
 

 

Title: 

Hamstring myoelectrical activity during three different kettlebell swing exercises. 

Running title: 

Hamstring EMG during kettlebell swings 

 

   

Michael J Del Monte1, David A Opar1, Ryan G Timmins1, James Ross1, Justin WL Keogh2,3,4, 
Christian Lorenzen1 

1School of Exercise Science, Australian Catholic University, Melbourne, Australia 
2 Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia 
3 Sports Performance Research Centre New Zealand, AUT University, Auckland, New Zealand 
4 Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University 
of the Sunshine Coast 

 

 

 

 

 

 

 

 

 

 

 

 

hashelley
Text Box
Accepted manuscript. Not the final published version. Made available under a CC BY-NC license. https://doi.org/10.1519/JSC.0000000000002254 



Hamstring EMG during kettlebell swings 

 
 

 
 

ABSTRACT 

Kettlebell exercises have become an increasingly popular form of resistance training and component 

of lower body rehabilitative training programs; despite a lack of scientific literature illustrating 

internal mechanisms and effectiveness of these approaches. Participants (n=14) performed three 

different styles of kettlebell swings (hip hinge, squat and double knee extension) and were assessed 

for medial hamstrings (MH) and biceps femoris (BF) myoelectrical activity via surface 

electromyography (sEMG). Bipolar pre-gelled Ag/AgCl surface electromyography (sEMG) electrodes 

(10mm diameter, 20mm inter-electrode distance) were placed on the participant’s dominant limb after 

correct skin preparation.  

There was a main effect for swing type (p = 0.004), where the hip hinge swing elicited a greater 

overall MH and BF sEMG in comparison to the squat swing (mean difference = 3.92; 95% CI = 1.53 

to 6.32; p = 0.002) and the double knee extension swing (mean difference = 5.32; 95% CI = 0.80 to 

9.83; p = 0.020). Across all swing types, normalised percentage of MH sEMG was significantly 

higher compared to the BF (mean difference = 9.93; 95% CI = 1.67 to 18.19; p = 0.022). The hip 

hinge kettlebell swing produced the greatest amount of hamstring sEMG for the three styles of 

kettlebell swings assessed. These findings have implications for the application of kettlebell swing 

exercises in strength and conditioning, injury prevention and rehabilitation programs. 
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INTRODUCTION 

Kettlebell exercise has become a popular form of resistance training amongst the general and athletic 

populations to enhance athleticism, improve general fitness and as a tool for injury rehabilitation (5). 

The kettlebell swing has been found to provide a stimulus for both improved muscular strength (13, 

14, 24) and endurance (7, 11). During training, kettlebells are used for a variety of exercises, but 

perhaps the most common form of kettlebell exercise is the kettlebell swing. Three of the more 

prevalent kettlebell swings observed by the authors are the squat swing, hip hinge swing and the 

double knee extension swing. Within Australia, the manner in which the kettlebell swing is taught by 

coaches may be largely dependent upon the kettlebell exercise prescription certifications the coaches 

have attended. Whilst these kettlebell swings are explosive total body exercises, which rely to a large 

extent on the production of lower body forces, their kinematic profiles differ. The squat and hip hinge 

swings are differentiated by the degrees of ankle, knee and hip ranges of motion (16). They both 

involve simultaneous flexion and extension of the knees and hips to absorb or propel the kettlebell. As 

its name suggests, the hip hinge swing is mostly performed with flexion and extension at the hips, and 

therefore requires the hamstrings to produce force at long muscle lengths to initiate the concentric 

phase. The hip hinge swing also involves slight knee flexion and extension, with minimal ankle 

motion, thereby exhibiting. similar lower body kinematics to a Romanian deadlift. The squat swing is 

performed with increased range of motion of the ankles and knees (16), thus resembling a quarter 

squat and requiring shorter hamstring muscle lengths than the hip hinge style. The double knee 

extension swing is common to kettlebell sport and is used during the kettlebell snatch in an effort to 

promote an efficient trajectory (25, 26). In contrast to the other two types of swings, it does not have 

simultaneous knee and hip extension in both the upwards and downwards phases (16). The first knee 

extension occurs during the downwards phase, where the knees extend as the hips flex. The second 

extension takes place during the upwards phase, where the knees and hips extend simultaneously, 

once the kettlebell passes the knees. This exercise is commonly performed as an assistance exercise 

for the kettlebell snatch by kettlebell sport athletes in a similar way that weightlifters use the snatch 

pull as an assistance exercise for the snatch (9, 27). 
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Examining muscle activity during the different variations of the kettlebell swing appears an important 

step towards understanding the potential role of this exercise in performance training, lower limb 

injury prevention and rehabilitation. As hamstring strain injury is the most prevalent lower limb injury 

in running based sport (23) and because there is a noted bias towards injury in the biceps femoris (BF) 

(20), differences in activity patterns of the medial hamstrings (MH) and BF during typical kettlebell 

exercise is of interest to practitioners. The kettlebell swing has been proposed to be a useful sport 

specific exercise due to its large MH myoelectrical activity and its rapid stretch shortening cycle (2). 

Additionally, the one and two armed kettlebell swings were found to produce a sEMG stimulus 

sufficient to provide a training stimulus for the gluteus maximus, gluteus medius and BF, however 

data was not collected for MH (30). Furthermore, it has been suggested that kettlebells can be 

incorporated into the latter stages of a rehabilitation program and may assist athletes in recovery of 

lower body injuries (20). Indeed, the swing was found to impose a shear force vector which acts in the 

opposite direction to traditional exercises, with such kinetic differences being proposed to be useful 

within lower back rehabilitation and injury prevention programs (18, 30). Despite the increased 

application of kettlebells in training, prevention and rehabilitation programs, there is currently a lack 

of scientific literature to justify this implementation and exercise selection.  Therefore, if one of the 

aforementioned kettlebell swings displayed greater levels of activity in the BF than the other 

exercises, this exercise may better strengthen the BF and provide greater preventative benefits for 

hamstring strain injury. Additionally, as prior BF strain injury results in long term muscle specific 

deficits in myoelectrical activity (21), exercises that better target the BF would also be important in 

rehabilitation.  

 

The hamstrings, particularly the semitendinosus, play an important role in supporting the anterior 

cruciate ligament (28). Because the semitendinosus has the largest moment arm at the knee of all the 

hamstrings and contributes to both knee flexion and varus moments, it has been suggested to be the 

key muscular agonist for reducing the risk of anterior cruciate ligament injury (19, 28). As such, 
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recent research has focused on MH activity in a number of hamstring strengthening exercises, 

however, only one kettlebell exercise, the hip hinge kettlebell swing, was examined (33). The hip 

hinge kettlebell swing was performed with ~15° knee flexion and required the torso to reach a 

position parallel to the floor, resulting in a peak sEMG 115% ± 55% and 93% ± 31% for the MH and 

BF, respectively (33). This type of swing was found to have the highest sEMG of MH compared to a 

number of hamstring exercises, including the Romanian deadlift, Nordic hamstring curl and barbell 

loaded hip extension (33). Only the BF was measured in the squat swing which was described as 

being initiated in a squat position with simultaneous hip and knee extension, resulted in a peak sEMG 

of 40% ± 30% for the BF (18). With the growing use of kettlebells and their potential use as 

preventative and rehabilitative exercises for both hamstring strain injury and anterior cruciate 

ligament injury, determining the myoelectrical activity of the hamstring muscles during the squat, hip 

hinge and double knee extension kettlebell swings is of interest. Hence the aim of this study was to 

determine which of the three kettlebell swings (squat, hip hinge and double knee extension) would 

elicit the greatest hamstring activity. Furthermore we aimed to determine if there was a difference 

between the MH and BF myoeletrical activity during all three swing types.     

                     

METHODS 

Experimental Approach to the Problem 

Fourteen trained males performed three different styles of kettlebell swings (hip hinge, squat and 

double knee extension). The myoelectrical activity of MH and BF was assessed within the three 

different styles of swings via bipolar pre-gelled Ag/AgCl sEMG. Uniaxial inline mechanical 

goniometers were used to record hip and knee joint angles and determine sEMG within the eccentric 

and concentric phases. The sEMG within the different styles and muscle actions was analyzed using a 

2x3 repeated measures general linear model. 
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Participants  

Fourteen physically active males (30.1 ± 3.9 years; 1.81 ± 0.20 m; 89.89 ± 19.72 kg) with a minimum 

of six months continuous kettlebell training experience were recruited to participate in this study. 

Participant skill level amongst swing type was varied, if a participant was unfamiliar with any style, 

additional coaching was given. The number of additional coaching sessions were based on the 

individual ability to perform the exercise at a proficient level.  All participants were currently in a 

healthy state, defined by having no significant injury which could impact on the performance of 

kettlebell exercise. Prior to commencement of the study, all participants gave informed consent and 

were made aware that they could freely withdraw at any time. Ethical approval was gained from the 

Australian Catholic University Human Research Ethics Committee. 

 

Procedures 

Bipolar pre-gelled Ag/AgCl surface electromyography (sEMG) electrodes (10 mm diameter, 20 mm 

inter-electrode distance) were placed on the dominant limb (preferred kicking limb) of the participant 

after correct skin preparation (21). Electrodes were placed half way between the ischial tuberosity and 

the MH and BF epicondyles of the tibia. These sites were identified by palpation and muscle locality 

was confirmed during an isometric knee flexion test. It is not possible to distinguish between 

semitendinous or semimembranosus when analysing sEMG from the medial aspect of the posterior 

thigh. Therefore all sEMG sampled from this site was classified as the MH. The reference electrode 

was placed on the ipsilateral medial tibial condyle. All skin preparation and electrode placement was 

conducted in accordance with the Surface Electromyography for the Non-Invasive Assessment of 

Muscles (SENIAM) guidelines (10). Correct electrode positioning was confirmed by visual 

observation of sEMG signal activity during resisted internal and external rotation of the knee. All 

participants performed this test in a prone position with their respective knee flexed to 90⁰ degrees to 

detect any cross-talk (22, 29). After correct electrode positioning was confirmed, two five-second 

maximum voluntary isometric contractions (MVIC) of knee flexion were performed against manual 

resistance to elicit a maximum EMG signal. These were performed with the participant lying in a 
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prone position with their knee fully extended. This MVIC EMG signal was used for normalisation of 

EMG signal during the subsequent kettlebell swings.  

 

Hip and knee joint angles throughout each swing were recorded using uniaxial inline mechanical 

goniometers (Noraxon USA Inc., Scottsdale, USA). The hip goniometer was placed over the axis of 

rotation (greater trochanter of femur) and the two moveable arms aligned with the midline of the torso 

and the lateral femoral epicondyle, respectively (4). The knee goniometer was placed over the axis of 

rotation in line with the femoral epicondyle and the two moveable arms aligned with the greater 

trochanter of the femur and the lateral malleolus of the fibula (4). Tests of hip and knee joint angles 

were performed to ensure the correct positioning of goniometers by comparing computed angles with 

direct manual measures of various hip and knee joint positions. 

 

A standardised five minute kettlebell specific warm up using submaximal loads was administered 

prior to work sets. For the work sets, the selected mass of the kettlebell was the maximum mass the 

participant could swing for a cadence of 35-40 repetitions/min during the participant’s typical training 

sessions and ranged from 16-48 kg. One set of ten repetitions was completed per swing with the order 

of swing type randomized across the participant pool, across the same testing session. Each set of a 

swing time was separated by three minutes rest to minimize the effects of performance fatigue. The 

three swing types were all initiated with the participant standing, holding the kettlebell with both 

hands, gently pulling the kettlebell forward before swinging the kettlebell backwards between the legs 

(5). The squat swing was initiated with significant hip and knee flexion, whilst the hip hinge swing 

was performed from a relatively stiff legged position, allowing for around 10-15 degrees of knee 

flexion (33). The double knee extension swing was initiated with knees extended following a dipping 

action, slightly flexing at the knees as the kettlebell was propelled forwards. All three kettlebell 

swings required explosive extension of the knees and/or hips to generate sufficient force to swing the 
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kettlebell to a peak height at sternum level (33). After reaching peak at or close to sternum level, the 

kettlebell then retraced its trajectory backwards between the legs and the movement was repeated.  

 

Surface EMG and goniometer data was sampled simultaneously at 1000Hz through a 4-channel signal 

acquisition unit (Myotrace 400, Noraxon USA Inc., Scottsdale) (amplification = 1000, common mode 

rejection ratio = >100dB) and stored for later analysis using LabChart 5 (ADInstruments, New South 

Wales, Australia). Following data collection, raw sEMG signals were band-pass Bessell filtered 

between 20-500Hz (24dB roll off) and then full wave rectified using the root-mean-square method 

across a 200ms window. sEMG, for MH and BF respectively, were normalised to the average sEMG 

amplitude of the middle three seconds during the five-second isometric knee flexion MVIC. The 

magnitude of mean sEMG was determined for each swing type using the middle six repetitions of 

each set and expressed as a percentage of sEMG during the isometric knee flexion MVIC. The 

magnitude of mean sEMG was also determined during eccentric and concentric phases of the middle 

six repetitions of each swing, using the gradient of hip joint position trace to define each phase. 

 

Statistical Analysis  

Shapiro-Wilk test was employed to ensure the normality of all data and Mauchly’s test was used to 

determine sphericity. A 2x3 repeated measures general linear model (hamstring muscle sEMG activity 

[BF, MH]) by swing type (squat, hip hinge, double knee extension) was employed with post hoc 

pairwise comparison used if an effect was detected, with Bonferonni corrections used to account for 

multiple comparisons. Additionally, there was no statistical effect on testing order (p range  = 0.579 to 

0.936). Data analysis was conducted in SPSS (version 22.0; SPSS Inc., Chicago, IL, USA) with 

statistical significance set at p ≤0.05.  

 

RESULTS 

Post-hoc power analysis was completed using G-Power (input parameters: effect size=0.8, 

alpha=0.05, sample size=14) (8) and indicated a power of 0.79 when detecting a large effect of paired 
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data (6). There was a main effect for both swing type (p=0.004) and normalised hamstring muscle 

sEMG percentage (p=0.022), however the interaction effect was not significant (p=0.412). Post hoc 

testing revealed that the hip hinge swing elicited significantly greater hamstring sEMG activity 

compared to the squat swing (mean difference = 3.92; 95% CI = 1.53 to 6.32; p = 0.002; Table 1) and 

double knee extension swing (mean difference = 5.32; 95% CI = 0.80 to 9.83; p = 0.020; Table 1). 

There was no difference between the hamstring sEMG activity of the squat swing compared to the 

double knee extension swing (mean difference = 1.39; 95% CI = -3.46 to 6.24; p = 1.000). With 

respect to the main effect for hamstring muscle sEMG activity, the MH displayed significantly greater 

activity across all swing types compared to the BF (mean difference = 9.93; 95% CI = 1.67 to 18.19; p 

= 0.022).      

Table 1. about here 

During the concentric phase of the movement there was a main effect for both swing type (p=0.049) 

and hamstring muscle sEMG (p=0.046) but the interaction effect was not significant (p=0.255). Post 

hoc testing revealed that the MH sEMG activity was significantly greater compared to the BF across 

all swing types (mean difference = 11.54; 95% CI = 0.22 to 22.86; p = 0.046; Table 1). There were, 

however, no significant differences in hamstring sEMG activity across the three swing types (squat vs 

hip hinge, mean difference = -5.37; 95% CI = -11.88 to 1.13; p = 0.123; squat vs double knee 

extension, mean difference = 3.40; 95% CI = -6.28 to 13.09; p = 1.000; hip hinge vs double knee 

extension, mean difference = 8.78; 95% CI = -2.41 to 19.97; p = 0.152).  

 

Table 2. about here 

For the eccentric phase of the movement there was a main effect detected for both swing type 

(p=0.014) and hamstring muscle sEMG (p=0.007), however the interaction effect did not reach 

significance (p=0.120).  Post hoc testing revealed that the MH sEMG activity across all three swings 

was significantly greater than the activity of BF (mean difference = 6.61; 95% CI = 2.19 to 11.04; p = 
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0.007; Table 1). There was, however, no significant differences between individual swings with 

respect to sEMG activity of the hamstrings (squat vs hip hinge, mean difference = -4.94; 95% CI = -

10.18 to 0.30; p = 0.067; squat vs double knee extension, mean difference = 2.33; 95% CI = -3.29 to 

7.94; p = 0.826; hip hinge vs double knee extension, mean difference = 7.27; 95% CI = -0.814 to 

15.36; p = 0.084). 

 

DISCUSSION 

The main objective of the current study was to determine the myoelectrical activity of the MH and the 

BF during three different kettlebell swing styles. The major finding was that during all contraction 

modes and swings, the MH had a significantly greater myoelectrical activity than the BF. 

Additionally, the hip hinge displayed a significantly greater level of combined myoelectrical activity 

during the entire repetition when compared to both the squat swing and double knee extension. This 

may enable the practitioner to select a kettlebell swing variation that may be most appropriate for their 

clients’ needs. 

 

To the authors knowledge this is the first study, which compared the hamstring myoelectrical activity 

of three different kettlebell swings. Previously, the hip hinge style swing with a 32 kg kettlebell was 

found to have greater peak and mean power compared to the barbell back squats with 80% of 1RM. In 

contrast,  the kettlebell swing produced significantly less mean and peak force compared to the back 

squat(14). A six week intervention that involved weightlifting and traditional heavy resistance 

produced a significantly greater increase in back squat performance than a program of kettlebell 

swings and squats with a 16 kg kettlebell (24). Despite smaller improvement in maximal strength, 

kettlebell training resulted in a similar improvement in vertical jump performance (24). Thus, within a 

sequenced periodized performance program, the kettlebell swing may be a useful tool within a power 

phase. Further, the hip hinge kettlebell swings’ stretch shortening cycle, horizontal propulsion and 

MH myoelectrical activity may offer a sports specific stimulus for sprinting based athletes (2). As 
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such, the hip hinge swing may be the best suited swing for developing hamstring power or for return 

to play within end stage hamstring rehabilitation.  

 

Two different studies, with one adopting the squat swing and the other hip hinge style swing, resulted 

in similar levels of myoelectrical activity for the gluteus maximus and medius. The percentage MVIC 

for the gluteus maximus and medius was 76.1% ± 32.1% and 70.1% ± 23.6% for the squat swing, 

whilst the hip hinge swing MVIC was 75.0% ± 55.4% and 55.5% ± 26.3%, which suggests that both 

styles may be useful for gluteal training (18, 30).  In comparison, the double knee extension requires a 

fairly unique technique, which has no real resemblance to other commonly used exercises and may be 

more complex to teach than other kettlebell swings. From a kettlebell sport perspective, as the double 

knee extension had the lowest hamstring muscle activation across all variables, the swing may be the 

preferred choice to use where endurance is required, such as during a kettlebell snatch discipline in 

competition, where a maximum number of snatches are performed within ten minutes (26). In 

contrast, the kettle bell swing may be better suited as a power training stimulus compared to the 

kettlebell snatch. The hip hinge swing performed with maximal explosive intention was found to have 

a greater horizontal GRF compared to the kettlebell snatch, with no significant different within 

vertical GRF and BF myoelectrical activity (12, 18). Further, the hip hinge swing with a 12 kg or 16 

kg kettlebell was found to have a peak MVIC 115% ± 55%, 93% ± 31% for the MH and BF, which 

was greater compared to a 12 RM Romanian deadlift (33). Romanian deadlifts have been found to be 

an effective hamstring exercise as they have been shown to produce greater hamstring myoelectical 

activity compared to lying curls and good mornings (17). Thus, progressing from a Romanian deadlift 

the hip hinge kettlebell swing may offer strength and conditioning coaches an additional method to 

overload the hamstring musculature. Further study into the three different kettlebell swing types 

should investigate EMG of other prime movers such as the gluteus maximus and quadriceps to be able 

to make more informed decisions about the most efficient exercise selection.  
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 The observation that MH myoelectrical activity was higher than in the BF during all three kettlebell 

swing variations may have implications for ACL and hamstring injury prevention and rehabilitation 

programs and performance.  The MH play an important role in ‘unloading’ the ACL during anterior 

tibial translation (19) and help to control valgus motion of the knee (15). Therefore, the inclusion of 

MH dominant exercises (e.g. kettlebell swing training) may be considered beneficial within ACL 

injury prevention programs aimed at reducing the extent of anterior tibial translation and limiting the 

extent of valgus collapse.  The finding that the hip hinge swing, when compared to the other two 

swing types, displayed a significantly higher level of combined myoelectrical activity may also have 

important consequences for hamstring strain injury rehabilitation practices and performance. The 

squat swing resembles a motor pattern in commonly used exercises such as a weighted squat or squat 

jump. The squat swing can be progressed to the hip hinge swing to increase demands upon the 

hamstrings. Alternatively, once the athlete is able to perform the Romanian deadlift, they could be 

progressed to the hip hinge kettlebell swing. This progression from the Romanian deadlift to the hip 

hinge kettlebell swing may increase specificity with the introduction of a stretch shortening cycle, a 

larger horizontal propulsion component and greater movement velocity (2). 

 

There are limitations in the current study. Each participant had an inherent preference towards one of 

the three swing styles. However all participants were considered proficient and had performed the 

three swing styles on multiple occasions in the six months preceding testing. Additionally, the current 

study only consisted of male participants. These findings may have limited implications to 

rehabilitative and prevention programs as this wasn’t the focus of this study. Finally, it must be 

acknowledged that there are limitations inherent with the use of sEMG. The level of myoelectrical 

activity assessed in this study can be influenced by factors related to the extent of muscle activation 

(e.g. motor unit recruitment and firing rates) as well as the level of motor unit synchrony (32).  Despite 

this, the lower level of activity during the eccentric phase in comparison to the concentric phase is 
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similar to studies which have utilised superimposed nerve (1, 3, 31). Therefore, the measures in this 

study are considered to be representative of muscle activation. 

 

In conclusion, this study found that during three different kettlebell swing types, MH myoelectrical 

activity was greater than the BF during all contraction modes and across the entire repetition. 

Additionally, the combined hamstring myoelectrical activity was significantly greater during the hip 

hinge kettlebell swing when compared to the squat and double knee extension swings. The results 

obtained in this study may be of use to practitioners who choose to incorporate kettlebells into a 

performance, hamstring and ACL rehabilitative and preventative training programs. 

 

Practical Applications  

This study demonstrated significantly higher MH than BF myoelectrical activity during the three 

observed kettlebell swings. These results support the incorporation of these movements into various 

performance, rehabilitative and injury prevention programs. Greater hamstring strength has been 

highlighted as an important mechanism in knee injury prevention (33), with the one of the MH 

muscles (semitendinosus) specifically serving a supporting role to the ACL (28). Further, the greater 

myoelectrical activity within the MH compared to the BF may be specific to sprinting (2). Thus the 

hip hinge kettlebell swing may be a useful addition to a performance or injury prevention ACL 

program, as this style of swing has demonstrated greater MH myoelectrical activity compared to the 

other two swings. Additionally, the squat swing or double knee bend swing may be progressed to the 

hip hinge swing to increase the demands placed upon the hamstrings. Further investigation of the 

effectiveness of kettlebell swings and its role in performance, injury prevention and rehabilitative 

programs is still needed. 
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