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Background: Genomics-based prediction could be useful since genome-wide genotyping costs 
less than many clinical tests. We tested whether machine learning methods could provide a 
clinically-relevant genomic prediction of quantitative ultrasound speed of sound (SOS)—a risk 
factor for osteoporotic fracture.  
 
Methods: We used 341,449 individuals from UK Biobank with SOS measures to develop 
genomically-predicted SOS (gSOS) using machine learning algorithms. We selected the optimal 
algorithm in 5,335 independent individuals and then validated it and its ability to predict incident 
fracture in an independent test dataset (N = 80,027). Finally, we explored whether genomic pre-
screening could complement a UK-based osteoporosis screening strategy, based on the 
validated tool FRAX. 
 
Results: gSOS explained 4.8-fold more variance in SOS than FRAX clinical risk factors (CRF) 
alone (r2 = 23% vs. 4.8%). A standard deviation decrease in gSOS, adjusting for the CRF-FRAX 
score was associated with a higher increased odds of incident major osteoporotic fracture 
(1,491 cases / 78,536 controls, OR = 1.91 [1.70-2.14], P = 10-28) than that for measured SOS 
(OR = 1.60 [1.50-1.69], P = 10-52) and femoral neck bone mineral density (147 cases / 4,594 
controls, OR = 1.53 [1.27-1.83], P = 10-6). Individuals in the bottom decile of the gSOS 
distribution had a 3.25-fold increased risk of major osteoporotic fracture (P = 10-18) compared to 
the top decile. A gSOS-based FRAX score, identified individuals at high risk for incident major 
osteoporotic fractures better than the CRF-FRAX score (P = 10-14). Introducing a genomic pre-
screening step into osteoporosis screening in 4,741 individuals reduced the number of required 
clinical visits from 2,455 to 1,273 and the number of BMD tests from 1,013 to 473, while only 
reducing the sensitivity to identify individuals eligible for therapy from 99% to 95%. 
 
Interpretation: The use of genotypes in a machine learning algorithm resulted in a clinically-
relevant prediction of SOS and fracture, with potential to impact healthcare resource utilization.  
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Research in Context 
 
Evidence Before this Study 
Genome-wide association studies have identified many loci associated with risk of clinically-
relevant fracture risk factors, such as SOS. Yet, it is unclear if such information can be 
leveraged to identify those at risk for disease outcomes, such as osteoporotic fractures. Most 
previous attempts to predict disease risk from genotypes have used polygenic risk scores, 
which may not be optimal for genomic-prediction. Despite these obstacles, genomic-prediction 
could enable screening programs to be more efficient since most people screened in a 
population are not determined to have a level of risk that would prompt a change in clinical care. 
Genomic pre-screening could help identify individuals whose risk of disease is low enough that 
they are unlikely to benefit from screening. 
 
Added Value of this Study 
Using a large dataset of 426,811 individuals we trained and tested a machine learning algorithm 
to genomically-predict SOS. This metric, gSOS, had performance characteristics for predicting 
fracture risk that were similar to measured SOS and femoral neck BMD. Implementing a gSOS-
based pre-screening step into the UK-based osteoporosis treatment guidelines reduced the 
number of individuals who would require screening clinical visits and skeletal testing by 
approximately 50%, while having little impact on the sensitivity to identify individuals at high risk 
for osteoporotic fracture. 
 
Implications of all of the Available Evidence 
Clinically-relevant genomic prediction of heritable traits is feasible using the machine learning 
algorithm presented here in large sample sizes. Genome-wide genotyping is now less 
expensive than many clinical tests, needs to be performed once over a lifetime and could risk 
stratify for multiple heritable traits and diseases years prior to disease onset, providing an 
opportunity for prevention. The implementation of such algorithms could improve screening 
efficiency, yet their cost-effectiveness will need to be ascertained in subsequent analyses. 
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Introduction 
 
Genomic prediction of complex traits and diseases could improve the efficiency of health care 
systems if it can accurately identify those at risk for disease. This potential arises because 
genotypes are stable over the lifetime so that high risk individuals might be identified early in 
life, providing an opportunity for prevention years before disease onset. Further, genotypes 
need to be measured only once over a lifetime and could provide risk prediction for many 
heritable diseases. Finally, since the cost of genome-wide genotype is now reasonably 
affordable (approximately $40 in a research context) and falling faster than Moore’s law,1 
genotype-based prediction has become less expensive than some clinical tests. For these 
reasons genome-wide genotyping has already been undertaken in several health care 
contexts.2,3 Yet despite this promise, it remains unclear if genomics can render clinically-
relevant predictions and perhaps more importantly, how such information could be used to 
improve care. 
 
The use of genetic prediction can be explored using osteoporosis as an example, since it is 
among the most common diseases and is diagnosed primarily through bone density measures, 
which are highly heritable (50-85%) and highly polygenic.4–7 Osteoporosis is defined as a 
reduction in bone mass and microarchitectural integrity resulting in an increased risk of 
fracture.8 Many guideline-based screening strategies9–12 for prevention of osteoporosis-related 
fractures incorporate the Fracture Risk Assessment Tool (FRAX),13,14 a validated method to risk 
stratify individuals for treatment. Further, a FRAX-based screening program has also been 
shown to reduce hip fracture incidence.15 However, population-based screening programs 
identify a small proportion of the screened population that is eligible for lifestyle or treatment 
interventions and require relatively expensive BMD testing in a large proportion of the 
population who will not ultimately receive treatment. Thus, current osteoporosis care models 
provide the opportunity to explore how genomic prediction may provide clinical utility. 
 
At present, there is little evidence that genotype-based prediction algorithms provide clinical 
utility for common disease. Since the variance explained by genotypes in complex traits and 
diseases by genotypes has been typically low, the resulting performance of genetic prediction 
has not rendered important improvements over clinical risk factors.16,17 One way to improve the 
variance explained by genotypes is through the use of larger sample sizes, applying genome-
wide association study (GWAS) polygenic risk scores,18–21 since for many complex traits and 
diseases the effect sizes of any one associated genetic risk factor is small, but taken together, 
the variance explained can be substantial.22 Machine-learning algorithms may also be applied to 
larger sample sizes to improve prediction, where these methods learn from training data and 
then assess performance of the algorithm in independent test datasets.23 
 
In this study, we trained a machine learning algorithm and separate polygenic risk scores on a 
large cohort of 341,449 individuals of British ancestry from UK Biobank with genome-wide 
genotypes to predict bone quantitative ultrasound-derived speed of sound (SOS) a measure 
that predicts osteoporotic fracture partly independently of DXA-derived bone mineral density 
(BMD) and clinical risk factors.24 We then selected the optimal prediction model in 5,335 
independent individuals and finally tested the clinically-relevant performance characteristics of 
genomically-predicted SOS (gSOS) for fracture prediction in 80,027 independent individuals. 
Finally, we explored how gSOS could be incorporated into FRAX-based screening strategies in 
order to identify a proportion of the population not needing screening and/or BMD testing. 
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Methods 
 
Overall Study Design 
This study included three phases (Figure 1). The first was to use machine learning methods25 
and polygenic risk scores to predict SOS in the training dataset, selecting the top-performing 
model in the model selection dataset, which we refer to as gSOS. The second phase used the 
independent test dataset to assess the ability of gSOS to predict fracture and the third was to 
explore how gSOS may be used to improve screening programs.  
 
Cohort 
UK Biobank is a large-scale health resource that follows 502,628 volunteer participants in the 
United Kingdom.26 Participants within the UK Biobank have been genome-wide genotyped using 
Affymetrix arrays,27 followed by genotype imputation to the Haplotype Reference Consortium.28 
UK Biobank has ethical approval from the Northwest Multi-centre Research Ethics Committee, 
and informed consent was obtained from all participants. 
 
SOS and BMD Measurement (Details in Supplement) 
Details of SOS measurement are available from UK Biobank (goo.gl/A5DTdP). All analyses 
used SOS standardized to a mean of zero and standard deviation of one. We chose to model 
SOS, since it was available for more individuals than BMD, has a gradient of risk for incident 
major osteoporotic fractures similar to BMD and a recent meta-analysis described its effect on 
fracture risk, allowing for the development of a SOS-based FRAX model.24 Dual energy x-ray 
absorptiometry BMD was measured at the femoral neck (and is referred to hereafter as “BMD”) 
in a subset of the population (N = 4,741), that was reserved for the test dataset in order to 
assess osteoporosis screening strategies. 
 
Development of machine learning model to predict SOS (Supplement and Figure 1) 
I. Training, Model Selection and Test datasets: To develop and test our prediction models, we 
followed best practices in machine learning to ensure unbiased estimates of model 
performance.  Participants in UK Biobank with White British ancestry, measured SOS, and 
genotyping information (N= 426,811) were randomly assigned to either a training dataset (80% 
of participants, restricted to those without BMD), a model selection dataset (1.25%, also without 
BMD), or the test dataset (18.75% of participants including all with BMD) (Figure 1 & Table 1).  
II. GWAS: Using the training dataset (N=341,449 individuals with White British ancestry), we 
tested the additive allelic effects of each of the 13M SNPs passing QC, separately, on SOS 
using a series of linear mixed-model29, adjusting for age, sex, assessment centre, genotyping 
array, and the first 20 principal components derived from the analysis of White British ancestry. 
Linkage disequilibrium-independent associations where obtained using PLINK by clumping 
SNPs in linkage equilibrium at a r2 > 0.05 and selecting a single most significant SNP from 
within each clumped set. 
III. Machine learning models: We fit 6 regularized linear machine learning models25 based on 
L1-penalized least absolute shrinkage and selection operator (LASSO) regression25 to the 
training dataset to predict SOS using only SNPs with P-values smaller than a chosen set of 
thresholds (Table S2). The model selection dataset was then used to optimize model 
performance by choosing the best regularization parameter (𝜆) which controls the number of 
SNPs contributing to the prediction. Finally, the estimated model for the SNP-set giving the 
smallest root mean square error in the model selection dataset was taken forward for testing in 
the test dataset. Hence, we ensured that the performance of only one final model from the 
machine learning strategy was evaluated in the test dataset. We refer to this final predictor as 
“gSOS”, in which SOS is predicted only from genotypes.  All evaluations of the role of gSOS on 
screening tests were performed in the test dataset. 
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IV. Polygenic Risk Scores: Traditional polygenic risk scores18 were generated summarizing 
different sets of SNPs, selected by P-value threshold, as described in the Supplement. 
 
Measurement of FRAX risk factors (Details in Supplement). 
The FRAX risk score for fracture can be generated with or without BMD, referred to BMD-FRAX 
and clinical risk factor CRF-FRAX, respectively. FRAX CRFs were assessed at the baseline visit 
and included age, sex, body mass index (BMI), previous fracture, smoking, corticosteroid use, 
rheumatoid arthritis and secondary causes of osteoporosis. More than three daily units of 
alcohol and parental history of hip fracture variables were not available and were set to “no” for 
the entire population. Age was recorded at baseline visit, and sex was self-reported and verified 
by genotype. Individuals with discordant sex between self-report and genotype were excluded.  
 
Fracture Definitions (Details in Supplement) 
Site-specific major osteoporotic fractures30 were defined using questionnaire data from UK 
Biobank and ICD10 codes for hospital admissions. For ICD10 codes (Table S1), only primary 
diagnoses were considered, since the date of secondary diagnoses was not consistently 
available. The date of ICD-10 identified fractures was determined from administrative data and if 
dated after the baseline visit was labelled as incident. Prevalent fractures were identified as 
those reported by questionnaire or from ICD10 codes that occurred prior to the baseline visit.  
Trauma type was not included since mechanism of trauma is variably captured by ICD codes 
and even high trauma fractures are predictive of future low trauma fractures and are associated 
with low BMD.31,32 

 
Generation of FRAX scores 
Four FRAX scores were generated for each person in the test dataset: 1) CRF-FRAX; 2) CRF 
plus measured-SOS FRAX (termed SOS-FRAX); 3) CRF plus gSOS FRAX (termed gSOS-FRAX) 
and 4) CRF plus BMD FRAX (termed BMD-FRAX). CRF-FRAX and BMD-FRAX were generated 
using the FRAX algorithm.33 To generate the SOS-FRAX probabilities, we took the CRF-FRAX 
score (as pre-test odds) and updated this using measured SOS or gSOS (gradient of risk per 
standard deviation decrease of 1.42 for major osteoporotic fractures and 1.80 for hip fracture from 
the largest meta-analysis to date which did not include UK Biobank).24 We used this method since 
a SOS-FRAX score is currently not available.  
 
Non-White British, Population Stratification and Cryptic Relatedness 
The training, model selection and test datasets included only White British participants to reduce 
population stratification. The GWAS was also controlled for the top 20 principle components of 
ancestry to reduce effects of cryptic relatedness. To test the generalizability of gSOS and 
assess for potential effects of population stratification and cryptic relatedness we tested gSOS 
on fracture outcomes in a smaller cohort of non-White British participants (defined in the 
Supplement).  
 
Testing of Prediction Performance in the Test Dataset 
Prediction performance was first tested by assessing the correlation between gSOS and 
measured SOS in the test dataset. Next, the correlations between gSOS and FRAX CRFs were 
assessed. gSOS was tested for association with risk of incident major osteoporotic fracture and 
hip fracture, comparing this to measured SOS and BMD measured at the femoral neck using 
univariate and multivariable logistic regression, including CRF-FRAX as a covariate. The 
association of each of the four FRAX scores with risk of incident major osteoporotic fracture was 
also tested in the test dataset by first log-transforming the FRAX scores to correct for a skewed 
distribution and then using logistic regression. The area under the receiver operator curve was 
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calculated for each of the FRAX scores, and these were compared to the CRF-FRAX. The 
same procedure was then completed for incident hip fracture.  
 
Since health care systems may want to use genomics-based predictors to identify an extreme of 
the population at risk of disease, we next divided the distribution of gSOS into percentiles and 
contrasted the bottom decile with the top decile to describe the associated increased risk of 
fracture. Since 10% of any health care system is a large number of people, we then explored 
odds of fracture for those in the lowest 25th quantile (lowest 4% of the distribution), compared to 
the top 25th quantile.  
 
Genomic Pre-Screening 
Health care providers may also want to use genomics-based predictors to better stratify 
individuals for inclusion in screening programs, assuming that genome-wide genotyping has 
been already undertaken. We therefore explored if gSOS could be used to identify individuals 
who would be unlikely to benefit from screening for osteoporosis, because their risk of fracture 
would be low. To do so, we implemented the UK National Osteoporosis Guideline Group 
(NOGG) approach within the test dataset.10 The NOGG Guidelines aim to identify individuals at 
risk for fracture in a cost-efficient manner by reserving clinical visits and BMD testing for those 
at increased risk.  
 
We first evaluated the effectiveness of NOGG Guidelines to appropriately risk stratify individuals 
for therapy, comparing this to a gold standard where all individuals had BMD testing and were 
risk stratified by BMD-FRAX. We chose NOGG over other national guidelines since a NOGG-
like approach was recently demonstrated in a randomized controlled trial to be potentially 
effective in reducing hip fractures.15 Further, the NOGG Guidelines recommend less BMD 
testing than those of the US National Osteoporosis Foundation11 and Osteoporosis Canada.34 
Consequently an improvement in BMD testing efficiency over NOGG would suggest 
improvements in other guideline settings. NOGG-guidelines utilise 10-year absolute risks of 
fracture using FRAX and suggest treatment or reassurance based on thresholds of risk, which 
are age dependent and consider competing risks. These 10-year absolute risks were calculated 
for all individuals for major osteoporotic fracture and participants were risk stratified as per 
NOGG Guidelines (Figure S4), which aims to reduce the number of BMD tests by restricting 
such tests to those at moderate risk. We then tested the sensitivity of NOGG guidance to 
identify individuals at high risk, comparing NOGG guidance to a BMD-FRAX gold-standard. 
Since BMD is required to calculate BMD-FRAX, the genomic pre-screening was evaluated only 
in individuals from the test dataset with BMD measures (N = 4,741).   
 
In order to implement genomic pre-screening, we designated all individuals over a defined 
threshold of gSOS to be reassured, and not to undergo a clinical visit for CRF-based FRAX 
testing, or BMD testing (Figure S5). We chose the threshold of gSOS which maximally reduced 
clinical visits and BMD testing, while minimizing the loss of sensitivity to identify individuals who 
would be recommended for treatment by the gold standard. The performance of pre-screening 
was then assessed by counting the number of individuals who would require a clinical visit and 
BMD testing and calculating its sensitivity to correctly assign participants to reassurance or 
treatment. 
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Results 
 
Cohort Characteristics 
Table 1 describes the FRAX risk factors for the training, model selection and test data sets. 
There was no clinically-relevant difference in any of the osteoporosis-related risk factors, as 
expected, since these sets were generated randomly. As planned, all individuals with BMD 
measures were included in the test dataset. There were little differences in demographics or 
CRFs among individuals with BMD measured, except for a higher prevalence of smoking and 
incident major osteoporotic fractures.  
 
GWAS 
After quality control, 13,958,249 SNPs were included in the GWAS. The GWAS in the training 
set identified 1,404 independent (r2 ≤ 0.05) genome-wide significant loci at a P-value threshold 
of < 5 × 10-8 Figure S1 shows the Manhattan and QQ plots for this GWAS.  
 
Variance Explained in SOS in the Model Selection Set 
Age, sex and BMI explained 4.0% of the variance in SOS. Adding the remaining FRAX clinical 
risk factors increased the variance explained to 4.8%. Polygenic risk scores across different P-
value thresholds explained at most 18.5% (95% confidence interval [CI]: 16.6-20.4%) of the 
variance in SOS (Table S2 and Figure 2). The machine-learning algorithm improved the 
variance explained in SOS to a maximum of 25.0% (23.0-27.0%) (Table S2 and Figure 2). All 
six SNP-sets using the machine learning algorithm outperformed polygenic risk scores 
substantially. Figure S2 provides detailed information on the optimal algorithm tuning 
parameters.  
 
Variance Explained in SOS in the Test Set 
The top model from the model selection set was then tested for its correlation with SOS in the 
test set. This model (machine learning algorithm set at P-value ≤ 10-4, including 21,717 
activated SNPs, which are those SNPs retained by the machine learning algorithm) explained 
23.2% (95% CI: 22.7-23.7%) of the variance in measured SOS (Table S2 and Figure 2). We 
then designated this model as “gSOS”, which was subsequently assessed for performance 
characteristics in the test dataset. Figure S3 demonstrates that, as expected, the estimated 
effects of the activated SNPs from the machine learning algorithm were attenuated, when 
compared to the effects estimated from the GWAS 
 
gSOS Correlation with other Clinical Risk Factors and BMD 
Since gSOS was derived only from genotypes it should be independent of factors that are not in 
the causal pathway between SNPs and SOS. We found that while measured SOS was 
correlated with all measured FRAX clinical risk factors, gSOS was not (Table 2). These findings 
suggest that if gSOS is associated with risk of fracture it would be also independent of these 
other clinical risk factors.  
 
Prediction of Incident Major Osteoporotic and Hip Fracture 
There were 1,491 incident major osteoporotic fracture cases and 78,536 incident fracture-free 
controls in the test dataset (Figure 3). We also identified 209 hip fracture cases and 79,818 
incident fracture-free controls in the same dataset. In univariate models, decreased SOS, gSOS 
and BMD were all strongly associated with increased odds of incident fracture, however, among 
these predictors, gSOS had the highest risk per standard deviation decrease. Since the 
predictive value of these skeletal measures may be reduced after accounting for correlated 
FRAX CRFs, we tested the association of SOS, gSOS and BMD with incident major 
osteoporotic and hip fractures, adjusting for CRF-FRAX. We found that association of fracture 
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with SOS and BMD were more attenuated by inclusion CRF-FRAX (Figure 3), likely because 
gSOS is not associated with FRAX CRFs, while SOS and BMD are. Associations with incident 
hip fractures showed similar effect sizes, but with wider confidence intervals. There were too 
few incident hip fractures amongst the 4,741 participants with BMD measures to report 
meaningful findings. 
 
Incorporating gSOS into FRAX Probability of Fracture  
We next tested the performance of the four FRAX probabilities on risk of incident major 
osteoporotic fracture. We found that a standard deviation increase in each FRAX score on the 
log scale was strongly associated with incident major osteoporotic fracture (Table 3). The 
magnitude of association was lower when using CRFs alone and increased when introducing 
any of the three skeletal measures. The area under the receiver operator curves improved 
significantly, with the incorporation of skeletal measures when compared to CRFs alone, as has 
been shown previously.33 Table 3 shows that the area under the receiver operator curve for 
gSOS-FRAX was equivalent to that for BMD-FRAX but was lower than SOS-FRAX.  
 
We next generated the FRAX probabilities using hip fracture as an outcome. Table 3 shows that 
each of the models was strongly associated with odds of incident hip fracture and both SOS-
FRAX and gSOS-FRAX improved the area under the curve when compared to CRF-FRAX. The 
area under the curve for SOS-FRAX and gSOS-FRAX was equivalent. 
 
Extremes of gSOS 
Comparing individuals in the bottom decile of the gSOS distribution to those in the top decile we 
found that those in the bottom were at a 3.25-fold increased risk of major osteoporotic fracture 
(95% CI: 2.50-4.25, P = 10-18). Since a decile represents a large absolute number of individuals 
from any health care system we next tested the risk associated with being in the bottom 25th of 
the gSOS distribution, compared to those in the top 25th of the distribution and found a ~5-fold 
increased risk of incident major osteoporotic fracture (OR = 4.94 [3.07-7.91], P = 10-11). 
 
Non-White British 
To assess for generalizability of gSOS and possible effects of population stratification and 
cryptic relatedness we tested its performance in non-White British participants. There were 494 
incident major osteoporotic fracture cases and 42,902 controls amongst non-White British 
participants. There were 69 incident hip fracture cases and 43,327 controls. The results for non-
White British participants were very similar to those amongst White British participants (Table 
S3). gSOS was associated with a higher odds of major osteoporotic and hip fracture, both with 
and without FRAX CRFs. The area under the receiver operator curve was improved using 
gSOS-FRAX compared to CRF-FRAX for major osteoporotic and hip fracture (P = 1x10-4 and P 
= 4x10-4, respectively). Quantiles of gSOS also demonstrated a high odds of fracture (bottom 
10th quantile OR = 3.71 [95% CI: 2.33-5.89, P = 1x10-8]; bottom 25th quantile OR = 8.17 [95% 
CI: 3.22-20.75, P = 5x10-6]). 
 
Genomic Pre-Screening 
Table 4 demonstrates the implementation of current NOGG Guidelines for screening amongst 
all 4,741 UK Biobank participants with BMD testing. Figure S4 shows what would be the clinical 
outcomes (i.e. reassurance or treatment recommendation) based on current NOGG Guidelines. 
The sensitivity for correct treatment allocation, compared to undertaking BMD-FRAX on all 
individuals as the gold-standard, was 99.1% and the specificity was 99.6%. To achieve this 
performance, 2,455 of the 4,741 individuals required a clinical visit while 1,013 required a BMD 
test (Figure S4 and Table 4 and Table S4).  
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We then tested whether pre-screening with gSOS could improve efficiency of these guidelines, 
by reassuring everyone over a certain gSOS threshold. Reassuring all NOGG-eligible 
participants at a high gSOS threshold would result in little improvement in efficiency. 
Alternatively reassuring all participants above too low a gSOS threshold would result in a large 
number of participants being reassured who would actually be recommended for treatment if 
they had had their BMD-FRAX measured. Thus, we selected the threshold of gSOS that would 
minimize the number of BMD tests not changing care, but also not increase the number of 
participants who are eligible for therapy but would be reassured (Figure S5). Figure S6 and 
Table 4 demonstrate that gSOS pre-screening would reduce the number of participants 
requiring a clinical visit from 2,455 to 1,273 and decrease the number of BMD tests from 1,013 
to 473. Using gSOS-based pre-screening, the sensitivity for correct treatment allocation 
decreased from 99.1% to 94.7% (Table 4), while the specificity, positive predictive value and 
negative predictive value were 99.9%, 98.6% and 99.5%, resptively.  

 
Discussion 
 
Here we have developed and validated a machine learning algorithm to predict a skeletal 
measure of fracture risk (gSOS) from genotypes alone. gSOS has performance characteristics 
for fracture risk that are similar to measured SOS and femoral neck BMD. The machine learning 
algorithms used here provide improved prediction over traditionally-used polygenic risk scores. 
While the exact use of such prediction algorithms in clinical care will require further 
investigation, we have explored several potential scenarios 
 
First, in multivariate models, gSOS was more strongly associated with major osteoporotic 
fracture than was SOS or BMD. For fracture prediction, gSOS outperformed FRAX CRFs alone. 
The lower tail of the gSOS distribution was at a substantially increased risk of incident fracture, 
providing the opportunity to identify individuals at elevated risk. gSOS pre-screening was able to 
identify a large proportion of the population for whom osteoporosis screening programs would 
not result in changes in clinical care. These findings suggest that genomic prediction can render 
clinically-relevant information that could be used to improve health care delivery systems. We 
suggest that such advances will not be limited to osteoporosis, but rather, given large enough 
sample sizes and use of machine learning algorithms, genomic prediction will become clinically-
relevant for several heritable traits and diseases. 
 
Already at least seven large health care delivery systems have invested in genome-wide 
genotyping of a large proportion of their population, upon whom electronic health record (EHR) 
data are available.2,3 Since the costs associated with genome-wide genotyping have now 
dropped below those of many routine clinical tests, the use of genomic prediction of clinically 
relevant traits and diseases will likely encourage other health care systems to make similar 
investments—provided genomic predictors can be shown to be clinically relevant and cost 
efficient.  
 
The fracture prediction performance of gSOS is higher than expected given the amount of 
variance explained in measured SOS. This is likely for at least three reasons. First, gSOS is not 
subject to measurement error inherent in SOS; second it is independent of other FRAX clinical 
risk factors and last, genotypes are measured with very high precision.35 It is not currently clear 
which machine learning methods are best suited to prediction. Nonetheless, the observed 
association between genotypes and continuous traits has largely been linear, making 
multivariate regression-based methods, like LASSO, attractive.  
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Screening programs for osteoporosis are expensive, with estimates of approximately $50,000 
USD per quality adjusted life year gained,36 but are less expensive using NOGG guidance.37 
Current guidelines suggest screening for a large proportion of the population,9–11 yet most 
patients are not identified to have a clinically-actionable level of risk.15,38 This provides an 
opportunity for genetically-derived measures of risk to increase cost-efficiencies, particularly in 
health care systems where investments have been made in genome-wide genotyping. While the 
health-economic realities of such prediction are unclear at present, we have provided one 
example of how gSOS could be used to improve the efficiency of screening based on the 
NOGG Guidelines. We note that the efficiencies of gSOS pre-screening are likely magnified in 
the context of UK Biobank, where most subjects are generally healthy, yet those receiving BMD 
tests were more likely to be smokers and have had an incident fracture.  
 
Previous attempts to predict osteoporosis from genomic data did not substantially increase 
discrimination, when compared to standard clinical measures alone, likely because the GWAS 
that underpinned these attempts were derived from 32,961 individuals and explained only 5.8% 
of the variance in BMD.17,39 The improvement in variance explained in in this study was likely 
due to the increase in sample size afforded by UK Biobank as well as the ability of the machine 
learning algorithm to estimate the joint contributions of all SNPs rather than their independent 
effects. Other attempts to predict BMD have been based on several dozen genome-wide 
significant SNPs,17 whereas here we have used a machine learning algorithm, which has 
enabled the consideration of approximately up to 642,127 SNPs. Recently, a machine-learning 
algorithm was used to predict estimated BMD, but from a GWAS sample size that was one third 
of that used here.40 An additional prediction algorithm using incorrect definitions of osteoporosis 
was able to explain only 17% of the variance in estimated BMD and was able to predict fracture 
only marginally better than chance alone.41 Therefore the data presented here represent a 
clinically-relevant improvement in genomic prediction. 
 
The generalizability of genomic prediction can be influenced by population stratification and 
cryptic-relatedness. Encouragingly, gSOS, despite being developed in the White British subset 
of UK Biobank, performed similarly in the non-White British subset, who have a different 
ancestry than the White British subset. 
 
This study has important limitations. While gSOS does risk stratify for fracture, it must be 
emphasized that this is a probability and is not deterministic—such probabilities have similar 
characteristics to other risk factors for common disease. BMD would have been a more natural 
skeletal measure of fracture risk, since this is more often used in the clinic. We anticipate that 
the same methods here will be useful for BMD genomic prediction, once appropriately large 
sample sizes are available and emphasize that the predictive performance of gSOS is similar to 
that for measured BMD. While nearly all FRAX CRFs were available for study, parental hip 
fracture history was not. It is possible that the clinical relevance of gSOS may be attenuated 
after accounting for this heritable risk factor, and this will need to be empirically tested once 
such data are available. gSOS-FRAX could, in the future be optimized to include competing 
risks and interaction effects, as has been done for BMD-FRAX. Our results have not been 
validated in an external sample but have been internally validated in 80,027 individuals in UK 
Biobank. Like participants in most cohort studies, UK Biobank participants are, on average, 
healthier than the general population.42 Thus, external validation in a truly population-based 
study may provide helpful estimates of predictive abilities of gSOS.  
 
In summary, we have developed and validated a machine-learning algorithm to predict SOS 
from genotypes alone, which when predicting fracture, performs similarly to measured SOS and 
BMD. The methods and results provided here may help to guide genomic prediction programs 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/413716doi: bioRxiv preprint 

https://doi.org/10.1101/413716
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

for other clinically-relevant risk factors and diseases, providing new opportunities for improved 
clinical care through genomics-enabled medicine.  
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Figure 2. Variance Explained in SOS by Clinical Risk Factors, Polygenic 
Risk Score and Machine Learning Algorithm in the Model Selection Set 

All estimates are from the Model Selection Set and Table S2 provides additional details.  
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Figure 3. Performance of SOS, gSOS and BMD for the Prediction of Major 
Osteoporotic and Hip Fractures in the Test Dataset 

Sample size of cases / controls are shown in square brackets, followed by P-values 
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Table 1: Characteristics of Participants by Dataset 
 

Dataset 
 

 

Training Model Selection Test Individuals with DXA BMD  
(a subset of the Test Dataset) 

Sample Size 341449 5335 80027 4741 

SOS -0.02 (0.99) -0.03 (0.97) -0.02 (0.99) 0.13 (1.01) 

gSOS NA -0.02 (0.45) -0.02 (0.45) 0.00 (0.44) 

NHANES T-
Score* 

NA NA -0.64 (1.04) -0.64 (1.04) 

Age 56.83 (8.00) 56.59 (8.12) 56.77 (8.03) 55.81 (7.56) 

Women 186,569 (55%) 2,863 (54%) 43,732 (55%) 2,489 (0.52%) 

BMI 27.34 (4.70) 27.34 (4.65) 27.34 (4.70) 26.81 (4.35) 

Smoker 27,181 
(7.96%) 

397 (7.44%) 6,909 (8.63%) 966 (20%) 

Rheumatoid 
Arthritis 

3,312 (0.97%) 41 (0.77%) 758 (0.95%) 28 (0.59%) 

Corticosteroid 
Users 

3,330 (0.98%) 51 (0.77%) 839 (1.05%) 70 (1.48%) 

Secondary 
Osteoporosis 

14,541 
(4.26%) 

215 (4.03%) 3,354 (4.18%) 192 (4.05%) 

Prevalent 
Fracture 

34,917 
(10.2%) 

549 (10.3%) 8,244 (10.3%) 438 (8.46%) 

Incident Hip 
Fracture 

994 (0.29%) 12 (0.22%) 209 (0.26%) 1 (0.02%) 

Incident Major 
Osteoporotic 
Fracture 

6,307 (1.85%) 84 (1.57% 1,491 (1.86%) 157 (3.0%) 

Data are presented as mean and (standard deviation), or counts and percentage for binary 
traits) 
SOS is standardized to have a mean of zero and a standard deviation of one. 
BMI: Body Mass Index 
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Table 2. Correlation of gSOS with FRAX Clinical Risk Factors 
 

Variable Measured SOS   gSOS 

  r P-value   r P-value 

Age  -0.12 <10-4   0.006 0.11 

Sex -0.15 <10-4   -0.003 0.41 

BMI  0.035 <10-4   -0.002 0.63 

Smoking  -0.05 <10-4   0.001 0.74 

Corticosteroid Use  -0.016 <10-4   0.0005 0.89 

Rheumatoid Arthritis -0.04 <10-4   -0.006 0.09 

Secondary Causes of 
Osteoporosis  

-0.074 <10-4   -0.005 0.16 

 
Age is in years, BMI kg/m2, women are labeled as "1" and all other variables were labeled as 
"1" if risk factor was present. 
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Table 3. Prediction of Incident Fractures by FRAX Scores 
  

Major Osteoporotic Fracture 
 

Hip Fractures 

Predictor Odds per 1 
log increase 
in predictor 

(95% CI) 

AUC  
(95% CI) 

Comparison 
of AUC with 
gSOS AUCa 

 
Odds per 1 

log increase 
in predictor 

(95% CI) 

AUC  
(95% CI) 

Comparison 
of AUC with 
gSOS AUCa 

CRF-
FRAX 

1.68 
(1.60-1.76) 

65% 
(64%-66%) 

gSOS 
improves AUC 
(P = 3x10-14) 

 2.95 
(2.54-3.42) 

77% 
(74%-80%) 

gSOS 
improves AUC 

(P = 4x10-3) 

BMD-
FRAX 

1.69 
(1.47-1.96) 

66% 
(62%-71%) 

gSOS  
equivalent to 

BMD 
(P = 0.47) 

 N/A N/A N/A 

SOS-
FRAX 

1.91 
(1.82-2.01) 

68% 
(67%-70%) 

SOS improves 
AUC 

(P = 7x10-9) 

 2.67 
(2.36-3.02) 

79% 
(76%-82%) 

SOS 
equivalent to 

gSOS 
(P = 0.09) 

gSOS-
FRAX 

1.77 
(1.69-1.86) 

67% 
(65%-68%) 

-  2.94 
(2.55-3.39) 

78% 
(75%-81%) 

- 

N/A: Too few cass of hip fractures amongst 4741 individuals with BMD measures 
CRF-FRAX: Clinical Risk Factors FRAX Score 
BMD-FRAX: Clinical Risk Factors plus BMD FRAX Score 
SOS-FRAX: Clinical Risk Factors plus SOS FRAX Score 
gSOS-FRAX: Clinical Risk Factors plus gSOS FRAX Score 
AUC: Area under the receiver operator cure 
a) Comparison with gSOS compares the AUC for gSOS with each of the other predictors 
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Table 4. Effect of gSOS Pre-Screening on NOGG Screening Tests and Outcomes.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S4 provides the outcomes of each participant    
Figure S4 and S6 provides a flow chart demonstrating the application of NOGG guidelines and 
gSOS Pre-Screening    
Only participants in the test dataset with BMD measures were included in this analysis to enable 
an evaluation of the performance of guidelines to correctly identify who should receive therapy, 
compared to the situation where all individuals had BMD measured  
a. "Correct treatment allocation" is defined as assignment to reassurance or treatment by BMD-
FRAX.     
 
 
 

  
Screening: 

Standard of Care 
Screening After 
Introduction of 

gSOS Pre-Screen 

Number of 
Participants 

Number of 
Participants with 
Sufficient Data 
Available to Test 
Efficacy of Screening 

4741 

Number of 
Participants Eligible 
for Screening 

2455 

Clinical 
Visits, BMD 
Tests and 
Outcomes 

Number of 
Participants 
Requiring a Clinical 
Visit 

2455 1273 

Number of 
Participants 
Requiring a BMD Test 

1013 473 

Number of 
Participants 
Reassured After 
Screening 

2223 2238 

Number of 
Participants 
Recommended for 
Treatment 

232 217 

Performance Sensitivity For 
Correct Treatment 
Allocationa 

99.1% 94.7% 

Specificity For 
Correct Treatment 
Allocation 

99.6% 99.9% 

Positive Predictive 
Value 

96.5% 98.6% 

Negative Predictive 
Value 

99.9% 99.5% 
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