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Abstract 

A long-standing goal of evolutionary biology is to decode how gene regulation con-
tributes to organismal diversity. Doing so is challenging because it is hard to predict 
function from non-coding sequence and to perform molecular research with non-
model taxa. Massively parallel reporter assays (MPRAs) enable the testing of thousands 
to millions of sequences for regulatory activity simultaneously. Here, we discuss the 
execution, advantages, and limitations of MPRAs, with a focus on evolutionary ques-
tions. We propose solutions for extending MPRAs to rare taxa and those with limited 
genomic resources, and we underscore MPRA’s broad potential for driving genome-
scale, functional studies across organisms.

Introduction
A major goal in evolutionary biology is to understand why and how adaptively relevant 
traits differ between individuals and species. Recent advances in genomics have allowed 
researchers to make rapid progress in this area. In particular, advances in functional 
genomics have now clarified that changes in gene regulation are important for generat-
ing phenotypic variation both within and between species, and these changes frequently 
contribute to adaptation, speciation, and complex trait evolution [1–6]. Variation in gene 
regulation also underlies many fundamental biological processes, such as development, 
tissue differentiation, and the cellular response to environmental stimuli [7–9]. Conse-
quently, there is great interest in harnessing emerging genomic technologies to address 
the role of gene regulation in evolutionary processes.

Gene regulatory programs are commonly orchestrated by cis-acting regulatory ele-
ments such as promoters, insulators, silencers, and enhancers (referred to from here 
on as “regulatory elements”). These elements are typically short sequences, on the 
order of 100s to 1000s of base pairs, that can be located within, close to, or distal 
to the genes they regulate (although in mammals they are often within 1 megabase 
[7, 10]). Enhancers and silencers in particular are defined by their ability to influence 
gene regulation regardless of their orientation to their target gene. Across all types 
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of regulatory elements, transcriptional modulation is typically achieved by recruiting 
transcription factors and/or RNA polymerase II (e.g., this is a common function of 
promoter sequences) [7].

Regulatory elements in the human genome outnumber protein-coding genes by an 
order of magnitude [7] and allow for the induction of diverse and tissue- or context-
specific transcriptional programs [8]. For example, upon infection, human monocytes 
upregulate NF-κB/Rel family transcription factors (TFs), which bind regulatory ele-
ments near innate immune genes resulting in mobilization of the cell’s defense program 
[11, 12]. Given the context-specific nature of a regulatory element’s function, mutations 
in these regions typically have fewer pleiotropic consequences relative to mutations in 
protein-coding genes, leading some to argue that they may be a preferred substrate of 
adaptive evolution [13, 14]. Indeed, regulatory elements have been shown to be evolu-
tionarily important for generating morphological novelty in plants and animals [15, 16], 
for maintaining species barriers [5], and for establishing human-specific traits [17–19].

Despite the established significance of regulatory elements, studying them genome-
wide has been difficult, especially outside of humans and model organisms. Any given 
element is likely to be active in a tissue or cell-type-specific manner, and tends to also 
exhibit context specificity (e.g., becoming active only at specific developmental stages 
or in response to a given external stimulus). In addition, regulatory elements are dif-
ficult to identify from genomic or epigenomic datasets: for example, enhancers display 
some predictable sequence features [20, 21] and associations with epigenetic marks (e.g., 
in humans and other vertebrates, they tend to be located in open chromatin regions, 
hypomethylated, and marked by H3K27ac and/or H3K4me1), but these features are not 
sufficient to predict enhancer activity nor are they exclusive to active enhancers [22, 23].

Thus, to confirm the identity, function, and strength of a putative regulatory element, 
experimental validation is required. Such tests commonly involve a “reporter assay”, in 
which a candidate sequence is cloned into a plasmid containing a minimal promoter and 
a reporter gene (e.g., GFP, LacZ, or luciferase). The plasmid is then transfected into a 
cell type of interest, where, if the candidate sequence is indeed a regulatory element, 
it will interact with the minimal promoter and result in differential expression of the 
reporter gene relative to a control construct that only contains the minimal promoter. 
Such approaches have provided important insight into candidate regulatory elements 
of evolutionary significance [24–26]. For example, Kvon and colleagues used a reporter 
assay to confirm that snake-specific mutations within the ZRS limb enhancer lead to a 
reduction in regulatory activity associated with limb loss [24]. While powerful, candi-
date sequences in this framework are unavoidably tested one by one, making the method 
laborious and impractical when there are many regions of interest, or when the dis-
covery of genome-wide patterns is the goal. Recently developed methods, collectively 
known as “massively parallel reporter assays” (MPRAs), help fill this gap by enabling 
reporter assay experiments to be carried out in very high-throughput (e.g., testing thou-
sands, hundreds of thousands, or millions of fragments simultaneously). However, due 
to technical and expertise-related hurdles, MPRAs have thus far been applied mainly to 
biomedical rather than evolutionary questions. They have also been restricted to a small 
number of species—namely humans and a few model organisms (e.g., fruit flies [27, 28] 
and mice [29]).
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Our goal in this review is to showcase how MPRAs can be harnessed to improve 
our understanding of the generation and evolution of phenotypic diversity across 
the tree of life. To do so, we first provide an overview of MPRA data generation and 
analysis, as well as current applications of the approach; during this overview, we 
highlight the handful of existing studies that have harnessed MPRA technology for 
evolutionary questions. We then move to a discussion of study designs that could 
be leveraged to further address evolutionary questions. We also consider antici-
pated challenges and potential solutions for expanding MPRA protocols to non-
model organisms. We tailor these discussions and recommendations specifically 
to evolutionary studies, with the aim of highlighting the payoffs of integrating 
MPRAs into this field.

Fig. 1  Overview of MPRA workflows. A (1) In the barcoded MPRA design, candidate regions of interest are 
synthesized via large-scale oligosynthesis. (2) The single-stranded DNA is paired with a unique barcode and 
converted to double-stranded DNA via PCR. (3) The barcoded DNA fragments are then cloned into an empty 
MPRA reporter vector. Next, the plasmid library is linearized between the barcode and the candidate query 
sequence, and (4) a minimal promoter (often SCP1) and open reading frame are inserted. (5) This plasmid 
pool is delivered via transfection (or infection if viral delivery is used) into the desired cell type, where (6) 
functional regulatory elements sequences will interact with the promoter to drive transcription of the ORF 
and the barcode, which is incorporated into each transcript’s 3′UTR. Finally, RNA is harvested from the cells, 
and (7) mRNA is sequenced to measure post-experiment barcode abundance, along with DNA fragments 
from the empty MPRA reporter vector step to identify query sequence-barcode associations. B (1) In the 
classic STARR-seq design, sequencing adapters as well as sequences complementary to the STARR-seq vector 
are added to DNA fragments of interest. (2) This fragment pool is then cloned into the STARR-seq vector 
upstream of a 3′ poly-adenylation signal and downstream of a promoter and synthetic intron (to differentiate 
spliced mSTARR-seq RNA transcripts from plasmid DNA in downstream PCRs). (3) After delivery into a cell line, 
(4) inserts that possess regulatory activity interact with the promoter to drive expression of the insert itself. 
Finally, RNA is harvested from the cells, and (5) mRNA is sequenced to measure post-experiment fragment 
abundance, along with DNA fragments from the pre-transfection (or pre-infection) plasmid pool to control 
for variation in input. See Fig. 2 for further information on data analysis
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Overview of MPRA technologies
MPRAs grew out of saturation mutagenesis [30, 31] and cis-regulatory element screens 
[32, 33], which were developed to explore the effects of all possible point mutations in 
a candidate regulatory region. To do so, these protocols linked each of several thou-
sand mutated sequences to a number of unique barcodes, with each sequence-barcode 
pair represented in a different reporter assay vector. After delivery of the pooled vector 
library into a cell type of interest, barcode abundance could be subsequently quantified 
through RNA-seq (and normalized to DNA-seq-based quantification of the input oligo-
nucleotide pool). Together, this approach allows hundreds of different sequences to be 
tested simultaneously in a single experiment. For example, Patwardhan and colleagues 
explored the functional impact of every possible mutation in three mouse liver enhanc-
ers and found that activity was generally robust to sequence variation: only ~3% of muta-
tions altered regulatory activity by more than two-fold [31]. The protocol innovations 
that enabled saturation mutagenesis of candidate regulatory elements (as performed 
by Patwardhan and colleagues) were quickly applied and optimized to create MPRAs—
higher-throughput approaches that could not only test mutagenized sequences of candi-
date regulatory elements, but also naturally occurring polymorphisms at a genome-wide 
scale.

MPRAs consist of three main steps. First, DNA sequences of interest are synthe-
sized and cloned in conjunction with a unique barcode into a specially engineered 
plasmid that contains a minimal promoter and a reporter gene. If barcodes are added 
during the cloning step, the library is then sequenced at high depth to associate 

Fig. 2  Overview of MPRA data and analysis. For both A barcoded MPRA and B STARR-seq experiments, 
pre-transfection (or pre-infection) plasmid-derived DNA is sequenced to control for variation in the pool 
of fragments input into the experiment, while post-experient plasmid-derived RNA is sequenced to 
measure regulatory output. In both cases, the post-experiment mRNA-to-DNA ratio therefore reflects 
regulatory activity controlling for variation in input. In A barcoded MPRAs, the sequencing target is the 
fragment-associated barcode, while in B STARR-seq experiments, the sequencing target is the query 
fragment itself
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barcodes to each assayed sequence. Second, the reporter library is transfected, or 
infected if delivered virally, into a cell type of interest; within each cell, plasmids 
containing active regulatory elements will transcribe the reporter gene and associ-
ated barcode. Finally, RNA is extracted from the pool of transfected cells, and high-
throughput sequencing is used to quantify the barcoded region. In this design, RNA 
barcode abundance, after controlling for DNA input, thus scales quantitatively with 
the regulatory activity of a given tested sequence (Figs. 1 A and 2A).

A variation on this design is “self-transcribing active regulatory region sequenc-
ing” (STARR-seq), in which the sequence of interest is cloned into the plasmid 
downstream of a minimal promoter and reporter gene and upstream of a poly-A tail. 
Consequently, within a given cell, sequences with regulatory activity will interact with 
the promoter to drive expression of the reporter gene and the sequence itself. RNA 
abundance of the focal sequence, again after controlling for DNA input, thus reflects 
regulatory element strength (Figs. 1 B and 2B). This approach is similar to the MPRA 
design described above and in Fig.  1A, hereafter referred to as “barcoded MPRA”; 
however, STARR-seq circumvents the need for both barcodes and fragment synthe-
sis (we note that both barcoded MPRA variations without fragment synthesis, and 
STARR-seq using synthetic constructs, are possible [34, 35], but uncommon).

Because fragment synthesis is not required, STARR-seq is typically more time- and 
cost-efficient than barcoded MPRAs for testing large libraries, such as those includ-
ing randomly sheared as well as captured, immunoprecipitated, or otherwise selected 
genomic DNA fragments (Table  1). Nevertheless, barcoded MPRAs still have their 
advantages. For example, sequence-specific biases in mRNA stability can be a prob-
lem for inference via STARR-seq [48]; however, because barcoded MPRAs test each 
candidate regulatory element in association with multiple barcodes and with multiple 
tiled sequences over the element, this issue is much less of a concern.

Many variations on the barcoded (Fig. 1A) and STARR-seq flavor (Fig. 1B) of MPRA 
designs have been utilized in recent years, with protocol modifications focused on 
different ways to select DNA input for STARR-seq (e.g., ATAC-STARR-seq [43], 
ChIP-STARR-seq [41], CapSTARR-seq [47]), integrating MPRA plasmids into the 
endogenous genome (lentiMPRA [37]), incorporating methyl mark manipulations 
to test the effects of DNA methylation on regulatory function (mSTARR-seq [46]), 
or modifying the MPRA framework to study mRNA stability and alternative splic-
ing [49–52]. These changes to the design impact the types of information that can 
be gained from a given assay (see Table  1 and ref [53] for a detailed comparison). 
Additionally, we note that in parallel to the developments we discuss in this review, 
recent years have seen the establishment of deep mutational scans, which test for 
the effects of all possible mutations in a coding sequence on protein function [54]. 
In some areas of the literature, MPRAs (both the barcoded and STARR-seq versions) 
and deep mutational scans have been grouped under the broader header of “multi-
plexed assays for variant effect” (MAVEs) [55, 56]. However, here we focus specifically 
on assays that consider gene regulation rather than protein function as the output, 
and we therefore use MPRA to describe the family of assays laid out in Table 1 and 
Fig. 1, rather than MAVE (see Additional file 1: Fig S1 for a terminology hierarchy).
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Table 1  An overview of different MPRA approaches

Assay Summary

“Classic” methods

  Barcoded MPRA [23, 31, 33, 36] DNA sequences of interest are each synthesized in conjunction 
with a unique barcode and cloned into a plasmid upstream of 
a promoter, reporter gene, the unique barcode, and a poly-A 
tail. Sequences with regulatory activity drive expression of tran-
scripts that include the barcode, such that barcode abundance 
in RNA extracted from transfected cells reflects regulatory 
element strength.

  STARR-seq [27] Sequences of interest are cloned into a plasmid downstream 
of a minimal promoter (or, more recently, simply the origin 
of replication) and reporter gene and upstream of a poly-A 
tail. Sequences with regulatory activity drive expression of 
transcripts that include the sequence itself, such that the abun-
dance of the focal sequence in RNA extracted from transfected 
cells reflects regulatory element strength.

Elaborations on the classic, barcoded MPRA design

  Lenti-MPRA [37] Lentivirus is used to integrate MPRA libraries into the genome, 
thereby circumventing concerns that episomal reporter assays 
carried out via transient transfection may not reflect gene 
regulatory processes that take place in a native chromatin 
context. The cell-type range of lentivirus transduction is also 
much broader than transient transfection, opening the door to 
experiments in hard-to-transfect cell types.

  AAV MPRA [35] MPRA libraries are packaged into an adeno-associated virus 
(AAV) for transfection. AAV is a nonpathogenic virus commonly 
used for gene therapy studies and permits transfection into a 
wide range of tissues, including post-mitotic tissues and tissues 
that are hard to transfect with traditional chemical or electrical 
methods. Unlike DNA delivered by lentivirus, the AAV-delivered 
DNA remains almost exclusively episomal.

  Saturation mutagenesis-based MPRA [38] To test the functional effects of thousands of mutations in a 
candidate regulatory element, error-prone PCR is used to intro-
duce sequence variation and to incorporate random sequence 
tags. These constructs are then assayed via the MPRA design to 
pinpoint SNPs that affect regulatory activity.

Elaborations on the classic STARR-seq design

  STAP-seq [39] Rather than measuring the activity of many candidate regula-
tory elements in the presence of a given minimal promoter, 
STAP-seq measures the responsiveness of many candidate 
promoters in the presence of a given element. Promoter 
candidates are cloned downstream of a strong enhancer and 
upstream of an ORF and poly-A tail. If a candidate fragment 
is capable of initiating transcription, it will produce reporter 
transcripts that start with the promoter candidate sequence 
wherever the TSS was initiated.

  UMI-STARR-seq [40] This protocol introduces unique molecular identifiers (UMI) 
prior to post-transfection amplification of cell-extracted mRNA. 
The UMIs allow the researcher to account for PCR duplicates 
in downstream analyses, and are recommended especially for 
low complexity input libraries.

  ChIP-STARR-seq [41] Open chromatin regions are incorporated into a DNA library, 
which is then assayed via STARR-seq.

  Pop-STARR-seq [42] Regions of interest are amplified from DNA derived from many 
unique individuals. These genetically diverse products are then 
pooled and used as the input for STARR-seq.

  ATAC-STARR-seq [43] Open chromatin regions are incorporated into a DNA library 
via ATAC-seq [44], and these elements are then assayed via 
STARR-seq. This design allows the researcher to preferentially 
test the activity of putative regulatory elements found within 
open chromatin in a given cell type.
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Overview of MPRA analyses
Once generated, analysis of MPRA data relies on diverse computational and statisti-
cal approaches, which we briefly overview here to familiarize the reader with the 
breadth of possible inferences. In both the barcoded MPRA and STARR-seq designs, 
RNA sequencing is performed to assess the transcription rate of each query frag-
ment, while DNA sequencing is performed to assess the diversity and distribution of 
fragments input into the experiment. The barcoded MPRA and STARR-seq designs 
differ in whether DNA-seq and RNA-seq are carried out on barcodes associated with 
each query fragment (barcoded MPRAs) versus the query sequence itself (STARR-
seq), but in both cases, the outcome variable of interest is the RNA-to-DNA ratio. 
This ratio captures a given fragment’s transcription rate, controlling for variation 
in query fragment abundance (Fig. 2). In barcoded MPRAs, each query fragment is 
associated with tens to hundreds of barcodes to ensure robustness and repeatability, 
while in STARR-seq several unique query fragments may overlap the same genomic 
location; as such, RNA-to-DNA ratios are often summarized for genomic windows 
a few hundred base pairs in size. In both categories of methods, the plasmid DNA 
library of interest is typically transfected into multiple pools of cells or tissues, such 
that DNA-seq and RNA-seq data are sourced from multiple technical replicates to 
assess reproducibility.

To identify regions of the genome with regulatory activity, researchers need to test 
whether a given fragment or genomic interval exhibits a significant excess of RNA rel-
ative to DNA. Several statistical methods have been proposed to accomplish this, for 
example, binomial tests [27] and differential peak calling approaches [57]. To relate a 
predictor variable of interest such as genotype, environment, or cell type to variation 
in RNA-to-DNA ratios, many researchers have relied on negative binomial [58] or 
linear model [59] pipelines originally developed for differential expression analyses. 
The best modeling approach will of course depend on the experimental details and 
the questions at hand, but several generalizable and flexible analysis pipelines are now 
available. For example, for barcoded MPRA experiments, mpralm [60] uses a linear 
modeling framework to test for differential activity, while MPRAanalyze [61] uses a 
graphical model to account for the uncertainty in both the DNA and RNA counts. For 

Table 1  (continued)

Assay Summary

  BiT-STARR-seq [45] Oligos covering each of the alleles for a set of SNPs of interest 
are synthesized and incorporated into STARR-seq experiments 
to test for allele-specific expression. UMIs are also added dur-
ing cDNA synthesis to account for PCR duplicates.

  mSTARR-seq [46] STARR-seq style plasmid pools are constructed using a CpG-
free reporter vector that retains the same functionality. Enzyme 
treatment is then used to create methylated and unmethyl-
ated versions of the plasmid pool, which can be assayed to 
identify regulatory sequences as well as methylation-depend-
ent regulatory sequences.

  CapSTARR-seq [47] Putative regulatory elements are selected from genomic 
DNA using hybridization capture-based target enrichment. 
Captured regions are then assayed via STARR-seq, allowing the 
researcher to test a targeted set of fragments without relying 
on oligo synthesis.
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STARR-seq experiments, STARRPeaker [48] applies a negative binomial regression to 
identify regulatory elements.

Once the researcher has identified regions that show significant regulatory activity 
and/or differential regulatory activity as a function of some predictor of interest, several 
downstream analyses are possible for producing generalizable mechanistic insight. For 
example, significant regions can be tested for enrichment of transcription factor binding 
sites (e.g., using known vertebrate TF motifs [62]) or linked to nearby genes and tested 
for involvement in particular biological processes (e.g., using gene ontologies [63]). Sig-
nificant regions can also be overlapped with other complementary taxa-specific datasets 
when available, for example summary statistics from GWAS, evolutionary or population 
genetic analyses, or other functional genomics assays.

Current applications of MPRAs
Thus far, studies utilizing MPRAs have been largely focused on biomedical questions 
addressed in humans and model organisms. While a comprehensive review of all bio-
medical applications is beyond our scope (instead, see [53, 64–66]), we can briefly sum-
marize this work as follows: MPRAs have been primarily used in biomedical research to 
tackle a long-standing question, what are the functional pathways linking non-coding 
regions to disease? MPRAs have shed light on this question by allowing researchers to 
(1) catalog enhancers, promoters [38, 67], and silencers [68] across a variety of disease-
relevant human cell types [27, 69, 70] and cell states [41, 71–73] and (2) pinpoint causal 
alleles within broad disease-associated regions [36, 74]. Consequently, MPRAs have 
been extensively applied to help move beyond the vast GWAS catalogs generated in the 
past 15 years. For example, Choi and colleagues used a barcoded MPRA to character-
ize the effects of 832 variants in linkage disequilibrium with GWAS hits for melanoma. 
By pairing MPRA experiments with cis-eQTL mapping and colocalization analyses, the 
authors were able to identify 4 candidate variants that are likely causal to disease [75]. In 
another example, Inoue and collegues [76] used a lentiMPRA (Table 1) to characterize 
the dynamics of regulatory element activity across seven timepoints during early neu-
ral differentiation. This approach allowed the authors to identify temporally-dependent 
and independent TFs that regulate neuron development, and to reveal which elements 
are most active across time, including when cells occupy states of known importance 
for neurodegenerative disease. Through these studies and many other examples [64, 65, 
77], MPRAs have proven their utility for uncovering the genetic and mechanistic basis of 
human disease.

A smaller but growing body of literature has applied MPRAs toward evolutionary 
questions. For example, MPRAs have been applied to study regulatory element evolution 
in primates [78] and Drosophila [28] by comparing the activity of homologous sequences 
across multiple species. These studies have identified individual regulatory sequences 
that have gained or lost activity across tens of millions of years of evolution, and have 
also pointed toward generalizable patterns that may characterize such changes. For 
example, Klein and colleagues recently linked CpG deamination to significant changes in 
regulatory element activity during primate evolution [78].

MPRAs have also been used to study the function of regions of putative significance 
to human evolution and human-specific traits. In one instance, Weiss and colleagues 
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explored the effects of ~14k positions in the genome that diverged following the split 
between modern humans and archaic hominins (i.e., Neanderthals and Denisovans) [79]. 
By functionally assessing both the derived (modern human) and ancestral (archaic hom-
inin) sequence for each region, they were able to show that 23% of regions that had any 
detectable regulatory activity also drove differential regulatory activity between mod-
ern humans and Neanderthals/Denisovans. These functionally differentiated sequences 
were enriched near genes involved in traits that also likely differed between modern and 
archaic humans, such as brain anatomy. Similarly, Uebbing and colleagues [80] as well as 
Whalen and colleagues [81] both assayed human accelerated regions in neural cell types. 
Whalen and colleagues coupled MPRA methods with human and chimp induced pluri-
potent stem cell (iPSC)-derived neural progenitors to compare human, chimpanzee, and 
intermediate/reconstructed ancestral sequences in equivalent cell types from both spe-
cies. Using this comprehensive design, they showed that neuronal regulatory elements 
with consistent differences in human-chimp activity are almost completely depend-
ent on cis-regulatory sequence, with little evidence for interaction with the trans-act-
ing cellular environment. Finally, MPRAs have been used to understand the functional 
consequences of archaic admixture. Jagoda and colleagues [82] as well as Findley and 
colleagues [83] quantified the regulatory activity of variants introgressed from Neander-
thals into the modern human gene pool. Both studies found that the in vitro activity of 
many of these variants was suggestive of causal effects on gene regulation. The authors 
therefore hypothesized that Neanderthal-introgressed variants contribute to phenotypic 
variation today through altered transcriptional regulation. It will be exciting to see if 
additional follow-up work (e.g., in in vivo models) confirms these results.

Expanding MPRA usage in evolutionary biology
The examples above highlight the power of MPRAs for improving our understanding 
of the evolution of phenotypic diversity. While such work so far has been limited to 
humans and select other taxa, it is highly feasible to apply these approaches to a broader 
range of species. By applying MPRAs to diverse study designs and organisms, including 
non-model organisms, many outstanding evolutionary questions could be answered. For 
instance, in combination with ancestral sequence reconstruction approaches, MPRAs 
make it possible to test regulatory elements for changes in activity across evolution-
ary time. In other words, it is possible to assay sequences from both extant and extinct 
taxa, and thus to explore the evolution of gene regulation in general, as well as specific 
regulatory element-controlled organismal traits (Fig. 3A). The strength of this particular 
approach is unavoidably reliant on the quality and number of existing genome assem-
blies and is thus not well suited to sparsely sampled phylogenies (we also note there 
are some caveats in reconstructing ancestral states [84], especially of sequences under 
selection [85]). However, as the breadth and depth of sequenced genomes increases—
for example, through large-scale initiatives such as the Vertebrate Genomes Project, 
Earth Biogenome Project, and DNA Zoo [86, 87]—this approach will become more 
generalizable.

Another possibility is to use MPRAs for fine mapping of functional alleles identi-
fied through sequence-based scans for positive selection (Fig.  3B), analogous to their 
use to fine-map eQTLs [36] or GWAS hits [74, 75]. This could be accomplished by 
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independently testing all SNPs in high linkage disequilibrium within an outlier region or 
score peak, or, potentially, by tiling across longer elements in small steps to identify func-
tional modules such as key TF binding sites. A key component of such a design would be 
a set of control, neutrally evolving regions included in the input library for comparison 
and for developing background expectations. Together, this sort of approach would be 
extremely useful for addressing a long-standing challenge in evolutionary and popula-
tion genomics: linking sequence-based measures of adaptation to molecular function 
and mechanism.

MPRAs could also be applied to understand how genetic interactions (i.e., epista-
sis and genotype-by-environment interactions) impact phenotypic variation. Notably, 
genetic interactions have long been thought to be important for complex trait evolu-
tion, yet they are notoriously difficult to study because traditional approaches require 
very large sample sizes to reach statistical robustness [88, 89]. MPRAs can be used to 

Fig. 3  Study designs for evolutionary questions. A MPRAs can be used to test for changes in regulatory 
activity across evolutionary time, by assaying orthologous sequences across a phylogeny (pink, blue, and 
yellow tip lineages) and/or using ancestral sequence reconstruction to assay sequences from extinct 
taxa (green lineage). B MPRAs can be used for fine mapping of functional alleles identified through 
sequence-based scans for positive selection. C MPRAs could be used to understand how genetic interactions, 
namely epistasis and genotype-by-environment interactions, impact regulatory variation. This could be 
accomplished by assaying a genetically variable MPRA library across trans cellular backgrounds that are either 
genetically or environmentally diverse
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make progress in this area. For example, one could assemble a library that includes 
multiple genotypic versions of a given set of regulatory elements, and then systemati-
cally test it (1) within a cell line exposed to different environmental perturbations, (2) 
within cell lines representing different tissues, or (3) within cell lines derived from the 
same tissue but from individuals of different genetic backgrounds or species (Fig. 3C). 
Doing so would generate quantitative estimates of how varying contexts interact with 
genetic variation to impact regulatory element activity with unprecedented flexibility 
and resolution.

Importantly, some groundwork has already been laid for these types of study designs. 
In their study of human-specific variants, for example, Weiss and colleagues tested three 
different cell types—pluripotent stem cells, osteoblasts, and neural progenitors—and 
found that most variants were only differentially active between modern and archaic 
hominins in one of the three cell types [79]. In another example, van Arensbergen and 
colleagues generated genome-wide MPRA libraries for four individuals included in the 
1000 Genomes Project: one person each of Punjab, Japanese, Puerto Rican, and Mende 
ancestry [90]. Across all four individuals, they found ~30k SNPs that significantly altered 
regulatory activity in K562 cells (a leukemia cell line), HepG2 cells (a hepatocarcinoma 
cell line), or both cell types. Together, these studies provide preliminary evidence for 
genotype-by-environment effects (in the form of genotype-by-cell type effects), at least 
in humans. We see great potential for expanding this type of work to other species and 
other types of genetic interactions.

The above examples highlight how MPRAs can be used to catalog the impact of both 
extinct and extant variation within a population or species at scale. In parallel, deep 
mutational scans have recently moved beyond a focus on known genetic variation to 
cataloging the effects of all possible mutations within a genomic feature. Taking advan-
tage of error-prone PCR, Kircher and colleagues tested 99.9% of all possible SNPs across 
20 different disease-associated regulatory elements to identify those most likely to con-
tribute to their pathogenicity [38]. They found that sequence-based scores of phenotypic 
impact were generally poor predictors of regulatory activity, pointing to the necessity of 
functional assays for understanding the consequences of disease-associated variants. To 
our knowledge, these sorts of approaches have not been applied at a comparable scale 
to loci of evolutionary interest, although nothing inherently precludes doing so. Such 
approaches would be extremely useful for understanding the genotype-phenotype rela-
tionship and the landscape of putatively adaptive mutations.

Challenges and recommendations for expanded usage
There are several reasons why MPRA usage has been largely restricted to humans 
and model organisms thus far. First, we believe there is limited awareness of MPRAs 
in ecology and evolutionary biology communities, which was a main motivator for 
writing this review. Second, MPRAs are complex assays and require access to spe-
cialized equipment, and more generally, access to specialized know-how to design, 
carry out, and analyze. However, most of the equipment (e.g., biosafety cabinets, 
incubators, electroporators) is common in molecular- or genetics-focused depart-
ments and likely already exists at most institutions. Further, several detailed MPRA 
protocols and analysis pipelines [37, 48, 60, 61] are now publicly available [37, 40, 
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91] (Additional file 1: Table S1), making it increasingly feasible for researchers from 
diverse disciplines to apply these assays. Finally, in addition to specialized equip-
ment and know-how to carry out MPRA experiments, these approaches also require 
(1) a high-quality genome sequence and/or large amounts of genetic material, 
depending on the study design; (2) a relevant primary cell pool or immortalized cell 
line for transfection; and (3) a working knowledge of potential interpretative chal-
lenges. These constraints have likely hindered the widespread adoption of MPRAs; 
below, we discuss how they can be overcome.

The barcoded MPRA design typically relies on large-scale oligosynthesis of known 
genomic sequences, and thus a reference genome is required. Reference genomes are 
increasingly available for most study organisms, as well as increasingly feasible to gener-
ate de novo [92, 93]. Alternatively, a subset of the genome could be sequenced at a much 
lower cost using methods like RAD-seq [94, 95], as well as methods that specifically tar-
get gene regulatory elements (e.g., ChIP-seq [96, 97] or ATAC-seq [44]), which can then 
be used to refine the list of testable sequences. A more general challenge for barcoded 
MPRAs is that oligosynthesis is limited in both capacity and sequence length: commer-
cial providers rarely synthesize fragments longer than 300 bp. This means that most bar-
coded MPRAs test short sequences, or require sliding window designs to examine larger 
ones, introducing additional complexity during analysis. While 300 bp is enough to cap-
ture, for example, specific TF binding sites and local interactions, many complete regu-
latory elements are larger than 300 bp. Indeed, studies thus far demonstrate increased 
power to detect regulatory activity when query fragments are larger, as well as a general 
impact of fragment length on downstream assay output [46, 53].

An alternative approach is to use STARR-seq family methods (Table 1) to support test-
ing of larger fragments. Such approaches can leverage sequence capture or other meth-
ods to target DNA fragments of interest, as well as random shearing to cover an entire 
genome. Either design requires access to large amounts of starting genetic material (e.g., 
a few [27] to hundreds [71] of micrograms of DNA, or potentially reliance on whole 
genome amplifications [98]); this input requirement may pose challenges when work-
ing with rare samples or endangered species. However, once a plasmid library is gener-
ated, it can be easily renewed via bacterial transformation with minimal loss of diversity 
[46]. Therefore, while it may be challenging to collect micrograms of DNA for some spe-
cies, for many study designs, this obstacle only needs to be overcome once; the resulting 
plasmid library can then support multiple experiments and even be shared across the 
scientific community. Depending on the questions, it may also be worthwhile to pool 
smaller amounts of material from many individuals to create a single library of geneti-
cally diverse regulatory elements [42].

Once a plasmid library is assembled, an unavoidable challenge for many studies will 
be the need for a cell line that can be grown at scale, efficiently transfected (or infected), 
and is representative of the species and tissue of interest. The first two requirements are 
intimately linked to the number of sequences that can be tested in a given assay. This 
is because each sequence of interest must be assayed independently multiple times to 
achieve robust statistical power. Recent recommendations in the field for barcoded 
MPRA designs are to ensure that every sequence is represented by 50–100 independent 
barcodes, with multiple observations of each barcode [36]. With these numbers, testing 
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just 20,000 sequences with standard designs may require transfection of 10–20 mil-
lion cells, with larger starting cell amounts needed since transfection efficiency is never 
100%. For STARR-seq designs, recommendations are to successfully transfect ~60 or 
~300 million cells for focused versus genome-wide screens, respectively [40].

These cell numbers can be prohibitive in the case of hard-to-transfect, terminally dif-
ferentiated, or non-proliferative cell types, or when working with rare samples or non-
model species. Indeed, commercially available cell lines with pre-optimized growth and 
transfection protocols are for the most part limited to humans and model organisms, 
though a growing number of commercially available products are available for other 
species (see Additional file 1: Fig S2 for a complete list [99]). In some cases, it may be 
feasible to use modified MPRA protocols appropriate for hard-to-transfect cell types 
and/or limited cell quantities [81, 100–102], or to derive new cell lines for non-model 
species [103]. In other cases, a better solution may be to use a cell line from a closely 
related species as a proxy (e.g. [28, 78],). This design assumes a conserved trans envi-
ronment since the split of the focal and cell line species, but there is strong evidence 
that TF expression, structure, and specificity to binding motifs are well-conserved across 
long evolutionary time scales [104–106]. For instance, we reanalyzed gene expression 
data from human, gorilla, chimpanzee, orangutan, and macaque lymphoblastoid cell 
lines [107–109] (LCLs) and compared TF expression levels between humans and each 
of the other species. We found that TF expression levels in LCLs are highly conserved 
across species pairs spanning ~6 to ~26 million years of evolutionary divergence (R2 for 
pairwise comparisons=0.66-0.76; Additional file 1: Fig S3). It is also worth highlighting 
that one MPRA study so far, in humans and chimpanzees, has already shown that the 
overwhelming majority of human-chimpanzee species differences in regulatory element 
activity arise from the query fragment sequence itself rather than the species-specific 
cellular environment; in this study, trans effects generated differences in activity for <1% 
of regulatory elements [110]. Thus, several lines of evidence suggest that the easiest solu-
tion for non-model organism researchers is to use an existing cell line from a closely 
related species and that this choice will have minimal effects on evolutionary inferences.

Finally, we caution that there are still interpretive challenges with MPRA data, as there 
are with any functional assay, and evolutionary researchers must be aware of these cave-
ats. First, a fragment’s regulatory activity will always be specific to the cell type it was 
assayed in, and in some cases, a lack of regulatory activity may simply indicate that the 
relevant cell type was not used, rather than that the fragment is not important. Extreme 
cell type specificity is likely to be the exception rather than the rule, but this is still a key 
consideration especially if the relevant cell type is not known a priori. Second, recent 
studies have found that the type of promoter included in the MPRA plasmid can affect a 
fragment’s regulatory activity. For example, thousands of regions in the Drosophila mel-
anogaster genome exhibited differential regulatory activity when the STARR-seq vector 
was redesigned to include a developmental versus a housekeeping promoter [111]. The 
standard versions of both the STARR-seq and barcoded MPRA vectors include a super 
core promoter that is designed to be generally active and to interact with a broad range 
of elements. Unless researchers are interested in promoter-enhancer specificity, we rec-
ommend sticking with the standard versions (plasmids #99296 and #71499 in Addgene). 
Third, there is currently no consensus on what counts as a biologically meaningful effect 
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size in MPRA studies. This interpretive challenge is of course not unique to MPRA stud-
ies, but given that many fragments are typically assayed in a small number of replicates 
followed by multiple hypothesis testing correction, we actually suspect that the MPRA 
literature includes more false negatives than false positives. Another approach, popular 
with barcoded MPRAs, is to include control sequences (i.e., known regulatory elements) 
to which query fragments can be compared. As MPRA technologies are more broadly 
applied, mindful interpretation of the data will continue to be a key discussion for the 
field.

Potential future directions and conclusions
Moving forward, we speculate that there are two areas where emerging research from 
non-evolutionary fields will hopefully soon benefit evolutionary biologists, and in turn 
catalyze research in this area. First, there is a growing awareness of the potential MPRAs 
hold, and a growing community drive to develop standards to facilitate community 
adoption and data reuse. For instance, MaveDB provides a resource for deposition of 
results from MPRAs (and other types of MAVEs) under a standardized format [112]. 
Similarly, the nascent Alliance of Variant Effects (AVE) seeks to build an atlas of all pos-
sible variants in disease-related functional elements in the human genome [113]. These 
existing data collections could be mined for inferences about human evolution, but more 
broadly, these efforts signal that public, standardized databases will be the norm going 
forward, and will surely benefit the evolutionary community as they are expanded to a 
wider range of species. Second, MPRAs have recently motivated new bioinformatic and 
statistical tool development [48, 60, 61, 114, 115] , which could aid non-model organism 
researchers as more MPRA data are generated for these species. For example, MPRA 
data can be coupled with machine learning approaches [81, 116–125] to predict gene 
expression and regulatory structure from genomic sequence alone. MPRA-DragoNN 
[116] and DeepSTARR [117] both use convolutional neural networks to learn sequence 
features associated with regulatory element activity. These tools could allow non-model 
organism researchers to bioinformatically generate genome-wide regulatory maps from 
a focused MPRA training dataset, or potentially, from one generated for a closely related 
species.

Like most other genomic technologies, MPRAs were first optimized in systems with 
extensive genomic resources (i.e., humans and model organisms). However, for evolu-
tionary biologists, these approaches often become most exciting once they are expanded 
to a more diverse set of species and contexts—even if these extensions come with cave-
ats and challenges. We believe that the biological insights to be gained from applying 
MPRAs to diverse organisms, environments, and study designs have substantial poten-
tial for addressing evolutionary questions. In particular, we believe MPRAs will soon 
expand our ability to interpret and annotate the genomes of non-model organisms, as 
well as our understanding of how gene regulation contributes to adaptive evolution and 
phenotypic diversity. The already demonstrated significance of MPRAs in the biomedi-
cal sciences suggests that, in the coming years, we can expect an equivalent wealth of 
insights drawn across a broad range of taxa and evolutionary questions.
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