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Purpose: Commercially-available microtechnology devices containing 28 
accelerometers, gyroscopes, magnetometers, and global positioning technology have 29 
been widely used to quantify the demands of rugby union. This study investigated 30 
whether data derived from wearable microsensors could be used to develop an 31 
algorithm that automatically detects scrum events in rugby union training and match-32 
play.  33 
 34 
Methods: Data were collected from 30 elite rugby players wearing a Catapult S5 35 
Optimeye microtechnology device during a series of competitive matches (n=46) and 36 
training sessions (n=51). A total of 97 files were required to “train” an algorithm to 37 
automatically detect scrum events using random forest machine learning.  A further 310 38 
files from training (n=167) and match-play (n=143) sessions were used to validate the 39 
algorithm’s performance. 40 
 41 
Results: Across all positions (front row, second row and back row) the algorithm 42 
demonstrated good sensitivity (91%) and specificity (91%) for training and match-play 43 
events when confidence level of the random forest was set to 50%.  Generally, the 44 
algorithm had better accuracy for match-play (93.6%) events than training events 45 
(87.6%).  46 
 47 
Conclusions: The scrum algorithm was able to accurately detect scrum events for front 48 
row, second row and back row positions. However, for optimal results practitioners are 49 
advised to use the recommended confidence level for each position to limit false 50 
positives. Scrum algorithm detection was better with scrums involving five players or 51 
more, and is therefore unlikely to be suitable for scrums involving 3 players (e.g. Rugby 52 
Sevens). Additional contact and collision detection algorithms are required to fully 53 
quantify rugby union demands. 54 
 55 
Keywords: algorithm; microtechnology; team sport; scrum  56 
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Commercially-available microtechnology devices containing global positioning 57 
systems (GPS) and microsensors (accelerometers, gyroscopes and magnetometers) are 58 
commonly used to quantify the physical demands of Rugby Union.1 During match-play 59 
and training, players are divided into subgroups of forwards and backs and are required 60 
to perform repeated bouts of high-intensity locomotor activity (sprinting, running, 61 
accelerations) separated by low-intensity activity (standing, walking, jogging).1-6 In 62 
addition to the locomotor demands of match-play, players are frequently involved in 63 
high-intensity physical contacts and collisions such as mauls, tackles and rucks, with 64 
forwards also required to compete in scrums.1-8 Scrums are used to restart play after a 65 
minor infringement and involve all eight forwards from each team, forming three 66 
interconnected rows of players. While facing each other, the players forming the front 67 
row for each team lock heads and shoulders with the opposition forwards and attempt 68 
to produce a greater force than their opponents to gain possession of the ball. 9  69 
 70 
Despite researchers accurately quantifying the locomotor demands of elite rugby union, 71 
contact events such as scrums, rucks, mauls and tackles are usually combined and 72 
defined as ‘impacts’ when using microtechnology.1,4,7 Similarly, research evaluating 73 
contact events via video-based time-motion analysis has typically categorised these 74 
incidents as ‘high-intensity efforts’3 or ‘static exertions’. 5,6,8 Success in rugby union 75 
frequently depends on the players’ ability to tolerate contact events.10 However, 76 
research summarising the physical contribution of contact events (scrums, tackles, 77 
rucks and mauls) during match-play, either provide a count of the total number of 78 
contact events, a rating of the force involved1, or the total time attributable to 79 
collisions.8 To date, no research has differentiated between scrums, rucks, mauls and 80 
tackles, which inadvertently implies that each form of contact poses an equal 81 
physiological stress to the players.11 Classification of each contact would contribute to 82 
an improved understanding of the unique stresses associated with each of these collision 83 
types. In turn, this would potentially assist to improve player preparation and help to 84 
reduce the risk of injury and/or re-injury during training and competition. 85 
 86 
Microsensors have been used to quantify the demands of sport-specific movements in 87 
team sports, snow sports, individual sports and water sports.11 Validated algorithms 88 
have been applied to microsensor data to automate the collection of sport-specific 89 
movements, such as cricket fast bowling, 12 baseball pitching,13 and rugby league 90 
tackling. 11,14,15 To date, researchers have only used microsensors to quantify the tackle 91 
in rugby union,16 whilst scrums, rucks and mauls have been neglected.11 Researchers 92 
have highlighted the injury risk associated with scrums,17 predominantly in match-93 
play.18 Currently there is no other valid method of quantifying scrum workload during 94 
training or match-play apart from using video-based time motion analysis, which is a 95 
labour-intensive process.11 Many researchers have highlighted the need to further 96 
investigate contact movements in rugby union, as they generally require the body to 97 
endure very high forces that are imparted over a relatively short time period. However, 98 
despite the relatively short duration of each contact event, the repeated collisions 99 
involved in a typical training or match-play scenario make a significant contribution to 100 
the players’ total workload. Of the contact movements performed during regular match-101 
play, scrum events occur around 25 times per game, while depending on playing 102 
position, each player will complete approximately 30 rucks and tackles per match.5,11,19-103 
21 104 
 105 
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Given the need for more time-efficient and accurate methods of evaluating the 106 
incidence and physical demands of contact events in Rugby Union, this research sought 107 
to establish the validity of a microsensor-based algorithm for the automatic detection 108 
of scrum events during training and match-play. Based on the demonstrated capabilities 109 
of inertial devices to quantify other aspects of sports performance,11,22 it was 110 
hypothesised that scrum events could be accurately detected using wearable 111 
microsensors. 112 
 113 

Methods 114 
Subjects 115 
Thirty elite forwards (mean ± SD age; 28.3 ± 4.0 yrs), including players from all 116 
positions of the scrum (Front Row, n=16; Second Row, n=8; Back Row, n=6) were 117 
recruited to develop and validate the scrum-detection algorithm. At the time of testing, 118 
all participants were free of injury and had no known medical conditions that would 119 
compromise their participation or influence the recorded outcomes. All participants 120 
received a clear explanation of the study’s requirements and provided written consent 121 
prior to their involvement. The Institution’s Human Research Ethics Committee 122 
approved all experimental procedures (Approval #2014-135Q).  123 

 124 

Design 125 

Phase 1 – Algorithm Development 126 

To facilitate the initial development and training of the scrum detection algorithm, data 127 
were collected for the 30 participants using a Catapult S5 Optimeye device (Melbourne, 128 
Victoria, Australia) positioned between the players’ shoulder blades in a purpose-built 129 
vest. Each device contained an array of inertial sensors (i.e. tri-axial accelerometer, 130 
gyroscope, magnetometer), which captured data at 100 Hz during a series of 131 
competitive matches (n=46) and training sessions (n=51). A total of 97 data files (Front 132 
Row, n=49 files; Second Row, n=25 files; Back Row, n=23 files) that captured 1057 133 
scrum events were required to develop and optimize the final scrum-detecting 134 
algorithm. Timestamps of the scrum instances were manually identified using video 135 
data, which were coded alongside Opta Sports events when available (i.e. during match-136 
play).  137 

The development of an algorithm to detect scrum events involved two separate, but 138 
inter-related processes. Firstly, given the unique posture adopted by players while 139 
performing scrums, orientation of the device was estimated using a proprietary sensor 140 
fusion algorithm that included accelerometer and gyroscope data (Catapult; Melbourne, 141 
Victoria, Australia) within a match-play or training session. According to previous 142 
research, accelerations and the orientations determined from microsensor data using 143 
fusion-based methods have excellent reliability and concurrent validity.23-25 While the 144 
wearable sensors provided an array of measures, the following criteria were shown to 145 
have the ability to identify all scrum instances in the training set and, hence, were the 146 
two orientation measures consistently used in the scrum detection algorithm:  147 

i. The orientation of the device was below 25 degrees compared to the horizontal 148 
plane for at least 4 s. When this criterion was met, the algorithm established this 149 
time period as a potential event window. 150 



 5 

ii. The event was recorded only if the orientation of the device went below the 151 
horizontal plane during the event window. 152 

For data to be considered to potentially represent a true scrum event during training or 153 
match-play, both of these orientation criteria were required to be met. This was 154 
typically met by participants in preparation for the scrum so that even if a scrum 155 
collapsed it would enter the second step of the algorithm. These two initial criteria were 156 
intended to remove other non-relevant contact instances. All possible scrum instances 157 
within the time-series data were then classified as true and false scrum instances based 158 
on video analysis conducted by Opta Sports (http://www.optasports.com) statistics. The 159 
window of the classified events were then created for the inertial data and window mid-160 
points were then extracted to become the event timestamp. This first step of the 161 
algorithm development aimed to efficiently transform the data from a time series into 162 
a classification problem using the orientation criteria. The second step extracted 163 
features of the accelerometer and gyroscope signals from each event. These calculations 164 
included summary statistics using different time windows around the event timestamp 165 
and formed the variables 33for the machine-learning process. Variable selection was 166 
then performed using the R statistical software package’s Variable Selection Using 167 
Random Forests (VSURF)26 function. Based on a 10-fold cross-validation mean 168 
classification accuracy, 11 signal features were eventually selected from the 169 
accelerometers and gyroscopes and included in the final version of the random forest 170 
classifier.27 R statistical software package (http://www.r-project.org/) was used 171 
throughout the development of the algorithm. 172 

A scrum confidence scoring was attached to the algorithm based upon the number of 173 
trees in the random forest agreeing that a scrum event had taken place. If only the 174 
minimum orientation measures were met then the algorithm would return a confidence 175 
of 0%. In contrast, when a larger number of trees in the random forest reported detecting 176 
a scrum event based on the 11 signal features (Table 1), the algorithm returned a higher 177 
confidence rating (maximum 100%). 178 

Table 1. List of scrum algorithm signal features 179 

Signal 

Feature 
Feature Name Feature Description 

1 Horizontal Position 5 

To detect how long the estimated orientation of 

the device is below 5 degrees (i.e. forward 

flexion) 

2 Horizontal Position 15 

To detect how long the estimated orientation of 

the device is below 15 degrees (i.e. forward 

flexion) 

3 Horizontal Position 25 

To detect how long the estimated orientation of 

the device is below 25 degrees (i.e. forward 

flexion), which corresponds with scrum activity 

4 Raw Player Load Q75 
75th percentile of raw player load during the 

scrum activity 

http://www.optasports.com/
http://www.r-project.org/
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5 Rotation Median 
Median of smoothed total rotation during the 

scrum activity 

6 Smooth Player Load 75 
75th percentile of smoothed player load during 

the scrum activity 

7 Raw Player Load Q90 
90th percentile of raw player load during the 

scrum activity 

8 Raw Player Load Median Median of raw player load during scrum activity 

9 Inertial Side Q10 

To detect how long the estimated orientation of 

the device is below 5 degrees (i.e. forward 

flexion) 

10 Raw Player Load Pre 30 

To detect how long the estimated orientation of 

the device is below 15 degrees (i.e. forward 

flexion) 

11 
Raw Rotation Player 

Load Pre 30 

To detect how long the estimated orientation of 

the device is below 25 degrees (i.e. forward 

flexion), which corresponds with scrum activity 

 180 

Phase 2 – Algorithm Validation 181 

To validate the random-forest classifier-based algorithm, a testing set of 21 participants 182 
(Front Row, n=9; Second Row, n=5; Back Row, n=7) from the same cohort were 183 
monitored using Optimeye S5 devices across 11 international matches (143 full match 184 
files) and 9 training sessions (167 full training files). Training session scrums included 185 
events against opposition (8v8) or against a scrum machine (front 3 against machine, 186 
front 5 against machine and 8 against machine). A total of 261 scrum instances 187 
(international matches, n=169; training, n=92) were manually coded using video data 188 
and the timing of each scrum instance was noted according to video, time of day and 189 
time on the Catapult raw file. Video coded instances were compared to those detected 190 
by the algorithm. Scrum algorithm confidence scoring was set to the lowest possible 191 
setting, 0%, therefore incorporating all 4833 instances. Each instance was then matched 192 
with the relevant time stamp and false positives were thoroughly checked against video 193 
coded scrum events. 194 

 195 

Statistical Analysis 196 

True positive and negative results and false positive and negative results (Table 2) were 197 
determined to calculate algorithm accuracy, precision, specificity and sensitivity. 198 
Receiver Operating Characteristic (ROC) analyses were conducted to determine the 199 
sensitivity and specificity of the algorithm’s confidence in predicting scrum events. The 200 
predictive confidence value that yielded the best sensitivity and specificity was selected 201 
as the optimal cut-off score and represented the point that simultaneously maximised 202 
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both on the ROC curve. All statistical analyses were conducted in the Statistical 203 
Package for the Social Sciences (SPSS v24). 204 

Table 2. Criteria of algorithm results. 205 

 True False 

Positive 
Scrum event and scrum 

correctly detected 

No scrum event, scrum 

event incorrectly detected 

Negative 
No scrum event and no scrum 

event detected 

Scrum event and no scrum 

event detected 

 206 

Results 207 

To evaluate the performance of the scrum detection algorithm when only the two initial 208 
orientation criteria were applied without considering the results of the machine-learning 209 
model (i.e. the non-optimised algorithm), the sensitivities and specificities associated 210 
with an algorithm confidence of 0% were examined.  When data for all positions (i.e. 211 
front row, second row, back row) and all sessions (i.e. training, competitive matches) 212 
were considered, the non-optimised algorithm identified 3904 possible scrum instances. 213 
Of these instances, only 25 true negatives were recorded, yielding a sensitivity of 214 
99.5%, a specificity of 31.5% and a precision of 47% (Table 2).  Overall, algorithm 215 
performance was slightly better for match-play (sensitivity 99.8%, specificity 35.0%) 216 
than training (sensitivity 98.9%, specificity 28.1%). 217 

Using the 11 signal features identified during the model learning process, the 218 
algorithm’s predictive capacity was improved and this was reflected in the higher 219 
predictive confidence values (i.e. the optimised algorithm). Table 3 demonstrates the 220 
algorithm confidence cut-offs that returned the best results for the entire dataset and for 221 
the three positional groups during the training and match-play sessions based upon 222 
receiver operating characteristic analysis (Figure 1). On the basis of these results, the 223 
predictive confidence threshold that yielded the best combination of sensitivities and 224 
specificities for the entire cohort was 50%, while the optimal cut-off for matches (37%) 225 
was somewhat lower than determined for the training data (54%) (Table 2). When the 226 
study cohort was subdivided into positional groups, it was shown that the optimal cut-227 
off for front row players was 27% for training and 51% for match-play, compared with 228 
91% and 49% for the second row. In contrast the predictive confidence values that 229 
provided the best sensitivities and specificities for back row players during training and 230 
match-play were 63% and 21%, respectively. 231 

Various training scenarios were observed during data collection, involving three, five 232 
and eight players against a scrum machine and opposed “eight verses eight” scrums. 233 
Importantly, the first two scenarios were only included in the validation phase. Scrums 234 
involving the front row only had the lowest sensitivity (50%) and specificity (97%); 235 
this improved when including both the front row and second row (i.e. for five player 236 
scrums), with both positions attaining sensitivity and specificity of 100%.  Eight man 237 
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scrums against a scrum machine had the highest sensitivity and specificity for all 238 
positions: respective sensitivity and specificity values; front row, 98% and 99%; second 239 
row, 100% and 100%; and back row, 100% and 100%. Opposed scrums in training 240 
involving 16 players (8v8) also demonstrated high sensitivity and specificity for all 3 241 
positions (front row, sensitivity 98% and specificity 99%; second row, sensitivity 100% 242 
and specificity 100%; back row, sensitivity 99.5% and specificity 99.7%). 243 
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 Accuracy (%) AUC (%) 

Optimal 

Cut-Off Sensitivity Specificity 

Scrum Identification      

Probability For All Data 91.0 95.8 50% 0.91 0.91 

      

Data Source      

Probability For Training Data Only 87.6 92.9 54% 0.89 0.87 

Probability For Match Data Only 93.6 98.2 37% 0.94 0.94 

      

Position      

Probability For Front Row Only 90.4 95.1 41% 0.91 0.90 

Probability For Second Row Only 94.4 97.1 83% 0.94 0.93 

Probability For Back Row Only 89.8 95.8 36% 0.91 0.91 

      

Position By Data Source      

Probability For Front Row in Training 83.8 88.6 27% 0.84 0.83 

Probability For Second Row in Training 91.4 95.3 91% 0.90 0.90 

Probability For Back Row in Training 90.6 96.1 63% 0.91 0.91 

Probability For Front Row in Matches 95.9 99.1 51% 0.96 0.96 

Probability For Second Row in Matches 98.1 99.7 49% 0.98 0.98 

Probability For Back Row in Matches 89.6 96.6 21% 0.90 0.92 

      

Position By Data Source (Limited)      

Probability For Front Row in Training 85.2 90.5 39% 0.86 0.86 

Probability For Second Row in Training 91.3 95.3 91% 0.90 0.90 

Probability For Back Row in Training 90.8 96.2 63% 0.91 0.91 

 

Table 3 – Accuracy, Area Under the Curve (AUC), Optimal algorithm cut-off, sensitivity and specificity for each position during each scenario 

244 
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Figure1 –Receiver Operating Characteristic (ROC) analyses for Front Row (A, B), 245 
Second Row (C, D) and Back Row (E, F) players during the training and competitive 246 
match scenarios, respectively. 247 

248 
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Discussion 249 

This is the first study to investigate the use of microtechnology and associated 250 
algorithms to automatically detect scrum events in elite rugby union. Our results 251 
demonstrate that scrum events were best detected with high sensitivity and specificity 252 
when algorithm confidence level was at 50%, although algorithm performance was 253 
better during match-play than training. In training, scrums that involved a minimum of 254 
8 players (8 against a machine or contested scrums involving 16 players) returned 255 
higher accuracy than those scenarios that involved 3 or 5 players. This finding can be 256 
explained by the lack of the latter scenarios in the training phase of the algorithm. 257 
Accuracy was best for the front row, with detection of scrum events poorest in the back 258 
row. These findings provide a practical and valid method of quantifying scrum events 259 
in professional rugby union match-play and training sessions. 260 

False negatives during training were only recorded during 3-man scrums performed 261 
against a machine. This may have been due to the activity duration being insufficient 262 
to satisfy the algorithm’s minimum requirements, thus affecting the overall sensitivity 263 
and specificity for the front row players during training sessions. Other false negatives 264 
in training occurred when scrums collapsed (front row falls to floor) or were reset 265 
(incorrect positioning) affecting both the front row and back row. During match-play, 266 
all false negatives were attributable to players in the back row who did not maintain a 267 
horizontal position for an adequate period of time to satisfy the algorithm’s least 268 
common denominators before a scrum collapse. As shown in the results for these 269 
players, the tendency for back row players to change their trunk orientation prior to a 270 
scrum collapse significantly affected the algorithm’s sensitivities and specificities for 271 
this positional group. Although the results for the back row players were negatively 272 
affected by this phenomenon, they do suggest that the physical exertion exhibited by 273 
these individuals during a particular scrum event may be quite different to that of front 274 
and second row players, even if a scrum is completed or collapses. 275 

The comparisons of video-based notational analysis and the scrum algorithm 276 
demonstrated the best results with a 50% threshold cut off.  The overall outcome of the 277 
algorithm was better for match-play than training. Fewer scrum variations occur in 278 
match-play (i.e. each scrum is always contested by 16 players), whereas training 279 
activities may involve contested ‘8 v 8’ scrums, eight players against a scrum machine, 280 
or the front five (involving front row and second row) and front row positions only, 281 
which may account for the differences in algorithm performance in different scenarios. 282 
Further analysis of the different types of scrum-based technical drills utilized during 283 
training indicated that the algorithm performed worse for drills involving only three or 284 
five players. Although these results suggest that the algorithm’s performance may be 285 
improved by including such drills in the “learning” phase of the algorithm, it could be 286 
argued that scrums involving 5 or fewer players are aimed more at developing 287 
technique, rather than specifically preparing the athletes for the demands of match-play. 288 
As such, the specific differences between these training-based drills and actual scrum 289 
events may contribute to these incidents not being identified as a scrum using the 290 
specified algorithm criteria. 291 
 292 

We found that algorithm performance differed among positions during match-play and 293 
training. Optimal sensitivity and specificity for all positions occurred when the 294 
algorithm confidence rating was set at 37% for match-play and 54% for training (Table 295 
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2). Due to the differences in algorithm performance among positions, setting 296 
confidence thresholds of 51%, 49% and 21% during match-play and 27%, 91%, and 297 
63% during training for the front row, second row, and back row, will likely produce 298 
optimum results, although caution must be taken when extrapolating these results to 299 
other independent data sets. False positive events (threshold set to 50%) totaled 168 300 
and 1668 true negative events (predominantly scoring below 5% confidence) across the 301 
validation data set. Most events were off camera, although events scoring the highest 302 
confidence rating were from rare static maul events where players were not moving and 303 
positioned in a similar posture to that observed during a scrum   304 

The results of the scrum algorithm are in agreement with a recent systematic review 305 
that evaluated the use of microsensors for the detection of sport-specific movements.11 306 
This technology has been applied in cricket to count balls bowled12 and bowling 307 
intensity,28 baseball throwing,13 tennis serves,29 and several individual,11,30-32 snow,11,33-308 
38 and water-based11,39-41 sports. Microsensors and associated algorithms have been 309 
used to detect tackles in rugby league14 with accuracy improving with greater impact 310 
forces and longer duration of events.15 However, this technology has previously been 311 
shown to be less useful for detecting tackle events in rugby union21 and Australian 312 
football42 match-play. A possible explanation for the poor performance of the algorithm 313 
in Australian football and rugby union match-play is that the tackle algorithm was 314 
trained on rugby league players, to identify rugby league tackles. The differences in 315 
tackles between rugby league and that of Australian football and rugby union may 316 
explain the differences in accuracy and show the importance of the representativeness 317 
of the training data set for developing movement specific algorithms. Given the 318 
differences in findings among rugby league, rugby union, and Australian football, and 319 
the present findings that 3- and 5-man scrums were less accurate than 8-man scrums, 320 
we would recommend only using the scrum algorithm for detecting scrum events 321 
involving 15-a-side rugby union.  322 

Although this algorithm advances the ability of sport scientists to automatically detect 323 
scrum events in elite rugby union, there are some potential limitations to the research. 324 
The algorithm was designed using two elite level teams and tailored primarily for front 325 
row players due to their role within scrum events. This may account for the slight, but 326 
incremental decrease in algorithm performance for the second row and back row 327 
positions, respectively. Elite male players were used to train the algorithm; 328 
consequently, the algorithm may be less applicable for younger and smaller junior 329 
rugby union participants, or female players, due to possible difference in microsensor 330 
signals. Finally, at present, the scrum algorithm only detects the number of scrum 331 
events and does not account for the forces applied during these events. Despite these 332 
limitations, this study demonstrates the potential for microsensor technology in the 333 
detection of rugby union-specific collision events provided an adequate (i.e. specific 334 
and representative) training data set. While the demonstrated success of the presented 335 
algorithm suggests that practitioners will be better able to detect scrum events in 336 
training and match-play to monitor players’ total training loads, it is important to 337 
acknowledge that the scrum is one of many contact types experienced in rugby union. 338 
Hence, despite the algorithm success, a complete understanding of a player’s match 339 
demands and total training load would require the development of alternate, but 340 
complementary methods to identify rucks, tackles and mauls using microtechnology. 341 
 342 
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PRACTICAL APPLICATIONS 343 

The majority of rugby union GPS analyses have focussed on the locomotor demands 344 
(i.e. low-speed activities, high-speed running, and sprinting) of the game.1-6 However, 345 
disregarding the physically demanding collision events that may result in very little 346 
locomotor activity, may severely underestimate the physical demands of match-play. 347 
The development and validation of a scrum algorithm to automatically detect scrum 348 
events during training and match-play improves the understanding of an important 349 
component of rugby union. Previously, this type of analysis would require time 350 
consuming video-based notational analysis. The automated detection of scrum events 351 
using data provided by the GPS units worn by players allows practitioners to more 352 
easily quantify the occurrence of scrum events during regular training and match-play 353 
situations. By improving the efficiency of this process, it becomes far more viable for 354 
sports scientists to determine the physical load associated with these contact events, 355 
which should ultimately improve player preparation and reduce the risk of injury. 356 
Further research investigating the use of this technology to quantify the ruck, tackle and 357 
maul is warranted. 358 
 359 

CONCLUSION 360 

In conclusion, we investigated the use of microtechnology and associated algorithms to 361 
automatically detect scrum events in elite rugby union. Receiver Operating 362 
Characteristic analyses provided optimal random forest algorithm confidence 363 
thresholds to generate best sensitivity and specificity (typically >90%). Algorithm 364 
performance was better during match-play than training for front row and second row, 365 
although conversely, results revealed better performance for the back row during 366 
training than match-play. In training, scrums that involved a minimum of eight players 367 
were readily detected, while scrums involving three players were less accurate. Scrums 368 
involving five players or more attained markedly better results. Detection was best for 369 
the second row, with decreased detection in the front row, with back row positions 370 
performing comparatively lower. These findings provide a practical and valid method 371 
of quantifying scrum events in professional rugby union match-play and training. 372 
 373 
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