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A B S T R A C T

Background: The exposome is defined as encompassing all environmental exposures one undergoes from con-
ception onwards. Challenges of the application of this concept to environmental-health association studies in-
clude a possibly high false-positive rate.
Objectives: We aimed to reduce the dimension of the exposome using information from DNA methylation as a
way to more efficiently characterize the relation between exposome and child body mass index (BMI).
Methods: Among 1,173 mother–child pairs from HELIX cohort, 216 exposures (“whole exposome”) were char-
acterized. BMI and DNA methylation from immune cells of peripheral blood were assessed in children at age
6–10 years. A priori reduction of the methylome to preselect BMI-relevant CpGs was performed using biological
pathways. We then implemented a tailored Meet-in-the-Middle approach to identify from these CpGs candidate
mediators in the exposome-BMI association, using univariate linear regression models corrected for multiple
testing: this allowed to point out exposures most likely to be associated with BMI (“reduced exposome”).
Associations of this reduced exposome with BMI were finally tested. The approach was compared to an agnostic
exposome-wide association study (ExWAS) ignoring the methylome.
Results: Among the 2284 preselected CpGs (0.6% of the assessed CpGs), 62 were associated with BMI. Four
factors (3 postnatal and 1 prenatal) of the exposome were associated with at least one of these CpGs, among
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which postnatal blood level of copper and PFOS were directly associated with BMI, with respectively positive
and negative estimated effects. The agnostic ExWAS identified 18 additional postnatal exposures, including
many persistent pollutants, generally unexpectedly associated with decreased BMI.
Discussion: Our approach incorporating a priori information identified fewer significant associations than an
agnostic approach. We hypothesize that this smaller number corresponds to a higher specificity (and possibly
lower sensitivity), compared to the agnostic approach. Indeed, the latter cannot distinguish causal relations from
reverse causation, e.g. for persistent compounds stored in fat, whose circulating level is influenced by BMI.

1. Introduction

The exposome concept recognizes that individuals are simulta-
neously exposed to a multitude of environmental factors from concep-
tion onwards (Wild, 2005). The exposome might explain an important,
yet currently not accurately quantified, part of the variability in chronic
diseases risk (Manrai et al., 2017). Since the 2010s, environmental
epidemiology has progressively embraced the exposome concept and
complemented common “single exposure studies” with studies relying
on simultaneous measurements of several environmental factors (Agier
et al., 2019; Buck Louis et al., 2011; Lenters et al., 2016), which, al-
though not including all possible environmental factors, can be seen as
examples of exposome studies. Amongst the many challenges faced by
these exposome studies (Agier et al., 2016; Siroux et al., 2016) is a
possibly high false discovery rate (Agier et al. 2016). Specifically, a
simulation study considering a realistic exposome of 237 exposures
assessed in 1200 individuals, with a proportion of the health outcome
variability explained by the exposome varying between 3% and 70%,
demonstrated that regression-based methods had a suboptimal sensi-
tivity and high false discovery proportion (FDP) (Agier et al. 2016). All
of the approaches tested displayed a FDP well above 5% when there
was correlation within the exposome. The widely-used ExWAS (Expo-
some wide association study) approach, consisting in applying in-
dependent linear regression models and correcting association p-values
for multiple testing, provided the highest sensitivity, at the cost of a
very high FDP.

Dimension reduction could be a way to overcome this issue related
to false positive findings. Dimension reduction can be performed ag-
nostically, i.e. without relying on external information, with purely
statistical techniques, such as variable selection via penalized regres-
sion (Lenters et al., 2018; Zou and Hastie, 2005) or Partial-Least-Square
(PLS) regressions (Chun & Keles, 2010). However, as Agier et al. (2016)
showed, these methods, even if they tend to perform better than
ExWAS, are still expected to yield relatively high FDP.

Dimension reduction can also be biologically-driven. Relying on a
priori information, one may integrate into statistical models relevant
information from, for example, the toxicology and fundamental biology
fields. Typically, this could be done by restraining analyses to exposures
having biological plausibility, based on existing knowledge on asso-
ciations with biological layers or on pathways linking exposures and the
health outcome of interest. This logic has similarities with the concepts
of Mode of Action and Adverse Outcome Pathways used in toxicology
(OECD- Organisation for Economic Co-operation and Development,
2012; Vinken, 2013). DNA methylation can be regarded as such an
intermediate informative layer, as it is expected to be under environ-
mental (in addition to genetic) influences (Baccarelli et al., 2009; Feil
and Fraga, 2012; Joubert et al., 2016; Marioni et al., 2018) and as these
epigenetic alterations can result in modifications of disease risk (Ho
et al. 2012, Fasanelli et al., 2015). Epigenetic mechanisms, defined as
changes in a chromosome which result in heritable phenotype without
alterations in the DNA sequence (Berger et al., 2009), have a key role in
regulating transcription and thus cell differentiation, cell functioning,
and they can ultimately influence the phenotype.

An option to identify biomarkers associated with both exposures
and the health outcome from a single intermediate DNA methylation
layer is the Meet-in-the-Middle approach. It has been developed to

point out intermediate biomarkers by considering as putative mediators
the overlap between omics signals associated with an exposure and
omics signals associated with the outcome (Chadeau-Hyam et al., 2011;
Vineis and Perera, 2007).

In the case of an intermediate layer with a high dimension, one
would have to test the associations of the intermediate putative bio-
markers with exposures and health, which might entail a high false
positive rate, in particular in the context of correlated exposures or
biomarkers. It would appear relevant here to reduce the dimension of
the intermediate layer, focusing on biological pathways (or inter-
mediate biomarkers) a priori relevant for the outcome of interest.

In this study, we aimed to identify, in an exposome context, en-
vironmental factors associated with child BMI, by using information
from child methylome layer to reduce the exposome dimension.
Childhood obesity and overweight, whose prevalence has rapidly in-
creased over the last three decades (Finucane et al., 2011), are multi-
factorial conditions, and the most important risk factors, genetic pre-
dispositions and energy imbalance, may not suffice to fully explain the
magnitude and rapidity of their recent prevalence increase (Park et al.,
2017). The effects on BMI of some environmental factors, such as ma-
ternal smoking during pregnancy (Oken et al., 2008) or endocrine and
metabolic disruptors exposures in early life (Thayer et al., 2012), have
already been identified (Agay-Shay et al., 2015; Holtcamp, 2012). The
environmental obesogenic hypothesis states that these early exposures
play a key role in future obesity risk by altering metabolic programming
(Janesick and Blumberg, 2011; Park et al., 2017). Only a few large
multi-exposures (Braun, 2017; Fan et al., 2017; Lauritzen et al., 2018)
or methylome-wide (Fradin et al., 2017; Rzehak et al., 2017) ap-
proaches to the study of child postnatal growth have been conducted.

2. Materials and methods

2.1. Overall strategy

We relied on the HELIX project, in which the exposome (pregnancy
and childhood), the DNA methylome (from peripheral blood in child-
hood) and BMI were assessed in 1173 mother–child pairs (Haug et al.,
2018; Tamayo-Uria et al., 2019). Biological information from genetic
databases was used to a priori reduce the methylome dimension. We
implemented a « Meet-in-the-Middle » approach to identify exposures
sharing differentially methylated CpGs (i.e. methylation sites) with
BMI, as a way to build a reduced exposome. The association of this re-
duced exposome with BMI was then tested.

More precisely, the approach consisted in 5 steps:

a) preselection of CpGs located in genes relevant for BMI, using ex-
ternal databases;

b) test of the associations between the methylation levels of these CpGs
and BMI;

c) test of the association between the methylation levels of the CpGs
found to be associated with BMI in b) and each exposure, using child
BMI as an adjustment factor, allowing to obtain a reduced exposome;

d) test of the association between BMI and the reduced exposome;
e) comparison with a purely agnostic ExWAS approach ignoring the

methylome (i.e. without steps a) to c) allowing exposome dimension
reduction, sensitivity analysis I).
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We also implemented mediation analyses for the significant asso-
ciations of the main approaches, sensitivity analyses testing the same
approach without initial a priori selection of BMI-relevant CpGs, and
additionally correcting for cell-type, as well as a sensitivity analysis
considering the cell-types as the intermediate layer.

2.2. Study population and outcome

The study was part of the Human Early Life Exposome (HELIX)
project (Maitre et al., 2018; Vrijheid et al., 2014), which aimed to de-
scribe the early-life exposome and its relations with child development
and health.

In HELIX, six population-based European birth cohorts were pooled:
BiB (Born in Bradford; United Kingdom) (Wright et al., 2013), EDEN
(Étude des Déterminants pré et postnatals du développement et de la
santé de l’ENfant; France) (Heude et al., 2016), INMA (INfancia y Medio
Ambiente; Spain) (Guxens et al., 2012), KANC (Kaunas Cohort; Li-
thuania) (Grazuleviciene et al., 2015), MoBa (Norwegian Mother, Fa-
ther and Child Cohort Study; Norway) (Magnus et al., 2016) and Rhea
(Greece) (Chatzi et al., 2017), summing up to 1,301 mother–child pairs
from singleton pregnancies for whom external exposures (Tamayo-Uria
et al., 2019), health outcomes and confounders were measured and
harmonized.

Height and weight were measured according to standardized pro-
cedures between 6 and 10 years of age (Maitre et al., 2018). BMI was
calculated as the mass in kilograms divided by the squared height in
meters. We used age- and sex-standardized z-scores (named hereafter
zBMI) according to the international World Health Organization re-
ference curves (de Onis et al., 2007) in order to allow comparison with
other studies on child BMI and to take into account the age-related shift
in BMI in childhood. Various lifestyle, social and anthropometric factors
were additionally assessed (Table 1).

2.3. Exposome assessment

Details of the exposome assessment have been published elsewhere
(Haug et al., 2018; Tamayo et al., 2018). Among the 234 exposures
assessed in HELIX (Tamayo et al., 2018), we excluded exposures with a
time window of one day or one week, which were a priori considered
unlikely to influence BMI. This led to 216 prenatal and postnatal ex-
posures (list available in Supplementary Material 1). Metals, organo-
chlorines, organophosphate pesticides, polybrominated diphenyl ethers
(PBDE), perfluorinated alkylated substances (PFAS), phenols and
phthalates were assessed by biomarkers in mothers during pregnancy
from one urine or blood sample and in children at the time of the
clinical examination, from a pool of two urine samples or one blood
sample (Casas et al., 2018; Haug et al., 2018). Built environment ex-
posures, indoor air exposures, lifestyle factors, meteorological data,
natural spaces quantification, noise, traffic, socio-economic capital and
concentrations of disinfection by-products in drinking water were as-
sessed during pregnancy and during the year before child examination
by environmental models and questionnaires.

Exposures were transformed to approach normality, using a Box-
Cox power transformation approach that chooses among log-trans-
forming or raising the data to the powers − 2, −1, −0:5, 1/3, 0.5, 1, or
2. Transformation chosen for each variable is detailed in
Supplementary Material 1. Exposures were standardized using their
interquartile range after imputing missing data for all exposures using
mice R package (Buuren and Groothuis-Oudshoorn, 2011).

2.4. DNA methylation

Peripheral blood was collected in EDTA tubes during the clinical
examination that took place when children were between 6 and
10 years old. DNA was extracted from buffy coat; DNA methylation was
assessed with the Infinium Human Methylation 450 beadchip

(Illumina), following the manufacturer’s protocol. Sample locations on
chips were drawn at random balancing chips for cohort and infant sex.
Some samples were analysed in duplicate and a control HapMap sample
was added in each 96-well plate.

DNA methylation data were pre-processed using the minfi R
package (Aryee et al., 2014). A first quality control of the data was done
with MethylAid package (van Iterson et al., 2014); probes with low call
rate were then filtered following guidelines of Lehne et al. (2015). The
functional normalization method was further applied, including Noob
background subtraction and dye-bias correction (Triche et al., 2013).
Several quality control checks were performed: sex consistency using
the shinyMethyl package (Fortin et al., 2014); consistency of duplicates;
genetic consistency for the samples that had genome-wide genotypic
data. Finally, duplicated samples and control samples were removed as
well as probes to measure methylation levels at non-CpG sites (Jang

Table 1
Characteristics of the 1,173 mother–child pairs from HELIX cohort.

Characteristic Mean (SD) n (%)

Child BMI (kg/m2) 16.9 (2.7)
Child sex
Female 529 (45)
Male 644 (55)

Child age (years) 7.9 (1.5)
Cohort
BiB 203 (17)
EDEN 146 (12)
INMA 215 (18)
KANC 198 (17)
MoBa 212 (18)
RHEA 199 (17)

Maternal education
Low 176 (15)
Middle 402 (34)
High 595 (51)

Maternal pre-pregnancy BMI (kg/m2) 25.0 (5.0)
Parity before index pregnancy
0 530 (45)
1 430 (37)
2 or more 213 (18)

Trimester of conception
January-March 368 (31)
April-June 234 (20)
July-September 260 (22)
October-December 311 (27)

Maternal tobacco smoke pregnancy exposure
None 624 (53)
Only passive exposure 374 (32)
Smoker 175 (15)

Child postnatal tobacco smoke exposure
Not exposed 745 (64)
Exposed 428 (36)

Maternal age (years) 30.7 (4.9)
Birthweight
less than 2500 g 40 (4)
2500 to 3500 g 662 (56)
3500 to 4000 g 357 (30)
≥ 4000 g 114 (10)

Breastfeeding duration
less than 10.8 weeks 361 (31)
10.8 to 34.9 weeks 419 (36)
greater than 34.9 weeks 393 (34)

Parents born in the country of inclusion
None 134 (11)
Only one 58 (5)
Both 981 (84)

Ethnicity
African 7 (1)
Asian 19 (2)
European ancestry 1048 (89)
Native American 2 (0)
Pakistani 79 (7)
Other 18 (2)
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et al., 2017). A final filtering was performed to eliminate probes with a
single-nucleotide polymorphism (SNP), probes that cross-hybridize and
probes on sex chromosomes, restricting to 386,518 CpG probes avail-
able for 1,192 subjects. The study was performed on the 1173 subjects
among them who also had valid exposures data.

We then used Combat procedure to remove the batch effects sup-
ported by the slide. Methylation levels were expressed as Beta values
(average methylation levels for an individual, between 0 for a never
methylated CpG site and 1 for an always-methylated CpG site).

Cell types were computed according to Houseman et al. (2012) al-
gorithm and Reinius reference panel (Reinius et al., 2012); tests of as-
sociations including methylation levels were corrected for cell types
only in a sensitivity analysis.

Correlation within the methylome was estimated by averaging the
Pearson’s correlation within 10 sets of 2284 randomly selected CpGs
(same size as the restricted methylome, see next paragraph), to avoid
computing all pairwise correlations between the 386,518 CpGs.

2.5. A priori preselection of BMI-relevant CpGs

Biological pathways a priori relevant for BMI were selected using
the KEGG database (Tanabe and Kanehisa, 2012), searching with the
key words “growth” “obesity” and “fat” in the following categories:
“Human energy metabolism”, “Human lipid metabolism”, “Human
endocrine system”, “Human digestive system”, “Human Excretory
system”, “Human endocrine and metabolic diseases”, “Human genetic
Information Processing: ‘Transcription – Translation - Folding, sorting
and degradation - Replication and repair’ ”. We thus identified a list of
16 pathways (Supplementary Material 2) and the corresponding list of
genes, which were restricted to the CpGs identified as enhancers,

leading to a final dataset of 2284 CpGs belonging to 387 genes and 16
different biological pathways (Supplementary Material 2), which we
further refer to as the “restricted methylome”. Correspondence between
genes and CpGs as well as enhancer annotation and CpGs was based on
Illumina annotation (Hansen, 2016). A sensitivity analysis not re-
stricted to enhancers and these 16 pathways was performed.

2.6. Meet-in-the-Middle and ExWAS approaches – Statistical analyses

Our Meet-in-the-Middle design itself consisted in three successive
steps, as described in 2.1 (steps b), c) and d)): in step b), we tested the
association of the methylation levels of the preselected CpGs with BMI
considered as the outcome; in step c), we tested the associations (ad-
justed for child BMI) of each exposure with the CpGs found to be as-
sociated with BMI in b), leading to the identification of a “reduced
exposome”; step d) is the test of the association of this reduced expo-
some (the exposures found to be associated to some CpGs in step c))
with the outcome.

Univariate linear regressions models were applied, and p-values
were corrected for multiple testing using a FDR (False-Discovery Rate)
control procedure (Benjamini & Hochberg, 1995) at all steps involving
regression modelling. Adjustment factors coded linearly in all our re-
gression analyses were maternal pre-pregnancy BMI (additionally
coded with a quadratic term in the exposome-outcome associations
test), maternal education, maternal age, parental country of birth,
maternal smoking during pregnancy, cohort (fixed effect), parity, tri-
mester of conception, child age and child sex (see Table 1 for the ca-
tegories). We additionally adjusted analyses of postnatal exposures ef-
fects for birth weight, breastfeeding duration and passive smoking
during childhood (see Table 1) and models including methylation data

Fig. 1. Workflow of the main statistical analyses. (in color; 1-column fitting image).
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for ethnicity (self-reported by parents, with different questions across
the cohorts). At step c), correction for multiple testing was done con-
sidering together all associations tested between exposures and CpGs,
i.e. a number of test equal to the product of the number of exposures

with the number of CpGs associated with zBMI. A mediation analysis
using package MMA (Yu and Li, 2017) was performed for exposures
found associated with the outcome in step d), considering the CpGs
both associated with the exposure and the outcome.

Fig. 2. Manhattan plots of the FDR corrected p-values of adjusted associations obtained with the Meet-in-the-middle approach applied on the reduced methylome at
steps b) and c). A: Associations between preselected CpG and zBMI. Each colour corresponds to a gene. The black vertical line shows the (FDR-corrected) 0.05
significance level. Lowest p-value: 3.20x10-3. B. Associations between exposures and CpGs associated with childhood zBMI. Each color corresponds to a different
exposure. The black vertical line shows the (FDR-corrected) 0.05 significance level. Lowest p-value: 5.66x10-7. BPA: Bisphenol A; PFOS: Perfluorooctanesulfonic acid.
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2.7. Sensitivity analyses and test of selection relevance

We compared our results to those obtained with a totally agnostic
approach, consisting in an ExWAS between the exposome and zBMI,
ignoring the methylome, with exactly the same statistical methods as in
our step d) (sensitivity analysis I). Our agnostic ExWAS has some dif-
ferences with that performed by Vrijheid et al. (2020) in Helix data
(submitted manuscript, available upon request). In particular, we re-
stricted the population of 1301 children used by Vrijheid et al. (2020)
to 1173 children with methylome data (see paragraph 2.4.), and we
chose to additionally adjust for trimester of conception, ethnicity and
pre- and postnatal smoking, which could influence the methylome. We
additionally ran two agnostic (prenatal and postnatal) multivariate
linear regression models simultaneously adjusted for the whole expo-
some and potential confounders and corrected for multiple testing.

We performed three other sensitivity analyses. First, we repeated
our approach with an additional adjustment on cell-type heterogeneity
for all association tests involving the methylome (sensitivity analysis
II). Second, we repeated our approach on the unrestricted methylome,
i.e. without the first step of a priori selection of CpGs using information
from biological pathways database and annotation (i.e. removing step
a) and starting from step b) with 386,518 CpGs). This modified step b)
corresponds to a methylome-wide analysis, or MWAS (methylome-wide
association study) in which we tested the association between methy-
lation levels of the whole unrestricted methylome and zBMI (sensitivity
analysis III).

To further inform the relevance of the a priori CpG selection of step
a), the proportion of CpGs belonging to our candidate list of a priori
BMI-relevant CpGs (i.e. our restricted methylome) among CpGs whose
methylation levels was found associated with zBMI by MWAS was
compared to the corresponding proportion in the whole methylome.

A workflow of the statistical analyses is shown Fig. 1.
We additionally performed a fourth sensitivity analysis (sensitivity

analysis IV) by repeating the whole Meet-in-the-Middle approach con-
sidering the cell-types instead of methylation data as the intermediate
layer.

3. Results

3.1. Population characteristics

At the time of BMI measurement, mean age was 7.9 years. Mean
child BMI was 16.9 kg/m2 (5th and 95th percentiles: 13.8; 22.4), with
substantial differences between cohorts (Supplementary Material 3),
INMA and RHEA showing higher zBMI compared to the other cohorts.
The other characteristics of the study population are given Table 1 and
by cohorts in Supplementary Material 4.

The mean levels of the 216 exposures considered are displayed in
Supplementary Material 1. Mean absolute correlation between quanti-
tative exposures was 0.11 (5th and 95th percentiles: 0.00, 0.35); the
distribution of the coefficients of correlation is given in Supplementary
Material 5.

Within the whole methylome, the estimated mean correlation was
0.09 while it was 0.12 for the 2284 CpGs of the reduced methylome

(5th and 95th percentiles: 0.00; 0.37).

3.2. Meet-in-the-Middle approach

The analysis testing the association between the restricted methy-
lome and zBMI (step b)) identified 62 CpGs belonging to 43 different
genes (FDR adjusted p-values ≤ 0.05; Supplementary Material 6). The
mean correlation among these CpGs was 0.59. Fig. 2A shows a Man-
hattan plot of the FDR-adjusted p-values.

The test of association of these 62 CpGs with each of the 216 en-
vironmental factors adjusted for child BMI (step c)) identified 4 ex-
posures associated with at least one CpG (Fig. 2B, Table 2,
Supplementary Material 7): copper (postnatal level), BPA (Bisphenol A,
postnatal level), PFOS (Perfluorooctanesulfonic acid, postnatal level)
and one meteorological variable (humidity, pregnancy average); this
constituted our reduced exposome. In total, 53 CpGs were associated
with at least one exposure.

The last step (step d)) identified that within the reduced exposome,
postnatal blood copper and PFOS levels were directly associated with
zBMI. The corresponding estimated parameters were respectively 0.22
(95% CI: 0.14; 0.30; adjusted p-value, 1.43x10-6) and −0.13 (95% CI:
−0.23; −0.04; adjusted p-value, 0.02) (see Table 3 for the other
components of the reduced exposome). A mediation analysis quantified
that for copper, the 52 CpGs mediated 29% of the total effect of post-
natal blood copper level on zBMI, while for PFOS, the 12 selected CpGs
mediated 28% of the total effect of postnatal blood PFOS level.

3.3. Agnostic exposome-wide approach

An agnostic ExWAS using FDR correction for multiple testing be-
tween the whole (not reduced) exposome and zBMI identified 20
postnatal exposures significantly associated with zBMI (Sensitivity
analysis I, Table 4). These included postnatal copper and PFOS level
(also identified at step d) of the main approach). In addition to metals
and perfluorinated alkylated substances (PFAS), these exposures be-
longed to the organochlorines, polybrominated diphenyl ethers (PBDE),
lifestyle and indoor air pollution families. Organochlorines, PBDE and
PFAS compounds, as well as postnatal cobalt levels showed negative
regression coefficients, corresponding to a decreased zBMI with in-
creasing exposure levels. The most significant associations were ob-
served for 5 of the postnatal PCB levels, which formed a group with
higher correlation (mean absolute correlation, 0.50) than the rest of the
quantitative exposome (mean absolute correlation, 0.11). When ap-
plying a multiple linear regression model simultaneously adjusted for
the whole exposome and potential confounders, 2 (postnatal) variables
were selected after multiple testing correction: copper (positive para-
meter) and HCB (negative parameter, Supplementary material 8).

3.4. Other sensitivity analyses

In order to determine if our a priori CpGs selection led to a con-
centration of information, we quantified the overrepresentation of our
preselected BMI-relevant CpGs among the discoveries of a methylome-
wide analysis linking the whole methylome to zBMI. As expected, the

Table 2
Number of CpGs associated with both exposures and zBMI in the adjusted associations between the exposome and CpGs associated with zBMI in 1,173 children from
the HELIX cohort (ExWAS model adjusted on zBMI, step c) of the Meet-in-the-Middle approach applied on the reduced methylome). Results are presented only for
exposures associated with a (stringently corrected for multiple hypothesis testing) p-value of less than 0.05 in exposure-CpGs ExWAS-type analyses, with CpGs being
previously selected in a CpGs-zBMI ExWAS-type analysis. *Details of the CpGs and genes are given in Supplementary Material 6.

Exposure Number of CpGs associated both with the exposure and zBMI Number of corresponding genes*

Copper (postnatal) 52 37
Bisphenol A (BPA) (postnatal) 15 14
Perfluorooctanesulfonic acid (PFOS) (postnatal) 12 12
Humidity average (pregnancy) 1 1
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CpGs associated with zBMI in an MWAS considering the whole expo-
some were enriched in enhancers CpGs selected as being relevant for
BMI from KEGG database (1.22%) compared to the other CpGs (0.46%,
a ratio of 2.6 to 1). However, most significant associations found by the
MWAS were not part of the a priori selected list of CpGs (1760 out of
1788, Supplementary Material 9).

When the whole Meet-in-the-Middle was repeated without the step
of CpGs preselection using external biological information (sensitivity
analysis III), final results differed from those obtained using the re-
stricted methylome: additionally to blood postnatal copper and PFOS
levels (which were also found significant in this analysis), blood post-
natal hexachlorobenzene (HCB), Pentabromodiphenyl ether (PBDE)
153 and dichlorodiphenyltrichloroethane (DDT) levels (with negative
associations with zBMI) and blood postnatal caesium level (with a po-
sitive association with zBMI) were identified in step d) (Table 5). These
5 exposures were also associated with zBMI in the agnostic ExWAS
approach (sensitivity analysis I). To give more details, 1788 out of
386,518 CpGs were associated with zBMI in step b) (Fig. 3A and
Supplementary Material 10). In step c) of the analysis, 28 exposures
were significantly associated with at least one of these 1788 CpGs.
Among them, postnatal blood levels of copper, BPA and PFOS
(Supplementary Material 11 and Fig. 3B) and prenatal humidity ex-
posure, which had all been previously found in the main analysis, were
associated with respectively 110, 449, 180 and 47 CpGs. All the other
exposures were associated with less than 10 CpGs.

When we repeated our analysis adding a correction for blood cell-
types (sensitivity analysis II), no association was significant at step b)
(lowest p-value with Benjamini-Hochberg correction: 0.72). When we
repeated the analysis corrected for blood cell-types without the pre-
selection step, we found one association between the whole methylome
and zBMI, but the corresponding CpG (cg02032125) was not associated
with any exposure at step c) so that no exposure was eventually selected
as associated with BMI.

When we considered the cell-types instead of the methylation data
as our intermediate layer, (sensitivity analysis IV), results were very
similar to those of the main analysis: the reduced exposome consisted in
three exposures, postnatal blood copper and BPA levels and average
pregnancy humidity exposure. In the last step, only copper level was
associated with zBMI. The three cell-types associated with both copper
and zBMI mediated 13% of the effect of copper on zBMI. Detailed re-
sults of sensitivity analysis IV are available in Supplementary Material
12.

4. Discussion

We implemented a modified Meet-in-the-Middle approach among
1,173 mother–child pairs to identify components of the exposome in-
fluencing child BMI through DNA methylation changes. The analysis
highlighted postnatal copper blood level as being positively associated
with zBMI, an association supported by changes with copper levels in
the methylation levels of 52 CpGs from genes that are relevant for BMI

based on a priori knowledge. Blood perfluorooctanesulfonic acid post-
natal level was also found related to zBMI in our Meet-in-the-Middle
approach, an association likely due to reverse causality.

Our work is one of the first studying the link of an exposome in-
cluding both chemical and nonchemical stressors during the prenatal
and postnatal time windows with child BMI. Beside Helix studies, the
largest studies considering multiple chemical exposures and child BMI
considered up to 27 components (Agay-Shay et al., 2015; Fan et al.,
2017; Lauritzen et al., 2018)).

The efficiency of our Meet-in-the-Middle approach to detect true
predictors of zBMI within the exposome relies on three main assump-
tions: 1) that part of the effects of the exposome on child BMI are
mediated by changes in methylation levels that can be observed from
peripheral blood; 2) that these methylation changes are strong enough
to be detectable and that they can be used to select plausible exposures
and thus reduce the exposome dimension; 3) that existing databases of
biological pathways and regulatory regions (enhancers) allow to re-
levantly reduce the dimension of the methylome a priori to study its
association with BMI. We discuss here the relevance of these three as-
sumptions, as well as our choice not to correct for cell-types hetero-
geneity.

4.1. Are some effects of the exposome on child BMI likely to be mediated by
the methylome?

Methylation has been reported to mediate part of the effect of
specific exposures on health. This has been suggested for example for
smoking effects on health: Fasanelli et al. (2015) pointed methylation
mediation for smoking effects on lung cancer and Wahl et al. (2018)
showed that site-specific methylation can mediate the effect of smoking
on the expression of inflammatory proteins. For BMI, evidence of
mediation arises from animal toxicological studies, which showed that
long-term obesity risk can result from effects of early overfeeding/un-
derfeeding mediated by methylation changes on specific regulatory
CpG sites in different tissues (Carone et al., 2010; Lillycrop et al., 2008,
2005; Plagemann et al., 2009). In humans, studies based on a subjects
who experienced famine during intra-uterine life suggested that blood
cells methylation could mediate effects of prenatal undernutrition on
later overweight: early-life exposures to famine had an effect on CpGs
regulating growth and metabolic mechanisms involved in obesity
(Heijmans et al., 2008; Tobi et al., 2009). In addition, such a mediation
between prenatal exposure to famine and adult metabolic traits has
been statistically demonstrated; indeed, studies (Tobi et al.,
2018a;2018b) pointed out that even if, from a biological point of view,
DNA methylation measured in peripheral blood was not likely to be a
causal mediator of BMI change, it could be a proxy of epigenetic reg-
ulation changes in specific tissues, and thus allow to detect mediation.
For early exposures other than nutrition, little evidence is currently
available regarding an effect on BMI or growth mediated by epigenetic
changes (Richmond et al., 2015): however, Cao-Lei et al. (2015) sug-
gested that some gene-specific methylation could mediate part of the

Table 3
Adjusted associations between the reduced exposome and zBMI in 1,173 children from HELIX cohort (ExWAS model, step d) of the Meet-in-the-Middle approach
applied to the reduced methylome). “Significant” associations are indicated in bold.

Group Label Unit Transformation Effect estimate* 95% CI Uncor-rected
p-Value

FDR-corrected
p –Value

Meteorological Humidity (pregnancy) % None 0.05 −0.34; 0.44 0.81 0.81
Phenols BPA (postnatal) µg/g Log2 −0.07 −0.14; 2.8x10-4 0.05 0.07
Metals Copper (postnatal) µg/L Log2 0.22 0.14; 0.30 3.57x10-7 1.43x10-6

Perfluorinated alkylated
substances (PFAS)

PFOS (postnatal) μg/L Log2 −0.13 −0.23; −0.04 7.69x10-3 0.02

* Adjusted change in mean zBMI for each unit increase in transformed exposure level. Models were adjusted for maternal BMI, maternal education, maternal
smoking during pregnancy, parental country, cohort, parity, trimester of conception, ethnicity, child age and child sex and additionally only for postnatal exposures
birth weight, passive smoking during childhood and breastfeeding duration.
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effect of prenatal maternal stress child BMI and central adiposity. Less
directly, several exposures were identified as possibly influencing epi-
genetic marks, and some of these alterations may occur on genes in-
volved in signaling pathways controlling growth and adipose tissue
development (Richmond et al., 2015). Importantly, effects in the op-
posite causal directions are also likely, in that changes in BMI could
influence methylation levels on specific loci, as suggested by Dekkers
et al. (2016) and Richmond et al. (2016).

Our approach, as well as the agnostic ExWAS, identified postnatal
blood copper level as positively associated with zBMI and additionally
with changes in BMI-relevant CpGs. The mediating effect that we esti-
mated was of 29% of the estimated total copper effect. Copper is an
essential trace element involved via oxidoreduction reactions in a broad
range of processes, including energy expenditure, mitochondrial re-
spiration, antioxidant defences and inflammation (Tisato et al., 2010).
Human copper intake is most often due to presence of copper in
drinking water, food or vitamin supplement (Brewer, 2010; Pal et al.,
2014) and is known to influence blood copper level (Silverio Amancio
et al., 2003; Uauy et al., 1998). Elevated copper concentrations have
been observed in many diseases, including cancer, Alzheimer and me-
tabolic diseases (Brewer, 2010; Salustri et al., 2010; Squitti et al., 2009;
Tisato et al., 2010). Specifically, a positive link between copper level
and high BMI or obesity in children has been previously described in
the same data from HELIX (Vrijheid et al., 2020) and elsewhere (Fan
et al., 2017; Lima et al., 2006; Yakinci et al., 1997). These studies in
children are cross-sectional and an important question relates to the
direction of any causal link between copper level and obesity. Over-
weight might disrupt copper level, for example due to a higher food
intake linked to an increased appetite, as hypothesized by Yakinci et al.
(1997), or due to metabolic changes. Other arguments exist in favour of
copper being a proximal cause of overweight. Nutrition studies in
human showed that changes in copper intake (depletion or supple-
mentation) can have adverse health effects such as metabolic and car-
diovascular abnormalities (Klevay, 2018; Milne and Weswig, 2018).
The toxicity of copper (Brewer, 2010) and its ability to induce oxidative
stress are well-known in humans (Brewer, 2010; Uriu-Adams and Keen,
2005) and from animal models (Galhardi et al., 2004; Pereira et al.,
2016). Part of this process can occur via methylation changes, as shown
in zebrafish, in which stress-related gene expression can be modified by
early-life copper exposure (Dorts et al., 2016). Although we cannot
formally exclude a situation in which copper levels are influenced by
the child’s overweight status (e.g. as in Fig. 4D), in particular due to the
cross-sectional design of our study of DNA methylation-BMI links, the
above-mentioned experimental and prospective studies make copper a
plausible causal biomarker or predictor of BMI , with clues for effects
possibly mediated by methylation changes (as in Fig. 4A).

On the contrary, the negative and less strong association of PFOS
level with zBMI may correspond to reverse causality (see below). An
influence of PFOS levels on blood or serum methylation change has
some plausibility (Ruiz-Hernandez et al., 2015; Watkins et al., 2014).

4.2. Can information be borrowed from the blood methylome to reduce the
dimension of the exposome?

Dimension reduction is one of the possible cures of the curse of
dimensionality (Jimenez and Landgrebe, 1998). Assuming that part of
the effects of the exposome on BMI are mediated by the methylome, and
that blood methylome constitutes a proxy of methylation levels in other
target organs, identifying exposures associated with methylation
changes on CpGs relevant for BMI is a way to restrict the analysis to a
subgroup of exposures with higher likelihood of having an effect on
BMI. If the a priori CpG selection is accurate, one can expect the re-
duced exposome to contain a higher proportion of true predictors of
BMI than the full exposome. In a situation of expected limited power,
testing only the association of this reduced exposome with BMI could
lead to a better specificity (fewer false positives) than an agnosticTa
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ExWAS performed on the whole exposome, which may suffer from high
FDP because of the correlation within the exposome (Agier et al., 2016).
This approach however comes at the cost of possibly excluding true BMI
predictors within the exposome whose effect on BMI are not identifiable

from the blood methylome. Yet, we considered a high FDP to be of
greater concern for exposome studies than low sensitivity.

Compared to the classical Meet-in-the-Middle framework (Vineis
et al., 2013), we additionally adjusted for the outcome when testing for

Fig. 3. Sensitivity analysis III - Meet-in-the-Middle approach without a priori preselection of CpGs: Manhattan plots of the FDR corrected p-values of adjusted
associations obtained with the Meet-in-the-middle approach applied on the whole methylome at steps b) and c). A: Associations between all CpG and zBMI. Each
colour corresponds to genes. The black line is the (FDR-corrected) 0.05 significance threshold. Lowest p-value: 2.04 × 10-4. B. Associations between exposures and
CpGs associated with childhood zBMI. Each colour corresponds to a different exposure. Lowest p-value: 4.51 × 10-6.
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associations between exposures and CpGs. This adjustment was meant
to exclude some cases of spurious association between the exposome
and the methylome. Thus, we used this tailored Meet-in-the-Middle
approach with a different goal than mediators identification, to focus
on a subset of the exposome relevant for the considered outcome, with
the ultimate goal to increase specificity.

We used ExWAS-type methods to identify our reduced exposome,
which has a possibly high sensitivity and an expected high false positive
rate (Agier et al. 2016). This could make our reduced exposome pos-
sibly inaccurate, containing exposures selected by chance even if the
test is adapted to the underlying causal structure. However, our reduced
exposome was considerably smaller than the full exposome (4 ex-
posures vs. 216) and our results provided far fewer discoveries (2 vs. 20)
than an agnostic ExWAS ignoring the methylome data. This lower
number of discoveries is not consistent with our approach having a
higher rate of spuriously mediated exposures. Rather, it could be ex-
plained by our approach having a lower FDP and/or a lower sensitivity.
To discuss these hypotheses, we compare the plausibility of the results
of the Meet-in-the-Middle approach and of the agnostic ExWAS ob-
tained in the same population.

As discussed before, copper, identified by both approaches, is a
plausible causal predictor of BMI mediated by methylation. Among the
19 other exposures significantly associated with zBMI in the agnostic
approach, four associations corresponded to positive slopes: postnatal
blood caesium level, prenatal maternal active smoking and postnatal
indoor particulate matter (PM2.5) concentration and absorbance. The
last three associations may be (at least partly) due to the well-known
effect of prenatal and postnatal smoking on the obesity (Oken et al.,
2008; Vázquez Nava et al., 2006): indeed, postnatal smoking variables
were used to compute indoor particulate matter levels. An odd ratio
greater than 1 was also reported for the influence of high urinary
caesium levels on diabetes, an obesity-related outcome (Menke et al.,
2016). The remaining 15 associations corresponded to negative slopes
(that is, a lower BMI with increasing exposure levels assessed in child

blood): it was the case for postnatal blood levels of perfluorinated
compounds, cobalt and of persistent organochlorine compounds (some
PCBs, DDT (an insecticide), its metabolite DDE, and HCB). For some of
these exposures, associations of prenatal levels with overweight or
obesity have been reported in the literature. PFAS, including PFOS,
prenatal exposures have been associated with higher BMI in childhood
and adulthood (Braun, 2017; Lauritzen et al., 2018; Saikat et al., 2013);
obesogenic effects of early-life PCBs levels have also been reported
(Heindel and vom Saal, 2009; Thayer et al., 2012). However, for
childhood exposure, several studies found negative associations of PCBs
(Rönn et al., 2011) and PFAS (Nelson et al., 2010) with BMI, similarly
to our results. These negative associations may be indicative of reverse
causality. This is supported by the facts that 1) the postnatal exposome
and outcome were assessed simultaneously; 2) lipophilic compounds
such as PFAS, PCBs and DDT are stored in fat, which makes the blood
level a possibly inaccurate marker of exposure: studies on seals showed
that, for identical levels of exposures, higher persistent organic pollu-
tants (POP) levels in blood are found in thin compared to fatter animals
(Debier et al., 2006; Lydersen et al., 2002). In humans, Rönn et al.
(2011) found positive associations of fat mass with blood levels of
lightly chlorinated PCBs with fat mass and negative association for
highly chlorinated PCBs, which are more lipophilic and therefore more
stored in fat. This is in favour of the negative associations between POPs
(persistent organic pollutants) levels and BMI being explained by fat
levels influencing the blood POPs levels (causal models C to K, Fig. 4),
rather than by POPs influencing adiposity (causal models A or B). Un-
fortunately, we could not access fat tissue POP concentrations, which
may have been a better exposure biomarker.

The Meet-in-the-Middle approach did not select PCBs, DDT, DDE,
HCB and other POPs highlighted by the agnostic ExWAS. This may be
due to our approach coping more efficiently with reverse causality. A
recent simulation study showed that Sobel’s test of mediation, under
specific hypotheses, has far better detection rates for true mediation
effects than in a reverse causality situation (Tobi et al., 2018). Our

Fig. 4. Different causal models involving one exposure, one CpG site and the outcome (BMI). Among the causal models corresponding to the exposure-BMI link
corresponding to reverse causality (C to K), the models in which the Meet-in-the-Middle approach is expected to be able to provide a truly negative result are
displayed in green, and causal models in which our Meet-in-the-Middle approach can be expected to provide a false-positive result are displayed in red. (in color; 1.5-
column fitting image). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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approach, which has similarities to a mediation test, is moreover spe-
cifically designed to efficiently handle some situations of reverse
causality.

Fig. 4C to K shows all possible causal situations corresponding to
reverse causality between an exposure (E) and zBMI. An ExWAS ap-
proach, which cannot distinguish between E influencing zBMI and zBMI
influencing E, is expected to detect all of them (assuming perfect
power), whereas our Meet-in-the-Middle approach is not expected to
conclude that E and zBMI are linked in cases C and I. Moreover, since
we adjusted our second test (the exposome-methylome test) for zBMI,
cases G and H, which seem very plausible from a biological point of
view, should not be erroneously detected by our approach either (in-
deed, there is no exposure-CpG association conditionally on BMI in
models G and H). Finally, as methylation is not likely to influence ex-
posure levels in another way than via its link with the level of fat and as
we preselected CpGs in pathways likely to link exposures and BMI,
cases E, F and K may not be very frequent situations. Case D however
cannot be excluded and may be erroneously detected by our approach,
which may be the case for PFOS in our study. We can thus hypothesize
that our Meet-in-the-Middle approach is likely to (erroneously) identify
a link between E and Y in fewer causal models corresponding to reverse
causation than the ExWAS approach. This may limit the number of
false-positive findings compared to the agnostic ExWAS.

Regarding now the sensitivity of our approach, it strongly depends
on the proportion of exposures truly affecting BMI for which one of the
underlying mechanisms relates to changes in blood DNA methylation. If
the effect of most exposures is (at least partly) reflected in the blood
methylome, then we can expect a high sensitivity, empowered by the
smaller dimension of the reduced exposome compared to the whole
exposome, which makes the correction for multiple testing less pena-
lizing than in the agnostic ExWAS. If on the contrary most exposures
affecting BMI do so by pathways unrelated to the methylome, then our
approach is expected to have a low sensitivity. We did not find any
association with prenatal exposures to endocrine disruptors (some of
which are possible obesogens (Braun, 2017)) or with dietary factors
such as soda intake, whose effects on BMI are well documented (Heo
et al., 2017; Hu and Malik, 2010; Murakami and Livingstone, 2016) but
may not be visible from the blood methylome. Overall, the sensitivity of
our approach will depend on the (unknown) proportion of exposures
whose effect is mediated by the methylome. Whether the likely lower
sensitivity is considered to be compensated by the expected decrease in
FDP would depend on the specific nature of the exposome study, with
e.g. confirmatory studies putting the emphasis on the limitation of false
positive signals.

4.3. Is a preliminary dimension reduction of the methylome necessary to
efficiently borrow information from it?

We tried to identify a relevantly reduced exposome with ExWAS-
type methods applied to methylome data. ExWAS is known to have a
high-false positive rate, particularly if correlation exists among pre-
dictors (Agier et al. 2016). To cope with this problem, we modified the
original Meet-in-the-Middle framework by testing the exposome-CpGs
associations only for CpGs which we had found to be associated with
zBMI. This drastically reduced the number of tests done at step c)
(10,152 tests versus 83,487,888, a division by 8200) and thus increased
power for this step. Moreover, we also performed a preliminary re-
duction of the size of the methylome, relying on external biological
information from the KEGG pathways database (Tanabe and Kanehisa,
2012). Our preselection of CpGs was, again, drastic, as it reduced the
methylome from 386,518 to 2284 CpGs, possibly allowing a gain of
power to test associations between methylation levels and zBMI, under
strong assumptions. These assumptions relate to the quality and com-
pleteness of the KEGG database (and of our query) to identify BMI-
relevant genes and to the quality of the ILLUMINA annotation about
enhancers CpGs and on the link between genes and CpGs. These can be

questioned: in particular the KEGG database is based on publications of
various quality, and pathways selected may not be relevant for 6–10-
year-old children. Moreover, ILLUMINA annotation is not tissue-spe-
cific whereas enhancer characteristic is; it is consequently unclear
whether the ILLUMINA enhancer tag is relevant for blood immune cells,
on which methylation was assessed. Finally, changes in the methylation
level of the enhancer CpGs of one gene may not be linked with the
protein level of this same gene, but of a remote gene (Jang et al., 2017).

To try to quantify the impact of our CpGs preselection, we used two
approaches. First, we performed a sensitivity analysis, in which the
Meet-in-the-Middle approach was performed without step a) of CpGs
preselection. This led to quite different results. Although, in the last
step, postnatal levels of copper and PFOS were again found to be as-
sociated with zBMI, 4 other exposures were additionally significantly
negatively associated with zBMI: postnatal blood levels of HCB, PBDE
153, DDT and caesium. Contrarily to copper and PFOS levels, which
were associated with respectively 1110 and 180 CpGs at step c), these
four additional exposures were each associated with not more than 2
CpGs. Moreover, as discussed above, for the organochlorine com-
pounds, their association with BMI may be due to reverse causality.
Thus, the discoveries of this analysis without CpGs preselection con-
tained more compounds little likely to be causative predictors of the
zBMI than the discoveries of the main analysis. This might be explained
by the high number of false positives expected from an ExWAS-type
method in high dimension, at steps b) and c). The dimension reduction
of the methylome in our case seemed to help to cope with this problem.
Further studies are needed to determine if this impact of CpGs pre-
selection is generally expected or not.

To further test the quality of our a priori CpGs preselection, we tried
to establish if our a priori reduction led or not to concentration of in-
formation, by quantifying the overrepresentation of our preselected
CpGs in the significant associations found by a methylome-wide ana-
lysis relating the whole methylome to zBMI. The information was in-
deed concentrated (apparently higher specificity of the selected CpGs),
but at the cost of a considerable loss of information: giving up at least
1760 CpGs associated with zBMI implies a risk not to identify some
exposures truly associated with CpGs which are themselves associated
with zBMI, and consequently may decrease the sensitivity of our ap-
proach (Supplementary Material 9). This illustrates, again, that our
approach, which was built to gain in specificity, may in principle have a
cost in terms of loss in sensitivity compared to the agnostic approach.

4.4. Correction for cell-type heterogeneity

Correction for the proportion of the cell-types in which DNA me-
thylation is assessed is now applied in most methylome studies, al-
though its relevance is debated (Holbrook et al., 2017). Between-sub-
ject differences in DNA methylation may or may not depend on cellular
heterogeneity. Generally, it is assumed that differences in DNA me-
thylation not due to cell-types mixture are more likely to be causative of
disease, while methylation differences caused by differences in cell-
types proportion are considered a likely consequence of disease or at
least of the disease process (i.e. to correspond to reverse causality, for
example in the case of obesity-induced inflammation leading to changes
in leukocytes proportion (Zeyda and Stulnig, 2009)), or to be a con-
founder whose effect needs to be controlled for. However, diseases are
also often associated with the distribution of cell types, and cell type
proportion can also in some situations be a cause of disease or a marker
for e.g. inflammatory or immune-related diseases (Holbrook et al.,
2017). This is particularly relevant for obesity development, which is
known to involve inflammatory pathways (Hotamisligil, 2003). The
differential methylation driven by cell-type heterogeneity could there-
fore mediate exposure effects rather than be a consequence of the
overweight. Thus, cell types proportion could be 1) a consequence or
very close marker of our outcome; in such case, adjusting for it in the
model linking methylation and zBMI is irrelevant, as adjustment for
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consequences of the diseases, which are by definition not confounders,
could have harmful consequences (Barton et al., 2019); 2) a cause of the
health outcome. In this case, if (option 2a) it is a mediator of an effect of
an exposure on zBMI or a proxy of such a mediator, we should not
adjust for it: as we want to identify exposures whose effect on zBMI is
biologically mediated by the methylome layer, correcting for cell-types
could prevent us from selecting potential exposures of interest asso-
ciated with zBMI and whose effect is mediated by cell-type-dependent
methylation. If (2b) it is not a mediator, i.e. if it is a cause of outcome
but not a consequence of exposure, it is a potential confounder and as
such should be corrected for in the test of association between methy-
lation and zBMI. We chose not to adjust the DNA methylation-BMI
model of the main analysis for cell-type heterogeneity because we a
priori consider hypotheses 1) and 2a) as more likely than 2b), and
because the consequence of erroneously adjusting may, in our study in
which identifying the intermediate causal factors was not the main aim,
be more harmful (Barton et al., 2019) than adjusting.

In our sensitivity analysis IV, we repeated the whole Meet-in-the-
Middle design considering the cell-types instead of the methylation data
as the intermediate layer. Final results were very similar to those of the
main analysis, making it possible that differential methylation driven
by cell-type heterogeneity explained the association between methy-
lome layer and both copper and zBMI, and which therefore mediate
copper effects (case 2a). However, the reduced exposome was slightly
smaller when considering cell-types and the proportion mediated was
lower (13% vs. 29%). This may mean that the cell-type did not convey
as much information on the biological effect of exposures than DNA
methylation on the path between selected exposures and zBMI.

We acknowledge several limitations to this original work; first, our
results are dependent on the quality of a priori information; second, the
methylome and the outcome (and a part of the exposome) were as-
sessed simultaneously, a design which makes difficult to exclude re-
verse causation with an agnostic test of association. Measurement error
is also expected for both the methylome and the exposome; finally, only
monotonous associations were tested to limit the number of tests. The
strengths of our study include a multilayer analysis of the exposome,
methylome and BMI in a large and well-characterized population, the
consideration of multiple testing in the composite tests and of a priori
information on the methylome-BMI relation to restrict the number of
tests done. This composite design may allow improving the specificity
of exposome-health studies and limit associations due to reverse caus-
ality, with a possible cost on sensitivity.

5. Conclusion

This work is to our knowledge the first epidemiological study re-
lying on an intermediate blood methylome layer to try to better char-
acterize the exposome-health association. Purely agnostic exposome
studies are expected to suffer from a high false positives rate, and
possibly a low sensitivity (due to the correlation within the exposome)
(Agier et al. 2016). Our approach may allow reducing the false positive
rate by using a modified Meet-in-the-Middle design that permits a
biologically driven reduction of the exposome, which may in particular
allow discarding some of the associations of the outcome with the ex-
posome due to reverse causality. It comes at a cost of being insensitive
to exposures acting on the outcome via pathways not causing changes
in the methylome of peripheral blood. Extensions of this approach to
other biologically relevant layers might allow avoiding this limitation
in the future.
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