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A B S T R A C T

Satellite data is increasingly used to characterize green space for health outcome studies. Literature suggests that
green space within 500 m of home is often used to represent neighborhood suitable for walking, air pollution and
noise reduction, and natural healing. In this paper, we used satellite data of different spatial resolutions to derive
normalized difference vegetation index (NDVI), an indicator of surface greenness, at buffer distances of 50, 100,
250 and 500 m. Data included those of 2 m spatial resolution from WorldView2, 5 m resolution from RapidEye
and 30 m resolution from Landsat. We found that, after radiometric calibrations, the RapidEye and WorldView2
sensors had similar NDVI values, while Landsat imagery tended to have greater NDVI; however, these sensors
showed similar vegetation distribution: locations high in vegetation cover being high in NDVI, and vice versa.
We linked the green space estimates to a health survey, and identified that higher NDVI values were significantly
associated with better health outcomes. We further investigated the impacts of buffer size and sensor spatial
resolution on identified associations between NDVI and health outcomes. Overall, the identified health outcomes
were similar across sensors of different spatial resolutions, but a mean trend was identified in bigger buffer size
being associated with greater health outcome.

1. Introduction

Urban green space, including parks, forests, green roofs, streams,
and community gardens, provides critical ecosystem services (Wolch
et al., 2014). Access to green space has also been associated with var-
ious health benefits (Ulmer et al., 2016), such as higher levels of phy-
sical activity (Akpinar, 2016; Almanza et al., 2012; Gomez et al., 2010;
Gordon-Larsen et al., 2006; Kaczynski et al., 2008; Mytton et al., 2012;
Sugiyama et al., 2010; Villeneuve et al., 2018), improved children
cognitive skills development (Dadvand et al., 2015a), improved mental
health conditions (Dadvand et al., 2016; Gascon et al., 2015; Wood
et al., 2017), reduced stress levels (Roe et al., 2017; Thompson et al.,
2016), and lower exposure to traffic-related air pollution (Dadvand

et al., 2015b). Some studies have, however, found some of the above
mentioned associations non-significant (Ali et al., 2017; Cohen-Cline
et al., 2015; Picavet et al., 2016; Potestio et al., 2009). Few studies
investigated the possible impacts of difference in green space char-
acterization on health outcome estimates. One study using the global
positioning system on some 76 participants investigated the Modifiable
Area Unit Problem (MAUP) that affected estimated physical activity
effects of green space and other built environmental variables
(Houston, 2014). That study suggests that both the size (scaling effect)
and shape (i.e., the zoning effect) of the spatial units used in an analysis
may influence resulting statistical inference. This study found both
scaling and zoning effects, with smaller circular buffers generally re-
lating to larger effect sizes when relating green space to objectively
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measured physical activity. The study, however, did not assess the in-
fluence of resolution in the input data for characterizing green space.

To improve green space exposure estimates, researchers have in-
creasingly relied on the remote sensing images taken from satellites
(Almanza et al., 2012; Dadvand et al., 2012; Gradinaru et al., 2016;
Vatseva et al., 2016). Most of the research using remote sensing sa-
tellites has used the normalized difference vegetation index (NDVI)
with 30 m resolution from Landsat images or 250 m resolution from the
MODIS (Casey et al., 2017; Crouse et al., 2017). To be able to accurately
identify green space but at the same time limit potential financial
burden, we investigated whether it was necessary to purchase high
spatial resolution (e.g., meter or sub-meter) remote sensing data for the
identification of health outcomes. Literature suggests that green space
within 500 m of home such as those of 50, 100, 250 and 500 m are often
used to represent the immediate neighborhood of residence suitable for
physical activity like walking (Su et al., 2011; Wolch et al., 2011), and
in the presence of green space suitable for reducing noise and air pol-
lution (Dadvand et al., 2015b; Davies et al., 2009). The smaller buffers
also may account for immediate green space that could be in view of the
home. In an ongoing study, we identified the associations of green space
with mental health status, social support and physical activity for the
City of Barcelona, Spain using the NDVI data derived from Landsat8
acquisition for buffers of 100, 250 and 500 m of participants' home
addresses (Dadvand et al., 2016). In this paper, we extended those
green space analyses with three different satellite sensors in respective
spatial resolutions of 2, 5 and 30 m, for buffer distances from home
address of 50, 100, 250 and 500 m, to take into consideration of po-
tential existence of unmapped trails to and visual effects from green
space. We then compared whether these different estimates of green
space influence the health outcomes observed in epidemiological stu-
dies. We hypothesize that NDVI derived from higher spatial resolution
remote sensing data or greater buffer size would lead to larger health
outcomes detection from green space exposure.

2. Material and methods

2.1. Remote sensing data analysis

2.1.1. Remote sensing data sources
The City of Barcelona is located on the northeast part of Spain

(Fig. 1). It has about 1.6 million people (Figueras et al., 2008). To
identify the impacts of spatial resolution on green space characteriza-
tion, we applied three different resolution remote sensing data for the
region (Table 1), all collected in July and early August when vegetation
shows greatest greenness: (1) the 2 m resolution WorldView2 imagery
(DigitalGlobal, Colorado, USA) collected on August 3rd, 2012, in-
cluding three visible bands (red, green and blue) and a near infrared
band; (2) the 5 m resolution RapidEye imagery (RapidEye AG, Berlin,
Germany) collected by satellites on July 23rd, 2012 for three visible
(red, green and blue) and two infrared bands; and (3) the 30 m re-
solution Landsat8 data (USGS, Reston, Virginia, USA) acquired from the
United States Geological Survey (USGS) for data collected on July 5th,
2012, including 11 bands. We could not acquire the remote sensing
data for the same day due to difference in day of sensor data acquisition
and difference in time of acquiring high quality images, e.g., cloud free,
for the city. For each satellite imagery retrieval, we assessed green
space at buffer sizes of 50, 100, 250 and 500 m around the participants'
home addresses.

2.1.2. Processing remote sensing data
When remote sensing data are acquired, they are presented as pixel

values or digital numbers. The value recorded for a given pixel includes
not only the reflected or emitted radiation from the surface, but also the
radiation scattered and emitted by the atmosphere. Given that the data
acquired from the three sensors were not captured at the same date and
time, radiometric calibrations were applied to remove impacts from

atmospheric conditions and other factors that can influence the ob-
served energy on a sensor. Due to the fact that the data were all ac-
quired in summer when vegetation was greenest and they were col-
lected in close proximity in date, we believed that a surface, such as the
vigorousness of vegetation, remained unchanged and its corrected re-
flectance remained the same across the three sensors. However, when
the spatial resolution decreases, a pixel on a surface would have more
mixed ground information due to increased pixel size. This would result
in over- or underestimating the degree of vegetation. At the same time,
with increasing buffer size, the over- or underestimation in degree of
vegetation would be further exaggerated.

Radiometric calibration and correction on our remote sensing data
included the following connected steps: We first converted the original
sensor acquired images in digital numbers to radiance based on the
rescaling factors provided in the respective sensor metadata files. Based
on Earth-Sun distance, solar zenith angel and exoatmospheric irra-
diance at the time of data acquisition, the radiance was further con-
verted to Top of Atmosphere (TOA) reflectance.

2.1.3. Derivation of vegetation index — NDVI
The NDVI is calculated as follows:

= +NDVI NIR RED NIR RED( )/( ) (3)

where RED and NIR stand for the spectral reflectance measurements
acquired in the visible red band and near-infrared regions, respectively
(Kriegler et al., 1969). Table 1 lists the bandwidths used for deriving
NDVI surfaces for the city. NDVI ranges between −1 and 1 with higher
numbers indicating more green vegetation. “−1” represents very high
reflectance in the visible red band but with little near-infrared scat-
tering such as from snow or cloud cover.

We derived NDVI surfaces for the entire city, maintaining the initial
spatial resolutions of the WorldView2, RapidEye and Landsat imagery.
Mean NDVI values of circular buffer distances of 50, 100, 250 and
500 m were calculated for all the image pixels in the study region. A
regular grid of 10,141 points of 100 m apart was also generated to
compare NDVI values from the three sensors across the four buffer sizes
and their associated distributions in the study region. The agreements
in NDVI values between the three sensors across the four buffer sizes
were conducted through paired sample t-tests on the regular grid of
10,141 points. We also ranked NDVI values from high to low using the
WorldView2 imagery as a reference and identified deviations from the
reference line when remote sensing sensor changed.

For a sensitivity analysis, we also generated NDVI surfaces and
buffer statistics using the primitive remote sensing data that only had
digital numbers [counts]. The purpose of this was to identify whether
radiometric calibrations were necessary to create proper vegetation
index.

2.2. Health outcome analysis

2.2.1. Study population
The health analysis was based on a cross-sectional study of data

obtained from a population-based randomized sample of adults residing
in Barcelona. The data was collected in the context of the 2011
Barcelona Health Survey aimed to study the health status, life-styles
and use of health services among Barcelona residents. Detailed de-
scription of this survey has already been published (Dadvand et al.,
2016) and some descriptive statistics are presented in Table 2. Briefly,
4000 people residing across the 10 districts of Barcelona (400 from
each district) were randomly selected from the Barcelona municipal
register of residents to represent the age and sex structure of that dis-
trict. An invitation letter was sent to selected subjects, informing them
about the objectives of the survey and asking them to participate. The
non-responders were substituted by randomly-selected persons of same
district, with the same age and sex. For this study, we limited the
participants to those with age ≥ 18 years resulting in 3461 adults in the
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analytical data set. A participant's main home address in which the
interview was conducted was geocoded and the green space metrics
described above were assigned to the geocoded location through the
ArcGIS interpolation function (ESRI, Redlands, California). We used the
2012 rather than the 2011 NDVI data to match the 2011 health out-
come data due to the best available remote sensing data in 2012 on
cloud free status in the summer months for all the three sensor acqui-
sitions.

2.2.2. Questionnaire data
The data on the perceived general health, mental health, physical

activity, and relevant socio-demographic covariates were obtained
through a face-to-face interview survey conducted at the residential
place of the study participants. For perceived general health, partici-
pants answered a question obtained from the Short-Form 36 (Ware and

Fig. 1. The geographic location of Barcelona in Spain, Europe.

Table 1
The remote sensing imagery and bandwidths for creating NDVI indices for
Barcelona.

Data source Acquisition date Resolution (m) Red band Near-infrared
band

WordView 2 08/03/2012 2 630–690 nm 770–895 nm
RapidEye 07/23/2012 5 630–685 nm 760–850 nm
Landsat8 07/05/2012 30 640–670 nm 850–880 nm

Table 2
The descriptive statistics of the participants in demographic characteristics and
measured health outcomes.

Variable Description

Age
18–45 years 1571 (45.4%)
46–65 years 1039 (30.0)
≥ 65 years 851 (24.6%)

Sex
Male 1657 (47.9%)
Female 1804 (52.1%)

Education
No or primary school 666 (19.2%)
Secondary school 1618 (46.8%)
University 1148 (33.2%)
Missing 29 (0.8%)

Subjective general health
Excellent/very good/good 2702 (78.2%)
Fair/bad 755 (21.8%)

Mental health status
At risk 480 (14.4%)
Not at risk 2856 (85.6%)

Physical activity
Moderate/high 236 (7.5%)
Low 2907 (92.5%)
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Sherbourne, 1992): “In general, would you say that your health is...”
with possible responses being excellent/very good/good/fair/bad. The
Short-Form 36 has been reported to be a reliable and valid tool to assess
perceived general health in the Spanish population (Vilagut et al.,
2005). The answers were dichotomized with cut-off at “less than good”,
following the same methodology used in previous studies (Maas et al.,
2006; Triguero-Mas et al., 2015). We considered “less than good” an-
swers as the reference category, therefore a positive association be-
tween greenness exposure and this variable could be interpreted as
better perceived general health. For mental health, participants an-
swered the twelve questions of the General Health Questionnaire (GHQ-
12) (Goldberg, 1978). GHQ-12 has been reported to be a valid and
reliable tool for screening non-psychotic mental problems (i.e. psy-
chological distress) in the Spanish population (Sánchez-López and
Dresch, 2008). The general score was dichotomized with those having a
score ≥ 3 being classified as being at risk of psychological distress
(Goldberg, 1978). We considered being at risk of psychological distress
as the reference category; therefore, an association between greenness
exposure and this variable could indicate lower risk of psychological
distress (i.e. better mental health status). For physical activity, parti-
cipants answered the seven questions of the International Physical
Activity Questionnaire (IPAQ-Short version) (Craig et al., 2003). The
IPAQ has been reported to have an acceptable validity and reliability
for the Spanish population (Roman-Viñas et al., 2010). We developed a
binary variable indicating whether the participant could be considered
as having moderate or high physical activity levels based on the IPAQ
guidelines (i.e. moderate/high vs. low levels of physical activity) (IPAQ
Research Committee, 2005). We considered low physical activity level
as the reference category; therefore a positive association between
greenness exposure and this variable could be interpreted as greater
likelihood of achieving moderate to high levels of physical activity.

2.2.3. Statistical analyses
We developed logistic regression models with perceived general

health, mental health, and physical activity as outcome (one at a time)
and measures of greenness exposure (one at a time) as predictor. The
models were further adjusted for potential confounders identified a
priori: age (18–45, 46–65, or < 65), sex, and indicators of socio-
economic status (SES) at both individual and area levels. Educational
attainment (no or primary/secondary/university) was used as the in-
dicator of individual-level SES and tertiles of 2010 household income
by neighborhood (Generalitat de Catalunya, 2010) was applied as the
indicator of area-level SES.

In extending the previous work (Dadvand et al., 2016), we first
modelled the associations of green space metrics with individual health
outcomes separately for data acquired from sensors of three spatial
resolutions (2, 5 and 30 m) for four buffer sizes (50, 100, 250 and
500 m). The individual health outcomes in mean estimates were then
used to conduct trend analysis. Two main trends were analysed: First,
we regressed sensor spatial resolution against the modelled mean

health estimates through linear regression models. This was done for
individual mean health estimates, but also for the three health out-
comes combined. For example, when estimating the trends of associa-
tion of spatial resolution with perceived health, the predictor was
“sensor resolution” with values 2, 5 and 30 m and the response was
“perceived health” with three corresponding mean estimates on per-
ceived health. The linear regression model had 3-paired values. When
the three health outcomes were combined, the predictor “sensor re-
solution” had 9 values with values 2, 5 and 30 m all occurring 3 times
for the three different health outcomes, creating 9-paired values be-
tween sensor resolution and modelled mean health estimates. Second,
we regressed buffer size against the modelled mean health estimates.
The predictor “buffer size” included values of 50, 100, 250 and 500 m.
Similarly, the analyses were done for both individual mean health es-
timates and the three health outcomes combined.

3. Results

3.1. Differences in characterizing green space

The correlation coefficients (R) between the four buffers of a remote
sensing imagery on the regular grid of 10,141 points (highlighted areas
in Table 3) showed that the degree of agreement in green space was
greater when the defined scopes of impact were closer to each other.
The degrees of correlation for WorldView2, RapidEye and Landsat8,
ranged 0.89–0.98, 0.91–0.99 and 0.90–0.98, respectively, when com-
pared within individual sensors across the four buffer sizes. When
compared between two different sensors, we found the correlations
were slightly stronger between WorldView2 and RapidEye than be-
tween Landsat and these other two sensors. In addition, correlations
were slightly stronger with a larger buffer size. Though relative high in
correlation coefficients, all the paired two sample t-tests showed sig-
nificant differences in NDVI values derived from two types of sensors.

When comparing NDVI values derived from different sensors
(Fig. 2), we found that NDVI values derived from Landsat8 data were on
average greatest (mean = 0.27–0.28), while these values decreased for
WorldView2 (mean = 0.18) and were closely followed by RapidEye
imagery (mean = 0.16). NDVI indices derived from WorldView2 were
slightly higher than those derived from RapidEye for the buffer sizes of
50, 100, 250 and 500 m. By comparison, Landsat8 consistently created
higher NDVI indices by about 0.1. Even though there were these dif-
ferences, the NDVI values derived from the three types of sensors
showed a similar trend: higher NDVI values in one sensor was asso-
ciated higher NDVI values in another sensor and vice versa, indicating
that NDVI values were high when vegetation cover was high and de-
creased when degree of vegetation decreased. The spatial patterns
largely remained unchanged for NDVI indices derived from the three
different sensors.

We also compared the differences in NDVI for two specific neigh-
borhoods of interest: the one at Estadi Olímpic with high in vegetation

Table 3
The correlation matrix of NDVI indices derived from WorldView2, RapidEye and Landsat NDVI indices at buffer distances of 50, 100, 250 and 500 m through a
regular grid of 10,141 points of 100 m apart in the study region.

WV50 WV100 WV250 WV500 RE50 RE100 RE250 RE500 LS50 LS100 LS250

WorldView (100 m) 0.97
WorldView (250 m) 0.92 0.97
WorldView (500 m) 0.89 0.94 0.98
RapidEye (50 m) 0.99
RapidEye (100 m) 0.99 0.98
RapidEye (250 m) 1.00 0.93 0.97
RapidEye (500 m) 1.00 0.91 0.95 0.99
Landsat (50 m) 0.97 0.97
Landsat (100 m) 0.99 0.98 0.98
Landsat (250 m) 0.99 0.99 0.93 0.97
Landsat (500 m) 0.99 0.99 0.90 0.94 0.98
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Fig. 2. The distribution of the NDVI values for WorldView2, RapidEye and Landsat data defined by buffer sizes of 50, 100, 250 and 500 m for the City of Barcelona. A
regular grid of 10,141 points of 100 m apart was used for the analysis and WorldView2 imagery was used to rank the NDVI values from the highest to the lowest.
Numbers in the parentheses are the mean NDVI values derived from a sensor.

a1 a3 a2 

b1 

b2 

b3 

Fig. 3. NDVI surfaces and mean values in buffer sizes of 50, 100, 250 and 500 m (red circles) derived from WorldView2 (a1 for 0.59, 0.21, 0.20 and 0.25; and b1 for
0.10, 0.08, 0.07 and 0.07), RapidEye (a2 for 0.48, 0.17, 0.17 and 0.21;and b2 for 0.12, 0.09, 0.09 and 0.08) and Landsat8 (a3 for 0.60, 0.28, 0.29 and 0.34; and b3 for
0.18, 0.17, 0.18 and 0.17) for points of Estadi Olímpic (a) and Jardins del Mestre Balcells (b) vegetation cover areas in the immediate neighborhoods. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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cover and the second at Jardins del Mestre Balcells with intermediate
vegetation cover (Fig. 3). The high vegetation cover area was centered
on a soccer field (a1, a2 and a3 in Fig. 3), and we found that for the
buffer defined within 50 m (the smallest circle), the NDVI indices de-
rived from Landsat8 had the greatest value, these values decreased
slightly for WorldView2 and then a much bigger reduction by Rapi-
dEye. When the bigger buffer sizes were used, some non-vegetated
areas were included. The NDVI values decreased but still maintained
that green space was greatest for Landsat8. RapidEye imagery, by
contrast, maintained a tendency of lower estimates of NDVI values
compared to Landsat8. At the area defined by intermediate vegetation
cover, we found that both WorldView2 and RapidEye were very similar
to each other in estimating NDVI (b1, b2 and b3 in Fig. 3). For Landsat8
data, the estimation of higher NDVI was still seen for all the four buffer
sizes.

In addition, we compared the NDVI values derived from the three
sensors with buffer sizes of 50, 100, 250 and 500 m using the un-
corrected imagery (Fig. 4). For Landsat data, the corrections made
slight increases in NDVI values compared to those uncorrected for all
the buffer sizes. For the WorldView2 imagery, the corrected imagery
had little change to the uncorrected imagery across four buffer sizes.
For the RapidEye data, the uncorrected imagery showed significant
underestimation of NDVI values than the corrected imagery, with an
average difference of 0.15.

3.2. Differences in health outcomes

Overall, our research found that higher vegetation index was asso-
ciated with better perceived health, better mental health and greater
physical activity identified through the three sensors across the four
buffer sizes. For trend analysis, we found that some significant linear
trend existed in explaining health outcomes with varying buffer sizes
(p = 0.01). The trend was significant and positive for perceived health
(p = 0.01) and physical activity (p < 0.001) with increasing buffer
size, but only marginally insignificant for mental health (p= 0.09).
When examining individual health outcomes trends in Fig. 5, we found

different patterns. Though their 95% confidence intervals overlap, we
found that, for perceived health, health associations were relatively
larger with the buffer size of 250 m. For mental health, the peak was
associated with the buffer size of 100 m. For physical activity, the buffer
size of 500 m was seen having relatively larger health effect.

For the satellite resolution (using TOA corrected imagery), we also
found that linear trends existed, with higher spatial resolution asso-
ciated with greater health outcomes; however, these trends were not
statistically significant, with p values being 0.58, 0.39, 0.56, and 0.34
for perceived health, mental health, physical activity and the combined
health. When limiting comparison within each health outcome to the
same buffer size (either 50, 100, 250 or 500 m) (i.e., the association
between sensor resolution and a health outcome given a fixed buffer
size), we found that the green space characterized by finer spatial re-
solution had larger health associations. The trends in association were
largely not statistically significant, except for physical activity when
finer spatial resolution was associated with significant larger health
outcomes for both buffer sizes 50 m (p= 0.05) and 500 m (p < 0.001).

4. Discussion

In this paper, three satellite sensors, including WorldView2,
RapidEye and Landsat, with respective imagery of spatial resolution in
2 m, 5 m and 30 m, were used to identify possible difference in char-
acterizing green space in the City of Barcelona. Our research indicates
that the vegetation index NDVI derived from three sensors are com-
parable to each other, with NDVI derived from WorldView2 and
RapidEye imagery showing greater similarity and the Landsat imagery
having a tendency to predict higher NDVI values compared to the other
two sensors. The higher degree of NDVI identified from Landsat was
probably (1) due to the use of vegetation as a representation for pixels
with mixed vegetation and other land cover information and (2) due to
the differences in sensor spectrum design. The latter scenario could be
identified from Table 1 that the Landsat's NIR band had relatively
higher spectrum wavelength, resulting in greater vegetation re-
flectance. The difference in the red band wavelength might also
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Fig. 4. The distribution of the NDVI values for WorldView2, RapidEye and Landsat data in buffers of 50, 100, 250 and 500 m with the imagery data not being
corrected for atmospheric corrections. A regular grid of 10,141 points of 100 m apart was used for the analysis and WorldView2 imagery was used to rank the NDVI
values from the highest to the lowest. Numbers in the parentheses are the mean NDVI values derived from a sensor.
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contribute to the NDVI difference and further studies should be con-
ducted to confirm our assumption.

If the imagery data were uncorrected for atmospheric impact, the
NDVI values derived from Landsat and WorldView2 imagery showed
minor differences compared to the corrected imagery; however, the
NDVI values derived from RapidEye showed the necessity of making
radiometric calibration before the data could be used. In applications of
satellite remote sensing data for land observations, some studies did not
apply for radiometric calibrations. This might have minor impacts on
results if data from only one sensor at one time period was used, such as
the NDVI values derived from WorldView2 and Landsat sensors. If
possible, however, the land observation data from satellite sensors
should be corrected for impacts from atmosphere and other factors even
though the data are acquired from one sensor for one time period. The
NDVI values derived from the RapidEye imagery showed that if the
imagery was not radiometrically calibrated, the values could be un-
derestimated by 0.15. When data are acquired from multiple themes in
multiple time periods or from multiple sensors, radiometric calibrations
must be done to adjust for differences created by atmospheric condi-
tions or by sensors themselves.

Our research found that higher vegetation index was largely asso-
ciated with better perceived health, better mental health and greater
physical activity identified through the three sensors across the four
buffer sizes. This is similar to our literature search finding that green
space was largely associated with better health outcomes; however,
some studies showed non-significant associations (Ali et al., 2017;
Cohen-Cline et al., 2015; Picavet et al., 2016; Potestio et al., 2009).
Those non-significant associations could be due to the difference in
green space characterization. It is typical in built environment studies
that researchers define the neighborhood as a distance from a re-
sidence < 500 m. Given the small distance in defining a neighborhood,
we still found that difference in buffer size had an impact on identified
strength of associations with health outcomes and that mental health,
perceived health and physical activity had different buffer sizes in
charactering respective strength of association with health outcome. In
identifying the associations of green cover with increased physical ac-
tivity, reduced air pollution and noise, or natural healing from stress
reduction in the immediate neighborhood, we suggest that the first
option is to identify activity space of an individual through GPS-enabled

tracking system that will help us resolve the MAUP issue. If GPS data
are not available, the next option is to explore multiple buffer sizes of
impact to identify whether the associations between green space and
health are sensitive to the size of the buffer used to specify the potential
relationship. Our study showed that perceived health had stronger as-
sociation with relatively smaller buffer size in trend analysis, possibly
due to the visual impact of green space seen from home on health. The
physical activity instead, 500 m showed the greatest impact, possibly
indicating that people might travel further than perceived health par-
ticipants to participate in neighborhood activities. These results con-
trast with Houston (2014) who found larger effects on physical activity
from smaller buffers. Our results may be different because people in
Barcelona take > 47% of their trips by foot (Ajuntament de Barcelona,
2016) and possibly have slightly larger non-motorized activity space
than in Los Angeles where among the five major counties walking trips
range from 8.09 to 14.67% of the total trips taken (Joh et al., 2015).

Our study also found that the green space characterized using dif-
ferent spatial resolution satellite data detected similar associations.
Though Landsat8 data tended to overestimate vegetation index, it did
not significantly improve the identified associations. Given the higher
costs associated with acquiring (including purchasing) finer spatial re-
solution data, an alternative option is to obtain a relatively coarser
spatial resolution remote sensing data, especially when an analysis area
is too large to be cost bearable for a project. However, higher spatial
resolution imagery like those from WorldView2 allows the identifica-
tion of very small green areas such as those in backyard and front yard.
If a task is to identify objects or green space at that spatial resolution or
to be linked to GPS-enabled activity space, we would suggest using
those fine spatial resolution data for analysis. Though relatively coarser
spatial resolution in Landsat8 data, they still have a spatial resolution of
30 m, which is considered very high spatial resolution compared to
most satellite data which are > 1 or 10 km in spatial resolution. We do
not suggest using a remote sensing data that is too coarse with sub-
stantial mixed pixel information so that the underlying phenomenon is
greatly distorted or cannot be correctly identified.

We used images from the three sensors for year 2012, rather than
for year 2011 when the survey was conducted. This was due to the
availability of the best images for the entire city of Barcelona: we fo-
cused on date closeness from the three sensors for best available images

Fig. 5. The modelled health outcomes (adjusted odds ratio & 95% confidence interval) in perceived health, mental health and physical activity using NDVI index
identified through buffer sizes of 50, 250, 250 and 500 m for WorldView2, RapidEye and Landsat8 data. The modelled health outcomes were adjusted by age, sex,
education and neighborhood level socioeconomic status.
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in summer when vegetation showed greatest greenness. All the remote
sensing data were collected in July or early August in 2012, which
made it possible for us to get similar surface reflectance across the three
sensors after radiometric calibration. We do not expect significant
changes in vegetation greenness in Barcelona between the two neigh-
boring years in summer when vegetation is greenest. The identified
impact would remain largely the same if the year 2011 remote sensing
data were available.

Our study relied on cross-sectional data, and we could not estimate
temporal relationships between the NDVI exposure and health out-
comes. In addition, we could not identify whether self-selection had any
impact on the identified health outcomes. Further the identified health
outcomes were obtained from a survey, which could have bias issues
(Dal Grande et al., 2016; Regber et al., 2013). The health outcomes
across the 4000 participants were not identified by physicians, although
the self-assessed and mental health outcomes have been well validated
in other studies. We also recognize that without objective ascertain-
ment of physical activity, we cannot with definitive certainty ascribe
health or behavioral changes to actual use or visual contact with the
green space. In this analysis, we used home address as single location of
green space exposure; however, we understand that exposure could
occur in the community, at work, at home, at school and elsewhere.
Significant limitations exist in this study and the majority of the current
studies with the ability to identify personal activity space and exposure
(Guarnieri and Balmes, 2014). Future work is needed to assess time-
activity based exposure to green space rather than home-location based
exposure to reduce exposure misclassification. The availability of
Google Street View (GSV) as a street-level urban greenery assessment
tool (Li et al., 2015) could help us assess time-activity based green
exposure. Activity space-based exposure models could help us under-
stand the optimal buffer distances in activity space of various groups of
participants and whether the resolution of remote sensing sensors might
have impact on identified health outcomes.

5. Conclusion

Though the advantage of using satellite data for green space char-
acterization, cautions should be taken in selecting a reasonable buffer
size of impact. We suggest investigating underlying mechanics for a
health outcome in order to identify an optimal distance of impact. Our
study also suggests that sensor spatial resolution did not significantly
improve or reduce a health outcome estimate. Given financial strains
and other limits, data from a coarser spatial resolution sensor might be
a feasible alternative to the data derived from finer spatial resolution
sensors for green space characterization. However, more highly re-
solved satellite data will reduce the problem of mixed pixels (i.e.,
misclassification of green space exposure due to pixels with nearly
equal areas that are green versus those that are not). Reducing the
mixed pixel problem should therefore reduce one potential component
of measurement error that could bias epidemiological inference.

We also suggest that in order to best characterize green space in-
cluding its accessibility and quality, satellite data should be combined
with other evaluations of quality and accessibility. In this way, re-
searchers will be able to assess the degree of vegetation, its accessi-
bility, and quality so the potential health effects of exposure to green
space can be more accurately identified. Such characterization may also
help to illuminate the likely pathways from green space to various
health outcomes, such as stress reduction, reduction of noise and air
pollution, or physical activity.
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