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Impulsivity and body fat 
accumulation are linked to cortical 
and subcortical brain volumes 
among adolescents and adults
Naomi Kakoschke1, Valentina Lorenzetti2, Karen Caeyenberghs3 & Antonio Verdejo-García1

obesity is associated not only with metabolic and physical health conditions, but with individual 
variations in cognition and brain health. this study examined the association between body fat (an 
index of excess weight severity), impulsivity (a vulnerability factor for obesity), and brain structure 
among adolescents and adults across the body mass index (BMI) spectrum. We used 3D T1 weighted 
anatomic magnetic resonance imaging scans to map the association between body fat and volumes in 
regions associated with obesity and impulsivity. Participants were 127 individuals (BMI: 18–40 kg/m2;  
M = 25.69 ± 5.15), aged 14 to 45 years (M = 24.79 ± 9.60; female = 64). Body fat was measured with 
bioelectric impendence technology, while impulsivity was measured with the Upps-p Impulsive 
Behaviour scale. Results showed that higher body fat was associated with larger cerebellar white 
matter, medial orbitofrontal cortex (OFC), and nucleus accumbens volume, although the latter finding 
was specific to adolescents. The relationship between body fat and medial OFC volume was moderated 
by impulsivity. elevated impulsivity was also associated with smaller amygdala and larger frontal pole 
volumes. Our findings link vulnerability and severity markers of obesity with neuroanatomical measures 
of frontal, limbic and cerebellar structures, and unravel specific links between body fat and striatal 
volume in adolescence.

The prevalence of overweight and obesity in adolescents and adults has rapidly increased worldwide1. Excess 
weight during adolescence predicts higher morbidity and premature mortality in adulthood2. Among adults, 
excessive body fat accumulation increases the risk of developing chronic health conditions including cardiovas-
cular disease, Type 2 diabetes and dementia3. There is increasing awareness about the negative influence of body 
fat, not only on metabolic and physical health, but also on brain health4,5.

Excess body fat accumulation is likely associated with poorer brain health via several mechanisms such as 
neuroinflammation and changes in the phospholipid composition of brain lipids4,6. However, the association 
between excess body fat and the volume of brain regions relevant to the pathophysiology of obesity is still unclear, 
as previous studies have either focused on single brain regions (e.g., the hippocampus) or broad morphologi-
cal measures6–10. In addition, most previous studies have been conducted with adolescents6 or older adults7,8,11. 
However, it remains unknown whether the relationship between excess body fat and brain health differs across 
adolescence and young/middle adulthood. Moreover, past studies using body mass index (BMI) as a proxy for 
adiposity have yielded mixed findings. For example, increased BMI has been linked to both higher and lower 
volume of the orbitofrontal cortex (OFC), the insula, hippocampus, striatum, and cerebellum12–18. In addition to 
BMI, more precise estimates of body fat accumulation are needed given the relevance of such brain regions for 
neurodevelopment during adolescence and neurodegeneration during mid to late adulthood. Direct measures of 
actual body fat content obtained through bioelectrical impedance analysis (BIA) may provide a more accurate 
indicator of body composition than BMI7.
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Another aspect that remains unclear regarding the link between body fat and brain volumes across adoles-
cence and adulthood is the influence of personality traits implicated in the vulnerability for overweight and obe-
sity. For example, studies have consistently shown that reward sensitivity, namely, ‘a purposeful drive to obtain 
rewarding stimuli’19 is elevated in individuals with obesity20, particularly among those with binge eating disor-
der21. In contrast, the literature on impulsivity, namely, the tendency to act without forethought22, has been more 
inconsistent. Specifically, different facets of impulsivity have been linked with BMI and brain volume alterations. 
BMI was positively associated with the facets of positive and negative urgency23 and lack of perseverance20, the 
latter of which was negatively correlated with grey matter volume of the anterior cingulate cortex and the insula 
in healthy individuals24. Impulsivity has also been positively related to the volume of the striatum25.

Although no structural imaging studies have examined the link between impulsivity, body fat and brain vol-
umes, functional imaging activation studies have shown that impulsivity modulates the response of the stri-
atum during food valuation and food choice tasks among people with overweight and obesity26,27. Therefore, 
trait impulsivity may moderate the relationship between adiposity and the structure of brain regions implicated 
in reward processing and value-based decision-making (e.g., OFC, striatum). Since impulsivity encompasses 
different components, and excess weight has been specifically linked to emotion-related facets such as positive 
and negative urgency, it is also plausible to expect associations with the structure of limbic regions, such as the 
hippocampus and the amygdala18. In addition to the lack of structural imaging studies on facets of impulsivity, 
additional issues with the “body fat–brain volume literature” to date include the lack of control for confounders, 
such as age and gender; making it unclear which effects are attributable to adiposity rather than these confound-
ing variables28.

This study aimed to examine the relationship between body composition (i.e., percent body fat), trait impul-
sivity and regional brain volumes in a large cohort of adolescents and adults with healthy-weight, overweight 
and obesity. We used a well-validated measure of body fat and a multidimensional measure of impulsivity (the 
UPPS-P Impulsive Behaviour Scale), and linked them to brain volume measures of regions relevant for over-
weight and obesity, while controlling for potential confounders (i.e., age, gender, and total intracranial volume). 
Specifically, based on current neurobiological models of obesity5,29–31, we were interested in the cortical and sub-
cortical brain regions ascribed to inhibitory control (i.e., dorsolateral PFC [dlPFC], medial PFC [mPFC]), reward 
processing (i.e., OFC, ventral striatum, amygdala), habit formation and compulsive eating (i.e., dorsal striatum), 
and interoception (i.e., the insula). In addition, we were interested in the cerebellum, which is involved in motor 
and executive functions relevant to obesity29–31.

We hypothesised that (i) in both adolescents and adults, % body fat would be negatively associated with 
regional volumes of the OFC, dlPFC, mPFC, insula, hippocampus, amygdala, cerebellum, and striatum; (ii) 
impulsivity would be negatively associated with striatal, limbic, and insula volumes; (iii) impulsivity would mod-
erate the relationship between % body fat and regional brain volumes. In addition, we explored if the associations 
between % body fat and regional brain volumes differed between adolescents and adults.

Results
sample Characteristics. Table 1 displays the demographic characteristics, body composition and the 
UPPS-P scores of the whole sample. Regional brain volumes are summarised for the whole sample (Fig. 1) and 
separately in adolescents and adults (Table 2).

Associations between body fat and brain volumes. Partial correlation analyses in the regions of interest.  
Figure 2 shows the scatterplot graphs of the significant partial correlation results. We found a positive correlation 
between % body fat and cerebellum white matter volume (left: r = 0.247, p = 0.008, right: r = 0.251, p = 0.007) and 

Total Sample 
(N = 127)

Adolescents 
(n = 63) Adults (n = 64)

Demographics Mean ± SD Mean ± SD Mean ± SD p

  Age (years) 24.79 ± 9.60 16.37 ± 1.39 33.08 ± 6.53 <0.001

  Gender (female/male) 64/63† 31/32 33/31 0.793

Body Composition

  Body Fat (%) 23.46 ± 10.50 21.92 ± 10.93 25.03 ± 9.88 0.098

  BMI (kg/m2) 25.69 ± 5.15 25.12 ± 5.07 26.25 ± 5.21 0.215

UPPS-P Impulsive Behaviour Scale

  Negative Urgency 9.77 ± 2.94 10.38 ± 2.79 9.11 ± 2.97 0.019

  Positive Urgency 10.07 ± 2.50 10.33 ± 2.65 9.78 ± 2.32 0.239

  Sensation Seeking 10.57 ± 3.15 11.10 ± 2.95 10.00 ± 3.28 0.061

  Lack of Premeditation 7.93 ± 2.29 8.33 ± 2.41 7.49 ± 2.08 0.048

  Lack of Perseverance 7.28 ± 2.53 7.55 ± 2.66 6.98 ± 2.37 0.231

Total intracranial volume (mm3) 1,430,703.49 1,474,826.27 1,3831,33.63 0.016

 ± 220,186.84  ± 204,734.61  ± 227,832.94

Table 1. Characteristics of the study sample by developmental age group. Note: SD = standard deviation; 
†denotes frequencies; kg = kilogram, m = metre.
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medial OFC volume (left: r = 0.238, p = 0.008). No other correlations between % body fat and brain volumes in 
the regions of interest survived corrections for multiple comparisons.

Analyses by age group (adolescents versus adults): We found a positive correlation between % body fat and left 
nucleus accumbens (NAcc) volume in adolescents (r = 0.353, p = 0.005), but not adults (r = 0.062, p = 0.634). No 
other correlations survived corrections for multiple comparisons.

Regression analyses controlling for developmental and sociodemographic factors. Regional brain volumes were 
included in the regression models if the partial correlational analyses showed that these regions of interest were 
significantly associated with % body fat. Results showed that, after adjusting for ICV and sociodemographic 
factors, higher percent body fat was the only significant predictor of larger cerebellum white matter volume (left: 
β = 0.247, p = 0.011; right: β = 0.207, p = 0.027; Table 3) and left medial OFC volume (β = 0.212, p = 0.014).

Analyses by age group (adolescents versus adults): Results showed that, after adjusting for ICV and sociode-
mographic factors, higher % body fat was the only significant predictor of larger left NAcc volume in adolescents 
(β = 0.400, p = 0.006), while gender was the only significant predictor in adults (β = −0.458, p = 0.007). The latter 
finding indicates that being male was associated with a smaller left NAcc volume (Table 4).

Since % body fat may vary between males and females during adolescence, we conducted an additional sensi-
tivity analysis to test if gender influenced the relationship between body fat and NAcc volume in the sub-group of 
adolescents. We used a hierarchical regression analysis: Age and ICV were entered in the first block of predictors 
followed by % body fat and gender in the second block. Finally, the interaction (% body fat x gender) was entered 
in the third block. Results showed that the interaction between % body fat and gender was not a significant pre-
dictor of left NAcc volume, (β = −0.143, p = 0.708, 95% CI = −6.43, 4.39). Thus, male and female adolescents did 
not show distinct correlations between % body fat and NAcc volume.

Associations between impulsivity and brain volumes. Partial correlation analyses in the regions of 
interest. Figure 2 shows the scatterplot graphs of the significant partial correlation results. We found a positive 
correlation between negative urgency and right frontal pole volume (r = 0.258, p = 0.006). We also found a neg-
ative correlation between positive urgency and amygdala volume (left: r = −0.253, p = 0.007, right: r = −0.279, 
p = 0.003). No other correlations between impulsivity and brain volumes in the regions of interest survived cor-
rections for multiple comparisons.

Analyses by age group (adolescents versus adults): Partial correlational analyses between impulsivity and 
regional brain volumes were conducted separately for adolescents and adults. No correlations survived signifi-
cance corrections for multiple comparisons.

Regression analyses controlling for developmental and sociodemographic factors. Regional brain volumes were 
included in the regression models if the partial correlational analyses showed that these regions of interest were 
significantly associated with impulsivity. Results showed that after adjusting for ICV and sociodemographic fac-
tors, higher positive urgency was the only significant predictor of smaller amygdala volume (Left: β = −0.255, 
p = 0.011; Right: β = −0.267, p = 0.010; Table 3). No other predictors of brain volumes were significant.

Impulsivity as a moderator of the relationship between body fat and brain volumes. The inter-
action term between % body fat and impulsivity (UPPS-P total score) accounted for a marginally significant 
proportion of the variance in left mOFC volume (adjusted for ICV), b = −0.95, t(110) = −1.97, p = 0.051. Visual 
inspection of the interaction plot showed that as % body fat increased, and impulsivity reduced, left mOFC vol-
ume increased (Fig. 3). Specifically, at low impulsivity, individuals with higher % body fat had larger left mOFC 
volumes than those with lower % body fat, b = 20.54, p = 0.002, CI [7.947, 33.136]. Similarly, at average impulsiv-
ity, individuals with higher % body fat had larger left mOFC volumes than those with lower % body fat, b = 12.09, 
p = 0.024, CI 1.634, 22.556]. In contrast, at high impulsivity, left mOFC volume did not significantly differ 
depending on % body fat, b = 3.65, p = 0.614, CI [−10.661, 17.957]. There were no other significant interactions 
between % body fat and impulsivity (all p values > 0.30).

Figure 1. Regional brain volumes (mm3) depicted separately for the left and right hemispheres (controlling for 
total intracranial volume).
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Discussion
We aimed to map the association between body fat, impulsivity and subcortical regional brain volumes in a 
cohort of adolescents and adults across the BMI spectrum. Our study led to several key findings. Specifically, 
higher percent body fat was associated with larger bilateral cerebellum white matter (WM) and left medial orb-
itofrontal cortex (OFC) volume in the whole sample comprising adults and adolescents, and with larger left NAcc 
volume among adolescents only. In addition, negative urgency was correlated with larger frontal pole volume, 
while positive urgency was correlated with smaller amygdala volume. Finally, we found that impulsivity moder-
ated the relationship between percent body fat and left medial OFC volume in the whole sample.

First, we found a correlation between percent body fat and larger cerebellar WM across the whole sample 
comprising adults and adolescents. Our finding mirrors results from previous research that used BMI as a meas-
ure of obesity13 and is in line with past studies showing positive relationships in the temporal and parietal lobes6,32. 
However, our finding is not consistent with previous studies that found a negative relationship between BMI and 
WM volume in the basal ganglia and corona radiata33,34. Although the cerebellum has traditionally been ascribed 

Adolescents (n = 63) Adults (n = 64)

pMean ± SD Mean ± SD

Subcortical Brain Region

  Nucleus Accumbens
L 677.98 ± 100.87 617.42 ± 135.83 0.004

R 760.27 ± 98.19 647.56 ± 112.30 <0.001

  Thalamus
L 8277.14 ± 908.13 8009.12 ± 1009.43 0.109

R 7253.26 ± 836.64 7153.55 ± 821.50 0.490

  Caudate
L 3923.02 ± 478.16 3752.77 ± 508.06 0.049

R 4070.50 ± 481.82 3835.88 ± 514.21 0.007

  Putamen
L 6204.69 ± 599.75 5954.88 ± 717.78 0.031

R 6200.62 ± 556.86 5616.06 ± 688.87 <0.001

  Pallidum
L 1794.73 ± 196.53 1614.34 ± 236.84 <0.001

R 1721.29 ± 217.48 1597.98 ± 186.01 0.001

  Hippocampus
L 4380.08 ± 411.82 4286.80 ± 452.98 0.216

R 4355.05 ± 470.60 4392.73 ± 450.70 0.639

  Amygdala
L 1645.95 ± 204.70 1632.78 ± 163.16 0.684

R 1810.15 ± 246.20 1786.57 ± 215.00 0.559

Cerebellum White Matter
L 14622.49 ± 1821.66 14996.89 ± 1988.22 0.259

R 15473.59 ± 2350.27 15272.18 ± 2226.57 0.613

  Cerebellar Cortex
L 54738.91 ± 5929.91 49640.83 ± 5596.17 <0.001

R 52063.52 ± 5568.18 49783.18 ± 5333.28 0.017

Cortical Brain Region

  Insula
L 7269.70 ± 1033.67 6766.89 ± 862.09 0.003

R 7018.74 ± 897.97 6730.08 ± 778.67 0.051

  Rostral Middle Frontal
L 16231.07 ± 2291.25 14348.84 ± 1748.06 <0.001

R 17825.99 ± 2512.15 15672.94 ± 2454.31 <0.001

  Pars Opercularis
L 5346.42 ± 968.867 4958.05 ± 901.81 0.018

R 4534.83 ± 895.24 4079.03 ± 795.96 0.002

  Pars Triangularis
L 4083.46 ± 786.012 3577.48 ± 547.64 <0.001

R 4647.72 ± 915.88 4130.06 ± 676.16 <0.001

  Superior Frontal
L 23552.59 ± 3106.86 21715.92 ± 2345.78 <0.001

R 24174.45 ± 3197.76 21099.92 ± 2426.01 <0.001

  Rostral Anterior Cingulate
L 2971.87 ± 535.74 2787.86 ± 521.99 0.047

R 2466.52 ± 482.18 2258.95 ± 481.53 0.014

  Caudal Anterior Cingulate
L 2120.03 ± 434.86 1945.75 ± 543.26 0.042

R 2438.57 ± 438.84 2205.83 ± 415.09 0.002

  Lateral OFC
L 8269.04 ± 929.672 7666.42 ± 875.58 <0.001

R 8285.90 ± 1070.23 7565.97 ± 945.28 <0.001

  Medial OFC
L 4887.42 ± 655.82 4747.45 ± 679.16 0.264

R 5463.80 ± 869.29 4947.30 ± 707.23 <0.001

  Pars Orbitalis
L 2391.65 ± 344.449 2174.92 ± 296.07 <0.001

R 2997.61 ± 454.91 2588.89 ± 351.73 <0.001

  Frontal pole
L 833.13 ± 155.536 737.58 ± 145.48 <0.001

R 1166.13 ± 213.39 983.67 ± 176.00 <0.001

Table 2. Regional brain volumes in mm3 (controlling for total intracranial volume) by developmental age group.
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to motor function, emerging evidence suggests that this brain region plays a key role in reward-based learning 
and executive control, which are compromised in obesity35,36. The discrepant results across previous studies may 
be due to differences in sample composition. Studies that found negative correlations typically included par-
ticipants from an older age group or with a wider age range than those studies that found positive correlations, 
including the current study.

Several mechanisms have been proposed to explain the positive relationship between adiposity and cerebel-
lar WM volume. One possible explanation is that adiposity leads to chronic inflammation, which directly links 
changes in peripheral health to poorer white matter integrity, and in particular, a higher density of glial cells in the 
lipid-based myelin sheath37,38. It may also be that increased body fat results in damage to WM, including higher 
WM hyperintensities as shown on hippocampal volume in clinical populations with obesity39. Future studies 
should aim to examine the specific mechanism underlying the relationship between larger cerebellar WM volume 
and adiposity using advanced MRI techniques such as diffusion tensor imaging (DTI) to assess obesity-related 
changes in the microstructure of WM.

Second, percent body fat was positively correlated with the volume of the medial OFC; a brain region impli-
cated in reward processing of food cues. Our finding is consistent with some previous research that has found a 
positive relationship with BMI as a proxy for obesity10,14, but not with other studies that have shown a negative 
relationship32,40. Furthermore, we also found that the positive association between body fat and left medial OFC 
volume was moderated by impulsivity. Specifically, among individuals with lower impulsivity, those with higher 
body fat had larger medial OFC volumes than those with lower body fat. In contrast, among individuals with 
higher impulsivity, body fat did not significantly predict left medial OFC volume. The finding that impulsivity 
moderates the association between body fat and medial OFC volume may contribute to explaining the discrepant 
findings reported in previous studies (i.e., positive versus negative associations between adiposity and medial 
OFC volume). Previous findings support the idea that the medial OFC plays a key role in the pathophysiology 
of obesity, particularly in the preference and anticipation of reward41. Importantly, we extend upon previous 
findings by showing that the association between excess body fat and brain regions implicated in obesity differs 
depending on personality traits (i.e., impulsivity). Thus, future studies examining the association between adipos-
ity and brain volumes should consider the role of trait impulsivity.

Our results also showed a correlation between percent body fat and NAcc volume in adolescents, but not 
adults. This finding is in line with the role of the NAcc in reward processing, specifically, the experience of 
reward42. Previous research has shown that NAcc volumes are positively correlated with another measure of 

Figure 2. Scatterplot graphs illustrating the partial correlations between regional brain volumes (mm3) and 
% body fat, positive urgency or negative urgency (controlling for total intracranial volume). The x-axis of each 
scatterplot graph represents the standardised residuals of % body fat, positive urgency or negative urgency and 
the y-axis represents the standardised residuals of regional brain volumes. Note: NAcc = nucleus accumbens, 
OFC = orbitofrontal cortex and WM = white matter.
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obesity, namely, BMI in adults12,14,17, but here we provide the first evidence of this association among adolescents 
using body fat as an indicator of obesity. A potential explanation for the discrepancy between current and previ-
ous findings may be differences in developmental stages, as neuroscience evidence suggests that the adolescent 
developmental period is linked to rapid maturation of the reward system43. Recent research in children demon-
strates that responsivity to food advertisements and higher NAcc volume are associated with genetic risk for 
obesity and higher percent body fat, which suggests that larger NAcc volume is a vulnerability factor in obesity44. 
The NAcc also supports the early formation of unhealthy eating behaviours due to a combination of enhanced 

Predictor

Cerebellum WM (left) Cerebellum WM (right) Amygdala (left)

β p

95% CI

β p

95% CI

β p

95% CI

LB UB LB UB LB UB

Age 0.060 0.741 −59.091 82.782 0.039 0.821 −72.460 91.185 −0.056 0.760 −8.049 5.898

Age Group 0.104 0.559 −942.422 1734.605 0.009 0.957 −1501.720 1586.138 0.067 0.712 −106.982 156.184

Gender −0.155 0.077 −1239.546 64.943 −0.137 0.104 −1374.218 130.465 0.060 0.494 −41.937 86.301

Body Fat (%) 0.247 0.011 10.388 79.336 0.207 0.027 5.294 84.823 0.100 0.303 −1.620 5.158

UPPS-P NU 0.067 0.502 −84.012 170.499 0.091 0.344 −76.381 217.188 0.085 0.396 −7.131 17.889

UPPS-P PU −0.130 0.182 −246.190 47.378 −0.133 0.157 −291.063 47.557 −0.255 0.011 −33.353 −4.494

Amygdala (right) Medial OFC (left) Frontal Pole (right)

Age −0.024 0.899 −9.643 8.485 0.080 0.621 −16.606 27.673 −0.165 0.333 −11.263 3.853

Age Group −0.024 0.897 −182.262 159.799 −0.073 0.647 −514.563 320.936 −0.190 0.257 −224.605 60.634

Gender −0.048 0.598 −105.560 61.123 0.026 0.738 −169.144 237.986 −0.125 0.129 −123.107 15.887

Body Fat (%) 0.109 0.281 −1.997 6.813 0.212 0.014 2.743 24.262 0.067 0.456 −2.285 5.061

UPPS-P NU 0.002 0.988 −16.136 16.384 −0.105 0.236 −63.594 15.839 0.145 0.123 −2.939 24.179

UPPS-P PU −0.267 0.010 −43.435 −5.924 0.057 0.514 −30.683 60.940 0.055 0.546 −10.860 20.420

Table 3. Summary of multiple regression analyses including sociodemographic variables, % body fat, 
impulsivity and brain volumes (mm3). Note: β-values reflect ICV-adjusted predictions of regional brain 
volumes; bold values denote significance p < 0.05; WM = white matter; LB = lower bound of 95% confidence 
interval (CI), UB = upper bound of 95% CI; UPPS-P NU = negative urgency subscale of the UPPS-P Impulsive 
Behaviour Scale; UPPS-P PU = positive urgency subscale of the UPPS-P Impulsive Behaviour Scale.

Predictor

Adolescents Adults

β p

95% CI

β p

95% CI

LB UB LB UB

Age 0.157 0.208 −6.486 29.170 −0.224 0.074 −9.765 0.459

Gender 0.013 0.937 −62.477 −67.626 −0.458 0.007 −211.464 −35.648

Body Fat (%) 0.400 0.006 1.090 6.293 0.210 0.144 −1.016 60.779

Table 4. Multiple regression analyses including sociodemographic variables, % body fat and left NAcc volume 
(mm3) by developmental age group.

Figure 3. Line graph showing the moderating effect of impulsivity (total UPPS-P score) on the relationship 
between % body fat and left medial orbitofrontal (OFC) volume (mm3) controlling for total intracranial volume. 
Values for % body fat and total UPPS-P scores are depicted at low (−1SD), average, and high (+1 SD) levels of 
the predictor variables.
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reward-related sensitivity in the striatum and delayed development of the prefrontal cortex45. The positive link 
between adiposity and volume in the NAcc may be explained by increased signalling of adipose tissue to the 
brain12,14. Taken together, the findings suggest that larger NAcc volume in adolescents with increased body fat 
may contribute to altered reward-related cue processing. Although not the main focus of our paper, our finding 
that gender predicted striatal volume in adults, in particular, that women have larger left NAcc volume, supports 
existing research showing that women have larger dorsal striatum (putamen) and dorsolateral prefrontal cortex 
volumes14. Overall, these findings provide evidence for age and gender-related differences in the structure of brain 
regions involved in habit learning, executive control, and reward processing.

Positive urgency was negatively associated with amygdala volume, and negative urgency was positively associ-
ated with frontal pole volume independent of adiposity and developmental stage. The inverse association between 
positive urgency and amygdala volume has also been shown in individuals with addiction (e.g., cocaine depend-
ence and pathological gambling)46. The amygdala plays an important role in reward and emotion processing and 
is a key component of the corticostriatal circuit, comprising the OFC, anterior cingulate cortex, insula and stri-
atum, which is altered in obesity5,41,47,48. Thus, smaller amygdala volumes might predate higher trait impulsivity 
and reward sensitivity, and confer vulnerability to obesity, but longitudinal studies are needed to test this notion46. 
The direct association between negative urgency and frontal pole volume - a region implicated in the integration 
of cognitive and affective information49, is consistent with previous research that found a positive association 
between frontal pole volume and delay discounting50. Importantly, our finding provides evidence that the frontal 
pole is involved not only in behavioural impulsivity (i.e., delay discounting), but also trait impulsivity (i.e., nega-
tive urgency). Nevertheless, in other studies, higher trait impulsivity has been linked to smaller PFC brain regions 
(i.e., the frontal gyrus and orbitofrontal cortex)51. However, the latter study included only healthy adolescents, 
while we included both adults and adolescents with a wide range of adiposity. The discrepant finding could also be 
explained by the use of different measures of impulsivity, namely, the UPPS-P or the Barratt Impulsiveness Scale.

Interestingly, percent body fat and trait impulsivity were associated with volumes of distinct and overlapping 
regional brain areas, which indicates that several brain regions are implicated in obesity independent of impul-
sivity. Similarly, recent neuroimaging research has shown that BMI and impulsivity are differentially associated 
with regional brain volumes, namely, the amygdala and hippocampus versus the frontal gyrus, respectively52. 
Alternatively, it has been proposed that eating-specific impulsivity constructs, such as uncontrolled eating, 
may show overlapping alterations with obesity and impulsivity, but more markedly so with obesity. This idea 
is supported by consistent findings that BMI is moderately, positively correlated with eating-specific impulsiv-
ity as measured by self-reported uncontrolled eating53,54, but weakly associated with general impulsivity52,55. In 
addition, eating-specific impulsivity (uncontrolled eating) has been shown to mediate the relationship between 
general impulsivity and obesity (BMI), suggesting that brain volume alterations relate to differences in general 
impulsivity, which indirectly affect BMI through eating-specific impulsivity52. Future neuroimaging studies 
should measure both general and eating-specific impulsivity to disentangle their independent and shared contri-
bution to the pathophysiological mechanisms of obesity.

Our findings of observed correlations between percent body fat and regional brain volumes (i.e., cerebellar, 
medial OFC) extend previous neuroimaging work in several important ways. First, we used percent body fat 
as a more proximal measure of excess weight compared to BMI and waist-to-hip ratio used in previous work, 
which allows us to make more sensitive assessments of the pathophysiology of obesity7. Second, we controlled for 
important confounders such as total ICV, which was not accounted for in numerous previous studies. Third, we 
carefully examined the role of age by stratifying our analyses using sample ages as cut-offs, and via controlling for 
age in overall group analyses.

Despite the above strengths, the current study has several limitations. First, the cross-sectional design prevents 
the determination of whether regional brain alterations precede or follow obesity and impulsivity. Nevertheless, 
as impulsivity is a trait measure, it likely precedes obesity, which is supported by both preclinical56 and clinical57 
research. However, longitudinal designs are required to establish cause and effect relationships between body fat 
and brain structural alterations. Second, the different MRI data pre-processing steps, analysis methods, toolboxes 
(and the specific versions) and metrics (i.e., grey matter density, volume, cortical thickness) used between the 
current study (i.e., Freesurfer version 4.1.0, volumes) and past studies may have contributed to the inconsistent 
results. One minor limitation of the Freesurfer toolbox is that it only computes WM for the cerebellum and 
total cortical volume. Third, we used percent body fat as a proximal indicator of body composition, but we did 
not measure Fat Free Mass (FFM) as it is typically measured using a different technique, namely, dual energy 
x-ray absorptiometry (DXA) scans. However, FFM is also increased in obesity and has been shown to have dif-
ferential effects on brain structure to fat mass and percent body fat58. Fourth, we controlled for a number of 
potential confounders (i.e., age, gender, ICV), except for ‘Years of education’, which reflects distinct underlying 
constructs in adolescents versus adults. Specifically, in adolescents, education should be mainly predicted by age, 
while in adults, education should more closely reflect intelligence. Thus, the ‘Years of Education’ variable was 
removed to run more comparable analyses in adolescents and adults. Finally, this study allowed for an exploratory 
cross-sectional comparison of adults and adolescents, which revealed emerging effects linked to developmental 
stage. Nevertheless, longitudinal, repeated-measures studies are also required to determine individual develop-
mental trajectories of body fat, personality and neuroanatomical fluctuations across the lifespan.

In summary, aside from the above limitations, we demonstrated a positive association between accumula-
tion of body fat and the volume of cerebellar, frontal and striatal brain regions; the latter specific to adolescents, 
and a novel association between impulsivity and frontal and amygdala volumes in a relatively large cohort of 
community-recruited participants. The current findings are adequately controlled and representative of the body 
fat–brain health association in the general population.
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Methods
participants. The sample comprised 127 individuals (50.4% female) aged between 14 and 45 years with a 
wide range in SES (monthly income: <600€ to >2500€). BMI values spanned the three intervals of the contin-
uum, that is, normal weight (n = 65, 51.2%), overweight (n = 34, 27%), and obese (n = 28, 22%) based on cut-offs 
from the International Obesity Task Force (IOTF) for adolescents59 and the World Health Organisation (WHO) 
for adults3. Given the association between developmental stage, body composition, and brain volumes, partic-
ipants were classified as either adolescents (n = 63, age range: 14–19 years) or adults (n = 64; age range: 25–45 
years), based on a standard definition of adolescence (i.e., 11–19 years)60, which resulted in equal numbers of 
participants in the two groups.

The sample includes participants from the projects BRAINOBE, INTEROBE and NEUROECOBE, conducted 
between 2010 and 2015, of which we have previously reported findings for functional MRI23,61,62. Participants 
were recruited from the general community and from specialised services of the University Hospital “Virgen de 
las Nieves” in Granada, Spain, as well as schools located in the same geographical area (adolescents with normal 
weight). The inclusion criteria were as follows: (i) aged between 12 and 45 years old; (ii) absence of history or 
current eating disorder, assessed by the Eating Disorder Inventory (EDI-2); (iii) absence of history or current 
neurological or psychiatric disorders (including depression and substance-related disorders), as assessed by par-
ticipant or participant/parent (for adolescents) interviews based on DSM-IV criteria; (iv) no contraindications to 
MRI (Magnetic Resonance Imaging) scanning (including claustrophobia and implanted ferromagnetic objects); 
(v) absence of significant abnormalities on MRI; and (vi) absence of history of brain injury involving loss of con-
sciousness for longer than 5 minutes. All participants had normal or corrected-to-normal vision. For participants 
under 18 years of age, we obtained consent from a parent and/or legal guardian and assent from participants. 
The study was approved by the Human Research Ethics Committee of the University of Granada (ethics approval 
number: 1792/10).

Measures. Body composition. A Body Composition Analyser (TANITA SC-330 Scale) was used to measure 
percent body fat (total body fat/total mass) with bioelectrical impedance analysis (BIA). This method has been 
shown to provide reliable and valid measures of fatness as illustrated by stronger associations between MRI meas-
urements and BIA than between MRI measurements and waist circumference or BMI63.

UPPS-P Impulsive Behaviour Scale. The UPPS-P64 is a 59-item questionnaire designed to measure five distinct 
personality facets associated with impulsive behaviour: negative urgency, lack of perseverance, lack of premed-
itation, sensation seeking, and positive urgency. Urgency (26 items) refers to the tendency to experience strong 
impulses under conditions of negative affect (negative urgency – 12 items) or positive affect (positive urgency – 14 
items); (lack of) perseverance (10 items) refers to the individual’s ability to remain focused on a task that may be 
boring or difficult; (lack of) premeditation (11 items) refers to the tendency to think and reflect on the conse-
quences of an act before engaging in that act; and finally, sensation seeking (12 items) incorporates two aspects: 
(a) a tendency to enjoy and pursue activities that are exciting and (b) an openness to trying new experiences that 
may or may not be dangerous. Each item on the UPPS-P is rated on a four-point scale ranging from 1 (strongly 
agree) to 4 (strongly disagree). Total scores were obtained for each of the five UPPS-P facets, with higher scores 
indicating higher levels of impulsivity.

MRI Data Acquisition and Processing. Participants were scanned with a 3T Phillips Achieva X-series 
scanner at Centro Diagnostico Granada in Spain. For each participant, a 3D volume was acquired using a 
T1-weighted turbo-gradient-echo sequence (3D-TFE) in the sagittal plane, with a 0.94 × 0.94 × 1.0 mm resolu-
tion (160 slices, FOV = 240 × 240 mm2, matrix 256 × 256), TR = 8.3 ms, TE = 3.8 ms, and flip angle = 8°). MRI 
images were transferred to a Linux workstation for pre-processing and regional brain volumes were extracted 
using the automated FreeSurfer image analysis suite version 4.1.0 (http://surfer.nmr.mgh.harvard.edu/). The 
automated FreeSurfer pipeline included motion correction65, non-uniform intensity normalisation (N3) at 500 
iterations to correct for intensity non-uniformity artefacts (increased from the default number of iterations of 
4)66, automated Talairach transformation, removal of non-brain tissue67, and parcellation of neuroanatomical 
measures, which were extracted for further statistical analysis.

statistical Analyses. Data was analysed using the Statistical Package for the Social Sciences version 25 
(SPSS; Chicago, IL, USA). All variables met assumptions for multiple regression, including linear independence 
of predictors as assessed by the Durbin-Watson statistic (range = 1.89 to 2.12). We also found adequate levels of 
collinearity between predictors as assessed by tolerance (range = 0.22 to 0.97) and VIF values (range = 1.02 to 
1.34). Homoscedasticity was assessed via visual inspection of scatterplots (residuals versus predicted values). 
The variance and co-variance matrices were assessed to check whether the predictors were correlated. BMI and 
% body fat were highly correlated (r = 0.696, p < 0.001). For this reason, we included % body fat, but not BMI, in 
the regression models as we were interested in the former as it is a more proximal measure of body composition7. 
Furthermore, we assessed correlations between the continuous socio-demographic variables (i.e., age, SES) and 
the brain regions of interest. We found that SES was not significantly correlated with any of the brain volumes of 
interest (all p’s > 0.05). Thus, SES was not included in the regression analyses to increase power.

We restricted our analyses to cortical (i.e., insula, OFC, PFC [medial and dorsolateral]) and subcortical (i.e., 
striatum, hippocampus, amygdala, and cerebellum) brain regions that have been previously associated with body 
fat and/or impulsivity. Additionally, white matter estimates were available for the cerebellum and total cortical 
volume. First, to examine which cortical and subcortical brain regions were associated with body composition 
and/or impulsivity, we ran partial correlations between brain volumes, % body fat and UPPS-P impulsivity facets 
(negative urgency, positive urgency, sensation seeking, lack of premeditation, lack of perseverance) controlling for 
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ICV28. Second, we ran hierarchical regression analyses with % body fat and impulsivity as predictors and volumes 
of the brain regions linked to adiposity and/or impulsivity as dependent variables, controlling for confounders 
(i.e., ICV in Step 1, and in Step 2, age, developmental age group, and gender). We run these analyses in both the 
whole sample and each developmental group separately. In the latter case, we did not include age group as a pre-
dictor. For partial correlations, the significance threshold was set at p < 0.01 to protect against Type I error due to 
multiple comparisons. For regression analyses, p < 0.05 was considered significant.

Finally, we conducted four hierarchical multiple regression analyses via the SPSS macro PROCESS68. These 
analyses tested the hypothesis that impulsivity moderates the association between % body fat and brain volumes 
for those regions that were significantly associated with body fat in the partial correlations (i.e., bilateral cerebel-
lum WM, left mOFC, and left NAcc). For each analysis, % body fat was a predictor, UPPS-P total score was the 
moderator, brain volumes were the dependent variables, and ICV was a covariate. The continuous variables (i.e., 
% body fat, UPPS-P total score and ICV) were centered to avoid high multicollinearity. We created a product 
term between impulsivity and % body fat to examine the interaction. To estimate the conditional effects, 5,000 
bootstrap samples were used.

Compliance with ethical standards. Research involving Human Participants and/or Animals: All pro-
cedures performed in studies involving human participants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments 
or comparable ethical standards. This article does not contain any studies with animals performed by any of the 
authors. Informed consent was obtained from all individual participants included in the study and/or their legal 
gaurdians.

Data Availability
The datasets generated during and/or analysed during the current study are available in the figshare repository, 
https://figshare.com/.
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