
PU38CH11-Turner ARI 17 March 2017 8:47

Assessing the Exposome with
External Measures: Commentary
on the State of the Science and
Research Recommendations
Michelle C. Turner,1,2,3,4 Mark Nieuwenhuijsen,1,2,3

Kim Anderson,5 David Balshaw,6 Yuxia Cui,6

Genevieve Dunton,7 Jane A. Hoppin,8

Petros Koutrakis,9 and Michael Jerrett10,11

1Barcelona Institute for Global Health (ISGlobal), Barcelona 08003, Spain;
email: michelle.turner@isglobal.org, mark.nieuwenhuijsen@isglobal.org
2Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
3CIBER Epidemiologı́a y Salud Pública (CIBERESP), Madrid 28029, Spain
4McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa,
Ontario K1G 3Z7, Canada
5Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis,
Oregon 97331; email: kim.anderson@oregonstate.edu
6National Institute of Environmental Health Sciences, Research Triangle Park,
North Carolina 27709; email: balshaw@niehs.nih.gov, yuxia.cui@nih.gov
7Department of Preventive Medicine and Department of Psychology, University of Southern
California, Los Angeles, California 90033; email: dunton@usc.edu
8Center for Human Health and the Environment, Department of Biological Sciences,
North Carolina State University, Raleigh, North Carolina 27695; email: jahoppin@ncsu.edu
9Department of Environmental Health, Harvard University, Boston, Massachusetts 02115;
email: petros@hsph.harvard.edu
10Division of Environmental Health Sciences, School of Public Health, University of California,
Berkeley, California 94704; email: jerrett@berkeley.edu
11Department of Environmental Health Science, Fielding School of Public Health,
University of California, Los Angeles, California 90095-1772; email: mjerrett@ucla.edu

Annu. Rev. Public Health 2017. 38:215–39

The Annual Review of Public Health is online at
publhealth.annualreviews.org

https://doi.org/10.1146/annurev-publhealth-
082516-012802

Copyright c© 2017 Annual Reviews. This work is
licensed under a Creative Commons Attribution-
ShareAlike 4.0 (CC-BY-SA) International License,
which permits unrestricted use, distribution, and
reproduction in any medium and any derivative
work is made available under the same, similar, or
a compatible license. See credit lines of images or
other third-party material in this article for license
information.

Keywords

exposome, external exposures, geographic information systems, remote
sensing, global positioning systems, smartphones

Abstract

The exposome comprises all environmental exposures that a person experi-
ences from conception throughout the life course. Here we review the state
of the science for assessing external exposures within the exposome. This

215

Click here to view this article's
online features:

 

• Download figures as PPT slides
• Navigate linked references
• Download citations
• Explore related articles
• Search keywords

ANNUAL 
REVIEWS Further

A
nn

u.
 R

ev
. P

ub
lic

 H
ea

lth
 2

01
7.

38
:2

15
-2

39
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

A
us

tr
al

ia
n 

C
at

ho
lic

 U
ni

ve
rs

ity
 o

n 
02

/0
4/

18
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1146/annurev-publhealth-082516-012802
http://www.annualreviews.org/doi/full/10.1146/annurev-publhealth-082516-012802


PU38CH11-Turner ARI 17 March 2017 8:47

article reviews (a) categories of exposures that can be assessed externally, (b) the current state of the
science in external exposure assessment, (c) current tools available for external exposure assessment,
and (d ) priority research needs. We describe major scientific and technological advances that
inform external assessment of the exposome, including geographic information systems; remote
sensing; global positioning system and geolocation technologies; portable and personal sensing,
including smartphone-based sensors and assessments; and self-reported questionnaire assessments,
which increasingly rely on Internet-based platforms. We also discuss priority research needs
related to methodological and technological improvement, data analysis and interpretation, data
sharing, and other practical considerations, including improved assessment of exposure variability
as well as exposure in multiple, critical life stages.

INTRODUCTION

The Exposome

The exposome, a concept first proposed in 2005, comprises all environmental exposures that a
person experiences from conception throughout their entire life course (107, 108). It was intended
to stimulate more comprehensive exposure assessment in epidemiology studies and investment
in the development of novel exposure assessment tools and approaches, including the use of
biomarker and ‘omics approaches, to support agnostic analyses of environmental influences on
health. In parallel to large investments into genomic research and the broadening shift in perspec-
tive from the gene to the genome, the exposome sought to better capture highly variable exposures,
both spatially and temporally, to improve our understanding of disease etiology (107, 108). The
exposome can be classified into internal (e.g., metabolic processes, circulating hormones, and
aging), specific external (e.g., chemical pollutants or lifestyle factors), and general external (e.g.,
broader socioeconomic and psychological contexts) domains, though they remain complementary
and interrelated (108).

Investigators have proposed several approaches to assess the exposome. Rappaport (80) de-
scribes environmental exposures as internal biologically active chemical exposures and proposes
a biomonitoring-based, agnostic approach to measuring the exposome to better understand un-
known causes of human disease. In contrast, van Tongeren & Cherrie (102) describe an integrated
approach to measuring the exposome by considering all available data on internal exposure, ex-
ternal exposure, and personal behavior, including making use of routinely collected data and data
from newly developed sensors. They also note that current limitations in the measurement of
internal and external environmental exposures necessitate this combined approach.

The External Exposome

This article focuses on external exposure assessment for several reasons. Although much research
using internal assessment approaches, including large-scale targeted biomonitoring (73) or un-
targeted metabolomics (80), has demonstrated a potential for identifying environmental health
associations, these approaches also have several limitations, including the inability to identify the
source, to account for the route of exposure, or to address spatial or temporal variability of ex-
posure, each of which is critical for understanding the exposome and its link with public health
protection. Also, no known or selective biomarker of current or historical exposure exists for
many external exposures. There may also be complex mixtures of exposures that elicit similar

216 Turner et al.
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health effects (e.g., noise versus air pollution). Assessment of the external environment, including
broader contextual factors, is also relevant for understanding both main effects on health and also
potential mechanisms of buffering or susceptibility. For example, the biological response to noise
may be mediated by various individual- and contextual-level factors that affect sound perception,
including innate sensitivity, coping capacity, perceptions of the source, source authorities, and
general societal expectations (41). Consequently, understanding the exposome more completely
must rely on distinct yet complementary information from both internal and external assessments
of exposures (56, 62, 76, 90).

Here we define external exposures as those that are assessed prior to the point of entering the
body (e.g., before they get under the skin). We acknowledge, however, that in some cases the
distinction between internal and external domains may be unclear, such as in the case of physical
activity, which may represent both a specific exposure of interest and an endogenous mediating
factor (108). A related article describes assessment of the exposome in biological samples (22).

Objectives and Conceptual Model

The objectives of this commentary are to provide an overview of (a) relevant categories of exposures
that can be assessed externally; (b) the current state of the science in external exposure assessment;
(c) current tools available for external exposure assessment; and (d ) priority research needs in
external exposure assessment in the context of the exposome.

This manuscript is framed in the conceptual model for the assessment of environmental expo-
sures (67) (Figure 1). The model shows that while exposure to outdoor air pollution, tempera-
ture, noise, water and soil contaminants, ultraviolet radiation, and green space has generally been

PBPK
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sensors,
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Figure 1
Conceptual model for the assessment of environmental exposures. Abbreviations: ETS, environmental
tobacco smoke; GIS, geographic information systems; PBPK, physiologically based pharmacokinetic
models; UV, ultraviolet. (Adapted from Reference 67, figure 1.5, p. 12, by permission of Oxford University
Press, https://global.oup.com/academic/?lang=en&cc=us.)
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measured and/or modeled on a population level, exposure to food contaminants, consumer prod-
ucts, indoor pollutants (e.g., environmental tobacco smoke, cleaning products), and physical activ-
ity has generally been assessed by obtaining information from individuals. Individual assessment
methods may be used to build or validate environmental models. Furthermore, information ob-
tained from individuals (e.g., water intake, physical activity) can be combined with environmental
estimates to obtain exposure estimates. Physiologically based pharmacokinetic models can be
used to transform exposure into dose estimates. Environmental exposure and dose estimates can
be linked with ‘omics data to obtain markers of exposure, dose, or health effect and/or to determine
underlying mechanistic pathways between environment and health. Environmental exposure and
dose estimates as well as ‘omics markers can also be linked to health effects to determine exposure-
response relationships or their absence.

EXTERNAL EXPOSURE ASSESSMENT

Types of External Exposures

Table 1, developed by a National Institute of Environmental Health Sciences (NIEHS)–appointed
Working Group on the state of the art of external exposure assessment, provides a listing of
selected exposures that can be addressed by external exposure assessment to illustrate the broad
range of exposures that may be considered. The current state of the science is described for each
exposure according to various criteria, including (a) level of biological plausibility of potential
health effects in human populations (these data may be available from existing studies or from the
analogy of effects of related stressors); (b) known or reasonably surmised pathways of exposure (e.g.,
inhalation, ingestion, dermal uptake, or other pathways such as endogenous stress response); (c) the
potential to affect large human populations or have potential large effect sizes (e.g., an attributable
fraction approach); (d ) feasibility of assessment with current or near-term new technologies on
large populations; and (e) the capacity to measure/infer individual-level exposure or dose either
through direct measurement or through models that can infer exposure on meaningful temporal
and spatial scales. Here we focus on broad categories of known exposures, though we acknowledge
that there may be other unknown or emerging exposures for which there is little information,
including complex mixtures of pollutants. We also note that most applied studies will need to
adopt either a targeted or a semitargeted approach to external assessment of the exposome to
target specific exposures or groups of exposures.

For most of the exposures listed here, including outdoor air pollution and radon, for example,
there is a high level of biological plausibility of health effects owing to results from previous studies
and mechanistic evidence. In some cases, such as for electromagnetic fields or green spaces, the
level of biological plausibility is less certain. There are also multiple known pathways of exposure
for many external exposures. With the exception of individual extreme events and certain occu-
pational exposures or infectious agents, many external exposures have the capacity to affect large
populations. In contrast, for most exposures, current technology allows only a low-to-moderate
feasibility of measurement on large populations, across cohorts, or population health surveys and
a low-to-moderate capacity to measure/infer individual-level exposure or dose.

State of the Science

Although traditional exposure assessment approaches have typically relied on questionnaires and
static monitors (and models based on them), recent rapid technological advancement has allowed
for novel assessment methods, which have generated large data sets capable of capturing exposure
variability at finer scales of assessment (5). In 2005, the ad hoc Committee on Environmental
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Exposure Technology Development described the use of environmental sensors and geographic
information systems (GIS) for deriving personalized external exposure estimates (106). We briefly
review below more recent advances in external exposure assessment based on GIS; remote sensing;
global positioning system and geolocation technologies; portable and personal sensing, including
smartphone-based sensors and assessments; and self-reported questionnaire assessments, which
increasingly rely on Internet-based platforms.

GIS. GIS has transformed environmental health research by integrating databases that connect
different attribute data by geographic location. Data on external environmental exposures ob-
tained from remote sensing, geolocation technologies, or sophisticated modeling outputs can
be combined with health attribute data obtained via personal sensing or other approaches. GIS
integrates topologic geometry, which can manipulate geographic information, with automated
cartography, enabling users to compile digital or hard-copy maps. GIS can quantify buffer dis-
tance between an exposure source and a human receptor and may be used to characterize proximity
to roadways, factories, green spaces, water bodies, and other land uses that have either potentially
adverse (e.g., ambient pesticide exposure from agricultural use) (75) or salutogenic exposures (e.g.,
density of healthy food stores or recreational establishments) (15). For example, NISMap, a three-
dimensional GIS-based propagation model of exposure to ambient radiofrequency (RF) electro-
magnetic fields from cellular telephone base stations for use in epidemiological studies, has been
developed to integrate building geometry and damping, topographical, and antenna/transmitter
data (8) (Figure 2). GIS can also display and analyze mobility of people as they travel through the
external environment.

strength (V m–2)

Dutch reference
level for electric

GSM: 41 V m–2

UMTS: 61 V m–2

<0.05
0.05–0.1
0.1–0.2
0.2–0.3
0.3–0.4
0.4–0.5
0.5–0.6
0.6–0.7
0.7–0.8
0.8–0.9
0.9–1.0
>1.0

GSM 900

UMTS

Figure 2
Three-dimensional profile of the Global System for Mobile Communication (GSM) (top panel ) and
Universal Mobile Telecommunications System (UMTS) (bottom panel ) electric field strengths [volts per
meter (V m−2)]. The yellow triangles show the locations of GSM and UMTS antennas for the top and
bottom panels, respectively. Reprinted from Sci. Total Environ., 445–46, Beekhuizen J, Vermeulen R,
Kromhout H, Burgi A, Huss A, Geospatial modeling of electromagnetic fields from mobile phone base
stations, 202-9, 2013, with permission from Elsevier.
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2 5 10 20 50 100 200

PM2.5 (µg m–3)

Total PM2.5

Figure 3
Global decadal (2001–2010) satellite-derived mean PM2.5 concentrations (adapted from Reference 99).

Remote sensing. Remote sensing involves the collection and interpretation of data obtained
about the surface of the earth from a distance. These technologies and related methods are useful
for external exposure assessment in areas with little ground-based monitoring (42, 85). For in-
stance, aerosol optical depth (AOD) using satellite-based technologies measures light extinction
by aerosols suspended in the atmosphere in a given column and has been used in the estimation of
fine particulate matter air pollution (PM2.5) concentrations. van Donkelaar et al. (100) estimated
global PM2.5 concentrations using MODIS (moderate resolution imaging spectroradiometer)- and
MISR (multiangle imaging spectroradiometer)-based measurements of AOD in combination with
the Geos-Chem chemical transport model at a 10-km resolution. These estimates were recently
improved and updated (Figure 3) with a high-level of agreement observed between satellite-
and ground-based measurements in North America (r = 0.76), Europe (r = 0.73), and globally
(outside North America and Europe) (r = 0.81) (99). Remote-sensing estimates have been used
to assess associations between PM2.5 and cardiovascular disease in epidemiological studies (12,
14, 17). Some studies have recently used 1-km estimates of PM2.5 for the United States, which
increase their utility for exposomics studies (55, 101). Remote-sensing techniques have also been
used to estimate an expanding list of environmental exposures, including nitrogen dioxide (NO2)
concentrations (35), green spaces (2, 70), temperature (19), the built environment (13, 95), out-
door light at night (45), agricultural chemical exposure (60), land cover classifications (11), river
plumes (3), water quality (26), and marine microorganisms (39), for example.

A major advantage of remote sensing is virtual global coverage, which is promising for large
population studies of the exposome. Limitations include typically broad spatial and temporal scales,
which are unlikely to capture fine-level variation or short-term peak exposures. Investigators
also encounter measurement limitations for PM2.5 in cloudy conditions, at night, or on bright
surfaces (43, 99, 100). For assessment of green spaces, there is the inability to assess quality as
opposed to quantity of space or to distinguish vegetation type or species (70). Jerrett et al. (49)
observed stronger PM2.5–cardiovascular mortality associations from models that used ground-
based as opposed to remote-sensing information, particularly for models that could estimate
fine-scale variation from traffic sources in the United States. Hybrid approaches combining data
on land use with remote-sensing estimates have been developed to downscale remote-sensing
estimates horizontally (7).
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Global positioning system and geolocation technologies. The GPS allows one to track a
person’s geographic position to better understand potential exposures and their contexts. The
GPS has three components: a space segment with some 24 satellites that transmit signals to the
earth; a control segment that tracks satellites, resets their clocks, and maintains their positions;
and a user segment of individual devices that receives signals and calculates three-dimensional
positions and times (38). GPS signals are also sometimes augmented by land-based navigation
systems using cellular telephone triangulation (87).

Geolocation technologies have been used to improve external exposure assessment in numer-
ous ways, including, for example, tracking potential exposure to malaria control pesticides (32),
supporting infectious disease surveillance and outbreak response (34), and refining air pollution
exposure estimates. GPS data can be combined with personal air pollution monitoring data, from
devices carried by study subjects as they walk, ride bicycles, drive, and live their daily lives, as
well as with data on physical activity and inhalation rates to allow investigators to calculate more
detailed exposure estimates (47, 61, 69). Steinle et al. (93) reviewed several studies combining GPS
devices, personal monitoring, and time-activity diaries to estimate personal levels of exposure to air
pollutants. Data on personal levels of exposure can be used to calculate population-level exposure
estimates using health and demographic information.

GPS data have also been combined with accelerometers worn on children to study how different
land use configurations affect physical activity behavior (2, 48). Bolte & Eikelboom (10) assessed
mean daily personal levels of RF field exposure in the Netherlands using personal monitors in
conjunction with GPS-based location and time-activity data (Figure 4). Rajkovich & Larsen (78)
describe a bicycle-based measurement system for thermal exposures that incorporates GPS data
with measurements of air and ground surface temperature, relative humidity, solar and long-wave
radiation, wind speed, barometric pressure, and sky view factor.

Geolocation technologies will likely play an increasingly integral role in widespread population-
based or individualized sensing, especially with smartphone-based applications (discussed be-
low), increasing the precision of external exposure assessment; however, limitations, including

Amstelveen

Amsterdam
E4.9°

N52.35°

Figure 4
Spatial pattern of exposure ( yellow) to electromagnetic fields from GSM base stations during travel by train,
tram, and bus. The height of the yellow profile is proportional to the electric field strength (1 km represents
1 V m−2). Courtesy c© 2011 Google, c© 2011 Aerodata International Surveys, c© 2011 Europa
Technologies, c© 2011 TeleAtlas. Reprinted from Environ. Int., 48, Bolte JFB, Eikelboom T, Personal
radiofrequency electromagnetic field measurements in the Netherlands: exposure level and variability for
everyday activities, times of day and types of area, 113–42, 2012, with permission from Elsevier.
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position errors indoors as well as signal interference by features of the built environment in urban
settings, should be carefully considered (63). Further research into the incorporation of indoor
real-time locating systems, wearable cameras, or other evolving technology to provide detailed
indoor location data is needed, as is standardization of protocols for GPS data analysis (58).

Portable and personal sensing. A wide range of novel techniques are emerging in terms of
portable and personal sensing to improve external exposure estimates and to understand patterns of
population exposure. Snyder et al. (92) described the changing paradigm and recent advancements
in air pollution monitoring, in particular the use of portable and often personal, low-cost, real-
time sensors that offer increased spatial and temporal resolution and data availability to both
researchers and individuals and communities themselves (Figure 5). Portable microsensors are
increasingly being deployed by researchers and have recently been used in the development of
land-use regression surfaces for NO2 and ozone (O3) in Montreal, Canada (23). Joseph et al. (50)
recently described a mobile three-dimensional drone-based measurement system that can more
comprehensively assess general-population RF field exposure from cellular telephone base stations.

Nieuwenhuijsen et al. (68) reviewed advances in personal-sensing technology for external as-
sessment of a broad range of environmental exposures, including air pollution, noise, temper-
ature, and green space, as well as health response, including blood pressure, heart rate, lung
function, emotional status, and physical activity levels (Figure 6). O’Connell et al. (71) developed
a method for using silicone wristbands as inexpensive personal passive samplers for the collection
of time-weighted mixed chemical exposure (Figure 7). Investigators identified a total of 49 chem-
ical compounds out of a possible 1,182 screened following 30 days of use by public volunteers;
identified chemical compounds included polycyclic aromatic hydrocarbons, consumer products,
pesticides, phthalates, and various industrial compounds. This type of method offers the promise
of quasi-targeted, agnostic investigations that would parallel and complement internal exposure
data mining. Personal light intensity data loggers have also been used in occupational studies of
night shift workers (40, 72).

Current approach New paradigm

Sensor
technology

How are
data

collected?

Who
collects

the data?

Why are
data

collected?

How are
data

accessed?

Expanded use by
communities and

individuals

Increased data
availability and

access

New and
enhanced

applications

Limited mostly to
governments,
industry, and
researchers

Compliance
monitoring,

enforcement,
trends, research

Government
websites,

permit records,
research databases

Figure 5
The changing paradigm of air pollution monitoring (adapted with permission from Reference 92. Copyright
2013 American Chemical Society).
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Figure 6
Personal levels of noise (dBA), ultraviolet B (UVB) (mJ/cm2), humidity (%), temperature (◦C), black carbon
(BC) (µg/m3), blood pressure (mmHg), heart rate variability (HRV) (ms), heart beat (beats per minute), lung
function (L), emotional status, and physical activity (PA) [metabolic equivalents (METs) during two 24-h
periods] (adapted from Reference 67).

226 Turner et al.

A
nn

u.
 R

ev
. P

ub
lic

 H
ea

lth
 2

01
7.

38
:2

15
-2

39
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

A
us

tr
al

ia
n 

C
at

ho
lic

 U
ni

ve
rs

ity
 o

n 
02

/0
4/

18
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



PU38CH11-Turner ARI 17 March 2017 8:47

a

b c

d

Figure 7
Examples of silicone personal sampling samplers. (a) Configurations of wristbands used in the study
including a single wristband, one cut and worn as a lapel, and one worn as a stacked wristband in which only
the outer band was analyzed; (b–c) bags used for transport that were attached to track participant
identification and exposure time in the occupational deployments; (d ) single wristband deployment
(debossed writing as pictured: “OSU EINOME” for Oregon State University Environmental Integrated
Organic Monitor of Exposure) (adapted from 71).
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Ambient light

Proximity

Dual cameras

GPS

Accelerometer

Compass

Gyroscope

Dual microphones

Figure 8
An off-the-shelf iPhone 4, representative of the growing class of sensor-enabled phones. This phone includes
eight different sensors: accelerometer, global positioning system (GPS), ambient light, dual microphones,
proximity sensor, dual cameras, compass, and gyroscope. c©2010 IEEE. Reprinted, with permission, from
Reference 54.

Smartphone-based sensors and assessments. Cellular telephones, carried routinely by billions
of people around the world, can allow personalized monitoring of the environment as people move
through time and space. Smartphones already come equipped with many embedded sensors,
such as compasses, GPS, gyroscopes, accelerometers, dual cameras, dual microphones, proximity
detectors, ambient light detectors, Wi-Fi, and Bluetooth connectivity that can be harnessed for
personalized sensing of the external environment as well as for transmitting of data from other
wearable sensors (48) (Figure 8). Ramanathan et al. (79) used a smartphone camera to photograph
black carbon on a filter for processing elsewhere. Snik et al. (91) described an optical add-on,
iSPEX, to measure atmospheric aerosols through spectropolarimetric measurements by citizen
scientists. There was good agreement between iSEPX and spatial and temporal aerosol optical
thickness as estimated from satellite- or ground-based precision photometry, respectively. Dewulf
et al. (24) used routine passive mobile positioning data collected by the mobile phone network as
an approach to capture individual time-location information more efficiently when estimating air
pollution exposure in Belgium.

A number of software applications have been developed that exploit onboard sensors such as
motion, audio (for noise), visual, and location sensors. CalFit software uses the built-in accelerom-
eter and GPS sensors to record activity counts and energy expenditure as well as time and location
information in which an activity occurs (27). Smartphone accelerometers with CalFit software
performed as well as Actigraph accelerometers, the current gold standard, although wear time was
considerably less for the smartphones owing to a lack of compliance by some study participants
(27). Another study combined CalFit data with land-use regression estimates of NO2 exposure in
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Heart rate Blood glucose

Blood pressure

Caregiver
or

physicians

Medical or public
health researcher

Position and activityMuscle activity

Temperature

Sweat
production

Information

Assessment, assistance, treatment

Figure 9
On-body sensor technology allows data collection for individual, (near) real-time, care-driven monitoring of
health-related end points. Reprinted from Int. J. Hyg. Environ. Health, 217(8), Smolders R, de Boever P,
Perspectives for environment and health research in Horizon 2020: Dark ages or golden era?, 891–96, 2014,
with permission from Elsevier.

Barcelona, Spain, and determined that transit accounted for 24% of participants’ inhaled dose of
air pollution, even though it accounted for only 6% of their time (20).

Other software applications have aimed to improve our understanding of patterns of smart-
phone use and RF field exposure in epidemiological studies collecting data on the number of
calls, call duration, laterality, hands-free device use, and communication system (36, 37). Valida-
tion studies in both young people and adults indicated that participants tended to underestimate
number and overestimate the duration of calls in self-reported questionnaire assessments com-
pared with those measured with the software application (36, 37). Investigators have explored
smartphone-based noise measurement applications to address the limitations of traditional noise-
mapping approaches based on prediction models (65, 86). They have also been used to administer
questionnaires in a flexible time- or context-specific manner (see below).

Smartphones are used in the area of mHealth (mobile health) to transmit physiological mea-
surements and other relevant data (Figure 9). There is also increasing interest in smartwatch
applications and multiple sensors for health and behavior tracking, such in the case of diabetes or
Parkinson’s disease management, for example (4, 88). A growing number of telemedicine studies
may expand the repertoire of possible physiological measurements that are critical to understand-
ing biological responses to external exposures (89).

Future challenges in portable and personal sensing include measuring longer-term exposures
and health outcomes, reducing cost, improving operability for application in larger population-
based studies—in particular to avoid problems in compliance, potential sampling bias, and
behavioral change due to wearing of the monitors—improving reliability and quality of data,
measuring a greater number of exposures, and integrating and interpreting data from diverse
sources. Further research to validate the expanding number of available software applications
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is also required (9). Future endeavors could put other devices, including miniaturized pollution
monitors, into such phones.

Self-reported questionnaire assessments. Although assessment of the exposome is based
largely on objective assessments that are passively collected through sensor technology,
population-based studies will still rely on questionnaires and surveys to help capture self-reported,
personal characteristics and historic exposures. Questionnaires are inexpensive, effective ways to
collect data from a large population. Information from questionnaires on residential and occupa-
tional history can be linked to the growing number of geospatial data sources to create integrated
metrics of exposure to environmental contaminants, such as agricultural chemicals (16) or air pol-
lution (105). Technological improvements regarding how questionnaires are administered (e.g.,
smartphones, social media, and social networks) have updated the utility of this commonly used
tool. For example, as part of the European Physical Activity through Sustainable Transport Ap-
proaches (PASTA) project, a large-scale multicity longitudinal online survey is being conducted to
better understand the determinants of physical activity and active transportation over time, includ-
ing a detailed assessment of mobility patterns in daily life (28). Computer-aided questionnaires
can improve the quality of participants’ reported data and allow investigators to rapidly integrate
questionnaire responses into analytical data sets. Questionnaires can also capture individual per-
ceptions of the built and physical environment such as safety, traffic, and vegetation, which may
differ in substantial and meaningful ways from objective indicators. There are also opportunities
for crowdsourcing of self-reported data via Web-based interfaces. For example, data on cycling
safety and collisions can be collected online by a global mapping system (66).

Data on perceptual information can also be gathered through context-sensitive ecological
momentary assessment (CS-EMA) through real-time self-reported smartphone assessments. The
system can, for example, request a person to respond to a survey either at random or when particular
events are sensed through a smartphone-enabled system, such as the use of steroid inhalants (31), a
period of physical activity (29), contact with nature (25), or air pollution exposures. EMA surveys
provide rich data on mood, stress, social context, environmental perceptions, or behaviors at
the point of contact between the exposure and receptor (30, 46). However, due to their greater
frequency, EMA measures have the potential to be burdensome for participants.

Questionnaires will remain a key tool for external exposure assessment, given their low cost, ease
of administration, and ability to capture perception data. Although most questionnaire measures
do not capture exposure to specific compounds, many questionnaire-based metrics have been
standardized and applied internationally and have proven predictive value in health assessments.
Future developments will focus on mode of delivery and interaction between participants and
smartphones or other devices to tailor data collection for key time windows of exposure.

CONCLUSIONS

Despite numerous advances in external assessment of the exposome, there are a number of priority
research needs related to methodological and technological improvements, data analysis and inter-
pretation, data sharing, and other practical considerations. Research recommendations related to
internal exposure assessment of the exposome, biological impact, epidemiology, and informatics
and data analytics are provided in related manuscripts (18, 21, 22, 59, 94).

Methodological and Technological Improvements

Major initiatives for methodological and technological improvements include the conduct of
repeated population censuses of exposure, increased involvement of citizen scientists, and the
development and validation of technologies for measurement of multiple priority analytes.
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Repeated population censuses of external exposures could be based in either new or existing
large-scale cohort studies or conducted cross-sectionally. Although longitudinal collection, such
as in the Human Early-Life Exposome (HELIX) study, which seeks to assess pre- and postnatal ex-
ternal environmental exposures in existing European birth cohort studies (104), allows researchers
to examine associations with health outcomes over time, a cross-sectional approach, embedded
in ongoing population health surveys, such as the National Health and Nutrition Examination
Survey (NHANES), would also provide useful data on population-level exposures and could be
combined with data from smaller cohorts. Additional sensors and technologies could be added as
part of the data collection protocol and would help provide data on spatial and temporal trends
in exposure and could be used to inform future studies. The NHANES, for example, has already
deployed accelerometers for measuring physical activity, and these initiatives could yield rich
information from a survey that has already been used for internal exposomics inquiries (33).

There is also increasing interest in citizen science approaches to external exposure assessment,
which seek to engage and empower the public in data collection efforts and prevention applications
(53, 57). For example, the public health exposome concept seeks to further community engagement
in health disparities research through the use of public participatory GIS to provide communities
access to infrastructure to support research and decision making (51). Examples of other citizen
science initiatives include community monitoring of PM2.5 in the Imperial Valley of California
as part of a collaborative effort of the advocacy group Comite Civico del Valle, the California
Department of Public Health, and several universities (http://www.ivan-imperial.org), as well as
the European Citi-Sense project that is working in several countries to empower citizen volunteers
to use various technologies to assist in understanding the risks they face from environmental
exposures and to improve their local environmental conditions (http://www.citi-sense.eu).

Improved technologies for the measurement of multiple priority analytes are also needed, par-
ticularly those that are low-cost and applicable in large-scale studies, including new portable and
personal sensors with improved measurement duration or remote-sensing technologies at finer
levels of spatial resolution. There is also a need for improved assessment of exposure variabil-
ity, including minute, daily, and yearly variability, as well as peak and intermittent exposures, in
multiple, critical life stages, including the targeted development of standardized external exposure
metrics for use in utero, in early childhood, in adolescence, and in senescence (82, 108). Analyti-
cal platforms based on high-resolution mass spectrometry have also been applied in quantitative
and qualitative analysis of contaminants in various exposure matrices such as surface water and
house dust (77, 84). Coupling with different extraction and separation techniques, these highly
sensitive analytical platforms not only enable quantitation of targeted contaminants but also al-
low for suspect screening and nontargeted analysis of environmental exposures based on how
the data are processed (1). Data processing is currently still a major hurdle for scaling up the
application of untargeted analysis in exposure assessment, including identification of unknown
compounds.

Key here is close partnership between researchers, the government, and the industry to develop
useful technology that is also economical for research purposes. For example, there is increasing in-
terest in the use of data from social media networks, particularly georeferenced data and omnidirec-
tional imagery (e.g., Google Street View), in assessing the social and built environment (83). There
may also be opportunities to build on recent developments in the fields of eHealth and mHealth,
including biological sensing, and real-time patient monitoring, including additional opportunities
for measurement validation. Although in some cases the development of such technologies will
require smaller-scale studies with detailed validation protocols, investigators will eventually need
to consider deploying these tools in larger studies. Further development of methods for predictive
modeling of external exposures to both the individual and populations is also needed.
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Data Analysis and Interpretation

External exposure assessment in exposome studies involves large amounts of data collected at
multiple scales and life stages. Through untargeted exposure assessment and studies of mixtures
and different exposure routes, we know that humans are exposed to numerous potentially toxic
chemicals. Major challenges include how to integrate and interpret data in a meaningful way, how
to account for shared exposures, how to integrate data across multiple spatial and temporal scales
and methodological approaches, and how to account for measurement errors.

The aggregate exposure pathway (AEP) framework, a conceptual framework that complements
the adverse outcome pathways (AOP) concept, organizes exposure and toxicological data from
source to dose and to outcome (97). Together, the two frameworks complete the view of the
exposure–outcome continuum to enable knowledge integration and better understanding of the
health impacts of chemical exposure. In addition, the AEP framework supports exposure modeling
and exposure forecasting by organizing exposure data within individual units of prediction that
are common to the field.

Few studies have attempted to comprehensively quantify correlations between multiple expo-
sures in exposome studies. In an analysis of 81 environmental exposures assessed during pregnancy
via a range of biomonitoring, geospatial modeling, remote sensing, and questionnaire approaches,
Robinson et al. (81) reported a weak correlation (median correlation = 0.06) between exposures
overall but a stronger correlation (median correlation = 0.45) between exposures within the
same family (e.g., noise, water, or air pollutants), which suggests that adjustment for potential
confounding between families of exposure may be permitted in future epidemiological studies
of the exposome. The authors also note that correlations may be inflated for exposures assessed
using a similar methodological approach, e.g., the same analytic platform or modeling input vari-
ables, possibly obscuring true exposure variability. Patel & Manrai (74) constructed an “exposome
globe” to identify and display correlated clusters of exposures by extending unsupervised learning
approaches originally developed for use with genomic data to 81,937 environmental exposures
collected as part of four consecutive NHANES surveys in the United States. Results of these and
related future studies will help us better understand routes of exposure, interpret effect estimates,
appropriately identify and adjust for potential confounding, and support collaborative research
efforts of related exposures (74).

Owing to rapidly evolving technology and limitations inherent in individual approaches to
external exposures assessment, methods will also need to be developed to integrate external
exposure data assessed across multiple spatial and temporal scales and approaches (e.g., the fusion
of remote sensing with ground-based air pollution data). Statistical methods will need to account
for measurement errors that may occur across scales of measurement with different measurement
precision and analyte. For example, Hoffmann et al. (44) recently used a Bayesian hierarchical
approach to modeling uncertainties in retrospective and prospective radon exposure assessment in
a study of lung cancer in uranium miners. Furthermore, Zidek et al. (110) established that with two
predictor variables in a regression model, the one that is measured with more precision will likely
dominate, even if the variable measured with less precision has a stronger underlying relationship
with the outcome. The potential for this kind of error to lead to false discovery increases in the
presence of multiple exposures that will likely be measured with different levels of precision in
exposome studies. Other unique biases such as technology-related participation biases might also
occur through the use of multiple measurement tools with different sampling strategies (108).
Additional research to further develop approaches to capture time-varying effects, bidirectionalty,
intraindividual variability, idiographic effects, reciprocal relationships, and feedback loops is also
required.
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Data Sharing

In light of the large quantity of data on the external exposome that may be generated through both
individual studies and population censuses of exposure, as well as the large-scale transdisciplinary
consortiums involved, an information exchange resource/clearinghouse to facilitate the sharing of
exposure data, exposure assessment tools, and modeling methods from multiple studies is needed.

Such a data-sharing resource may follow the approach of currently available platforms such
as Tox21 (http://ntp.niehs.nih.gov/results/hts/index.html) or the National Center for Health
Statistics (NCHS, http://www.cdc.gov/nchs/), particularly for high-priority exposures. The ISA-
TAB-Nano specification allows for the sharing of nanomaterial data in a spreadsheet-based format
across data resources (98). Key here is the development of standardized data collection or modeling
protocols as well as protocols for data annotation, structure, sharing, and use to allow for both
current uses and comprehensive analyses of exposure across populations in the future (6). As
another example, detailed genotypic and phenotypic data from the large UK Biobank prospective
study is available as an open access online resource for researchers (96).

Careful consideration regarding privacy concerns and access to data is required because detailed
geolocation data and other personal data may be collected, including social contacts and individual
behaviors in some studies. In addition, particularly in exposome studies, real-time personal-level
data on external exposures may be captured, and protocols for sharing the data with participants
may be required because the possibility for individual-level intervention, such as exposure warn-
ings, exists (83). Further research on risk communication with study participants may be useful
(64). We emphasize, however, that the goal of exposome studies is to better understand disease
etiology and environmental risk factors at the population level rather than at the individual level
and that participant privacy should be protected while also enabling the potential benefits of the
data to be realized (108).

Practical Considerations

We must also evaluate the practical considerations related to operational parameters, training,
and funding, including balancing costs versus necessary accuracy for technological deployment
in large-scale studies. We also need relevant educational and outreach opportunities to provide
adequate training to current and future researchers and research users to facilitate transdisciplinary
collaborations on both targeted and broad-spectrum external exposure applications (62). There
are also funding implications, such as the need for larger exposome-related research grants and
transdisciplinary research centers, though this challenge does not preclude the use or leveraging
of existing resources, including incentives for multisector (public and private sectors) initiatives to
integrate the exposome into ongoing work. Notably, the NIEHS recently launched a competitive
funding infrastructure to support exposome-related research for children’s health [Children’s
Health Exposure Analysis Resource (CHEAR)], including a laboratory network, a coordinating
center, and a data center to facilitate opportunities for data integration and pooled analysis of
a broad range of environmental exposures, including lifestyle and social environment exposures
(https://www.niehs.nih.gov/research/supported/exposure/chear/).

In conclusion, although many priority research needs and challenges related to external expo-
sure assessment of the exposome remain, it is important to begin to conduct such work because
much can be learned from practical research experience that uses a coordinated and thoughtful ap-
proach. For example, existing databases may be able to examine priority stressors that are of interest
in the short term, which should be identified [i.e., Expocast (http://www.epa.gov/ncct/expocast/)
or the Toxin-Toxin-Target Database (T3DB) (http://www.t3db.ca)] (109). Much insight can

www.annualreviews.org • Assessing the External Exposome 233

A
nn

u.
 R

ev
. P

ub
lic

 H
ea

lth
 2

01
7.

38
:2

15
-2

39
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

A
us

tr
al

ia
n 

C
at

ho
lic

 U
ni

ve
rs

ity
 o

n 
02

/0
4/

18
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 

http://ntp.niehs.nih.gov/results/hts/index.html
http://www.cdc.gov/nchs/
https://www.niehs.nih.gov/research/supported/exposure/chear/
http://www.epa.gov/ncct/expocast/
http://www.t3db.ca


PU38CH11-Turner ARI 17 March 2017 8:47

also be gained from three large initiatives funded by the European Union, which are investigating
the feasibility and utility of assessing the exposome [e.g., EXPOsOMICS (103), HELIX (104),
and Health and Environment-Wide Associations based on Large population Surveys (HEALS)
(http://www.heals-eu.eu/index.php/project/)]. These European studies of the exposome, as
well as the ongoing Japan Environment and Children’s Study ( JECS) (52), are focusing on im-
proved measurements of known exposures (and related molecular profiles) as a first proof-of-
concept approach.

While still formative, these studies promise to assess the feasibility of many new methods of
exposure assessment, discovery analysis, and data integration. There are currently no ongoing
studies in other continents, and continental-scale initiatives will be needed to assess the feasibility
of exposomics approaches in North America and beyond. Existing and future large-scale initiatives
promise to test the validity of external exposure assessment in ways that smaller studies will
undoubtedly miss, particularly with respect to sensing multiple analytes in large populations.
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