours in Iceland (Wagemaker 2011) or to the complete 

reform of the general education act, as in Spain (*author cite*). It has consequently been 

described as ‘the world’s most important exam’ (BBC 2013), with Andreas Schleicher (the 

OECD director who leads the PISA study) having been described as ‘the most important man 

in education’ by high-ranking policy officials (Gove 2013).  

However, having established such an influential reputation, PISA and other international 

studies are coming under ever greater scrutiny. One particular line of criticism has been about 

how students’ test scores are produced; the scaling methodology that lies behind the production 

of PISA’s so-called ‘plausible values’. Rather than simply adding up the number of correct 

responses students give to the test questions, the PISA study uses a complex Item-Response 

Theory (IRT) model to produce estimates of students’ latent ability in each subject area. 

However, rather than producing one single ability estimate, multiple possible values are 

derived for each child. This series of values are known in the psychometric literature as 

plausible values, and capture the uncertainty we have surrounding students’ latent ability. The 

intuition for using this complex approach is that it is impossible to thoroughly examine students 

in multiple different subjects (science, reading, mathematics, problem solving) within the 

confines of a two-hour test. Consequently, participants only take a random sub-sample of test 

questions, with the IRT model used to equate performance across different versions of the test, 

and plausible values designed to reflect the uncertainty in the results. Further details regarding 

the PISA test design are provided below.  

Various authors have described how this process is opaque, with many of the potentially 

important technical details not fully understood outside of a narrow range of highly-specialised 

psychometricians (Brown and Micklewright 2004; Goldstein 2017), which may also have 

implications for how these data then get used (*author cite*). Others have suggested that the 

particular item-response model used in PISA until 2015 is overly-simplistic and does not fit 

the data well (Kreiner and Christensen 2014). Particular criticism has been reserved for PISA’s 
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use of the Rasch model (Fernandez-Cano 2016), which some consider to be less sophisticated 

than the three-parameter item-response model used in other large-scale international 

assessments such as the Trends in Mathematics and Science Study (TIMSS). This has 

consequently led to various different opinions emerging, ranging from whether the 

methodology behind PISA is sufficiently transparent (Spiegelhalter 2013; Goldstein 2017) 

through to whether this study is actually fit for purpose (Stewart 2013).  

A key question that therefore emerges from this literature is how much do the technicalities 

around the PISA scaling model actually matter? Not only in terms of national averages (upon 

which the ‘international rankings’ are based), but also other distributional statistics of 

importance, such as cross-country comparisons of high and low achievers, measures of 

educational inequality and the gender gap in students’ performance?  

Such issues have taken on particular importance since the publication of the PISA 2015 results, 

when a number of technical changes were made to the construction of the PISA scale scores 

(plausible values). This included1: 

• The introduction of item-by-country interactions. A limited number of item-by-country 

interactions were included in the PISA scaling model for the first time. In other words, 

in PISA 2015 there were some country specific item parameters, allowing some items 

to be freely estimated by country. This meant some questions were treated as harder to 

answer correctly in some countries than in others (e.g some questions are now treated 

as ‘harder’ to answer correctly in England than in Scotland). The decision of where to 

allow item-by-country interactions was based upon item-fit statistics to determine 

differential item functioning2, and thus based upon a purely statistical approach. See 

(OECD 2016:150-152) for further details. Such interactions were not used in PISA 

between 2000 and 20123.  

• The use of a two-parameter model. In PISA 2015, questions were not only allowed to 

vary in terms of their difficulty, but also their ‘discrimination’ (i.e. how well each 

question is thought to measure students’ reading/science/maths skills). This was not the 

case in PISA 2000 to 2012, when the discrimination parameter for each question was 

                                                           
1 A further important change to PISA in 2015, not covered within this paper, is the introduction of computer-based 
assessment. See *author cite* for further discussion of this issue.  
2 Poorly fitting items were determined using two criteria: (a) root mean square deviation > 0.12 and (b) a mean 
deviation > 0.12 and < -.12. 
3 However, in these earlier cycles, some items were deleted if they did not fit the chosen IRT model sufficiently 
well across a large number of countries. 
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fixed to one (i.e. it was assumed that each reading/science/maths question measured 

reading/science/maths skills equally well). 

• Items that are ‘not-reached’ no longer contribute to the proficiency scores. As a timed-

assessment, not all students manage to reach the end of the test. In PISA 2000 to 2012, 

these ‘not-reached’ items were treated as incorrect responses when creating the scale 

scores4. This changed in PISA 2015, with the ‘not-reached’ items treated as missing 

data, and hence do not contribute to the level of each student’s estimated latent ability. 

• Changes to how the item-parameters are estimated. In PISA 2015, data from the 2006 

through to the 2015 rounds were used in the calibration of the item-parameters5. This 

was different to the procedure used in previous PISA waves, when only data from the 

current round was used in the item-calibration process6. Consequently, item-parameters 

(e.g. item-difficulty) differ less between PISA 2015 and previous waves.  

Yet, despite this collection of potentially important technical changes, little easily digestible 

information has been provided to consumers of the PISA data as to the likely impact they had 

upon cross-country comparisons. Indeed, more generally, little previous work has considered 

how technical changes made to the underlying scaling model affects international comparisons 

of students’ achievements.7 For instance, does using a two-parameter item-response model 

produce different cross-country comparisons than using a Rasch model? If ‘not-reached’ items 

are treated as incorrect rather than missing data, does this alter our view on which countries 

have the greatest levels of educational inequality (e.g. the gap between the highest and lowest 

achievers)? And does the inclusion of item-by-country interactions mean that cross-national 

differences in PISA scores become more or less pronounced? Currently, little independent 

information is available to consumers of the PISA results.  

                                                           
4 Note that ‘not-reached’ items are different to ‘not-answered’ items. The former is where students have essentially 
run out of testing time and so have not seen the item. The latter refer to questions which students have seen (and 
thus attempted) but have not provided a response. 
5 The motivation for basing the item-parameter estimates upon the pooled 2006-2015 data was that this would 
maximise sample sizes at the item level, and lead to greater stability in the item-parameter estimates. As a similar 
approach will also be used by PISA moving forward, it should also mean that there are not sudden large changes 
in item parameters across different PISA cycles. 
6 A related difference is that, in PISA 2000 to 2012, only a subset of pupils in each country were used in the item-
parameter calibration process. Specifically, the survey organisers randomly selected 500 students from each 
OECD country to form an international sub-sample, whom the item-parameter estimates were based upon.   
7 One important exception is Brown et al. (2007). Using TIMSS 1995 data, they consider how the change from a 
one to a three parameter item-response model impacted upon cross-country comparisons. They concluded “cross-
country patterns of central tendency to be robust to the choice of [item-response] model. But the same is not true 
for dispersion, for which model choice can have a big effect.” They hence advised that “survey reports should 
include an analysis of the sensitivity of basic results to model choice” – though this suggestion has yet to be taken 
up. 



5 
 

The aim of this paper is to therefore make this important contribution to the existing evidence 

base. Focusing upon the results for science, the major domain in PISA 2015, we illustrate how 

cross-country comparisons of key distributional statistics change once specific technical 

aspects of the PISA scaling model are altered. This includes a consideration of all the major 

changes made to the scaling model in PISA 2015, as outlined above. To preview our key 

findings, we discover that relative differences between countries are generally unaffected by 

the scaling model used. This holds true not only on average, but also for key statistics frequently 

used to describe the distribution of students’ achievement, as well as covariation with key 

demographic characteristics. We consequently conclude that most of the headline findings 

from PISA do not seem to be particularly sensitive to the scaling model used. 

The paper now proceeds as follows. Section 2 describes the PISA data and the approach we 

have taken to replicate the official PISA science plausible values. Section 3 then reports results 

from this replication. In section 4 we discuss various changes we make to the PISA scaling 

model, with these results reported in section 5. Conclusions and directions for future research 

follow in section 6.   

2. Data and replication of the PISA 2015 plausible values in science 

The data we use are drawn from PISA 2015. Although a total of 72 countries and economies 

participated, we restrict our attention to the 35 members of the OECD. The focus of this paper 

is therefore the robustness of the PISA results within rich, developed countries. In each country, 

a two-stage sample design was used, with schools selected as the primary sampling unit and 

students then randomly selected from within. A total of around 150 schools and approximately 

5,500 pupils participated within each OECD country. Response rates, after the inclusion of 

‘replacement schools’, were around 90 percent in most countries at both the pupil and school 

level.  

PISA employs a complex test design. In 2015, the study included 184 questions in science, 81 

questions in mathematics, 103 questions in reading and 117 in collaborative problem solving. 

It is, of course, impossible to expect all students to provide an answer to each of these questions 

within the space of a two-hour test. Test questions from the different subject areas were divided 

into subject specific clusters, which were then organised to create around 66 different test 

forms. Participating students were then randomly assigned one of these forms to complete. 

Consequently, although all students answered one hour’s worth of science questions, only 

around 40 percent of students answered any questions in reading, 40 percent any questions in 
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mathematics and 30 percent any questions in collaborative problem solving (OECD 2016:40). 

The survey organisers then used an extended item-response model, incorporating how students 

responded to each test question they were assigned plus information from the background 

questionnaire, to estimate a distribution of students’ latent achievement in each subject area. In 

other words, rather than producing a single ‘test score’ for each child, this item-response model 

produces a range of possible values. ‘Plausible values’ are then created by the survey 

organisers, which are essentially random draws from each child’s estimated latent achievement 

distribution. Further details with respect to the PISA test design can be found in OECD 

(2016:Chapter 2) and the item-response methodology in OECD (2016: Chapters 9 and 12).   

Within this paper, we make use of the publicly available item-level data and item-parameters 

provided by the OECD to broadly replicate the methodology used to generate the PISA 

plausible values in science.8 Specifically, we fit a multi-dimensional item response model to 

students’ item-response data, constraining the item-parameters to the values published in the 

PISA 2015 technical report (OECD 2016). Following the OECD’s methodology, this model 

allows for students’ latent science, reading and mathematics abilities to be correlated, via the 

inclusion of correlated error terms within the measurement model. Consequently, scale scores 

are produced for each student in each subject area – even in those subjects where they have not 

answered any test questions (see *author cite* for further details about this aspect of the PISA 

test design).  

A simplified summary of the model we estimate is presented in Figure 1. We estimate this 

model separately for each language group within each country, generating for each pupil their 

Expected A Posteriori (EAP) proficiency estimates in each subject along with their standard 

errors (as a measure of uncertainty). We then draw ten random values for each student from a 

normal distribution in order to generate our plausible values (PVs). The mean of this normal 

distribution is set, for each student, to their EAP achievement estimate, with the standard 

deviation of the distribution set to their EAP standard error. Finally, we standardise these values 

across the OECD, so that they have the same mean and variance as the ‘official’ PVs. Our 

focus within this paper is therefore the relative performance of countries against one another. 

In other words, does making a particular change to the PISA scaling procedure advantage any 

one country compared to another? 

                                                           
8 The item-level PISA data are available from http://www.oecd.org/pisa/data/2015database/. International item 
parameters are available from http://www.oecd.org/pisa/data/2015-technical-report/. Information on item-by-
country interactions were provided to the authors by the OECD.  

http://www.oecd.org/pisa/data/2015database/
http://www.oecd.org/pisa/data/2015-technical-report/
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Note that the OECD do not report ‘official’ EAP values in the international PISA database; 

they only include plausible values9.  However, as plausible values contain measurement error 

(they are random draws), correlations between our PVs and the OECD’s ‘official’ PVs will be 

attenuated. In other words, if we were to compare the correlation between our PVs and the 

OECD’s PVs, this would underestimate how well we have managed to reproduce the PISA 

scaling methodology at the individual pupil level. To overcome this issue, we create proxy 

‘official’ EAP estimates by averaging the ten ‘official’ PVs in the international PISA database. 

We then correlate our ‘replicated’ EAPs to these ‘official’ EAPs to consider how closely we 

have managed to replicate the OECD’s scaling procedure. 

<< Figure 1 >> 

Although we largely follow the methodological approach of the OECD in generating the PISA 

plausible values, it is important that we document a handful of areas where there are some 

subtle differences. First, in the OECD model, all the data collected in the background 

questionnaire has a direct role in the generation of the PISA plausible values. Specifically, an 

enormous principal components analysis is conducted upon all the background variables, with 

the derived components then included in the model as direct effects upon students’ science, 

reading and mathematics achievement.10 In contrast, Figure 1 illustrates how we have only 

included gender as a direct background regressor in our model.11 Second, while we have 

included three subjects in our multi-dimensional item response theory (IRT) model (science, 

reading and mathematics), the OECD version includes financial literacy and collaborative 

problem-solving (for those countries that participated in these national options) as well.12 

Third, whereas we have estimated separate models for each language group within all nations, 

the OECD did this in only a handful of countries (Belgium, Canada and Israel – see OECD 

2016: Chapter 9 page 67).13 Fourth, all of our models have been estimated using Stata (a well-

known and widely used statistics package) while the ‘official’ scale scores were produced by 

                                                           
9 EAPs and their standard errors reflect the mean and standard deviation of each child’s latent proficiency 
distribution in a subject. PVs are, on other hand, random draws for each child’s latent proficiency distribution. 
10 The principal components analysis is performed separately in each country, with the number of components 
retained sufficient to explain around 80 percent of the common variance in the background data. In Figure 1, these 
direct effects would be represented by additional squares with arrows pointing towards the circular latent 
achievement variables.  
11 The inclusion of additional background issues led to convergence issues in the maximum likelihood estimation 
in a number of countries, while in others increased estimation time to prohibitive levels.  
12 We have excluded these additional domains from our model due to (i) the data not being publicly available at 
the time of writing and (ii) it would require the inclusion of several additional latent correlations, increasing the 
complexity of the model, and hence estimation times and convergence issues.  
13 For the other countries with more than one language group, the OECD ran a single model, though this did 
include item-by-country interactions in the measurement model. 
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the Educational Testing Service (ETS) using their own specialised software (‘DGROUP’). 

Finally, we have used maximum likelihood procedures to estimate the model underlying our 

replication of the PISA proficiency scores. The OECD, in contrast, used the Laplace 

approximation (see OECD 2016: Chapter 9).  

Given these differences, how closely has our procedure replicated the ‘official’ PISA 

proficiency scores? We consider this at both the individual pupil and country levels, focusing 

upon the results for science (our subject of interest). Figure 2 and Table 2 provide results for 

the former, illustrating the correlation between our EAP science proficiency estimates and the 

analogous ‘official’ values calculated directly from the public-use PISA database.14 

<< Table 2 >> 

<< Figure 2 >> 

Figure 2 illustrates how the correlation between our science EAP estimates and the average of 

the OECD’s ten plausible values is very high (r = 0.96) when looking at students drawn from 

across all countries. Table 2 then extends this result to illustrate that it also holds within each 

individual country of interest. In other words, despite the handful of subtle differences between 

our scaling model and the scaling model used by the OECD, we nevertheless closely replicate 

students’ proficiency estimates in science, as reported in the international database.  

Using our replicated plausible values, are we also able to successfully reproduce the official 

PISA country-level results? Figure 3 provides answers this question for mean scores and other 

key statistics (10th percentile, 90th percentile and the standard deviation; see Appendix A). The 

correlation we find is even stronger (approximately 0.99), with the difference between our 

country means and those produced using the ‘official’ PISA plausible values typically differing 

by just a couple of test points. Together, the above demonstrates how we have managed to 

closely reproduce the official PISA science scores. Our replicated values will therefore serve 

as a robust baseline for us to measure change against, once we have made some technical 

alterations to the underlying scaling model used.     

In the following section, we illustrate how cross-country comparisons change after making a 

number of alterations to the PISA 2015 scaling model. First, PISA 2015 allowed for a limited 

number of item-by-country interactions. This means that the difficulty and discrimination 

                                                           
14 Note that the correlation between the average of the first five PVs and the last five PVs is 0.983. We take this 
as approximately the maximum possible correlation that is achievable, given the random error within the PVs. 
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parameters were allowed to be higher or lower in some countries than in others (usually due to 

concerns over poor model fit). Although the number of such interactions used in PISA 2015 

was small, their inclusion in the scaling model is somewhat of a contentious issue. It has been 

suggested, for instance, that this may ‘smooth out’ important and interesting differences 

between countries (Goldstein 2017) and could jeopardise cross-national comparability. 

Likewise, on a conceptual level, it seems difficult to justify why some questions should be 

treated as harder in Scotland than in England (for example) – as the PISA 2015 scaling model 

does. We hence begin by investigating whether excluding such interactions from the PISA 

scaling model would lead to an appreciable change to the results. 

The second change we make is to the parameterisation of the underlying IRT model. 

Specifically, a two-parameter model was used in PISA 2015; something that was seen as a 

significant departure from past waves of PISA when a Rasch model was used. Table 2 provides 

some descriptive information on the distribution of the discrimination parameters used in PISA 

2015, illustrating how the average value was typically just over the value of one used in the 

Rasch model. In the following section we consider how the PISA 2015 results would look (in 

terms of relative differences between countries) if a Rasch model had been used instead. We 

return to our scaling model and constrain all the discrimination parameters to one, thereby 

assuming each science question measures students’ science skills equally well. 

<< Table 2 >> 

Third, as in previous cycles of PISA, there were some non-trivial changes to the estimated 

item-parameters between PISA 2015 and previous cycles. Not only was the discrimination 

parameter allowed to vary (see Table 2), but the item-difficulty also changed. For instance, 

PISA 2015 used different difficulty parameters than PISA 2006 in science even for the same 

items (as did previous waves of PISA). But does altering the item-parameters used in the 

scaling model really make any difference to the results? We consider how the PISA 2015 

results would change if the 2006 item-parameters were used instead (we use the parameters 

from 2006 as this was the only other time science was the major PISA domain). Specifically, 

this implies that we constrain all discrimination parameters to one (i.e. we fit a Rasch model) 

and use the 2006 item-difficulty values (instead of the 2015 values) where they are available. 

This is possible only for trend items, and not for the new science questions introduced in PISA 

2015 (where we continue to use the 2015 item-parameters). The purpose of this particular 
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exercise is to demonstrate whether using a different set of item-parameter estimates leads to 

substantial changes to the cross-national pattern of results.  

Fourth, the PISA 2015 scoring procedure treated ‘not-reached’ questions as missing data – and 

hence did not make any contribution to students’ proficiency scores. Within our analysis we 

illustrate how cross-country comparisons change if these not-reached questions are treated as 

incorrect responses instead (as per the PISA 2000 to 2012 approach). Annex A2 provides an 

overview of the percentage of questions classified as ‘not reached’ by country and subject, 

illustrating that this is typically very low (less than two percent of questions being unreached). 

Although it is therefore unlikely that altering the treatment of not-reached items in the PISA 

scaling model had an impact upon average scores, it may have had an influence upon some 

other statistics of interest (e.g. percentage of low achievers, inequality in educational 

achievement). One of our primary interests will hence be how this change influences 

international comparisons of low-performance (e.g. the 10th and 25th percentiles) and measures 

of educational inequality (e.g. the standard deviation, socio-economic gaps), under the 

assumption that lower-achieving and disadvantaged students are most likely to fail to complete 

the test within the time limit (Bridgeman, McBride, & Monaghan, 2004). 

Finally, we ask what is the cumulative impact of making all the changes outlined above? In 

other words, how would the relative position of countries change when multiple alterations are 

made to the scaling model? 

To summarise the consistency of results across the different models, we use the Spearman rank 

correlation. This measures the direction and strength of the association between two ranked 

variables, and thus illustrates how the rank-ordering of countries changes when the various 

different alterations to the PISA scaling model are made. Country average scores and country 

rankings are also provided to illustrate how the alterations of the scaling model influences these 

particular statistics.  

3. Results 

Excluding item-by-country interactions 

Figure 4 illustrates the correlation between our original replicated country-average science 

scores described in section 2 (x-axis) and our alternative estimates when the item-by-country 

interactions have been excluded from the scaling model (y-axis). This is complemented by the 

first column of Table 3, which illustrates the analogous strength of the cross-country 

correlations for various distributional statistics (10th, 25th, 50th, 75 and 90th percentile, mean 
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and standard deviation)15. The clear message is that whether item-by-country interactions are 

included or excluded from the scaling model makes essentially no difference to the substantive 

results. The correlation between the two sets of estimates are extremely high for all the country-

level descriptive statistics considered, with all the Pearson coefficients sitting above 0.99. 

Hence there is no evidence that the inclusion of item-by-country interactions into the PISA 

scaling model has provided a particular advantage (or disadvantage) for any of the countries 

we consider.  

<< Table 3 >> 

<< Figure 4 >> 

In Table 4 illustrate how this translates into changes in the mean PISA science scores across 

countries. Following on from the previous results, these two tables further illustrate how the 

removal of item-by-country interactions barely leads to any change in the results. For instance, 

even in countries where the movement is most extreme, the average science score changes by 

just three or four test points (e.g. Ireland and Switzerland). Likewise, the standard deviation 

varies by less than a single PISA test point in most countries if item-by-country interactions 

are excluded. Consequently, Table 4 helps to further illustrate how this technical feature of the 

PISA scaling model has almost no impact upon the substantive results. 

<< Table 4 >> 

Applying a ‘Rasch’ model 

What happens to cross-country comparisons in PISA 2015 if item-discrimination is no longer 

allowed to vary, and a Rasch model is fitted instead? To begin, Table 5 provides a comparison 

of ‘model fit’ between our Rasch and two-parameter models, based upon the Akaike 

Information Criterion (AIC). The AIC is a statistic that is commonly used to decide between 

two competing models, and trades-off parsimony (number of estimated parameters) against 

how closely the model aligns with the empirical data. It is therefore a measure of relative fit, 

used to judge one model against another, with preference given to the model generating the 

lower AIC value16. Table 6 reveals that, in most countries, the AIC is lower for the two-

parameter model than the Rasch model. In other words, we find evidence that the two-

                                                           
15 Note that, throughout this section, we use our replicated plausible values. (We only produced EAP estimates 
for the purpose of the previous section, where we investigated how well our replication worked).  
16 We have also estimated the Bayesian Information Criterion (BIC) for the two models in each country, with the 
same substantive conclusions reached.  
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parameter model introduced in PISA 2015 is typically an improvement over the Rasch model 

used in PISA 2000 to 2012 in terms of model fit. 

<< Table 5 >> 

But has this improved fit to the data led to a substantive change in the country-level results? 

The second column of Tables 3 and 4 provides the answer, and again illustrates how 

international comparisons of various descriptive statistics are largely unaffected by this choice. 

For instance, the mean, standard deviation and selected achievement percentiles are all virtually 

identical regardless of the approach used (the spearman rank correlations are all approximately 

0.99). Hence, despite PISA having received a great deal of criticism for its historical use of the 

Rasch model, we find little evidence that moving to a more complex two-parameter item-

response model has any meaningful impact upon cross-country comparisons of the results.  

Using the 2006 item parameters (rather than 2015) 

As well as allowing the discrimination parameter to vary, the item-difficulty parameters used 

in PISA 2015 also differed from previous rounds. But how much impact does using different 

IRT item-parameters really have upon the results? The third column of Table 3 provides insight 

into this issue, where we have used the 2006 values of the item-parameters in the scaling model 

rather than the 2015 values.17 Consistent with the findings presented in the sub-sections above, 

altering the item-parameters used in the scaling model leads to only trivial changes to the 

estimates. In particular, note how the Spearman correlations reported are consistently very 

strong (approximately 0.99) for each of the distributional statistics considered. Moreover, for 

most countries, the average score and rank position presented in Table 4 are broadly stable. 

Consequently, the exact value of the item-parameters used in the scaling model (and whether 

a Rasch or two-parameter IRT model is used) has a trivial impact upon the substantive 

conclusions reached. 

Treating not reached items as incorrect 

In-line with the findings presented thus far, the impact of altering how ‘not-reached’ items are 

treated has a trivial impact upon cross-national comparisons of students’ achievement. 

Importantly, this is not only true on average (mean scores) but also for comparisons of the 

lowest-achievers, as measured by the 10th and 25th percentiles of the science distribution. 

Specifically, the fourth column of Table 3 illustrates how the cross-country correlations 

                                                           
17 Note that the use of the 2006 parameters implies that a Rasch model is fitted (i.e. we set all discrimination 
parameters to one). 
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reported are all consistently above 0.99, with almost no substantive change to countries 

positions in the international rankings in Table 4. We consequently conclude that this particular 

analytic choice has almost no impact upon the results.  

The combined effect 

The final column of Table 3 provides the correlations between (a) our initial replication of key 

country-level statistics and (b) alternative country-level estimates once all the changes made to 

the scaling model covered in the sub-sections above have been taken into account. Given the 

results presented thus far, it is perhaps unsurprising that the correlation coefficients all remain 

extremely high (around 0.99). Likewise, the country average science scores and rankings 

remain very similar between the first and last columns of Table 4. In other words, even when 

a raft of changes are made to the scaling model, the same cross-national pattern of results 

continues to be found. Consequently, this provides yet more evidence of how cross-country 

comparisons made within a given PISA cycle are robust to the choice of the scaling model 

used. 

Do similar findings hold for other subject areas? 

All of the estimates presented thus far relate to the results in science – the major domain in 

PISA 2015. Do we find similarly strong correlations for the minor domains (reading and 

mathematics)? Table 6 provides a summary of our results for these two subjects based upon 

the Spearman’s rank correlation. This is supplemented by Tables 7 and 8, which illustrates how 

average scores and country rankings change as the various alterations to the PISA scaling 

model are made. Consistent with our findings for science, we find little change to the cross-

country pattern of results when changes are made to the scaling model. The correlations we 

find remain extremely high across the various distributional statistics considered, though are 

slightly lower than the analogous results for science. This is likely to be due to reading and 

mathematics being ‘minor domains’ in PISA 2015, with students answering less questions on 

these topics, and hence the specification of scaling model having a slightly more important 

role. Nevertheless, the results we have presented for science throughout this section do 

generally seem to hold in other subject areas as well.  

<< Table 7 >> 

<< Table 8 >> 
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4. Conclusions 

In this paper we have investigated whether the precise specification of the PISA scaling model 

really makes a substantial difference to cross-national comparisons of educational 

achievement. Our results provide a clear and consistent message. Even when multiple 

alterations are made to the scaling model, this only has a trivial impact upon cross-country 

comparisons within a given PISA cycle. This holds true across a range of key statistics (mean, 

standard deviation, gender differences) and the different PISA domains (science, reading and 

mathematics).  

There are two potential ways of interpreting these findings. First, there is a view within parts 

of the psychometric community that the scaling model used in previous rounds of PISA was 

flawed, particularly with respect to the use of the Rasch model (Kreiner and Christensen 2014). 

Yet, given that we have shown cross-country comparisons do not really change when a more 

complex methodology is used, it was perhaps good enough, and that some of the media reports 

questioning this aspect of the study have been overblown. Alternatively, one might conclude 

that the new methodology introduced in PISA 2015 is therefore equally as flawed as the 

methodology used before, given that it does not produce substantially different results. Our 

own view is closer to the former – we believe our investigations illustrate how the key results 

from PISA (at least as far as the psychometric scaling model are concerned) seem to be 

relatively robust to the technical choices made. Nevertheless, we believe further investigations 

in the spirit of those conducted within this paper should be welcomed by the OECD and the 

scientific community to further justify the chosen psychometric approach.  

These findings should, of course, be interpreted in light of the limitations of this paper, and the 

need for further research. First, this paper has focused solely upon relative differences between 

OECD countries within a single PISA cycle. We have not considered how the scaling approach 

influences absolute measures of students’ performance, such as changes in a country’s PISA 

scores over time, or for middle and low-income countries. Although clearly a topic of great 

importance, it is beyond the scope of this paper, but remains an important area for future 

research. Second, we have focused upon a particular set of changes made to the scaling model, 

motivated by the fact that these technical details have altered across the PISA cycles (most 

notably in 2015). Although these changes are quite extensive from a psychometric perspective, 

including much debated issues in this technical literature (e.g. the impact of shifting from a 

Rasch to a two-parameter model), we can obviously not rule out the possibility that making 
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some other changes may have some kind of an impact upon the results (e.g. if PISA were to 

move to a three-parameter IRT model instead). 

Despite these limitations, we believe this paper has made an important contribution to ongoing 

debates about PISA and other large-scale assessments. Although there are clearly important 

limitations to such studies, our analysis suggests that some of the criticisms made of the scaling 

methodology are unjustified. Although a complex methodology is used, one which is not 

widely understood outside a highly-specialised psychometric field, the scaling model can be 

closely replicated using information freely available in the public domain. More importantly, 

cross-country comparisons seem to be largely unaffected by the precise specification of the 

scaling model used. By completing this independent investigation, it is hoped that this will be 

accurately reflected in media reports of future PISA results, and that there is a greater 

appreciation amongst sceptics that international comparisons seem quite robust to departures 

from the official OECD scaling approach.   
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Table 1. Correlation between our EAP science scores and the OECD EAP science scores 
at the pupil level. Results by country. 

Country Correlation 
Switzerland 0.965 
New Zealand 0.964 
Australia 0.964 
Norway 0.963 
Luxemburg 0.961 
Sweden 0.961 
France 0.960 
Canada 0.960 
Austria 0.959 
Israel 0.958 
Ireland 0.958 
United Kingdom 0.957 
Japan 0.956 
Poland 0.954 
Hungary 0.954 
Finland 0.953 
Czech Republic 0.953 
USA 0.952 
Greece 0.951 
Netherlands 0.951 
South Korea 0.951 
Germany 0.951 
Estonia 0.950 
Belgium 0.950 
Portugal 0.947 
Israel 0.947 
Hong Kong 0.946 
Italy 0.945 
Slovenia 0.943 
Spain 0.943 
Slovak Republic 0.943 
Denmark 0.939 
Latvia 0.938 
Turkey 0.932 
Chile 0.929 
Mexico 0.894 
Average 0.950 

 

Notes: The OECD EAP estimate is approximated as the average of the ten plausible values in 
science for each student.  
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Table 2. The distribution of the discrimination item parameters used in PISA 2015 

  Science Mathematics Reading 
10th percentile 0.68 0.74 0.70 
25th percentile 0.90 1.00 0.83 
50th percentile 1.08 1.00 1.00 
75th percentile 1.42 1.27 1.15 
90th percentile 1.65 1.70 1.44 
Mean 1.15 1.12 1.02 
Standard deviation 0.39 0.38 0.28 

 

Notes: Authors calculations using data from the PISA 2015 technical report.  
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Table 3. A summary of the correlation between country estimates of selected 
distributional statistics for science after making changes to the scaling model used 

 
1. No unique 
parameters 

2. Rasch 
model 

3. 2006 item 
parameters 

4. Not 
reached as 
incorrect 

5. All 
changes 

Mean 0.995 0.995 0.938 0.994 0.993 
St dev 0.988 0.982 0.984 0.993 0.983 
P10  0.990 0.992 0.941 0.990 0.989 
P25  0.995 0.991 0.938 0.992 0.995 
P50 0.995 0.995 0.940 0.995 0.995 
P75 0.985 0.986 0.933 0.983 0.980 
P90 0.992 0.984 0.945 0.988 0.983 
Gender gap 0.997 0.994 0.954 0.996 0.994 
SES gap 1.000 0.999 0.998 1.000 0.999 

 

Notes: Figures refer to the correlations at the country level. All comparisons refer to 
correlations with our original replicated values of the PISA science scores. These have been 
calculated using our replicated plausible values.  
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Table 4. How do mean science scores change when the PISA scaling model is altered? 

  
0. 

Replicated 
values 

1. No 
unique 

parameters 

2. Rasch 
model 

3. 2006 item 
parameters 

4. Not 
reached as 
incorrect 

5. All 
changes 

Japan 537.8 (1) 538.8 (1) 537.6 (1) 539.3 (1) 538.2 (1) 538.6 (1) 
Estonia 532.9 (2) 533.7 (2) 534.9 (2) 533.8 (2) 533.4 (2) 533.4 (2) 
Finland 530.7 (3) 530.5 (3) 533.8 (3) 532.7 (3) 531.4 (3) 532.7 (3) 
Canada 528.9 (4) 525.6 (4) 525.7 (4) 525.2 (4) 525.3 (4) 524.8 (4) 
Germany 513.9 (5) 510.6 (8) 512.1 (6) 510.8 (8) 509.2 (8) 509.4 (9) 
New Zealand 513.7 (6) 510.9 (7) 511.1 (8) 511.3 (7) 509.3 (7) 510.1 (7) 
Slovenia 513.3 (7) 513.2 (6) 516.1 (5) 514.6 (5) 513.7 (5) 514.1 (5) 
South Korea 512.5 (8) 513.9 (5) 511.3 (7) 512.2 (6) 512.6 (6) 511.9 (6) 
Switzerland 511.7 (9) 508.0 (10) 509.0 (10) 508.1 (10) 507.1 (10) 506.9 (10) 
Netherlands 511.3 (10) 508.5 (9) 509.5 (9) 509.7 (9) 507.8 (9) 510.0 (8) 
Australia 509.1 (11) 507.0 (11) 505.9 (11) 506.8 (11) 505.7 (11) 506.6 (11) 
Ireland 508.6 (12) 504.7 (13) 503.9 (14) 504.0 (15) 505.7 (12) 504.0 (13) 
Belgium 507.8 (13) 504.8 (12) 503.3 (15) 504.3 (13) 503.4 (13) 503.4 (15) 
Denmark 506.2 (14) 503.9 (14) 504.3 (13) 505.8 (12) 501.8 (15) 504.8 (12) 
Norway 503.7 (15) 500.0 (17) 502.2 (16) 500.7 (17) 499.0 (17) 499.1 (17) 
Poland 502.5 (16) 502.5 (15) 505.6 (12) 504.1 (14) 502.8 (14) 503.5 (14) 
Austria 501.9 (17) 498.2 (18) 500.9 (18) 499.0 (18) 498.2 (18) 498.2 (18) 
Portugal 500.6 (18) 501.5 (16) 501.1 (17) 500.8 (16) 500.7 (16) 500.1 (16) 
Spain 497.2 (19) 496.0 (19) 497.3 (19) 495.3 (20) 497.5 (19) 494.8 (21) 
France 495.7 (20) 495.9 (20) 495.5 (21) 495.3 (21) 493.9 (22) 493.1 (22) 
United Kingdom 494.9 (21) 495.4 (21) 494.2 (23) 494.3 (23) 494.6 (21) 493.1 (23) 
USA 493.9 (22) 495.0 (22) 495.0 (22) 494.7 (22) 495.5 (20) 495.7 (20) 
Czech Republic 492.6 (23) 494.3 (23) 495.9 (20) 496.5 (19) 492.9 (23) 495.9 (19) 
Sweden 492.3 (24) 493.6 (24) 492.4 (24) 493.4 (24) 490.7 (24) 491.1 (24) 
Latvia 488.4 (25) 488.8 (25) 487.6 (25) 488.4 (25) 489.7 (25) 489.1 (25) 
Italy 484.6 (26) 485.0 (26) 486.5 (26) - 483.6 (26) 483.3 (26) 
Luxemburg 482.4 (27) 483.3 (27) 484.2 (28) 483.5 (27) 482.2 (27) 482.6 (27) 
Hungary 480.2 (28) 479.8 (28) 484.8 (27) 482.6 (28) 480.8 (28) 482.3 (28) 
Iceland 475.3 (29) 475.2 (29) 475.9 (29) 474.8 (29) 475.0 (29) 473.8 (29) 
Israel 469.8 (30) 469.5 (30) 468.7 (30) 468.9 (30) 468.8 (30) 467.2 (30) 
Slovak Republic 463.2 (31) 463.0 (31) 464.4 (31) 464.6 (31) 463.9 (31) 464.7 (31) 
Greece 456.5 (32) 454.4 (32) 453.6 (32) 454.0 (32) 453.6 (32) 453.4 (32) 
Chile 447.6 (33) 450.0 (33) 450.6 (33) 450.5 (33) 448.7 (33) 448.4 (33) 
Turkey 426.7 (34) 426.1 (34) 425.1 (34) 426.8 (34) 428.0 (34) 427.6 (34) 
Mexico 415.1 (35) 415.8 (35) 416.1 (35) 415.8 (35) 416.8 (35) 416.9 (35) 

 

Notes: The model using 2006 item parameters for Italy did not converge to a solution. Italy 
and the 26th rank is therefore excluded from these results. 
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Table 5. A comparison of the Rasch and two-parameter model fit across countries 

  AIC 
  Rasch 2PL Change 
Australia 21,265,466  21,242,162  -23,304  
Austria 6,164,697  6,156,881  -7,817  
Belgium (Flemish) 5,130,234  5,099,247  -30,987  
Belgium (French) 4,240,548  4,202,457  -38,091  
Canada (English) 22,216,850  22,185,880  -30,970  
Canada (French) 5,901,455  5,888,759  -12,696  
Chile 15,348,660  15,125,470  -223,190  
Czech Republic 7,055,822  7,049,863  -5,959  
Denmark 5,133,536  5,133,155  -381  
Estonia 722,082  720,668  -1,414  
Finland 4,804,141  4,801,951  -2,190  
France 59,940,784  59,876,552  -64,232  
Germany 62,169,884  62,075,812  -94,072  
Greece 7,947,821  7,946,050  -1,772  
Hungary 6,925,020  6,909,926  -15,094  
Iceland 333,850  333,996  146  
Ireland 5,871,638  5,856,239  -15,399  
Israel (Hebrew) 7,123,462  7,111,920  -11,542  
Israel (Arabic) 2,089,818  2,098,069  8,251  
Italy 40,787,848  40,737,780  -50,068  
Japan 92,960,728  92,674,440  -286,288  
Latvia 998,112  997,057  -1,055  
Luxemburg (German) 332,516  331,926  -590  
Luxemburg (French) 119,330  119,344  14  
Mexico 99,356,784  99,636,376  279,592  
Netherlands 16,101,700  16,066,891  -34,809  
New Zealand 4,439,132  4,429,347  -9,785  
Norway 4,815,245  4,798,950  -16,295  
Poland 33,830,036  33,778,144  -51,892  
Portugal 8,015,001  8,009,994  -5,007  
Slovak Republic 4,031,185  4,032,822  1,638  
Slovenia 1,418,376  1,416,976  -1,400  
South Korea 48,950,056  48,876,152  -73,904  
Spain 33,712,308  33,658,860  -53,448  
Sweden 7,417,497  7,405,656  -11,841  
Switzerland (German) 5,448,933  5,121,406  -327,527  
Switzerland (Italian) 7,357,683  318,939  -7,038,744  
Switzerland (French) 5,378,396  2,257,293  -3,121,103  
Turkey 481,907  484,049  2,142  
United Kingdom 1,163,056  1,161,800  -1,256  
USA 477,029  476,570  -458  

 

Notes: Figures refer to the Akaike Information Criterion (AIC). Highlighted cell illustrates 
the lower value (and hence the preferred model).  
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Table 6. A summary of the correlation between country estimates of selected 
distributional statistics for mathematics and reading after making changes to the 

scaling model used 

(a) Mathematics 

 

1. No 
unique 

parameters 

2. Rasch 
model 

3. 2006 item 
parameters 

4. Not reached 
as incorrect 

5. All 
changes 

Mean 0.99 0.99 0.93 0.99 0.98 
St dev 0.95 0.92 0.92 0.93 0.88 
P10  0.99 0.99 0.91 0.99 0.99 
P25  0.99 0.99 0.92 0.99 0.99 
P50 0.98 0.99 0.93 0.99 0.98 
P75 0.97 0.98 0.95 0.99 0.97 
P90 0.98 0.98 0.96 0.98 0.96 
Gender gap 0.92 0.93 0.93 0.89 0.86 
SES gap 0.99 0.98 0.98 0.99 0.98 

 

(b) Reading 

 

1. No unique 
parameters 

2. Rasch 
model 

3. 2006 item 
parameters 

4. Not 
reached as 
incorrect 

5. All 
changes 

Mean 0.98 0.99 0.94 0.99 0.97 
St dev 0.96 0.97 0.93 0.98 0.93 
P10  0.98 0.99 0.96 0.98 0.96 
P25  0.98 0.99 0.95 0.99 0.97 
P50 0.98 0.99 0.94 0.99 0.97 
P75 0.99 0.99 0.94 0.99 0.99 
P90 0.98 0.97 0.93 1.00 0.98 
Gender gap 0.91 0.94 0.90 0.93 0.90 
SES gap 0.99 0.99 0.99 0.98 0.98 

 

Notes: Figures refer to the correlations at the country level. All comparisons refer to 
correlations with our original replicated values of the PISA reading and mathematics scores.  
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Table 7. How do mean mathematics scores change when the PISA scaling model is 
altered? 

  

0. 
Replicated 

values 
1. No unique 
parameters 

2. Rasch 
model 

3. 2006 
item 

parameters 

4. Not 
reached 

as 
incorrect 

5. All 
changes 

Japan 523.8 (1) 525.6 (1) 525.0 (1) 525.2 (1) 523.6 (1) 523.2 (1) 
Estonia 511.7 (2) 513.5 (2) 513.8 (2) 512.8 (2) 512.4 (4) 511.9 (2) 
South Korea 510.4 (3) 513.0 (3) 510.9 (4) 509.2 (4) 518.0 (2) 509.9 (4) 
Canada 509.8 (4) 511.2 (4) 511.3 (3) 510.3 (3) 515.3 (3) 510.5 (3) 
Switzerland 505.1 (5) 510.1 (5) 508.5 (5) 508.2 (5) 506.2 (5) 508.1 (5) 
Finland 502.0 (6) 504.3 (6) 505.2 (8) 505.0 (6) 502.4 (6) 503.9 (7) 
Slovenia 501.6 (7) 503.0 (9) 504.3 (9) 503.4 (7) 501.8 (8) 501.9 (8) 
Poland 500.8 (8) 496.9 (14) 498.3 (13) 496.9 (14) 501.4 (9) 495.6 (14) 
Denmark 500.6 (9) 503.4 (8) 508.0 (6) 502.0 (8) 502.0 (7) 500.5 (10) 
Belgium 497.8 (10) 503.6 (7) 502.3 (10) 499.9 (12) 498.1 (12) 500.6 (9) 
Germany 497.5 (11) 501.7 (10) 501.0 (11) 500.6 (10) 498.5 (11) 505.0 (6) 
Netherlands 497.4 (12) 501.1 (11) 505.5 (7) 501.1 (9) 499.0 (10) 500.5 (11) 
Ireland 494.6 (13) 497.7 (12) 499.0 (12) 496.6 (15) 497.1 (13) 496.0 (12) 
New Zealand 494.3 (14) 497.1 (13) 498.2 (14) 497.3 (13) 496.3 (14) 495.9 (13) 
United Kingdom 492.1 (15) 493.7 (15) 494.8 (15) 492.7 (18) 492.3 (16) 491.7 (16) 
France 490.9 (16) 492.0 (20) 492.4 (18) 493.5 (16) 488.7 (21) 489.6 (21) 
Australia 490.5 (17) 493.4 (16) 493.9 (16) 500.1 (11) 492.6 (15) 492.3 (15) 
Portugal 490.2 (18) 491.3 (21) 492.5 (17) 492.7 (19) 489.5 (19) 490.5 (18) 
Norway 488.3 (19) 492.2 (19) 491.3 (19) 493.3 (17) 489.1 (20) 490.5 (19) 
Austria 488.0 (20) 492.5 (18) 491.3 (20) 492.2 (20) 489.7 (18) 490.4 (20) 
Czech Republic 486.5 (21) 488.6 (22) 487.8 (21) 488.0 (21) 486.4 (23) 486.3 (22) 
Spain 485.5 (22) 486.7 (23) 486.3 (23) 486.2 (24) 489.8 (17) 484.5 (23) 
Italy 484.5 (23) 485.5 (24) 486.7 (22) -  483.1 (24) 482.2 (24) 
Sweden 484.2 (24) 493.0 (17) 484.5 (24) 487.7 (22) 487.9 (22) 491.3 (17) 
Luxemburg 479.9 (25) 482.2 (25) 481.1 (25) 480.9 (25) 479.2 (25) 480.2 (25) 
USA 477.8 (26) 474.1 (29) 473.5 (29) 474.2 (29) 474.5 (28) 474.6 (29) 
Iceland 477.1 (27) 479.6 (26) 478.1 (26) 479.5 (26) 476.5 (27) 477.6 (26) 
Latvia 473.7 (28) 477.6 (27) 474.7 (28) 479.0 (27) 476.5 (26) 476.8 (27) 
Hungary 472.7 (29) 474.9 (28) 475.3 (27) 474.3 (28) 473.3 (29) 475.4 (28) 
Slovak Republic 469.3 (30) 468.1 (31) 466.6 (30) 467.8 (30) 466.7 (30) 467.5 (30) 
Israel 463.8 (31) 470.8 (30) 464.4 (31) 466.0 (31) 462.6 (31) 464.1 (31) 
Greece 454.7 (32) 453.5 (32) 453.7 (32) 454.0 (32) 452.3 (32) 452.7 (32) 
Chile 433.5 (33) 434.3 (33) 439.6 (33) 436.8 (33) 433.7 (33) 440.3 (33) 
Turkey 424.6 (34) 421.4 (34) 423.4 (34) 423.2 (34) 425.9 (34) 423.5 (34) 
Mexico 414.5 (35) 415.8 (35) 416.0 (35) 418.8 (35) 416.6 (35) 420.1 (35) 

Notes: The model using 2006 item parameters for Italy did not converge to a solution. Italy and 
the 23rd rank is therefore excluded from these results. Figures in brackets refers to country 
ranking. 
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Table 8. How do mean reading scores change when the PISA scaling model is altered? 

  

0. 
Replicated 

values 

1. No 
unique 

parameters 
2. Rasch 

model 

3. 2006 
item 

parameters 

4. Not 
reached as 
incorrect 

5. All 
changes 

Japan 519.8 (1) 517.7 (2) 520.0 (1) 515.8 (2) 518.0 (1) 515.8 (2) 
Finland 519.0 (2) 519.9 (1) 518.7 (2) 517.2 (1) 517.7 (2) 517.5 (1) 
Canada 518.9 (3) 517.5 (3) 515.6 (3) 514.8 (3) 513.0 (6) 514.8 (3) 
Ireland 518.2 (4) 514.5 (5) 512.1 (6) 513.4 (4) 516.4 (3) 514.0 (4) 
South Korea 516.0 (5) 510.9 (6) 514.1 (5) 508.8 (6) 514.4 (4) 509.5 (6) 
Estonia 514.8 (6) 515.6 (4) 514.2 (4) 513.3 (5) 513.9 (5) 513.8 (5) 
Germany 507.9 (7) 506.8 (7) 507.1 (7) 504.6 (7) 505.0 (8) 501.0 (9) 
Netherlands 507.4 (8) 504.7 (8) 505.4 (8) 502.2 (8) 505.7 (7) 503.2 (7) 
Norway 506.2 (9) 503.7 (9) 500.8 (12) 501.1 (9) 502.5 (9) 500.2 (11) 
New Zealand 505.3 (10) 503.1 (10) 501.4 (10) 500.8 (11) 502.5 (10) 500.8 (10) 
Slovenia 501.2 (11) 500.8 (12) 501.5 (9) 499.7 (12) 500.1 (11) 500.1 (12) 
United Kingdom 500.6 (12) 499.8 (13) 498.8 (14) 497.5 (14) 499.3 (12) 497.8 (15) 
Switzerland 500.6 (13) 498.9 (15) 498.6 (15) 497.5 (15) 498.0 (13) 496.9 (16) 
Belgium 499.8 (14) 498.3 (16) 499.1 (13) 495.9 (17) 497.2 (15) 495.2 (18) 
Denmark 499.4 (15) 499.0 (14) 500.8 (11) 498.2 (13) 496.5 (16) 498.0 (13) 
Portugal 498.2 (16) 497.0 (18) 498.5 (16) 497.0 (16) 497.5 (14) 497.8 (14) 
Australia 498.2 (17) 498.0 (17) 495.6 (18) 490.8 (22) 495.9 (17) 495.7 (17) 
Poland 496.8 (18) 501.9 (11) 498.4 (17) 500.9 (10) 495.8 (18) 501.6 (8) 
France 494.6 (19) 493.9 (20) 492.4 (21) 491.6 (21) 490.9 (20) 489.8 (21) 
Spain 494.5 (20) 493.9 (19) 492.9 (20) 493.3 (19) 488.9 (21) 493.6 (20) 
Sweden 494.0 (21) 490.9 (22) 493.1 (19) 491.8 (20) 487.1 (25) 486.2 (25) 
Austria 489.3 (22) 487.0 (25) 488.0 (25) 486.0 (25) 487.1 (24) 486.4 (24) 
Italy 489.2 (23) 488.8 (24) 489.2 (24) - 487.8 (23) 486.8 (23) 
Czech Republic 489.0 (24) 489.1 (23) 489.6 (23) 488.9 (24) 488.1 (22) 489.5 (22) 
USA 489.0 (25) 493.8 (21) 492.1 (22) 493.4 (19) 494.1 (19) 493.9 (19) 
Latvia 487.8 (26) 486.1 (26) 483.8 (26) 482.9 (26) 485.9 (26) 485.8 (26) 
Luxemburg 482.1 (27) 481.7 (27) 480.5 (27) 480.9 (27) 480.9 (27) 480.5 (27) 
Israel 478.6 (28) 474.9 (28) 476.7 (29) 477.3 (28) 476.5 (28) 475.6 (29) 
Hungary 476.1 (29) 473.8 (30) 477.8 (28) 476.3 (29) 475.5 (29) 475.9 (28) 
Iceland 473.9 (30) 474.6 (29) 471.4 (30) 473.3 (30) 472.4 (30) 473.1 (30) 
Greece 463.8 (31) 467.3 (31) 466.7 (31) 468.1 (31) 467.3 (31) 468.2 (31) 
Chile 462.8 (32) 462.4 (32) 459.6 (32) 465.2 (32) 460.7 (32) 458.7 (32) 
Slovak Republic 456.2 (33) 456.6 (33) 457.1 (33) 457.7 (33) 457.8 (33) 458.4 (33) 
Turkey 444.8 (34) 442.3 (34) 444.4 (34) 445.2 (34) 444.2 (34) 446.1 (34) 
Mexico 434.5 (35) 430.2 (35) 432.4 (35) 438.0 (35) 434.2 (35) 439.0 (35) 

 

Notes: The model using 2006 item parameters for Italy did not converge to a solution. Italy and 
the 23rd rank is therefore excluded from these results. Figures in brackets refers to country 
ranking. 
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Figure 1. A simplified illustration of the model used to replicate the official PISA 
proficiency estimates (plausible values)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Squares refer to observed variables, ovals to latent variables and circles to error terms. 
Si , Mi and Ri  refer to students’ responses to the PISA test questions, where ‘i’ is the number 
of items on PISA (only three items in each domain have been included in the diagram for 
ease of presentation). Curved lines connecting errors indicate correlated errors.  
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Figure 2. Correlation between our EAP science scores and the OECD EAP science 
scores at the pupil level 

 

Notes: The OECD EAP estimate is approximated by taking the average of the ten plausible 
values in science for each student. The Pearson correlation is 0.9557 and Spearman correlation 
is 0.9585. Graph presented based upon a random sample of 5,000 students from the countries 
analysed.   
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Figure 3. Correlation between our estimate of the mean EAP science score and the 
OECD mean EAP science score at the country level 

 

Notes: The Pearson correlation is 0.994 and Spearman correlation is 0.986.  
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Figure 4. A comparison of mean science score with and without including item-by-
country interactions 

 
Notes: Figure can be cross-referenced with the statistic in the top-left hand corner of Table 3 (“1. No 
unique parameters”). The Pearson cross-country correlation is 0.999.  
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Annex A1. The number of questions with unique item-parameters by country and 
language group 

Country Language Math Reading Science 
Australia English 2 9 9 
Austria Austrian 7 5 9 
Belgium (Flemish) Flemish 1 11 13 
Belgium (French) French 2 8 9 
Canada English 3 8 9 
Switzerland German 6 11 15 
Switzerland French 2 4 9 
Chile Spanish 4 7 19 
Czech Republic Czech 1 8 15 
Germany German 3 15 8 
Denmark Danish 3 8 17 
Spain Spanish 2 5 9 
Spain Catalan 0 1 0 
Spain Valencian 0 1 0 
Estonia Estonian 3 14 21 
Estonia Russian 0 0 1 
Finland Finnish 4 14 25 
France French 3 9 12 
Greece Greek 1 14 18 
Croatia Croatian 3 8 20 
Hungary Hungarian 3 10 18 
Ireland English 3 12 26 
Iceland Icelandic 3 8 19 
Israel Hebrew 6 10 28 
Israel Arabic 0 0 8 
Italy Italian 3 13 13 
Japan Japanese 17 19 38 
Korea Korean 11 20 44 
Luxemburg German/English 3 4 4 
Luxemburg French 0 0 4 
Latvia Latvian 4 12 20 
Latvia Russian 0 0 14 
Mexico Spanish 2 8 19 
Netherlands Dutch 4 18 16 
Norway Bokmål 3 12 13 
New Zealand English 4 10 13 
Poland Polish 3 11 17 
Portugal Portuguese 2 7 14 
Scotland English 3 11 18 
England/Wales/NI English 0 13 30 
Slovakia Slovak 5 11 18 
Slovenia Slovenian 2 10 26 
Sweden Swedish 5 6 16 
Turkey Turkish 7 13 30 
USA English 3 10 13 
Total # of items in 
PISA test   81 103 184 
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Annex A2. The percentage of ‘not-reached’ items by country 

Country Science % Mathematics % Reading % 
Australia 1.1 1.2 0.7 
Austria 1.5 2.0 0.9 
Belgium 1.5 1.4 0.8 
Canada 0.9 0.8 0.6 
Switzerland 1.6 1.5 1.0 
Chile 2.6 2.1 2.0 
Czech Republic 1.4 2.1 0.8 
Germany 1.5 1.9 0.9 
Denmark 1.3 1.4 0.8 
England 1.3 1.2 0.7 
Spain 1.3 1.5 0.8 
Finland 1.0 1.6 0.8 
France 2.3 2.4 1.8 
United Kingdom 1.2 1.2 0.6 
Greece 1.6 1.8 1.2 
Hungary 2.0 1.8 0.8 
Ireland 1.6 0.8 0.5 
Iceland 1.7 1.6 1.0 
Israel 2.1 2.1 1.2 
Italy 2.0 1.9 0.9 
Japan 1.2 1.1 0.9 
Korea 1.2 1.4 0.5 
Luxemburg 1.7 1.5 0.9 
Latvia 1.5 1.3 0.6 
Mexico 1.3 1.1 1.2 
Northern Ireland 1.9 1.6 1.1 
Netherlands 0.7 1.0 0.4 
Norway 1.6 2.0 1.4 
New Zealand 1.7 1.8 1.2 
Poland 1.7 1.3 0.5 
Portugal 1.4 1.5 0.5 
Scotland 1.8 2.7 1.1 
Slovakia 1.6 1.3 0.6 
Slovenia 1.1 1.3 0.5 
Sweden 2.2 2.9 1.5 
Turkey 1.5 1.4 0.7 
USA 0.8 0.8 0.6 
Wales 2.3 2.3 1.5 
Average 1.6 1.6 0.9 
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