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Highlights 

- PD patients have altered pattern of lower limb joint kinetics during stair walking  

- Despite weaker knee extensors, PD patients use their knees more during stair walking 

- Fewer degrees of freedom afforded by the knee may improve one’s sense of stability  

- Improving lower limb strength may assist clinicians with ameliorating falls risk  
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Abstract 

Background: Stair ambulation is a challenging activity of daily life that requires larger joint 

moments than walking. Stabilisation of the body and prevention of lower limb collapse during 

this task depends upon adequately-sized hip, knee and ankle extensor moments. However, 

people with Parkinson’s disease (PD) often present with strength deficits that may impair their 

capacity to control the lower limbs and ultimately increase their falls risk.  

 

Objective: To investigate hip, knee and ankle joint moments during stair ascent and descent 

and determine the contribution of these joints to the body’s support in people with PD. 

 

Methods: Twelve PD patients and twelve age-matched controls performed stair ascent and 

descent trials. Data from an instrumented staircase and a three-dimensional motion analysis 

system were used to derive sagittal hip, knee and ankle moments. Support moment impulses 

were calculated by summing all extensor moment impulses and the relative contribution of 

each joint was calculated.  

 

Results: Linear mixed model analyses indicated that PD patients walked slower and had a 

reduced cadence relative to controls. Although support moment impulses were typically not 

different between groups during stair ascent or descent, a reduced contribution by the ankle 

joint required an increased knee joint contribution for the PD patients.  

 

Conclusions: Despite having poorer knee extensor strength, people with PD rely more heavily 

on these muscles during stair walking. This adaptation could possibly be driven by the 

somewhat restricted mobility of this joint, which may provide these individuals with an 

increased sense of stability during these tasks. 
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Introduction 

Of those activities common to daily living, stair walking has been rated by older adults 

as one of the most challenging [1], as it requires an individual to keep their centre of mass 

within the boundaries of their base of support (provided by one or both feet) to maintain 

stability [2, 3]. Furthermore, stair walking is a task that often requires the centre of mass and 

the centre of pressure to be separated [4], potentially increasing the load on the body’s postural 

control system. The task of shifting the body’s centre of mass laterally and either upwards 

during stair ascent or downwards during stair descent [4] requires the body’s mass to be strictly 

controlled by muscles surrounding the hip, knee and ankle joints to produce large moments [5, 

6].  Compared with level-ground walking, knee joint extension moments are up to two times 

greater during stair ambulation [7], which ultimately indicates that one’s ability to safely 

ambulate stairs is greatly dependent on them having adequate lower limb muscle strength 

[8]. Specifically during stair ascent, the ankle plantarflexors and knee joint extensors contract 

to shift the body’s mass upwards and forwards towards the next step [9]. In contrast, stair 

descent features a large downward acceleration of the body [10], which requires the strong 

eccentric action of the leg extensor muscles to lower the body in a controlled manner [11]. 

During these tasks, the moments produced by the ankle plantarflexors and knee extensors 

contribute heavily to the forces that serve to prevent the lower limb from collapsing during 

weight-bearing tasks (otherwise referred to as the support moment) [12]. By definition, the 

support moment is calculated by summing the extensor moments for the hip, knee and ankle 

joints (i.e. those acting against gravity) to determine their collective contribution to supporting 

the body’s weight [13].   

 

Unfortunately, people with neurodegenerative conditions, such as Parkinson’s disease 

(PD), often report deficits in muscle strength and endurance, which significantly influences 
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their movement patterns and ultimately contributes to a greater risk of recurrent falls [14, 15]. 

These physcial deficits and the inherent increase in falls risk ultimately contribute to poorer 

balance confidence and an increased fear of falling in this population [16], which further impair 

their movement patterns [17]. While it seems reasonable to suggest that these physical and 

psychological limitations would be likely to pose greater problems for patients during more 

physically challenging activities of daily life, it is interesting to note that only one study has 

investigated differences in patient performances while ascending a single step [18]. While falls 

on stairs only account for 2% of the falls experienced by people with PD [19], they frequently 

result in more serious consequences (e.g. fracture or death) [20] and, hence, warrant specific 

attention. Therefore, this cross-sectional study sought to investigate differences in lower limb 

joint moments between persons with PD and healthy age-matched controls during the self-

paced ascent and descent of multiple stairs. Furthermore, this research sought to ascertain 

whether the relative contribution of the hip, knee and ankle joint moments to the overall support 

of the body’s mass during these tasks (i.e. the support moment) differed between the cohorts. 

As people with PD are known to have deficits in lower limb muscle strength, it was 

hypothesised that patients would exhibit significantly lower joint moments during stair 

negotiation. Secondly, as people with PD have been shown to have reduced ankle moments 

when ascending a single step [18], it was hypothesised that these individuals would adopt 

alternate strategies to controls that would rely less on the muscles surrounding the ankle joints.  

 

Methods 

Study population 

Two groups of 12 participants comprising; i) people with idiopathic PD; and ii) age- 

and gender-matched controls volunteered to participate in this study. Participants with PD were 

recruited from a neurology clinic in South-East Queensland, Australia and were confirmed to 
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have PD based on the United Kingdom Brain Bank Criteria [21] by their neurologist. Controls 

were randomly-recruited from a pre-existing database. To be eligible, participants were 

required to be; i) independently living; ii) able to ambulate without assistance; iii) without 

dementia based on the Standardized Mini-Mental State Examination (total score ≥24); iv) free 

of clinically-diagnosed visual or musculoskeletal problems; v) free of medical conditions (other 

than PD) that would adversely affect their balance; and vi) receiving no non-pharmacological 

therapies (e.g. deep brain stimulation). An a-priori sample size calculation based on data from 

healthy younger and older adults [9] suggested that a minimum of 10 participants per group 

was required to detect differences in peak knee extension moments between groups (Effect size 

= 1.36, Power = 0.8, p = 0.05). The Human Research Ethics Committee at the University 

approved this study (approval #2014 345Q) and participants provided written informed 

consent. 

 

Clinical assessment 

Participants completed assessments of cognition (Standardized Mini-Mental State 

Examination), quality of life (Short-Form 8 questionnaire (SF-8)) and balance confidence (6-

item Activities-specific Balance Confidence scale (ABC-6)). PD participants also completed 

the PD-specific 8-item quality of life questionnaire (PDQ-8), while disease stage and symptom 

severity were established by an experienced movement disorders scientist using the Movement 

Disorders Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS), the Hoehn and Yahr stage score,, the Schwab and England Activities of Daily Living 

scale and the New Freezing of Gait questionnaire. Participants were assessed approximately 1-

hour following their anti-parkinsonian medication to ensure they were optimally-medicated. 
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Movement assessment 

Participants performed stair ascents and descents at a self-selected pace on a 3-step 

staircase (19cm riser and 30cm tread) designed to comply with national regulations. Ground 

reaction forces (GRFs) were measured at 1200 Hz via two AccuGait force platforms (Advanced 

Mechanical Technology Inc., USA) embedded in the first and second steps.  Ascent and descent 

trials were repeated until participants had achieved three trials with the left and right feet hitting 

the first step (i.e. 6 trials total). To prevent deliberate adjustment of walking patterns (otherwise 

known as ‘targeting’), participants were blinded to this requirement and were instructed as to 

which foot to initiate each trial to avoid repeatedly reaching the first step with the same foot.  

For the ascent trials, participants started 5-metres away from the staircase and, when instructed, 

approached the first step and ascended in a foot-over-foot pattern before walking along the 1.7-

metre long landing. Following an enforced rest break, participants traversed the landing, 

descended the staircase in a foot-over-foot pattern and returned to the starting position. For the 

participants’ safety, handrails were present, but only trials completed without the use of the 

handrails were analysed due to the additional stability that they may offer.  

 

To quantify lower limb joint moments, reflective markers were affixed over specific 

anatomical landmarks on the feet, knees and pelvis using double-sided tape (Tesa Tape Inc., 

USA) and bilaterally over the mid-thigh and mid-shank via securely-fastened rigid bodies. 

During the tasks, three-dimensional marker trajectories were captured at 120 Hz by a 12-

camera motion analysis system that was synchronised with the GRFs using the Vicon Nexus 

software (v.2.1.1; Vicon, Oxford, UK). Isometric knee extensor strength was also assessed 

whilst participants were seated with legs hanging and their back supported. A Velcro cuff was 

firmly wrapped around the ankle and attached via an adjustable strap to an anchor point behind 
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the participant. The knee angle was set at 90° prior to the trial [22] and this was confirmed with 

a goniometer. To assess the ankle plantarflexors, the cuff was firmly affixed around their 

forefoot with their knee at 90° and their foot at 90° relative to the shank. Participants completed 

3 attempts (separated by a 60 second rest break to reduce potential fatigue) of each test for each 

limb and the maximum isometric force exerted was measured in kilograms via an inline load 

cell (SE Load Cell, Sun Scale Inc, Taiwan) positioned between the cuff and the anchor point.  

 

Data Analysis 

Marker trajectories were processed using Vicon Nexus and both the trajectories and 

GRF data were low-pass filtered using a fourth-order Butterworth filter with a cut-off 

frequency of 6 Hz. Filtered marker trajectories were then used to calculate the three-

dimensional hip, knee and ankle joint angles in Visual3D (Version 5, C-Motion, Inc., USA), 

in accordance with the joint coordinate system outlined by Grood and Suntay [23]. Using 

inverse dynamics [24], peak sagittal plane hip, knee and ankle joint moments were identified 

in the first and second half of the stance phase for both stair ascent and descent. Sagittal plane 

hip extension, knee extension and ankle plantarflexion moment impulses were then summed to 

derive the support moment impulse (Newton-metres.second) [12]. The contribution of each 

joint to the support moment impulse was identified by expressing the joint moment impulse of 

each joint as a percentage of the support moment impulse (Figure 1). To highlight any 

differences in the joint kinetics during the transition phase from the level-ground to stair 

ascent/descent (Step 1) and the actual ascent/descent component of the tasks (Step 2), data for 

the two steps were analyses and presented separately. 

 

Insert Figure 1 about here. 
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To facilitate group comparisons, stance phase duration was normalised to range from 0 

to 100% and the amplitude of joint moments was normalised to each participant’s body mass 

(Newton.metres/kilogram). Walking speed (metres/second) and cadence (steps/minute) were 

also calculated from the marker trajectories and force plate data. As walking speeds during stair 

ascent and stair descent comprise both horizontal and vertical components, distance travelled 

was calculated using Pythagoras’ theorem and divided by time. Cadence was calculated as the 

elapsed time between consecutive foot contacts on the first and second step divided by 60 to 

yield step frequency per minute.  

 

Statistical Analysis 

Univariate analysis of variance was used to examine differences in the continuous 

demographic variables (e.g. age), while the Chi-square test assessed differences in the 

frequencies of categorical variables (e.g. gender) between the groups. To ensure the 

assumptions of parametric statistics were met, the Shapiro-Wilk test assessed normality, while 

equality of variance between groups was assessed using the Levene’s test statistic. If 

assumptions of the parametric procedures were violated, the non-parametric Kruskal-Wallis 

Test was used to compare continuous demographic variables.  

 

To take advantage of the repeated trials completed by participants, the linear mixed 

model (LMM) procedure was used to examine differences between groups for joint moments 

and support moment impulses. Furthermore, given that walking speed [25], temporal gait 

characteristics [26] and balance confidence [17] have the potential to influence GRFs, joint 

moments and/or impulses, walking speed, stance time and ABC-6 scores were entered as 

covariates in all of the LMMs conducted for the primary outcomes. Statistical analyses were 
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conducted using the Statistical Package for the Social Sciences (Version 22, New York, USA) 

and the level of significance for all statistical tests was set at p<0.05. 

 

Results 

The results indicated groups did not differ with respect to age, falls history, cognition 

or psychological factors influencing their quality of life (SF-8). However, PD participants did 

record poorer balance confidence, a greater impact of physical difficulties on their quality of 

life (SF-8) and had significantly poorer knee extension strength (Table 1). 

 

Insert Table 1 about here. 

 

During stair ascent, PD participants walked significantly slower than controls 

(0.32±0.05 vs. 0.37±0.06 m/s; p=0.001) and had reduced cadence (84.19±14.04 vs. 

96.38±14.14 steps/min; p=0.023) and longer stance times (0.98±0.17 vs. 0.84±0.11 s; 

p=0.029). Examination of the joint moments recorded on the first step during the first and 

second halves of stance indicated that the PD and control groups did not differ with respect to 

peak hip, knee or ankle moments. Furthermore, peak joint moments were typically similar 

between the groups on the second step; however PD participants demonstrated a reduced hip 

flexion moment during the second half of stance and a greater knee extension moment during 

the first half of stance (Table 2). The general lack of differences in lower limb joint moments 

on the first step ultimately resulted in similar support moment impulses being recorded for the 

two groups. However, analysis of the relative contribution of each joint to the support moment 

on the second step indicated that the knee joint contributed significantly more for PD patients, 

while the ankle contributed less (Table 2).   
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Insert Table 2 about here. 

 

Participants with PD descended the stairs at slower speeds (0.28±0.12 vs. 0.35±0.15 

m/s; p=0.015), had slower cadence (85.80±15.27 vs. 109.47±25.68 steps/min; p=0.005) and 

increased stance times (0.84±0.16 vs. 0.69±0.14 m/s; p=0.009) compared with controls. Unlike 

stair ascent, peak hip, knee and ankle joint moments typically did not differ between the groups 

on Step 2, although the results indicated that PD patients produced a greater knee extension 

moment during the second half of stance on Step 1 (Table 3). Despite the few differences 

observed in peak joint moments, the PD participants recorded a different pattern of joint 

kinetics to support the body’s mass. During the transition phase of the descending task (i.e. 

Step 1), PD patients recorded significantly larger support moments, which were largely 

attributable to significantly increased hip and knee extensor impulses (Table 3). During the 

actual descending component of the task (i.e. Step 2), the groups did not differ with respect to 

the support moment impulse, but a reduced ankle contribution required greater knee joint 

involvement for the PD participants (Table 3). 

 

Insert Table 3 about here. 

 

Discussion 

 The first aim of this study was to investigate the lower limb joint moments of persons 

with PD and age-matched controls during self-paced stair ascent and descent. Given the 

reported disease-related declines in muscle strength, it was hypothesised that PD patients would 

exhibit lower joint moments than age-matched controls. Interestingly, while the results of this 

study typically indicated that people with PD demonstrate similar peak joint moments to age-

matched controls during stair negotiation, our results suggest that patients generally produce 
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greater knee joint moments during the actual ascending/descending component of the tasks (i.e. 

Step 2). During stair ascent, the increased knee extension moments were accompanied by lower 

hip flexion moments for the patient cohort. Considering these results in light of the poorer knee 

extensor strength recorded for the patient group, it could be argued that successful negotiation 

of stairs requires patients to exert a much greater effort than otherwise healthy older adults. 

This increased effort would likely contribute to poorer movement patterns and premature 

fatigue for people with PD, which could significantly increase their risk of tripping or 

overbalancing.  

 

To fully appreciate the risk of falling during stair negotiation, it is worth considering 

that, during stair descent, the body experiences a rapid negative (downward) acceleration [10]. 

Without adequate muscle strength, people with PD would experience increased difficulty 

coordinating the necessary lower limb muscles to decelerate the body and lower it safely to the 

next step [11, 27]. Interestingly, older adults have been shown to have lower knee joint 

moments than younger individuals during stair walking [9]. This difference was considered to 

be representative of a compensatory strategy employed by the older adults to ensure that they 

had an adequate reserve to recover, were they to overbalance [9]. However, considering the 

well-established age-related decrements in muscular strength, the lower peak moments 

observed in the older cohort would likely have represented an equivalent or greater effort for 

these individuals compared with the younger adults [9, 11].  Considering these findings 

collectively with the poorer knee extensor strength recorded for the PD patients, the larger knee 

joint moments during stair ascent and descent would likely suggest that people with PD are 

required to work at higher proportion of their maximum capabilities when performing these 

tasks.  As such, the negotiation of a typical flight of stairs would be likely to fatigue people 
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with PD to a greater extent than otherwise healthy individuals and ultimately increase their risk 

of falling during these activities.  

 

The second aim of this study was to ascertain whether the hip, knee and ankle joints 

contributed to the support moment impulse in a similar way for people with PD and controls. 

The results supported our hypothesis and indicated that people with PD place a greater 

dependence on the more proximal joints (i.e. hip and/or knee joints) and less emphasis on the 

distal joints (i.e. ankle joints) during stair negotiation. This finding was in agreement with a 

previous study that reported a significant reduction in the relative contribution of the ankle joint 

to the support moment impulse in people with PD during the ascent of a single step [18]. In 

contrast, the control participants relied more heavily on the ankle plantarflexors to contribute 

to the support moment impulse, which is commensurate with previous research [12, 28, 29]. 

Considering that the PD participants recorded significantly lower isometric strength for the 

knee extensors, but similar isometric strength for the ankle plantarflexors, the shifting of 

emphasis to the knee joint does not seem to be related to strength deficits around the ankle 

joint. Interestingly, the lower contribution made by the ankle joint to the support moment 

impulse was largely compensated for by the knee joint during stair ascent and by the hip and 

knee joints during stair descent. Ultimately, these compensations were adequate to either 

produce a support moment that was as equally large as the control participants or significantly 

greater, as observed during stair descent (Step 2). These results suggest that the changes in 

physiological function associated with PD may contribute to a greater proportion of the work 

being conducted by the knee extensors during stair walking.  

 

The findings of this study and separate research show that people with PD have 

significantly reduced strength for the knee extensors [30]. Hence, one might question why 
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people with PD place a heavier emphasis of this joint’s contribution to supporting the body’s 

mass during stair negotiation. A possible explanation for the emphasis on knee extensors may 

be the reduced degrees of freedom afforded by the knee joint. It is well understood that the hip 

and ankle joints feature large ranges of motion about each movement axis, but due to its 

anatomical design, the knee joint is largely restricted to movements in the sagittal plane (i.e. 

flexion and extension). As such, during stair walking, people with PD may preferentially rely 

on the knee joint to produce the necessary force to ambulate stairs, as its largely restricted 

motion makes it inherently more stable under normal conditions and, hence, may contribute to 

a greater sense of stability. With this rationale in mind, the findings of the current study can be 

interpreted clinically as evidence to support the maintenance and/or improvement of knee 

extensor strength in people with PD [31].  

 

The findings of this research should be considered in light of a number of potential 

limitations. First, while isometric knee extension and ankle plantarflexion strengths were 

assessed and reported, hip extension strength was not assessed in this study due to the 

difficulties associated with accurately assessing this outcome without specialized equipment 

(e.g. isokinetic dynamometer). As such, it is unclear whether the greater contribution made by 

the hip extensors to supporting the body’s mass during stair descent (Step 2) in the PD 

participants was compounded by strength deficits affecting these muscles.  Second, previous 

research has shown that psychological factors, such as fear of falling, can be as debilitating to 

gait speed as physical limitations [17]. As such, it could be argued that the differences observed 

in lower limb joint kinetics may have been attributable, at least in part, to the differences 

observed in balance confidence between the groups, which may have led to the PD group 

adopting a more “cautious” gait pattern (as evidenced by the slower walking speed and reduced 

cadence). However, the inclusion of walking speed, stance time and balance confidence as 



13 

 

covariates in our statistical models seems to suggest that the differences reported in this paper 

are not attributable to these factors, but rather represent genuine differences in the strategies 

used by patients to ascend and descend stairs. An appreciation of these differences should assist 

clinicians and physical therapists working with this patient group and may assist with 

developing targeted interventions that can reduce the risk of falls during stair ambulation. 

Future research should seek to investigate the importance of abduction and adduction moments 

and internal and external rotation moments in a larger cohort to provide additional insight into 

the gait patterns of people with PD during stair walking. 
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Figure Legends 

 

Figure 1: Graphical representation of the contributions of the hip, knee and ankle joint 

moments to the support moment (Nm.kg), with impulse (Nm.s) for each of the graph shown 

by the shaded areas for a patient with Parkinson’s disease during stair ascent.  
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Table Legends 

Table 1: Demographics, falls history, fear of falling, cognition, quality of life, medication use 

and disease-specific scores for the Parkinson’s disease and control participants. Data represent 

mean (+1 SD), absolute numbers (percentage sample)Ŧ or medians (range)¥. 

 

Table 2: Peak sagittal plane joint moments (Newton.metres/kilogram) during the first (1) and 

second (2) half of the stance phase of the stair ascent task and  the support moment impulse 

(Newton-metres.second) with the relative percentage contribution of the hip, knee and ankle 

joints presented. Data represent the estimated marginal means (and standard errors) from the 

linear mixed model analyses conducted with walking speed (0.34 m/s), stance time (0.91 s) and 

the Activities-specific Balance Confidence scale (79.76) entered as covariates. 

 

Table 3: Peak sagittal plane joint moments (Newton.metres/kilogram) during the first (1) and 

second (2) half of the stance phase of the stair descent task and the support moment impulse 

(Newton-metres.seconds) with the relative percentage contribution of the hip, knee and ankle 

joints presented. Data represent the estimated marginal means (and standard errors) from the 

linear mixed model analyses conducted with walking speed (0.32 m/s), stance time (0.76 s) and 

the Activities-specific Balance Confidence scale (81.12) entered as covariates. 
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Table 1. 

 Controls PD   
 (n = 12) (n = 12) Test p-value 
Demographics 
Age (years) 62.9 (8.0) 67.1 (8.2) 1 0.215 
Height (m) 1.7 (0.1) 1.7 (0.1) 1 0.489 
Mass (kg) 79.7 (13.3) 73.8 (14.9) 2 0.564 
Body Mass Index (kg/m2) 27.3 (3.0) 26.1 (3.8) 2 0.684 
     Falls and Fear of Falling 
Previous falls Ŧ 3 (25.0%) 3 (25.0%) 3 1.000 
ABC-6  92.6 (5.5) 66.0 (28.1) 1 0.004 
     Cognition and Quality of Life 
SMMSE 29.8 (0.4) 29.2 (1.0) 2 0.062 
SF-8 Physical component 56.6 (4.2) 48.2 (5.4) 2 0.001 
SF-8 Mental component  56.6 (3.9) 54.3 (4.3) 2 0.104 
PDQ-8 - 21.6 (15.9) - - 
     Neurological exam     
Disease duration (years) - 4.3 (2.0) - - 
MDS-UPDRS III - 26.6 (11.9) - - 
No PD medications Ŧ - 1 (8.3%) - - 
Levodopa dose (mg/day) - 695.3 (362.8) - - 
Dopamine agonists Ŧ - 2 (16.7%) - - 
COMT inhibitors Ŧ - 6 (50.0%) - - 
MAO inhibitors Ŧ - 4 (33.3%) - - 
Benzodiazepines Ŧ - 0 (0.0%) - - 
Freezing of Gait (N-FOG) - 8.6 (11.3) - - 
Hoehn & Yahr ¥ - 1.5 (1.0-3.0) - - 
Schwab & England ADL scale - 83.3 (8.6) - - 
     Strength      
Ankle plantarflexion (kg) 18.1 (3.1) 13.2 (5.5)  0.231 
Knee extension (kg) 32.7 (2.7) 22.3 (3.6)  0.031 
     ABC-6: 6-item Activities-specific Balance Confidence scale; SMMSE: Standardized Mini-Mental State 
Examination; SF-8: Short-Form 8; N-FOG: New Freezing of Gait questionnaire; PDQ-8: 8-item Parkinson’s 
Disease Questionnaire; MDS-UPDRS III: Motor subscale of the Unified Parkinson’s Disease Rating Scale; 
COMT Inhibitors: Catechol-O-Methyl Transferase Inhibitors; MAO Inhibitors: Monoamine Oxidase 
Inhibitors; Test 1: One-Way ANOVA; Test 2: Kruskal-Wallace Test; Test 3: Chi-square. 
 



Table 2.  

 Stair Ascent 
   Step 1  Step 2 
 Controls Parkinson’s 

disease p-value  Controls Parkinson’s 
disease p-value 

Joint Moments (Nm/kg) 
Hip Joint 

Flexion Peak 1 0.41 ± 0.04  0.32 ± 0.04  0.15  0.92 ± 0.05  0.76 ± 0.05  0.06 
Flexion Peak 2 0.31 ± 0.05  0.24 ± 0.05  0.36  1.07 ± 0.06  0.90 ± 0.05 0.05 

 Knee Joint 
Extension Peak -0.98 ± 0.06  -1.00 ± 0.06 0.83  -0.29 ± 0.04  -0.43 ± 0.04  0.02 

Flexion Peak 0.29 ± 0.03 0.23 ± 0.03 0.28  0.97 ± 0.08  0.80 ± 0.08  0.16 
  Ankle Joint 

Plantarflexion Peak 1 -0.59 ± 0.06 -0.57 ± 0.06 0.80  -1.30 ± 0.06  -1.17 ± 0.06  0.16 
Plantarflexion Peak 2 -1.41 ± 0.10  -1.30 ± 0.10  0.47  -2.31 ± 0.08  -2.12 ± 0.08  0.14 

  
Impulses (Nm.s) 

Support Moment -0.97 ± 0.06 -0.97 ± 0.06 0.98  -1.24 ± 0.06 -1.21 ± 0.06 0.81 
        Hip Joint        

Extensor Impulse -0.10 ± 0.03 -0.08 ± 0.03 0.75  -0.00 ± 0.00 -0.00 ± 0.00 0.99 
Support Contribution (%) 10.10 ± 3.04 8.99 ± 3.04 0.81  0.08 ± 0.06 0.20 ± 0.06 0.19 

        Knee Joint        
Extensor Impulse -0.27 ± 0.03 -0.32 ± 0.03 0.32  -0.05 ± 0.01 -0.10 ± 0.01 0.01 

Support Contribution (%) 25.99 ± 2.58 35.66 ± 2.53 0.02  2.50 ± 3.18 12.54 ± 3.15 0.05 
        Ankle Joint        

Ankle Joint moment -0.60 ± 0.05 -0.57 ± 0.05 0.63  -1.19 ± 0.06 -1.11 ± 0.06 0.45 
Support Contribution (%) 64.13 ± 4.40 55.29 ± 4.36 0.21  97.39 ± 3.16 87.31 ± 3.12 0.05 

 

 



Table 3.  

 Stair Descent 
   Step 1  Step 2 
 Controls Parkinson’s 

disease p-value  Controls Parkinson’s 
disease p-value 

Joint Moments (Nm/kg) 
Hip Joint 

Extension Peak 1 -1.38 ± 0.15 -1.64 ± 0.15 0.26  -0.66 ±0.12 -0.85 ± 0.12 0.33 
Extension Peak 2 -0.70 ± 0.10 -1.09 ± 0.10 0.02  -0.54 ± 0.09 -0.60 ± 0.10 0.68 

 Knee Joint 
Extension Peak 1 -1.44 ± 0.13 -1.66 ± 0.13 0.27  -0.74 ± 0.11 -0.86 ± 0.12 0.52 
Extension Peak 2 -1.03 ± 0.12 -1.48 ± 0.13 0.03  -0.60 ± 0.05 -0.74 ± 0.05 0.07 

  Ankle Joint 
Plantarflexion Peak 1 -0.23 ± 0.03 -0.20 ± 0.03 0.54  -0.49 ± 0.28 -0.61 ± 0.29 0.79 
Plantarflexion Peak 2 -0.62 ± 0.04 -0.64 ± 0.05 0.76  -1.17 ± 0.05 -1.11 ± 0.05 0.47 

  
Impulses (Nm.s) 

Support Moment -1.42 ± 0.13 -1.91 ± 0.14 0.03  -1.05 ± 0.08 -1.19 ± 0.08 0.26 
        Hip Joint        

Extensor Impulse -0.54 ± 0.07 -0.79 ± 0.07 0.02  -0.24 ± 0.05 -0.30 ± 0.05 0.37 
Support Contribution (%) 38.21 ± 1.14 40.26 ± 1.19 0.26  19.36 ± 1.66 21.90 ± 1.74 0.34 

        Knee Joint        
Extensor Impulse -0.68 ± 0.07 -0.93 ± 0.07 0.03  -0.27 ± 0.04 -0.40 ± 0.04 0.04 

Support Contribution (%) 47.36 ± 1.14 48.64 ± 1.19 0.48  23.70 ± 2.29 31.24 ± 2.39 0.05 
        Ankle Joint        

Ankle Joint moment -0.19 ± 0.01 -0.18 ± 0.02 0.42  -0.55 ± 0.02 -0.49 ± 0.02 0.08 
Support Contribution (%) 14. 49 ± 1.20  11.00 ± 1.24 0.07  57.07 ± 3.08 46.73 ± 3.21  0.04 
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